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Abstract. We construct center-stable and center-unstable manifolds, as well as stable and
unstable manifolds, for the nonlinear Klein—-Gordon equation with a focusing energy subcritical
nonlinearity, associated with a family of solitary waves which is generated from any radial stationary
solution by the action of all Lorentz transforms and spatial translations. The construction is based
on the graph transform (or Hadamard) approach, which requires less spectral information on the
linearized operator, and less decay of the nonlinearity, than the Lyapunov—Perron method employed
previously in this context. The only assumption on the stationary solution is that the kernel of the
linearized operator is spanned by its spatial derivatives, which is known to hold for the ground states.
The main novelty of this paper is that the graph transform method is carried out in the presence of
modulation parameters corresponding to the symmetries.
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1. Introduction. Consider the focusing nonlinear Klein—Gordon equation
(NLKG) on R?

(1.1) i—Autu=f(u), u(tz):RT SR,

where f : R — R is a given nonlinearity. A typical example is the focusing power
nonlinearity

2d
_ p—1 d— (dZB),
(1.2) Sy =Pt s<pr1<TI G2

The lower bound can in principle be reduced to p > 1, but we assume p > 2 to avoid
technical and nonessential complications in the nonlinear estimates.
The equation preserves the total energy and momentum

(1.3)  B(u):= /Rd [W“L [Veul® + fuf” —f(_l)(u)} dv, P(u) = /Rd WV dz,

2

where f(-1 : R — R is the primitive f(=Y(a) = [, f(b)db. These quantities are
well-defined in the energy space

(1.4) () = (u(t),a(t)) € H = H'(RY) x L2(R%).

Throughout the paper, we do not distinguish vertical and horizontal vectors in H,
except to avoid confusion.
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We will consider NLKG in the energy space H, regarding it as a Hamiltonian
system. Our goal is to construct a local center-stable manifold of the family of trav-
eling waves generated by the Lorentz transforms and spatial translations acting on
a stationary solution. For brevity, we call the latter manifold of traveling waves the
soliton manifold. There are two major approaches used in the construction of center-
stable manifolds: the Hadamard method and the Lyapunov—Perron (LP) method. The
former uses the evolution backward and locally in time to find a flow-invariant graph
of the unstable modes in terms of the other components. (The Hadamard approach
also goes by the name of graph transform or invariant cones method.) The latter
uses the evolution forward and globally in time to find an initial adjustment of the
unstable modes so that they remain small forever.

Bates and Jones [1] developed the Hadamard method in the general setting of
an ODE of the form & = Az + f(z), where A is an (unbounded) operator on some
Banach space X which generates a continuous semigroup, and the nonlinearity f
is locally Lipschitz on X, satisfies f(0) = 0, and admits arbitrarily small Lipschitz
constants near the equilibrium x = 0. The spectrum of A is divided in the stable part
with eigenvalues in the left half plane, the unstable part which lies in the right half
plane, and the center part which lies on the imaginary axis. Assumptions are made
on the dimensions of the corresponding spectral subspaces of X and the associated
flows (if the spaces are infinite-dimensional) so as to represent two main scenarios: the
dissipative case (D) on the one hand and the conservative case (C) on the other hand.
For (D) one demands that only the stable subspace be infinite-dimensional and that
the associated semigroup is exponentially stable. For (C) only the center subspace is
infinite-dimensional, which is precisely what occurs in Hamiltonian problems.

Bates and Jones then verified that the abstract center-stable manifold which they
constructed in [1] applies to stationary solutions of NLKG under the radial symmetry
restriction for the power nonlinearity (1.2) with p < ﬁ, d > 3, where the upper
bound on p was required to ensure that the nonlinearity is locally Lipschitz H' — L2.
They also showed that if the linearized operator has no nonzero radial functions in
its kernel, then

(1) every solution starting on the center-stable manifold stays there forever in

positive times, remaining in a small neighborhood of the stationary solution;

(2) every solution starting in that small neighborhood, but off the manifold, must

exit the neighborhood in finite positive time.
The kernel condition holds for the ground state (the positive stationary solution) by
the work of Weinstein [23].

