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Abstract

An analysis of molecular orbital wave function from the viewpoint of resonance theory is proposed. This is an extension of our
previous method to treat conjugated-electron system. It enables us to calculate the weights of resonance structures being consistent
with Mulliken population as well as bond order analysis. The method is successfully applied to LiH, H2O, butadiene and SN2
reaction.
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1. Introduction

Chemist’s traditional approach to molecule is based on the
resonance theory. In the theory, the electronic structure of
molecule is understood in terms of resonance between sev-
eral resonance structures, which are built of atoms linking each
other through ionic and/or covalent bond. Linus Pauling de-
scribes the electronic structure of HCl in his textbook “The
chemical bond” as follows;[1]

For a molecule such as hydrogen chloride we
write the two reasonable electronic structures H:C̈l:..
and H+ :C̈l:.. −. (The third structure that suggests it-
self, H−Cl+, is not given much importance because
hydrogen is recognized as less electronegative than
chlorine . . .) . . . In accordance with the foregoing ar-
gument the actual state of the molecule can be de-
scribed as corresponding to resonance between these
two structures.

We may describe the bond as a covalent bond
with partial ionic character, and make use of the va-
lence line, writing H–Cl (or H–C̈l:.. ) in place of {H :C̈l:..
, H+Cl−} or some similar complex symbol showing
resonance between the two extremes.

The view is still useful to provide simple understanding of the
reactivity and character of molecule. However, most of mod-
ern ab-initio calculations are based on the molecular orbital
(MO) theory and it is hard to extract the traditional picture of
molecule from a MO wave function. Because of these factors,
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development of analysis for MO wave function is highly de-
sired to elucidate the nature of chemical bonding. For such
purpose, Hiberty et al.[2] reported the method to calculate the
weights of resonance structures, in which MO wave function is
expanded into a set of valence-bond (VB) type wave functions.
Weinhold et al. reported quite different method, called natural
resonance theory (NRT) based on natural bond orbital (NBO)
analysis.[3] Karafiloglou et al. are working vigorously to ad-
dress this problem[4–7] and other several methods have been
developed including works by Shaik et al.[8], CASVB by Robb
et al.[9] and the method based on CASSCF-type wave function
by Hirao and coworkers[10]. MOVB by Mo and Gao is one of
direct realizations that fit the present purpose[11–14]. Another
type of analysis based on locally defined energy by Nakai et
al. can also offer detailed inside of the electronic structure of a
molecule and its bonds.[15–24]

Several types of analysis methods have been traditionally de-
veloped. Mulliken population analysis (MPA) and ab-initio
bond order analysis (BOA) are the representative. A theoret-
ical background of MPA became very clear by Mayer’s refor-
mulation using mixed formalism of the second quantization for
nonorthogonal orbitals[25]. BOA was independently developed
by Mayer[25, 26], Giambiag et al.[27–29] and by Okada et
al.[30, 31] as an extension of Wiberg’s pioneering work[32].
Furthermore, several definitions, interpretations, and extensions
of atomic population and bond order have been developed by
various researchers[33–36].

We recently reported a method to evaluate the weights of
resonance structures from Hartree-Fock (HF) wave function,
which is based on an orbital localization and a second quantized
expression.[37–40] The results show excellent agreement with
our chemical intuitions as well as with previous computations.
However, the applicability of the method was limited to the sys-
tem in which electrons are strictly localized. For this reason, an
electron-conjugated molecular system including the transition
states of reactions could not be treated. In this work, we de-
veloped a novel method to calculate the weights of resonance
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structures easily applicable to a conjugated system. Although
the present method allows us to treat not over four conjugating
electrons, it significantly expands the versatility of the analysis
as demonstrated below.

Another important feature of the present method is the con-
sistency with MPA and BOA. Let us consider H2 as a trivial
example. According to the above mentioned Pauling’s picture,
there are three resonance structures, namely, Ha−Hb, H−a H+b
and H+a H−b (labeled R=1,2,3, respectively). Note that the for-
mal charge assigned to atom A (

{
QA

R

}
) and formal bond order

between A and B (
{
BA−B

R

}
) are always integer in this frame-

work. In the case of Ha−Hb, the formal charges assigned to Ha

(Qa
1) and Hb (Qb

1) are respectively 1, and the formal bond order
(Ba−b

1 ) is 1. In a similar manner, an ionic structure (H−a H+b ), the
charge to Ha and Hb are respectively 2 (= Qa

2) and 0 (= Qb
2)

with the formal bond order of 0 (= Ba−b
2 ). And basically the

same for H+a H−b . According to Pauling, the bond is described as
involving resonance between these extreme bond-pictures with
some amount (weight) of each contribution. Here we consider
weight (WR) of each resonance structure that satisfies the fol-
lowing equations.∑

R

WR × QA
R

= Mulliken population on atom A (1)

2
∑

R

WR × BA−B
R

= Bond order between A and B atoms (2)

The aim of the present study is to seek WR that exactly satisfies
these equations and here we present such an expression in four
electron system computed by RHF method.

