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Abstract We consider a retrial tandem queueing system with two servers whose ser-

vice times follow two exponential distributions. There are two types of customers: type

one and type two. Customers of type one arrive at the first server according to a Pois-

son process. An arriving customer of type one that finds the first server busy joins an

orbit and retries to enter the server after some time. We assume that the arrival rate

of customers from the orbit is a linear function of the number of retrial customers.

After being served at the first server, a customer of type one moves to the second

server. Customers of type two directly arrive at the second server according to another

Poisson process. Customers of both types one and two are lost if the second server is

busy upon arrival. For this model, we derive explicit expressions of the joint station-

ary distribution between the number of customers in the orbit and the states of the

servers. We prove that the stationary distribution is computed by a numerically stable

algorithm. Numerical examples are provided to show the influence of parameters on

the performance of the system.

Keywords Tandem queue · retrial queue · hypergeometric function · linear retrial

rate · call centers
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1 Introduction

Tandem queues have been extensively studied because they have applications on many

systems, such as, telecommunications, computer networks and production systems [9,
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10,12,13,17]. Latouche and Neuts [17] present algorithmic solutions to two-stage expo-

nential tandem queues with blocking and feedback, in which there are multiple servers

at each stage and customers that complete services from both stages may return to the

first stage again for an additional service. Klimenok et al. [12] consider a BMAP/G/1/N

→ · /PH/1/M tandem queue with losses due to the finite capacity of the second server.

Kim et al. [13] further consider a tandem queue with feedback. Gomez-Corral [9] stud-

ies a tandem queue with two servers and a Markovian Arrival Process (MAP), where

the service times of the first and the second server follow a PH (phase type) and a

general distribution, respectively. Recently, Lian and Zhao [18] consider the departure

processes of a tandem network with an infinite dimensional MAP input.

On the other hand, retrial queues have attracted much attention in recent years be-

cause they are widely used in modelling and performance analysis of telecommunication

networks and call centers [1,4,5]. Retrial queues are characterized by the phenomenon

that an arriving customer that sees all the servers busy, joins an orbit and retries to

enter a server after some random time. Due to the lack of the homogeneity of the

underlying Markov chain, analytical solutions for retrial queues are obtained in a few

special cases [3,8,11].

In comparison with tandem queues or retrial queues, there is a lack of extensive

research concerning tandem queues with retrials. Furthermore, explicit results for tan-

dem queues with retrials are even more rarely obtained. Moutzoukis and Langaris [19]

derive an analytical solution for the M/G/1/1 → · /G/1/1 retrial tandem queue with

a constant retrial rate. In the tandem queue in [19], if a customer that finishes the

service at the first server and sees the second server busy, then the customer is kept

in the first server and the first server is blocked until the second server is available

again. If the second server is idle, the blocked customer in the first server immediately

occupies the second server and the first server is released. While the first server is

blocked, customers that arrive at this server enter the orbit. Gomez-Corral [10] pro-

poses a matrix-geometric approximation for retrial tandem queues with blocking, in

which there is a finite waiting room in the second server.

Avrachenkov and Yechiali [4] derive an analytical solution for two servers in tandem

with retrials and a common orbit, in which customers that depart from the first server

and then find the second server busy, also join the orbit to retry to enter the first

server again after some time. The same authors in [5] further develop a fixed point

approximation to analyze a more general model with multiserver in a tandem queue

and a common orbit for retrial customers. It should be noted that in [4,5], the retrial

rate is assumed to be constant.

As for retrial tandem queues with losses at the second server, Kim et al. [14,15]

analyze BMAP/G/1 → · /PH/1/M retrial queues. Taramin [20] investigates a tandem

queue with two Markovian inputs, in which there is a single server in the first stage
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and there are multiple servers in the second stage. The authors in [14,15,20] use the

so-called quasi-Toeplitz Markov chains in order to analyze the models. Although the

quasi-Toeplitz approach is an approximation method, it allows the authors to analyze

more general models. However, to the best of our knowledge, an explicit solution for a

tandem queue with retrials and losses has not been obtained in the literature yet.

In this paper, we consider a simple retrial tandem queue with losses. Customers of

type one and type two arrive at the first server and the second server according to two

independent Poisson processes, respectively. An arriving customer of type one either

occupies the server immediately if the server is idle or if the server is busy, it enters

the orbit to retry again after some time. Customers of both types are lost if the second

server is busy upon the arrival epoch. For this model, we derive an explicit expression

for the joint stationary distribution of the number of customers in the orbit and the

states of the servers.

The rest of the paper is organized as follows. A detailed description of the model

and some preliminary results are presented in Section 2. Section 3 is devoted to the

presentation of the main results of this paper, in which explicit expressions for the

partial generating functions and the joint stationary distribution are derived. Section 4

presents some performance measures and a computational algorithm for the stationary

distribution. Section 5 provides some numerical examples.