Gesztesy et al. [14] demonstrated that the Bates—Jones theory applies to the non-
linear Schrodinger equation (NLS) with a spatially localized nonlinearity. Notice that
the radial restriction for NLKG prohibits both the spatial translations and the Lorentz
transforms, and so the soliton manifold is reduced to a fixed stationary solution. Sim-
ilarly, the localized nonlinearity of [14] destroys the scaling, translation, and Galilean
invariance, so that the soliton can change only with respect to the phase parameter.
Indeed, as we will explain below, moving solitons represent a serious obstacle to the
Bates—Jones approach.

On the other hand, the second author [22] developed the LP method for the
ground state of the cubic NLS in R?® without imposing any symmetry assumptions
but in a weighted H*-space (or an unweighted L!-based space). In this approach,
the soliton is allowed to move. Recently, Beceanu [5] extended the latter work to the
critical space H'/2 which is bigger than the energy space. Finally, and partly based on
a novel approach to linear dispersive estimates developed by Beceanu [4], the authors
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proved in [18] that the LP approach can be carried out for NLKG in the energy space
without any symmetry restrictions (see also the book [19]).

However, an essential difficulty in applying the LP method to a nonlinear dis-
persive equation (without dissipation) is that it requires global dispersive estimates,
which in turn necessitate fine spectral information, such as the absence of thresh-
old resonances and of so-called spurious' eigenvalues. Such spectral properties can
be very hard to check in higher dimensions, even for the ground state. The one-
dimensional soliton for monomial powers is explicit, and therefore purely analytical
arguments are available; see, for example, [8, 9, 20, 21], as well as [15]. For results on
the higher-dimensional spectral problem which partially rely on a numerical compo-
nent, see [12, 13, 16]. For a rigorous proof of the spectral properties of the linearized
operators Ly in radial R? for the cubic nonlinearity, see [10].

While the LP method requires these stronger spectral ingredients (at least in its
current form), it also leads to more detailed conclusions. More specifically, one obtains
that solutions starting on the center-stable manifold scatter to the soliton manifold
in forward time. In other words, the distinction between the LP approach and the
Hadamard approach is roughly tantamount to the distinction between asymptotic and
orbital stability of solitary waves.

Alternatively, in the presence of spurious eigenvalues one might hope to invoke
the Fermi golden rule which arises in certain delicate normal-form constructions. For
a recent application of such ideas to the asymptotic stability problem for a single
orbitally stable NLS soliton in the energy space, see [11] and the numerous references
there. While such normal form expansions are very natural from the point of view of
Hamiltonian stability theory, we do not rely on them here.

In this paper, we employ the Hadamard method in the nonradial setting. Our
main challenge is to extend the result by Bates and Jones to the family of traveling
waves, rather than stationary ones. We therefore have to investigate the dynamics
along the soliton manifold as well, which is usually called the modulational analysis in
the stability problem of solitons. In our setting, the soliton manifold has 2d dimensions
corresponding to the relativistic momentum and position vectors in R%.

Those parameters can be fixed by means of a Lorentz transform which reduces
the total momentum to zero, and by using a coordinate moving with the soliton.
In doing so, we encounter a derivative loss due to the translation, i.e., a transport
term, in the modulated equation for the difference of two solutions, which disables
the contraction argument for the graphs in the energy norm. This difficulty is not an
artifact of the coordinate choice but a natural consequence of the two facts that the
solitons are translated by the flow, while the translation is not Lipschitz continuous in
any Sobolev space. The same problem occurs for any other continuous group action
involving a coordinate change, such as scaling or rotation.

We overcome this difficulty by introducing a nonlinear quasi-distance in the en-
ergy space, for which the spatial translation becomes Lipschitz continuous, while the
topology remains the same. Using the contraction mapping principle with this dis-
tance for the continuous spectral part, we are able to carry out the Hadamard method
in the presence of modulational parameters.