The organization of this paper is follows. In Sec 2, we
overview our previous method and formulated the new method.
In Sec 3, the new method is applied to LiH and H2O molecules,
to investigate the consistency with MPA, BOA and our previous
method. Next, trans-butadiene and SN2 reaction are examined.
Both of them can not be treated by the previous method because
of the electron delocalization. The conclusion was summarized
in Sec 4.

2. Theory

2.1. A reformulation of BOA
Ab-initio partial bond order between atomic orbitals a and b

can be defined as follows,

b1
a:b =

1
2

(PS)ab(PS)ba (3)

Here, S is overlap matrix and P is defined as Pab =

2
∑occ

i CaiC∗bi, where Cai is LCAO coefficient of molecular or-
bital i. The bond order quantity between atoms A and B, known
as the Mayer bond index,[25, 26] is introduced by Giambiagi et
al. [27–29] as well as by Okada et al.[30, 31], which is an
extension of Wiberg’s work [32].

BAB = 2
∑
a∈A

∑
b∈B

b1
a:b =

∑
a∈A

∑
b∈B

(PS)ab(PS)ba. (4)

a b

a b a b

a b

Figure 1: Operation of Ω1(a, b;α, β) and Ω1(a, b; β, α).

The partial bond order is also described as an expectation value
of wave function (ΨHF) using the second quantized operator.

b1
a:b = 〈ΨHF|χα+b χ

β+
a φ

β−
b φα−a + χ

β+
b χα+a φα−b φ

β−
a |ΨHF〉

= 〈ΨHF|Ω1(a, b;α, β) + Ω1(a, b; β, α)|ΨHF〉. (5)

where the following operator is introduced.

Ω1(m, n;σm, σn) = χσn+
n χσm+

m φσn−
n φσm−

m . (6)

Here, χ+m is creation operator of nonorthogonal atomic orbital m
and φ−m is annihilation operator of biorthogonal atomic orbital
m. σm means the opposite spin of σm. When and only when
the ket is the states in which two atomic orbitals a and b are
singly occupied by one α electron and one β electron, the op-
erators Ω1(a, b;α, β) and Ω1(a, b; β, α) flip α and β spin into β
and α, respectively (Figure 1), indicating that b1

a:b corresponds
to the probability of the state in which two electrons are singlet-
coupled between atomic orbitals. The present work deals with
closed-shell RHF wave function and the operator properly char-
acterizes molecular electronic structure as shown in the previ-
ous works[37–40], namely, the contribution from triplet does
not contaminate the state. Note that there is close correspon-
dence between the present operator Ω1 and the spin-flip op-
erator introduced by Clark and Davidson[41–43], whose aim
is deeply related to the present work. More extensive investi-
gation and in-depth comparison with the their operator is sig-
nificant for generalization including high-spin state, although
it is beyond the scope of the present study. Because the spin-
coordinate is attached to the spatial function in the present treat-
ment (biorthogonalized orbital based on second quantization),
it is not trivial to apply a simple analogy to the singlet-coupling
in orthogonal orbital.

2.2. The previous method
Let us consider a localized orbital ψi between two atomic

centers, X and Y, that is obtained by standard orbital localiza-
tion procedure. In the previous work [37–40], we found that the
weights of ionicity and covalency are obtained by,

W i(X−Y+) =
1
2

∑
a∈X

∑
b∈X

b1(i)
a:b , (7)

W i(X − Y) =
∑
a∈X

∑
b∈Y

b1(i)
a:b , (8)

W i(X+Y−) =
1
2

∑
a∈Y

∑
b∈Y

b1(i)
a:b , (9)
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where

b1(i)
a:b = 〈ψiψ̄i|Ω1(a, b;α, β) + Ω1(a, b; β, α)|ψiψ̄i〉. (10)