2 Mathematical Model and Preliminaries

2.1 Model description and research background

2.1.1 Model description

We consider two servers in a tandem, whose service times are exponentially distributed

with means 1/ν1 and 1/ν2, respectively. Type one customers arrive at the first server

according to a Poisson process with rate λ. Type two customers directly arrive at the

second server according to a Poisson process with rate λ∗. If the first server is busy, an

arriving customer joins the orbit and retries to enter the server again at a later time.

Provided that the number of retrial customers is n, the retrial rate of the customers

is given by γn = ν(1 − δ0,n) + nµ, where δ0,n denotes the Kronecker delta. When a

customer finishes receiving the service at the first server, the customer moves to the

second server. Customers of both types either occupy the second server if the server

is idle or are lost if the server is busy upon arrivals. See Fig. 1 for details. For some

applications, in which the retrial rate is linear, the readers are referred to the paper by

Artalejo and Gomez-Corral [2].
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Fig. 1 Retrial tandem queue with losses.

2.1.2 Practical applications

In our everyday life, there are many situations where a service is provided in two stages

for which the model of this paper can be applied. First, we consider two applications

in telecommunication systems. Second, we present an application in service systems.

We consider a local area network (LAN) which is connected to a global network.

In a local area network, a random access protocol such as ALOHA or CSMA is imple-

mented. In a LAN, multiple nodes share a channel for data transmission. The channel

corresponds to the first server in our model. In ALOHA and CSMA protocol, messages

that are blocked at the channel are retransmitted at a later time which justifies the

retrial phenomenon at the first server. The second server represents an edge node in

an optical network at which the LAN connects to a global network. At the edge node,

not only messages from the channel but also those from other networks arrive and a

message is lost if the node is fully occupied upon arrival due to the lack of optical

buffer.

Another application can be found in the performance analysis of IP telephony

systems presented by Aida et al. [1], for which a control plane and a data plane can be

modeled by the first and the second server in a tandem queue, respectively. The model

of this paper simplifies that presented in [1], where there is a single server at the first

stage and there are multiple servers in the second stage.

One more application is found in two-stage call centers [16]. A regular customer who

calls to a call center is asked to input some information according to some automatic

guidance. This procedure can be considered as a service at the first server. A regular

customer either is served if the first server is idle or retries again after some time if

the server is busy. After finishing the service at the first server, the regular customer is
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forwarded to an operator that is modeled by the second server. Customers with high

priority are directly forwarded to the operator. Customers of both types are lost if the

operator is busy upon arrivals.

2.2 Preliminary results

Let X(t) = (S1(t), S2(t), N(t)), where S1(t), S2(t) and N(t) denote the numbers of

customers in the first and the second server, and in the orbit at time t ≥ 0, respectively.

It is easy to confirm that {X(t); t ≥ 0} forms a continuous time Markov chain in the

state space {0, 1} × {0, 1} × Z+, where Z+ = {0, 1, 2, . . .}.

Lemma 1 The ergodic condition for {X(t)} is given as follows.

(i) If µ = 0, then {X(t)} is ergodic if and only if

λ(λ+ ν)

νν1
< 1.

(ii) If limn→∞γn = ∞, {X(t)} is ergodic if and only if

λ

ν1
< 1.

Proof Because customers are lost at the second server, the stability of {X(t)} is the

same as that of {(S1(t), N(t)); t ≥ 0}, which describes the behavior of an M/M/1/1

retrial queue with linear retrial rate. Therefore, (i) and (ii) are obtained by similar

methods as presented in [2] and in [8], respectively.

Remark 1 The probabilistic interpretation for (i) is as follows. We see that λ/ν1 is the

average number of customers that arrive at the system during a service period of the

first server. This is also the average number of customer that are forced to enter to the

orbit in between two consecutive service ending times. On the other hand, ν/(λ + ν)

represents the average number of retrial customer that successfully enter the server

during two consecutive service ending times. Condition (i) is equivalent to say that the

average number of customers coming into the orbit must be smaller than that going

out the orbit between two consecutive service ending times.

It is well known that the stability condition does not depend on µ and ν for the

case where limn→∞γn = ∞. An intuitive interpretation of (ii) is that the arrival rate

must be smaller than the service rate.

In what follows, we consider the queueing system under the ergodic condition. Let

πi,j,n = limt→∞ Pr{S1(t) = i, S2(t) = j,N(t) = n} ((i, j, n) ∈ {0, 1} × {0, 1} × Z+)

denote the joint stationary probability of {X(t)}. The system of balance equations for
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the stationary distribution {πi,j,n; (i, j, n) ∈ {0, 1} × {0, 1} × Z+} is given as follows.