A more technical issue concerns allowing nonlinearities all the way up to the H!
critical power, i.e., for p < (d42)/(d—2), while Bates and Jones assumed p < d/(d—2).
This is easily resolved by using the Strichartz estimate for the free Klein—Gordon
equation and by relaxing some flow-invariance conditions by constant multiples.

IThis refers to eigenvalues which do not result from symmetries of the equation.
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Since the description of dynamics around the manifolds ((1)—(2) above) is also
extended to the current setting, we can easily observe that the maximum backward
evolution of the center-stable manifold is identical, in a small neighborhood, to the
forward trapping set 7;: the collection of initial data for which the solution (of the
original NLKG) stays in the small neighborhood for large times.

In the special case where the soliton manifold is generated from the ground state,
we can combine the above result with the one-pass theorem in [18] as well as the
openness and connectedness of the forward scattering set S; and the forward blow-
up set By, thereby concluding that 7, separates locally and globally all the solutions
with energy at most slightly above the ground state energy into S; and B,.. Therefore,
the conclusion of [18] is extended to the range

4 4
1.5 deN, 14+-<p<l4d—70, > 2,
(1.5) to<p<l+o—p p
except for the following scattering statement on T : all solutions in T, scatter to the
soliton manifold as ¢ — oco. This statement was proved in [18] for d = p = 3 by means
of the LP method using the following gap property of the linearized operator L :

(0,1)No(Ly) =0, and there is no threshold eigenvalue or resonance.

This is proved (at least for the radial case) in [10]. Note that the numerical analysis
of [12] suggests that the absence of threshold resonances and spurious eigenvalues
fails for some powers in (1 4 4/3,3) for d = 3, where the LP method without any
hypothesis (typically the Fermi golden rule) is not so far available. Also note that the
lower bound 1+ 4/d is required by the proof of the one-pass theorem but not by the
Hadamard construction in this paper, while the LP method also needs it in order to
work in the energy space.

To state the main result, we clarify the assumptions on the nonlinearity f and on
the stationary solution:

feC*(R;R), 0= f(0)=f(0),
1+ alP~=2 (d>3,2<3p< ),
VaeR, [f"(a))S{1+aP™2 (d=2,2<3p< ),
arbitrary  (d=1).

(1.6)

To have C'! manifolds, we assume a bit more regularity: for some p > 2 in the above
range,

(1.7) [f"(a1) = " (a2)] S (lar — a2P~2 + |a1 — az|)[1 + a1 [P~ + |ao|P 7).

These assumptions are satisfied for example by

(1.8) f) = > Nelul™tu, A 20,

k:finite

provided that all py > 2 are in the range (1.6).
Let Q € H'(R?) be a stationary solution of NLKG, i.e., a weak solution of the
elliptic PDE

(1.9) -AQ+Q = f(Q).
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Standard arguments imply that Q € H? with exponential decay as || — oco. For
existence, see the classical work by Berestycki and Lions [6, 7]. The action of the
Lorentz transforms and the spatial translations generate the traveling wave family
parametrized by the relativistic momentum p € R? and position ¢ € R?,

(1.10) Q) = Qz — 7+ p((p) — VA1 *F- (z — D)),
so that each traveling wave can be written in the form
L d_ p(t)
1.11 u(t) = q(t), —qit)=-—=
(1.11) ()= Q). Fi) = s
For brevity, the spatial translate is denoted also as
(1.12) Qc(x) :=Qz — ¢).
The vector form is denoted by
(113) 3= @0, A= (@0~ vew0).
and the soliton manifold of () is defined as
(114) y(Q) = {Q(ﬁa(j)}ﬁﬁERd CH,

which is a C! manifold of dimension 2d. The linearized operator at Q
(1.15) L. =D~ f(Q=-A+1-f(Q), D=vI-A

is self-adjoint on L? with a finite number of eigenvalues and continuous spectrum
0c(Ly) = 0ac(Ly) = [1,00). The translation invariance of NLKG implies that
L, V@ = 0. The only assumption on ) in this paper is

(1.16) L7(0) = span{VQ}.