Here the same operator was employed, but the essential differ-
ence from the above equation is that it is applied only to the
localized orbital (ψi) related to the atomic orbitals a and b. The
localization is essential to eliminate the contribution from or-
bitals (and/or electrons) that do not participate the bond for-
mation. As described in the previous works, the weights of
resonance structures are properly computed using this operator,
b1(i)

a:b .
We would like to stress that our approach is essentially dif-

ferent from previous works. It would be a standard manner to
re-expand |ΨHF〉 in terms of different set of (VB) wave function.
Our strategy is to expand the identity operator so as to makes
chemical intuitive sense (For the detail, please refer the pre-
vious works[37, 40]). In NRT, density-averaging (resonance-
averaging) is central assumption, which might be completed
without quantum effect. In our treatment, the density distribu-
tion is derived through the weight related to the resonance struc-
ture as a consequence of calculation of an expectation value of
wave function. It would also be valuable to point out the quan-
tity seen in a different way. For example,

〈Ψ|Ω1(m, n;σm, σn)|Ψ〉 = 〈Ψ|χσn+
n χσm+

m · φσn−
n φσm−

m |Ψ〉. (11)

Since the biorthogonal operator is employed, the bra part
(〈Ψ|χσn+

n χσm+
m ) and the remaining ket part is slightly different

but essentially equivalent.

2.3. An extension of the method
In the previous method, each pair of electrons is assumed to

be localized in one chemical bond (ψi). The assumption may be
invalid when considering the delocalized electron, for instance,
conjugated molecular system and transition states of chemical
reaction. A simple strategy to overcome difficulty is to de-
fine the ‘second-order’ bond order b2

a:b,c:d, which is related to
the probability of the state in which four electrons make two
singlet-coupled pairs, namely between a and b, and between c
and d. By extending the operators in Eq. (5), the following
operator is introduced.

Ω2(a, b, c, d;σa, σb, σc, σd) ≡ Ω2(σa, σb, σc, σd)
= χσd+

d χσc+
c χσb+

b χσa+
a φσd−

d φσc−
c φσb−

b φσa−
a . (12)

For the sake of simplicity, the indices, a, b, c, d, are omitted.
Similar to Ω1, the operator flips α and β spin into β and α elec-
trons, respectively. By considering all the possible combina-
tions of electron pair, the second-order bond index b2

a:b,c:d is
defined as follows,

b2
a:b,c:d = 〈Ψ|Ω2(α, β, α, β) + Ω2(α, β, β, α)

+ Ω2(β, α, α, β) + Ω2(α, β, β, α)
− Ω2(α, α, β, β) −Ω2(β, β, α, α)|Ψ〉
≡ 〈Ψ|Ω|Ψ〉. (13)

Since a and b (c and d) are bonded, respective spin on them
never become parallel at the same time, which is represented

in the last two terms with minus sign. For example, a different
bonding situation, b2

a:c,b:d, is written in a similar operator with
different combination of signs,

Ω = − Ω2(a, b, c, d;α, β, α, β)
+ Ω2(a, b, c, d;α, β, β, α)
+ Ω2(a, b, c, d; β, α, α, β)
− Ω2(a, b, c, d; β, α, β, α)
+ Ω2(a, b, c, d; β, β, α, α)
+ Ω2(a, b, c, d;α, α, β, β).

(14)

For the Hartree-Fock closed shell wave function, b2
a:b,c:d is sim-

ply expressed by one-body matrix element,

b2
a:b,c:d =

1
4

(PS)ab(PS)ba(PS)cd(PS)dc

− 1
8

(PS)ac(PS)cd(PS)db(PS)ba

− 1
8

(PS)ab(PS)bd(PS)dc(PS)ca

− 1
8

(PS)ab(PS)bc(PS)cd(PS)da

− 1
8

(PS)ad(PS)dc(PS)cb(PS)ba

+
1
8

(PS)ac(PS)cb(PS)bd(PS)da

+
1
8

(PS)ad(PS)db(PS)bc(PS)ca. (15)

The operator and derived equation look complex at the first
glance, but the term can be computed just as multiplication of
PS matrix element. We found that this operator satisfactorily
represents the situation of chemical bonds as shown below. It
is much more important that the expression satisfies simple re-
lationships. Summing up the index c and d immediately leads
to, ∑

c

∑
d

b2
a:b,c:d =

(Ne

2
− 1
)

(PS)ab(PS)ba

=

(Ne

2
− 1
)