For n ∈ Z+,

(λ+ γn + λ∗)π0,0,n = ν2π0,1,n, (1)

(λ+ γn + ν2)π0,1,n = ν1π1,0,n + ν1π1,1,n + λ∗π0,0,n, (2)

(λ+ ν1 + λ∗)π1,0,n = λπ0,0,n + λπ1,0,n−1 + ν2π1,1,n + γn+1π0,0,n+1, (3)

(λ+ ν1 + ν2)π1,1,n = λπ0,1,n + λπ1,1,n−1 + γn+1π0,1,n+1 + λ∗π1,0,n, (4)

where πi,j,−1 = 0 (i, j = 0, 1). Let πi,j(z) denote the partial generating function of

{πi,j,n} with respect to n,

πi,j(z) =

∞∑
n=0

πi,j,nz
n, i, j = 0, 1, |z| ≤ 1. (5)

From equations (1) to (4) and then using (5), we obtain,

(λ+ λ∗)π0,0(z) + ν(π0,0(z)− π0,0,0) + µzπ′
0,0(z) = ν2π0,1(z), (6)

(λ+ ν2)π0,1(z) + ν(π0,1(z)− π0,1,0) + µzπ′
0,1(z) = ν1π1,0(z) + ν1π1,1(z)

+ λ∗π0,0(z), (7)

and

(λ+ ν1 + λ∗)π1,0(z) = λπ0,0(z) + λzπ1,0(z) + ν2π1,1(z)

+ µπ′
0,0(z) +

ν

z
(π0,0(z)− π0,0,0), (8)

(λ+ ν1 + ν2)π1,1(z) = λπ0,1(z) + λzπ1,1(z) + µπ′
0,1(z)

+
ν

z
(π0,1(z)− π0,1,0) + λ∗π1,0(z). (9)

Summing up equations (6) to (9) and rearranging the result yields

(z − 1)λ(π1,0(z) + π1,1(z))

= (z − 1)
(
µ(π′

0,0(z) + π′
0,1(z)) +

ν

z
(π0,0(z)− π0,0,0) +

ν

z
(π0,1(z)− π0,1,0)

)
. (10)

Dividing both sides of (10) by (z − 1), we obtain

λ(π1,0(z) + π1,1(z))

= µ(π′
0,0(z) + π′

0,1(z)) +
ν

z
(π0,0(z)− π0,0,0) +

ν

z
(π0,1(z)− π0,1,0). (11)

It should be noted that the left and right hand sides of (11) correspond to the flows

coming into and out from the orbit, respectively. Thus, (11) represents the balance

equation between these flows. Using (7), the left hand side of (11) is transformed as
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follows:

λ(π1,0(z) + π1,1(z))

=
λ(λ+ ν + ν2)

ν1
π0,1(z) +

λµz

ν1
π′
0,1(z)−

λν

ν1
π0,1,0 − λλ∗

ν1
π0,0(z)

=
λµ2z2

ν1ν2
π′′
0,0(z) +

λµz(2λ+ 2ν + µ+ ν2 + λ∗)
ν1ν2

π′
0,0(z)

+
λ(λ+ ν + ν2 + λ∗)(λ+ ν)

ν1ν2
π0,0(z)−

λν(λ+ ν + ν2)

ν1ν2
π0,0,0 − λν

ν1
π0,1,0. (12)

On the other hand, the right hand side of (11) is expressed in terms of π0,0(z) as

µ(π′
0,0(z) + π′

0,1(z)) +
ν

z
(π0,0(z)− π0,0,0) +

ν

z
(π0,1(z)− π0,1,0)

=
µ2z

ν2
π′′
0,0(z) +

µ(λ+ µ+ 2ν + ν2 + λ∗)
ν2

π′
0,0(z)

+
ν(λ+ λ∗ + ν + ν2)

zν2
π0,0(z)−

ν(ν + ν2)

zν2
π0,0,0 − ν

z
π0,1,0. (13)

Equations (11) to (13) are the keys for the derivation of the analytical solutions in this

paper.

3 Main results

In this section, we present the main results of the paper. First, we consider a classical

retrial policy, where ν = 0. Second, we consider a constant retrial rate policy, namely,

µ = 0. Third, we deal with the linear retrial rate policy, where ν, µ > 0. We can see

that the classical retrial policy and the constant retrial policy are special cases of the

linear retrial policy. However, because the analytical results for the two special cases

can be presented in simple and elegant forms, we analyze them separately.

3.1 Classical retrial policy

In this section, we consider the classical retrial policy, i.e. ν = 0.

Definition 1 For any complex number φ and n ∈ Z+, let (φ)n denote the Pochham-

mer symbol (see e.g. page 222 in [7]), whose definition is given by

(φ)n =

{
1, n = 0,

φ(φ+ 1) · · · (φ+ n− 1), n ∈ N,

where N = {1, 2, . . .}.
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Theorem 1 The stationary distribution {πi,j,n} is given as follows. For n ∈ Z+,

π0,0,n = π0,0,0
(α)n(β)n

(γ)n

1

n!

(
λ

ν1

)n

, (14)

π0,1,n =
(λ+ λ∗ + nµ)π0,0,n

ν2
, (15)

π1,1,n =

n∑
k=0

(
λ∗
(
λπ0,1,k + (k + 1)µπ0,1,k+1

)
pn−k

(λ∗ + ν2)(λ+ ν1)

+
ν2
(
λπ0,1,k + (k + 1)µπ0,1,k+1

)
rn−k

(λ∗ + ν2)(λ+ λ∗ + ν1 + ν2)

+
λ∗
(
λπ0,0,k + (k + 1)µπ0,0,k+1

)∑n−k
m=0 p

mrn−k−m

(λ+ ν1)(λ+ λ∗ + ν1 + ν2)

)
, (16)

π1,0,n =

∑n
k=0

(
λπ0,0,k + ν2π1,1,k + µ(k + 1)π0,0,k+1

)
qn−k

λ+ λ∗ + ν1
, (17)

where

γ =
λ+ λ∗ + µ+ ν2

µ
, α =

λ

µ
, β =

λ+ λ∗ + ν2
µ

,

and

p =
λ

λ+ ν1
, q =

λ

λ+ λ∗ + ν1
, r =

λ

λ+ λ∗ + ν1 + ν2
.