This is a well-known property of the ground states. To be more precise, by an argu-
ment of Weinstein [23], it holds for the ground state @ provided no radial function
lies in the kernel of L . The latter holds for any subcritical monomial nonlinearity
(as well as others); see Lemma 2.3 in [17], for example. Moreover, (1.16) seems to
be a natural assumption for any other radial static solution. For nonradial static
solutions, we have to include angular derivatives as well, but we do not consider such
solutions in this paper. Although we will not explicitly use the radial symmetry of @,
the reader may assume it without losing anything throughout the paper.

THEOREM 1.1. Let d € N and assume that [ satisfies (1.6). Let Q be a static
solution (1.9) and assume that its linearized operator Ly satisfies (1.16). Then there
is a Lipschitz manifold M.s in H containing the soliton manifold .#(Q) with the
following properties:

(1) The codimension of M.s in H equals the total dimension of the eigenspaces

of Ly corresponding to negative eigenvalues, which we denote by K.

(2) Ms is invariant under the forward evolution of NLKG (1.1).

(3) Ms is invariant under spatial translations.
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(4) For every Lorentz transform and every (p,q), there is a small neighborhood of
Cj(ﬁ, q) such that the Lorentz transform of any forward global solution starting
from Mg within this neighborhood remains on M s for all t > 0.

(5) Mcs is normal at Q to the vector (—kp, p) for any p € H' solving Lyp = —k?p
for some k > 0. In other words,

(1.17) (uglp) = —k(ur = Qlp) + o(llur — Qllar + [Juzl L2)-

(6) For any neighborhood O of #(Q), there is a smaller neighborhood O' such
that every solution starting from O' N M, remains in O N M. for all t > 0.

(7) There is a neighborhood O of #(Q) such that every solution starting from
O\ M, exits O in finite positive time.
(8) If in addition f satisfies (1.7), then M.s is C1®, where o = min(1,p — 2).
The corresponding statement for a center-unstable manifold follows simply by
the time inversion, so we omit it. However, in the proof we will actually consider
the center-unstable manifold, for which the forward evolution is used as a contraction
mapping in the Hadamard method. The center manifold is obtained by intersecting
the center-stable with the center-unstable manifold. It is of codimension 2K and is
bi-invariant.
Properties (6) and (7) characterize M., as the set of solutions which stay close to
Z(Q) for all ¢ > 0. Since the LP method looks for such solutions from the beginning,
it will yield a subset of M_s, and indeed the same manifold (locally), provided that
the codimension is the same. An advantage of the LP method is that it implies
the scattering to the soliton manifold for the solutions on M., (cf. [18]). It will be
interesting to see what happens when some spectral condition breaks down, e.g., if
there is a threshold resonance.
We also obtain a stable and unstable manifold theorem. Recall the definition of
K from the previous theorem.
THEOREM 1.2. Under the assumptions of the previous theorem, there exist Lip-
schitz manifolds M,, and My of dimensions K + d with the following properties:
(1) M is invariant under the forward evolution of the NLKG (1.1).
(2) My is invariant under spatial translations.
(3) Every solution starting on M converges exponentially to Q(-—c(t)) ast — oo
where é(t) — 0 exponentially as t — oo.

(4) There exists 6 > 0 small such that Ms is a Lipschitz graph over Bs(0) x
R? with Bs(0) being a d-ball in the eigenspace corresponding to the negative
eigenvalues and the R?-component deriving from spatial translations.

(5) My, is obtained from Mg by reversing time.

In closing, let us point out references [3], [2], which contain important work on
invariant manifold theory in infinite dimensions which is “abstract” in nature and
goes beyond the classical Bates—Jones theorem [1]. It would be most interesting to
explore if and to what extent the main theorem on existence of invariant manifolds
in [2] is applicable in the setting of this paper.

2. Preliminaries. Here we fix some notation. For any two elements v°,v! in a

normed space V', the ordered pair and their difference are denoted by
(2.1) o= (00,0 € V2 | lv = [0y + lotlv, < =t =,

respectively. More generally, for any map M : V x W x --- and elements v/ € V,
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w? € W, ..., the mapped pair is denoted by
(2.2) M@, w”,...) = (M@°w°,...), M(v',wh,...)).
For any R € R and ¢ > 0, the minimum is denoted by
(2.3) (R A 6) := min(R, 6).