2b1
a:b, (16)

using the duodempotency and the trace-conservation of PS,

(PS)i j =
1
2

∑
k

(PS)ik(PS)k j, and Ne =
∑

k

(PS)kk, (17)

where Ne is the number of electrons. The equation is related to
the bond index (b1

a:b) by integration of all other electron-pairs
in the system (Ne/2 − 1). By utilizing the well-known relation-
ship between bond index and Ne (

∑
AB BAB = 2Ne), the further

summing up gives,∑
b

∑
c

∑
d

b2
a:b,c:d = (Ne − 2)

∑
b

b1
a:b

=

(Ne

2
− 1
)
· 2(PS)aa, (18)∑

a

∑
b

∑
c

∑
d

b2
a:b,c:d = 4 ·

(Ne

2
− 1
) Ne

2
. (19)
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or
1
4

∑
a

∑
b

∑
c

∑
d

b2
a:b,c:d =

(Ne

2
− 1
) Ne

2
. (20)

The facts implies that the definition of b2
a:b,c:d is the consist with

MPA and popular BOA. As a matter of fact, the derived weights
exactly satisfies Eqs. (1) and (2) for four electron systems. The
proposed definition of b2

a:b,c:d also satisfies a requirement in cor-
responding VB wave function; Two covalent bonds must not
use the same atomic orbitals at the same time. The correspond-
ing quantity b2

a:b,a:c becomes zero by definition.
Now, we can compute the weights of resonance structures

using this operator, Ω. The above equations can be directly em-
ployed in four-electron systems such as LiH, but not be limited.
They are also applicable to analyze the electronic structure of
‘sub-system’ consisting of four electrons in general molecule.
Let us consider two localized orbitals ψi and ψ j in the vicinity
of atomic centers, A, B, C, and D. The second-order ab-initio
bond order related to these orbitals is introduced as follows.

b2(i, j)
a:b,c:d = 〈ψiψ j|Ω|ψiψ j〉. (21)

By the same token, the procedure of localization is also use-
ful to remove the contribution from one-center orbitals (core
orbital, lone-pair orbital and so on) that do not participate
the bond formation. For the details, please refer the previous
works[37, 40]. Using density matrix computed from the local-
ized orbitals, the weights of resonance structure is easily easily
computed. For example, the weight, in which both of A−B and
C − D are covalent, can be expressed as follows,

W i, j(A − B,C − D) =
∑
a∈A

∑
b∈B

∑
c∈C

∑
d∈D

b2(i, j)
a:b,c:d. (22)

Similarly, the weight of a partially ionic structure, A−B+ and
C−D, is given by,

W i, j(A−B+,C − D) =
∑
a∈A

∑
b∈A

∑
c∈C

∑
d∈D

b2(i, j)
a:b,c:d, (23)

and so on. As we will see later, the calculated weights com-
puted by this formula fits to our chemical intuition. Equations
(1) and (2) are rigorously satisfied in the subspace occupied by
four electrons, and guarantee the normalization of the weights.
As shown below, the obtained results by this expression makes
chemical intuitive sense. The expression is, on the other hand,
limited to closed-shell with four-electron (sub) system and sev-
eral problems remain to be solved to generalize the method so
as to treat N-electron system. The electronic correlation effect
might be evaluated by a simple procedure[45] or by direct con-
sideration of many-body density but much more elaboration is
required to take into account the correlation effect.

In the present work, all calculations were performed with
program code GAMESS [46] modified by us. MO was obtained
using the built-in basis sets, namely STO-3G, DZV, DZP and
TZP (5d) at the respective optimized geometry. Pipek-Mezey
orbital localization [47] scheme was then employed. Similar to
the previous studies, [37–40] we found that the weight is virtu-
ally independent to the choice of localization scheme as well as
to basis set.

Table 1: The weights (%) of resonance structures, bond order, and atomic pop-
ulation of LiH. Mayer’s bond order and Mulliken population are also showed.

No. DZV DZP TZP
1 Li−H 46.9 48.4 44.0
2 Li−H+ 14.1 17.0 10.7
3 Li+H− 39.1 34.6 45.3

Bond Presenta) 0.937 0.970 0.880
order BOA 0.937 0.970 0.880

Li Presenta) 2.750 2.823 2.654
population MPA 2.750 2.823 2.654

H Presenta) 1.250 1.177 1.346
population MPA 1.250 1.177 1.346

a) The values are calculated by using Eqs. 1 and 2.