The unknown probability π0,0,0 is given by

π0,0,0 =
ν1ν2

(λ+ ν1)(λ+ λ∗ + ν2)a+ µ(2λ+ λ∗ + µ+ ν1 + ν2)b+ µ2c
(18)

where a, b and c are expressed in terms of given parameters.

Proof From equations (11) to (13) with ν = 0, we obtain a differential equation for

π0,0(z) as follows:

µ2z(ν1 − λz)π′′
0,0(z) + µ(ν1(λ+ λ∗ + µ+ ν2)

− λz(2λ+ λ∗ + µ+ ν2))π
′
0,0(z)− λ2(λ+ λ∗ + ν2)π0,0(z) = 0. (19)

Let x = λz/ν1 and q(x) = π0,0(ν1x/λ). We then have

q′(x) = π′
0,0(z)

ν1
λ
, q′′(x) = π′′

0,0(z)
ν21
λ2

. (20)

Substituting (20) into (19) and rearranging the result yields

x(1− x)q′′(x)

+

(
λ+ λ∗ + µ+ ν2

µ
− x

2λ+ λ∗ + µ+ ν2
µ

)
q′(x)− λ(λ+ λ∗ + ν2)

µ2
q(x) = 0,
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which is rewritten as

x(1− x)q′′(x) + (γ − x(1 + α+ β))q′(x)− αβq(x) = 0. (21)

Let F (α, β, γ;x) denote the hypergeometric function [7], i.e.,

F (α, β, γ;x) =

∞∑
j=0

(α)j(β)j
(γ)j

1

j!
xj , |x| ≤ 1,

whose radius of convergence is 1, and nth derivative is given by

dn

dxn
F (α, β, γ;x) =

(α)n(β)n
(γ)n

F (α+ n, β + n, γ + n;x) .

Note that (21) is the hypergeometric differential equation, whose solution is given by

q(x) = q(0)F (α, β, γ;x) = π0,0,0F (α, β, γ;x).

Thus we have

π0,0(z) = π0,0,0F (α, β, γ;
λz

ν1
), (22)

which yields (14). From (6), we have

π0,1(z) =
(λ+ λ∗)π0,0(z) + µzπ′

0,0(z)

ν2
, (23)

and thus from this result, we obtain (15). Eliminating π1,0(z) in (8) and (9) yields an

expression for π1,1(z) in terms of π0,0(z) and π0,1(z) as follows.

π1,1(z) =
(X + λ∗)(λπ0,1(z) + µπ′

0,1(z))

X(X + λ∗ + ν2)
+

λ∗(λπ0,0(z) + µπ′
0,0(z))

X(X + λ∗ + ν2)
, (24)

where

X = λ+ ν1 − λz. (25)

Remark 2 There are several methods in order to obtain an explicit expression for

{π1,1,n;n ∈ Z+} from (24). However, because the coefficient of z in (25) is negative,

we might obtain an expression in which both positive and negative terms are mixed,

for which a procedure in a digital computer is numerically unstable. Therefore, in order

to derive an expression with all positive terms, we transform some components of (24)

as follows.

We have
λ∗ +X

(λ∗ + ν2 +X)X
=

λ∗

λ∗ + ν2

1

X
+

ν2
λ∗ + ν2

1

X + λ∗ + ν2
. (26)
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On the other hand, because p, q, r < 1 and |z| ≤ 1, we have

1

X
=

1

λ+ ν1

∞∑
n=0

(pz)n,
1

X + λ∗ + ν2
=

1

λ+ λ∗ + ν1 + ν2

∞∑
n=0

(rz)n, (27)

which yields

λ∗

(λ∗ + ν2 +X)X
=

λ∗

(λ+ ν1)(λ+ λ∗ + ν1 + ν2)

∞∑
n=0

(pz)n
∞∑

n=0

(rz)n,

=
λ∗

(λ+ ν1)(λ+ λ∗ + ν1 + ν2)

∞∑
n=0

(
n∑

k=0

pkrn−k

)
zn. (28)

From equations (24) to (28), we obtain (16). It follows from (7) that

π1,0(z) =
λπ0,0(z) + ν2π1,1(z) + µπ′

0,0(z)

λ∗ +X
,

=
λπ0,0(z) + ν2π1,1(z) + µπ′

0,0(z)

λ+ λ∗ + ν1

∞∑
n=0

(qz)n, (29)

where we use
1

λ∗ +X
=

1

λ+ λ∗ + ν1

∞∑
n=0

(qz)n, (30)

in the second equality of (29). Thus, from (29), we obtain (17). It should be noted that

the expressions of the joint stationary distribution in equations (14) to (17) include

only positive terms.