As usual, @ < b, a 2 b, and a ~ b involve implicit multiplicative constants.

2.1. Equation and spectrum. The energy space H = H! x L? C (L?)? is
endowed with the usual inner product

(2.4) (0, 0)4 = /Rd [Vor - Vibi + o191 + @ats] da

and the L? duality coupling

(25) (wlo) = [ [or@in @) + pala)inta)] do.

as well as the symplectic form

(26) wlip ) = (el = [ [a@hin @) = o1 @)inla)] do.

where J is the skew-symmetric matrix

2.7) J:<g 3"ﬂ:‘@ 3.

Let £ be the self-adjoint operator on L? with domain H? x L?

(2.8) L= (LJ (1)) - <‘A+10_ r'@) ?)

Its free version is denoted by

(2.9) D= ([())2 ?) - (_A0+ 1 (1)) .

Then the linearized equation around Cj = (Q,0) is
(2.10) vy = JLw.
The spectrum of JL is given in terms of that of L :

o(JL) =++/—o(Ly).

Since f/(Q) is bounded and exponentially decreasing, there are 0 <k <1 < k and a
finite set K C [k, k] such that

(2.11) o(Li)\ [k, 00) = {0} U {~K* | k € K}
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With slight abuse of notation, we let K count the multiplicity of each negative eigen-
value —k? as well. For each k € K, let pr € S(R?) be an eigenfunction satisfying

(2.12) Lipr ==K pr, ol =1

The (generalized) eigenfunctions of JL are

_ 5 3 oi (1 Pk
(2.13)  JLgk+ = thgr+, JLVQ =0, JLIVQ=-VQ, git = (ik) or

which satisfy
(214)  w(0aG,J95Q) = Hap(Q) := (02Ql05Q),  w(gt,gx-) = 1.
The corresponding symplectic (spectral) decomposition takes the form
v = Z Akigki+u'vé+V'Jvé+7a
+.keK
At 1= Pypv = w(v, £gi7),
pi= P :=H(Q) 'w(v, JVQ), v:i=Puw:=HQ) ‘w,-VQ),

v =Py ::U—Z/\ikgki —,LL-V@—V-JV@.
+.k

(2.15)

We will use as well the projections

vt o= Prvi= Y At Gess
keK

(2.16) vg = Pgv :=v — P,v,
vo = Pyv = V@ T JV@- v, U»q:i=Psoui=v—uv_,
Uyt = Pyivi=vy+vg, votr = FPopv:i=1vp+ vt
and the corresponding subspaces Hy := Py (H). Fixing a small number

(2.17) 0<r<E,

we define the energy norm on H to be

(2.18) ol =D el® + [ + &2 [ul® + (Lyly) = [|vl3,
keK

where the final equivalence follows from the orthogonality of ~;:

(2.19) 0=MmIVQ) = (mlpx) VEk,

together with (1.16), since (Ly|y) = (Liyi|m) + [|r2ll3-
Let @ € C(I;H) be a solution (1.1); then v = (v, v2) := @(x + ¢) — @ solves

(2.20) vy = JLv+¢é- (V@ + Vo) + N(), N(v) = (0,N(v)),
where N : H — H~! carries the superlinear part
(2.21) N(v) = f(Q+v1) — f(Q) = f'(Q)v1 = o(v1).

We remark that vg # 01 unless ¢ = 0.
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The conserved momentum can be rewritten as
(2.22) P(u) = w(i, Vi) /2 = w(v, VQ) + w(v, Vv)/2.

By means of a Lorentz transform, we can reduce the dynamics near the soliton man-
ifold (@) to the invariant subspace

(2.23) Ho :={u € H|P(u) =0}.