3. Numerical results and discussion

3.1. LiH and H2O: Consistency with MPA, BOA and the previ-
ous method.

To demonstrate the consistency with MPA and BOA, we ap-
ply the present method to LiH molecule, as a typical four elec-
tron system. The weights of resonance structures, populations
of Li and H, and bond orders calculated by MPA, BOA, and the
present method are shown in Table 1. The charges and bond or-
ders calculated by the present method are exactly equal to MPA
and BOA values in all the basis sets. The weights slightly de-
pend on the choice of basis set, and this dependency is also con-
sistent with MPA and BOA. For example, using the weights of
Li+H− (45.3 %), Li−H+ (10.7 %) and Li−H (44.0 %) obtained
by TZP and the formal values of electron number, population
assigned to Li is calculated by Eq. (1).

(2 × 0.453) + (4 × 0.107) + (3 × 0.440) = 2.654,

namely, 3 − 2.654 = +0.346 is the charge derived from the
weight computed by the present method, which is exactly the
same as the Mulliken charge, by definition.

In the previous studies, the wave function of H2O was an-
alyzed concerning the two O–H bonds. Both of the previous
and present methods were employed to calculate the weights as
listed in Table 2. Weights computed by the two methods are
very similar in all the basis sets, thought value by the present
method tends to be slightly smaller than the previous one. This
might be attributed to the difference in the possible number of
resonance structure described in each method. In the previous
method, nine structures (when counting degenerated structures
separately; 1–6) shown in Table 2 are taken into account except
for the many-body type contributions. Other type structure such
as 7 can be treated only in the present method. Although this
contribution is negligibly small and hence the computational
weights by the two methods are very similar, this feature is one
of the essential differences between the two methods, especially
in the system where the electron delocalization is significant.
In other words, the previous method independently treats two
orbitals in H2O, while the present one directly considers two
pairs of electrons (four electrons) in valence orbitals. Since the
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Table 2: The weights (%) of resonance structure in H2O calculated by the previous and present methods.

No. Degeneracy DZV DZP TZP
Previous Present Previous Present Previous Present

1
O

¡ @
H H

1 19.6 18.3 20.4 19.7 21.6 20.6

2
O−

¡
H H+

2 41.9 41.0 40.5 39.7 39.3 38.5

3
O+

¡
H H−

2 9.2 8.7 10.3 9.8 11.8 11.2

4
O2−

H+ H+
1 22.4 22.0 20.1 20.1 17.9 17.8

5
+O−

H− H+
2 9.8 9.9 10.2 9.9 10.8 10.5

6
O2+

H− H−
1 1.1 0.9 1.3 1.2 1.6 1.5

7a
O

H — H
1 – 0.4 – 0.0 – 0.1

a) Two hydrogen atoms are covalently bonded and a remaining pair of electrons is in the oxygen atom. The contribution is not
available with the previous method.

weight used here is an analogue of MPA, this weight, in prin-
ciple, can be negative or larger than one as already shown in
our previous work[40]. In practice, it poses little problem for
understanding of the bonding nature.

3.2. trans-butadiene

In this section, we focus on trans-butadiene, in which the
electron is inherently delocalized. Hiberty et al. calculated the
weights of resonance structure using their method, in which the
MO wave function is expanded into VB type of wave functions,
with minimal basis sets[45]. The method is reliable but difficult
to apply with extended basis sets, because VB type of wave
function should be defined by minimal-type (or hybrid) orbital.
On the other hand, the present method is easy to apply with
extended basis sets. The weights of resonance structures com-
puted by the present method are summarized in Table 3. Vari-
ous basis sets were employed by selecting the four conjugated
electrons in two π orbitals.

The present results are very similar to the Hiberty’s one. Note
that small numerical deviation could be caused by the differ-
ence in employed geometry (corresponding to experimental ge-
ometry and optimized one) and essentially the same results are
obtained. Major contributing resonance structures are 1, 3 and
4, which contain terminus double bonds. To the contrary, the
weights of the structures with the central double bond, 2 and 5,
are very small. It is also noted that the present method is virtu-

ally independent to the basis sets as seen in the table. The same
trend was also seen in the previous method.[40]

3.3. SN2 reaction

Finally, we applied the method to SN2 reaction, Cl−b+CH3Cla
→ ClbCH3+Cl−a . Because four electrons related to bonds break-
ing and formation are delocalized especially in the transition
state, the previous method cannot be applied to this system. The
reaction coordinate is selected as R1 − R2, where R1 is the dis-
tance between C and Cla, R2 is between C and Clb, as shown
in Figure 2. The other degrees of freedom were fully optimized
using TZP basis set, then two localized orbitals related to the
aforementioned four electrons that participate the reaction were
chosen. The weights of resonance structures in the transition
state is shown in Table 4. The most important resonance struc-
ture is 2 which is the totally ionic (63.0 %). The next is 1 and
3, in which one Cl becomes an ion and the other Cl is cova-
lently bonded to C (18.5 %). Because of the symmetry at the
transition state, both of the weights are exactly the same.