From (23), (24) and the first equality of (29), the partial generating functions

π0,1(z), π1,1(z) and π1,0(z) are expressed in terms of π0,0(z), which includes π0,0,0.

The unknown π0,0,0 is uniquely determined by the normalization condition:

π0,0(1) + π0,1(1) + π1,1(1) + π1,0(1) = 1. (31)

Let

a = F (α, β, γ,
λ

ν1
), b = π′

0,0(1) =
αβ

γ

λ

ν1
F (α+ 1, β + 1, γ + 1,

λ

ν1
),

and

c = π′′
0,0(1) =

α(α+ 1)β(β + 1)

γ(γ + 1)

λ2

ν21
F (α+ 2, β + 2, γ + 2,

λ

ν1
).

Therefore, according to (23), (24) and (12), we obtain

π0,0(1) = π0,0,0a, π0,1(1) = π0,0,0
(λ+ λ∗)a+ µb

ν2
,
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and

π1,0(1) + π1,1(1) = π0,0,0
λ(λ+ λ∗ + ν2)a+ µ(2λ+ λ∗ + µ+ ν2)b+ µ2c

ν1ν2
.

Thus, we have

π0,0(1) + π0,1(1) + π1,1(1) + π1,0(1)

= π0,0,0
(λ+ ν1)(λ+ λ∗ + ν2)a+ µ(2λ+ λ∗ + µ+ ν1 + ν2)b+ µ2c

ν1ν2
. (32)

Thus, (18) follows from (31) and (32).

Remark 3 From equations (22) to (24) and also the first equality of (29), we obtain

explicit expressions for the generating functions πi,j(z) (i, j = 0, 1), from which we can

obtain explicit formulae for several performance measures such as the averages and

moments. Furthermore, these expressions allow us to derive explicit formulae for the

joint stationary distribution.

Remark 4 It should be noted that hypergeometric functions also have been used in the

analysis of some retrial queueing models, such as M/M/2/2 and M/M/1/1+1 retrial

queues [8,11]. However, the parameters of the hypergeometric functions in this paper

are much simpler than those in the literature [8,11].

Corollary 1 For the case of λ∗ = 0, the joint stationary distribution is significantly

simplified as follows. For n ∈ Z+, we have

π0,0,n = π0,0,0
(α)n(β)n

(γ)n

1

n!

(
λ

ν1

)n

,

π0,1,n =
(λ+ nµπ0,0,n)π0,0,n

ν2
,

π1,1,n =

∑n
k=0

(
λπ0,1,k + (k + 1)µπ0,1,k+1

)
rn−k

λ+ ν1 + ν2
,

π1,0,n =

∑n
k=0

(
λπ0,0,k + ν2π1,1,k + µ(k + 1)π0,0,k+1

)
qn−k

λ+ ν1
.

3.2 Constant retrial rate policy

We also consider the case of constant retrial rate, where µ = 0.

Theorem 2 The stationary distribution {πi,j,n} is given as follows. For n ∈ Z+,

π0,0,n = π0,0,0
λ(λ+ λ∗ + ν2)

(λ+ ν)(λ+ λ∗ + ν + ν2)

(
λ(λ+ ν)

νν1

)n

, n ∈ N,

π0,1,n =
(λ+ ν(1− δn,0))π0,0,n

ν2
,
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π1,1,n =

n∑
k=0

(
λ∗
(
λπ0,1,k + νπ0,1,k+1

)
pn−k

(λ∗ + ν2)(λ+ ν1)

+
ν2(λπ0,1,k + νπ0,1,k+1)r

n−k

(λ∗ + ν2)(λ+ λ∗ + ν1 + ν2)

+
λ∗
(
λπ0,0,k + νπ0,0,k+1

)∑n−k
m=0 p

mrn−k−m

(λ+ ν1)(λ+ λ∗ + ν1 + ν2)

)
,

π1,0,n =

∑n
k=0(λπ0,0,k + ν2π1,1,k + νπ0,0,k+1)q

n−k

λ+ λ∗ + ν1
,

where the unknown probability π0,0,0 is determined by the normalization condition.

Proof In this case, the equation for π0,0(z) is given by

λ(λ+ λ∗ + ν + ν2)(λ+ ν)

ν1ν2
π0,0(z)−

λν(λ+ ν + ν2)

ν1ν2
π0,0,0 − λν

ν1
π0,1,0

=
ν(λ+ λ∗ + ν + ν2)

zν2
π0,0(z)−

ν(ν + ν2)

zν2
π0,0,0 − ν

z
π0,1,0.

Rearranging this yields

π0,0(z) =
Cz −D

Az −B
=

C

A
+

AD − CB

AB

1

1− Az
B

, (33)

where

A =
λ(λ+ λ∗ + ν + ν2)(λ+ ν)

ν1ν2
, B =

ν(λ+ λ∗ + ν + ν2)

ν2
,

and

C =
λν(λ+ ν + ν2)

ν1ν2
π0,0,0 +

λν

ν1
π0,1,0, D = ν

(
ν + ν2
ν2

π0,0,0 + π0,1,0

)
.