Furthermore, we can restrict v to the subspace

(2.24) Hy = {veH]|w VG +w, Vv)/2 =0, wv, JVG) =0}
by choosing ¢ so that

(2.25) 0 = dw(v, JVQ) = (H(Q) — (V*Q|v1))é + w(v, VQ).
Hence the evolution for small v on H is given by

vy = JLv + A(v) - V(G +v) + N(v),
A(v) = (H(Q) — (V2Q|v1)) " w(v, Vv) /2.

This is a first-order autonomous equation in ‘H with the superlinear term

(2.26)

(2.27) M() := A(v) - V(@ + v) + N(v).

In order to implement the Hadamard method, we need to localize the nonlinear
part M (v) near 0 so that it becomes a small Lipschitz term globally in the energy
space H. It seems extremely hard to do this keeping the above orthogonal structure,
since the acceleration or the modulation term is naturally unbounded, unless the
linearized operator is modified depending on the distance of v from 0. Therefore we
will not enforce the orthogonality conditions but instead solve a localized version of
the above autonomous equation in the whole energy space H. After constructing a
center-unstable manifold by the Hadamard method for the localized equation, we will
restrict that manifold to the subspace H, in a small neighborhood of 0 to obtain a
center-unstable manifold for the true equation.

In the case of the unstable manifold, the exponential decay of v as t — —oo
ensures that the manifold for the localized equation around 0 falls into #, so that
we can automatically get the manifold of the true equation.

2.2. Mobile distance. The most serious obstacle to carrying out the graph
transform method in the nonradial setting results from the contraction step in the
construction of the invariant graphs, where the presence of the unbounded transla-
tion term causes problems. To remedy this, we introduce the mobile distance on
‘H. Heuristically speaking, the standard LP or Sobolev-type norm is too tight for
“horizontal motion” ¢ +— (- + z¢) compared with “vertical motion” ¢ — Ap. The
mobile distance makes translation just as easy as amplification, without changing the
topology.

DEFINITION 2.1. For any continuous increasing function ¢ : [0,00) — [0, 00)
satisfying

(1) ¢(a) > a,

(2) a<2 = 6(b) < 49(a),
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the mobile distance my : H X H — [0, 00) is defined by

0 ,1\2 : 1—j j 2 2 j 2
m , = f I _ (. — + J .
(2.28) o= im0t == )+ o107 )

Obviously, the infimum in (2.28) is attained at some ¢ € R%. m, is not really a
distance but is a quasi-distance on H. More precisely, we have the following proposi-
tion.

PROPOSITION 2.2. my in (2.28) is a complete quasi-distance on H, satisfying

(1) my(vY, vl) >0, where the equality holds iff v° = v!,

(2) m(v!,00) =m0, 1),

(3) my(v0,vl) < Cqmy(v?,v?) + my(v? vh)] for some absolute constant Cy > 0,

(4) if myp(v™,v™) = 0 (n,m — 00), then v™ converges in H.

Moreover, it satisfies with some absolute constant C > 0,

(229) 10"l = [l ] + 1D = vh)l < Cmg(2°,01) < Ol = v'la,

where D :=+/1 — A. These constants, C and Cy, do not depend on the choice of ¢.
Hence my defines the same topology as H, differing only in terms of uniformity.
For example, for any ¢ € H we have

(2.30) lim mg (e, —pe™ ) = O(1),

n— oo

since —e™®1 = pe!™@1+7/1) whereas ||pe™®t — (—pe™1)||3 = O(n) unless ¢ = 0.
Proof of Proposition 2.2. Items (1) and (2) are obvious. For the leftmost term of
(2.29), and with 7,v :=v(- — ¢),

0%l = N0t Il < irqlfmin(l\v0 = 70" 3 [0t = 70°||3)
Smy (v, 0h),
for the second term,

D7 W = vY)lla < D70 = 7qu) 2 + [ D7 (rqv" — 0"l
(2.32) S v = vt + gl VD™ ot
S =7t e + lale(llv' | ),

while the right bound in (2.29) is obvious by choosing ¢ = 0. Next we prove the
quasi-triangle inequality. For any v%,v!,v? € H, there are ¢', ¢*> € R? such that