Figure 2 shows the potential energy curve along the reaction
path, R. As is well known, the reaction proceed via precursor
complex in the vicinity of the transition state and the classi-
cal double well energy curve is obtained. The changes in the
weights of major resonance structures (1, 2 and 3) along the
reaction are shown in Figure 3. As the reaction proceeds, the
weight of 1 decreases while that of 3 increases. Needless to say,
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Table 3: The weights (%) of resonance structure in trans-butadiene.

No. Degeneracy Hibertya) The present method
STO-3G STO-3G DZV DZP TZP

1 C=C−C=C 1 22.1 23.2 23.5 22.9 22.9

2 1 1.0 1.8 2.2 2.0 2.0C − C = C − C
3 C+−C−−C=C 2 22.6 22.8 22.7 21.8 21.8
4 C−−C+−C=C 2 23.2 23.6 24.3 23.8 24.0
5 C−−C=C−C+ 2 2.1 1.7 1.9 1.9 1.9

6 2 2.1 1.7 2.0 1.8 1.8C − C+ − C− − C
7 C+−C−−C+−C− 2 12.5 12.5 12.8 12.4 12.4
8 C−−C+−C+−C− 1 5.4 5.6 5.7 5.7 5.8
9 C+−C−−C−−C+ 1 5.1 5.2 5.0 4.8 4.8

a) Ref. [45]
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Figure 2: The potential energy curve of the reaction CH3Cl + Cl− → Cl− +
CH3Cl. The reaction coordinate was chosen as R1 − R2.

Table 4: The weights (%) of resonance structure in transition state of SN2
reaction.a)

No. Weight
1 Cl−b CH3−Cla 18.5
2 Cl−b CH+3 Cl−a 63.0
3 Clb−CH3 Cl−a 18.5
4 ⊙Clb CH−3 Cl⊙a 2.3
5 Cl−b CH−3 Cl+a 1.4
6 Cl+b CH−3 Cl−a 1.4

a) Note that all the sum is greater than 100% since there are
other contributions with small negative values, which appear in
Mulliken-type operator.[40]

these changes correspond to the bond breaking of C–Cla and
new bond formation of Clb–C, respectively. The totally ionic
structure (2) monotonically increases by the transition state and
then decreases after passing through the transition state. The
monotonic change in all the weights, even at the precursor com-
plex, implies that the electronic structure in the system con-
tinuously changes along the reaction. The stabilization of the
precursor complex is simply due to the ion-dipole interaction
between C–Cla bond and Clb−. Numerous studies on this re-
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Figure 3: The weights of resonance structure in CH3Cl + Cl− → Cl− + CH3Cl.

action has been published so far. In particular, Hwang et al.
reported the reaction in aqueous solution based on empirical
valence bond method,[48] and Mo et al. also reported the same
reaction based on molecular orbital-valence bond method.[49]
Although both of them mainly discussed the contributions of
valence bond structures in terms of energy, the present result
is consistent with these works. It should be important to point
out that they assumed the three contributions (1, 2 and 3). As
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shown in Table 4, the sum of them is almost 100%, indicating
that the description of these three VB contributions is almost
equivalent to MO (Hartree-Fock) treatment.

4. Conclusions

In this report, we presented a novel method to calculate the
weights of resonance structures from HF wave function of four
electron system. The method is an extension of our previous
one, being consistent with MPA and BOA . Only standard local-
ization procedure is required to obtain the resonance weights.
In addition, obtained results agreed well with our chemical in-
tuition. The method is successfully applied to LiH, H2O, buta-
diene and SN2 reaction.

Resonance structure (or valence bond type description) is
helpful to understand the nature of chemical bond. The present
method is very easy-to-use and provides precise view of the
molecular orbitals through a projection based on the second
quantization. On the other hand, the method is still limited
to closed-shell RHF method, in which the back ground of the
spin-flip operator is not clear enough. We still do not have a full
picture of this approach, and much more elaboration is highly
desired.
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