It follows from (33) that in order for π0,0(z) to converge in |z| < 1, the following

inequality must be satisfied.

A < B ⇐⇒ λ(λ+ ν)

νν1
< 1.

This result also conforms with the ergodic condition presented in Lemma 1. Under the

ergodic condition, we further transform (33) as follows,

π0,0(z) =
C

A
+

AD − CB

AB

1

1− Az
B

=
C

A
+

AD − CB

AB

∞∑
n=0

(
Az

B

)n

. (34)

It follows from (1) that

π0,1,0 =
λ+ λ∗

ν2
π0,0,0.
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Therefore,

C =
λν(2λ+ λ∗ + ν + ν2)

ν1ν2
π0,0,0, D =

ν(λ+ λ∗ + ν + ν2)

ν2
π0,0,0. (35)

Furthermore, we have

AD − CB

AB
=

λ(λ+ λ∗ + ν2)

(λ+ ν)(λ+ λ∗ + ν + ν2)
π0,0,0.

This result and (34) yield

π0,0,n = π0,0,0
λ(λ+ λ∗ + ν2)

(λ+ ν)(λ+ λ∗ + ν + ν2)

(
λ(λ+ ν)

νν1

)n

, n ∈ N.

From (6), (8) and (9), we obtain

π0,1(z) =
(λ+ λ∗)π0,0(z) + ν(π0,0(z)− π0,0,0)

ν2
, (36)

π1,1(z) =
(λ∗ +X)

(
λπ0,1(z) +

ν
z (π0,1(z)− π0,1,0)

)
(λ∗ + ν2 +X)X

+
λ∗
(
λπ0,0(z) +

ν
z (π0,0(z)− π0,0,0)

)
(λ∗ + ν2 +X)X

, (37)

π1,0(z) =
λπ0,0(z) + ν2π1,1(z) +

ν
z (π0,0(z)− π0,0,0)

λ∗ +X
. (38)

Finally, from equations (36) to (38) and also using (27), (28) and (30), we obtain the

announced result, where the unknown probability π0,0,0 is uniquely determined by the

normalization condition as shown in (32). Indeed, we can obtain simple expression for

π0,0,0 and πi,j (i, j = 0, 1) as follows. Let

πi,j(z) = π0,0,0π̃i,j(z), i, j = 0, 1.

We then have

π̃0,0(z) =
C̃z − D̃

Az −B
,

where

C̃ =
λν(2λ+ λ∗ + ν + ν2)

ν1ν2
, D̃ =

ν(λ+ λ∗ + ν + ν2)

ν2
.

From (36) to (38), we obtain simple expressions for π̃0,1(z), π̃1,1(z) and π̃1,0(z) which

are independent of π0,0,0. It follows from the normalization condition that

π0,0,0 =
1

π̃0,0(1) + π̃0,1(1) + π̃1,1(1) + π̃1,0(1)
.
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Corollary 2 The joint stationary distribution for the case of λ∗ = 0 is given by

π0,0,n = π0,0,0
λ(λ+ ν2)

(λ+ ν)(λ+ ν + ν2)

(
λ(λ+ ν)

νν1

)n

, n ∈ N,

π0,1,n =
(λ+ ν(1− δn,0))π0,0,n

ν2
, n ∈ Z+,

π1,1,n =

∑n
k=0

(
λπ0,1,k + νπ0,1,k+1

)
rn−k

λ+ ν1 + ν2
, n ∈ Z+,

π1,0,n =

∑n
k=0

(
λπ0,0,k + ν2π1,1,k + νπ0,0,k+1

)
qn−k

λ+ ν1
, n ∈ Z+.

3.3 Full linear retrial rate policy

Now we consider the case where both µ and ν are positive.

Theorem 3 The stationary distribution {πi,j,n} is given as follows. For n ∈ Z+,

π0,0,1 =
λ2(λ+ λ∗ + ν2)

ν1 (µ(λ+ λ∗ + µ+ 2ν + ν2) + ν(λ+ λ∗ + ν + ν2))
π0,0,0, (39)

π0,0,n+1 =
w2,3n(n− 1) + w1,2n+ w0,1

w2,2(n+ 1)n+ w1,1(n+ 1) + w0,0
π0,0,n, n ∈ N, (40)

π0,1,n =
(λ+ λ∗ + γn)π0,0,n

ν2
, (41)

π1,1,n =

n∑
k=0

(
λ∗
(
λπ0,1,k + γk+1π0,1,k+1

)
pn−k

(λ∗ + ν2)(λ+ ν1)

+
ν2
(
λπ0,1,k + γk+1π0,1,k+1

)
rn−k

(λ∗ + ν2)(λ+ λ∗ + ν1 + ν2)

+
λ∗
(
λπ0,0,k + γk+1π0,0,k+1

)∑n−k
m=0 p

mrn−k−m

(λ+ ν1)(λ+ λ∗ + ν1 + ν2)

)
, (42)

π1,0,n =

∑n
k=0

(
λπ0,0,k + γk+1π0,0,k+1 + ν2π1,1,k

)
qn−k

λ+ λ∗ + ν1
, (43)

where

w2,3 = λµ2, w2,2 = µ2ν1, w1,2 = λµ(2λ+ λ∗ + 2ν + µ+ ν2),

w1,1 = µν1(λ+ λ∗ + µ+ 2ν + ν2), w0,1 = λ(λ+ λ∗ + ν + ν2)(λ+ ν),

w0,0 = νν1(λ+ λ∗ + ν + ν2),

and the unknown probability π0,0,0 is determined by the normalization condition as

shown in (31).
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Proof From equations (11) to (13), we obtain a differential equation for π0,0(z) as

(w2,3z
3 − w2,2z

2)π′′
0,0(z) + (w1,2z

2 − w1,1z)π
′
0,0(z)

+ (w0,1z − w0,0)π0,0(z)− gz + h = 0, (44)

where

g = λν(λ+ ν + ν2)π0,0,0 + λνν2π0,1,0, h = νν1(ν + ν2)π0,0,0 + νν1ν2π0,1,0.

Recall that

π0,0(z) =

∞∑
n=0

π0,0,nz
n.

Substituting this into (44) yields

−w0,0π0,0,0 + h+ (w0,1π0,0,0 − (w1,1 + w0,0)π0,0,1 − g)z +

∞∑
n=2

anz
n = 0, (45)

where

an = (w2,3(n− 1)(n− 2) + w1,2(n− 1) + w0,1)π0,0,n−1

− (w2,2n(n− 1) + w1,1n+ w0,0)π0,0,n, n ≥ 2.

In order for (45) to be true for all |z| ≤ 1, the following equations must be satisfied.

−w0,0π0,0,0 + h = 0, w0,1π0,0,0 − (w1,1 + w0,0)π0,0,1 − g = 0, (46)

and

an = 0, n ≥ 2. (47)

Equations (39) and (40) are obtained from (46) and (47), respectively. Since

lim
n→∞

w2,3n(n− 1) + w1,2n+ w0,1

w2,2(n+ 1)n+ w1,1(n+ 1) + w0,0
=

λ

ν1
< 1,

the radius of convergence for π0,0(z) is ν1/λ > 1. From equations (6) to (9), we have

π0,1(z) =
(λ+ λ∗)π0,0(z) + µzπ′

0,0(z) + ν(π0,0(z)− π0,0,0)

ν2
, (48)

π1,1(z) =
(λ∗ +X)(λπ0,1(z) + µπ′

0,1(z) +
ν
z (π0,1(z)− π0,1,0))

(λ∗ + ν2 +X)X

+
λ∗(λπ0,0(z) + µπ′

0,0(z) +
ν
z (π0,0(z)− π0,0,0))

(λ∗ + ν2 +X)X
, (49)

π1,0(z) =
λπ0,0(z) + µπ′

0,0(z) + ν2π1,1(z) +
ν
z (π0,0(z)− π0,0,0)

λ∗ +X
. (50)
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Therefore, from equations (48) to (50) and also using (26) to (28) and (30), we obtain

equations (41) to (43). The unknown probability π0,0,0 is determined by the normal-

ization condition as shown in (32).

Corollary 3 The joint stationary distribution for the case of λ∗ = 0 is given in a

simple form as follows. For n ∈ Z+,

π0,0,1 =
λ2(λ+ ν2)

ν1 (µ(λ+ µ+ 2ν + ν2) + ν(λ+ ν + ν2))
π0,0,0,

π0,0,n+1 =
w2,3n(n− 1) + w1,2n+ w0,1

w2,2(n+ 1)n+ w1,1(n+ 1) + w0,0
π0,0,n, n ∈ N,

π0,1,n =
(λ+ γn)π0,0,n

ν2
,

π1,1,n =

∑n
k=0

(
λπ0,1,k + γk+1π0,1,k+1

)
rn−k

λ+ ν1 + ν2
,

π1,0,n =

∑n
k=0

(
λπ0,0,k + γk+1π0,0,k+1 + ν2π1,1,k

)
qn−k

λ+ ν1
.

4 Performance Measures and Computational Algorithm

4.1 Performance measures

Let πi,j (i, j = 0, 1) denote the joint stationary distribution of the states of the servers.

We have

πi,j =

∞∑
n=0

πi,j,n, i, j = 0, 1.

Let ρ1 and ρ2 denote the utilizations of the first and the second server, i. e.

ρ1 = π1,0 + π1,1, ρ2 = π0,1 + π1,1.

According to the Little’s law, we have

ρ1 =
λ

ν1
, (51)

provided that the system is stable.

4.2 Computational algorithm

4.2.1 The case: µ > 0

In the case where µ > 0, we observe that the expression of π0,0,0 includes an infinite sum

for which a simple explicit expression does not exist. Therefore, we need to truncate the
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finite sum at some level N0. It is desired that N0 is the level where the tail probability

is small enough to be neglected. In other words, we need an N0 such that

∞∑
n=N0+1

(π0,0,n + π0,1,n + π1,1,n + π1,0,n) < ε, (52)

where ε is a small enough positive number. Recall that an explicit solution for the

joint stationary distribution of an M/M/1/1 retrial queue with classical retrial policy

is given in [8]. We consider an M/M/1/1 retrial queue with an arrival rate λ, a service

rate ν1 and a retrial rate µ. This retrial queue is also stable because ρ1 = λ/ν1 < 1.

Let pi,n (i = 0, 1, n ∈ Z+) denote the joint stationary probability that there are i busy

server and n customers in the orbit. According to [8], we have the following result.

p0,n =
ρn1
n!

(1− ρ1)
λ
µ+1

(
λ

µ

)
n

, p1,n =
ρn+1
1

n!
(1− ρ1)

1+λ
µ

(
1 +

λ

µ

)
n

.

We choose the truncation point N0 as follows.

N0 = inf{n |
n∑

i=0

(p0,i + p1,i) > 1− ε}. (53)

Because the retrial rate of our tandem queue is γn > nµ (n ∈ N), thus we also expect

that (52) is satisfied. Using the truncation point determined by (53), we compute

approximations {π̂i,j,n; (i, j, n) ∈ {0, 1} × {0, 1} × {0, 1, . . . , N0}}, π̂i,j (i, j = 0, 1), ρ̂1

and ρ̂2 to {πi,j,n}, πi,j , ρ1 and ρ2, respectively, by the algorithm presented in Table 1.

It should be noted that the algorithm is numerically stable since it manipulates only

positive numbers.

Table 1 Computational algorithm.

Begin Algorithm

Input: λ, µ, ν, ν1, ν2, ε.

Output: {π̂i,j,n; i, j = 0, 1, n = 0, 1, . . . , N0}, π̂i,j(i, j = 0, 1), ρ̂1, ρ̂2.

Set π̂0,0,0 = 1.

Compute π̂0,0,n (n = 0, 1, . . . , N0 + 2) using (39) and (40).

Compute π̂0,1,n (n = 0, 1, . . . , N0 + 1) using (41).

Compute π̂1,1,n (n = 0, 1, . . . , N0) using (42).

Compute π̂1,0,n (n = 0, 1, . . . , N0) using (43).

Set sum =
∑N0

n=0(π̂0,0,n + π̂0,1,n + π̂1,1,n + π̂1,0,n).

Set π̂i,j,n = π̂i,j,n/sum (i, j = 0, 1, n = 0, 1, . . . , N0).

Set π̂i,j =
∑N0

n=0 π̂i,j,n (i, j = 0, 1).

Set ρ̂1 = π̂1,0 + π̂1,1, ρ̂2 = π̂0,1 + π̂1,1.

End Algorithm



18

4.2.2 The case: µ = 0

As for the constant retrial rate policy, i.e. µ = 0, from equations (33), (35), (36) to (38)

and Theorem 2, we can obtain {πi,j,n} and πi,j (i, j = 0, 1) in a simple explicit form

without an infinite sum. Therefore, it is not necessary to use the algorithm in Table 1.

5 Numerical Examples

In this section, we present some numerical examples in order to explore the influence

of the parameters on the performance of the system. In all the figures, we set ν1 = 1.

We use ε = 10−7 in the algorithm presented in Table 1. Because the utilization of the

first server is given in a simple explicit form as shown in (51), we do not plot a graph

for this performance measure.
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Fig. 2 Utilization of the second server vs. λ.

Fig. 2 shows the influence of λ on the utilization of the second server where ν = 1

and λ∗ = 0. We also consider a tandem queue with losses and without retrials where

the capacity of the buffer at the first server is infinite and the arrival processes and

service time distributions are the same as our retrial tandem queue. For this model the

output process from the first server is also a Poisson process with rate λ. Thus, the

utilization of the second server is equal to (λ+ λ∗)/(λ+ λ∗ + ν2).

We observe that the utilization of the second server increases with λ as expected.

A significant observation is that the utilization of the second server decreases with
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Fig. 3 Utilization of the second server vs. ν.

µ and approaches to that of the infinite buffer model. It suggests that we should

keep the retrial interval as long as possible in order to achieve high utilization of the

second server. The reason is that the orbit of the first server can be considered as

a waiting room for the second server. Therefore, if the retrial interval is long, a large

number of customers can wait in the orbit instead of being blocked at the second server.

The observation also implies that the output process of an M/M/1/1 retrial queue is

different from a Poisson process.

In Fig. 3, we investigate the impact of the constant retrial rate ν on the utilization

of the second server for the cases: λ = 0.7, 0.5 and 0.3, while λ+ λ∗ = 0.7 and µ = 0.

We observe that the utilization of the second server decreases with ν and is asymptotic

to that of the tandem queue with and infinite buffer at the first server. We observe that

the utilization of the second server is sensitive to the retrial rate. Since the constant

retrial rate policy could be used in modelling of LANs [6], this observation is important

in setting optimal parameters for these systems.
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