(233)  my(0®,v) = [0 — 7507 [ + ¢ p(min(| e, [0 120)) (G = 1,2)

since the H and F norms are equivalent and ‘the H norm is translation invariant.
If [|v°l3 < min(||v} |2, [[v?]%), then mg(v®, v7) ~ ||v7]|%, and so the quasi-triangle
inequality is obvious. Otherwise,

mg(v', %) S vt = v*( = ¢® + ")l + la' = @?lo(min(||v" (|, [0*[15))
(2.34) Sl =) = o=@ lw+ D laf|¢(min[|o 3, [|07]|2))

j=1,2

< m¢(vo, vl) + m¢(v0, v2).
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To prove the completeness, let v™ be Cauchy in mg. Then so is D~'™ in H by (2.29).
Hence, v™ converges to some v € DH. Equation (2.29) implies that ||v" || converges.
We may assume that this limit is positive, since otherwise the convergence to 0 is
obvious. Since v™ is bounded in H, it converges weakly to v in H. Passing to a
subsequence, we may find ¢, € R? such that

(2.35) [ 7g, 0™ — 0" gy + lgn] <27
Let ¢, = Zkz” gn; then ¢, — 0 and
(2.36) Jo™ (- = en) = 6" = enya)le < 277,

which implies 7.,v™ — v strongly in H, whence also v™ — v strongly in H. a

We apply the mobile distance only to the continuous spectrum part because on
the one hand, the discrete spectral part is finite-dimensional and smooth, and on
the other hand, the linearized energy is conserved only on the continuous spectrum.
Choose positive constants d, Cy, Cq, Co such that

(2.37) 0< (02 <1< Cy< O < Co.

The required smallness of C3d, 1/Cy, Cy/C1, and C1/C4 is implicit in the following
arguments, but only in terms of d, f, @, and . Henceforth, we shall regard those C}
as being fixed constants and ignore the dependence on them unless it is important,
while we regard ¢ as a small parameter (with the smallness depending on C5), keeping
track of its impact on the estimates.

The quasi-distance ms : H x H — [0, 00) is defined by

(2.38) 15(0°,01)2 = [| Pa(e” — )| + mg, (P, P2,

where ¢5(a) := ¢(a/d) with a fixed ¢ € C°(R) satisfying

1 (a’ < 02)7 /
(2.39) ¢<“>—{a A ET
We will localize the equation for v within distance O(6) from 0 such that the evolution
outside of it becomes purely linearized. We have chosen ¢s such that the “fare” is
purely proportional to the translation distance within the nonlinear region, but there
is an additional fee for “excessive weight” over O(6). It is easy to see that ms has the
same properties as mg in Proposition 2.2.

3. Construction of manifolds for a localized equation. In this section
we construct a global center-unstable manifold for an equation of v with localized
nonlinearity around 0 € H. The manifold obeys the original flow only on the subset
H in a small neighborhood.

3.1. Localization of the equation. Let x € C§°(R) be a nonnegative sym-
metric decreasing function satisfying x(¢) = 1 for || < 1 and x(¢) = 0 for |¢t| > 2.
Let

(3.1) xs(v) = x([[v]l3./9).
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We will construct a center-unstable manifold near 0 for the equation of v with
the nonlinearity localized within O(d) distance from 0

(3.2) v = JLv + Ms(v), Ms(v) := xs(v)[A(v) - V(Q +v) + .7\7(1})]
Hence each component in the spectral decomposition solves

Ot Mkt = E kApx + PipM5(v),
(3.3) Ot = — v+ P, Ms(v), Ow = P,M;sv),
iy =J L + P, Ms(v).

LEMMA 3.1. The equation (3.2) is globally well-posed in H, and for any solu-
tion v,

sup [[o(@)|[ & < [[0(0)] &,
[t|<1

(3.4 up [a(t) = e “0aO)le S (o(0)] 107

sup @I = YOI < (lv0)]lz A ).

Proof. Let v be a local solution around ¢ = 0, and let w(t, ) = v(t,z — ¢), where
¢ is the solution of

(3.5) ¢=xs5(v)A(v), ¢(0)=0.

Let 7. be the translation operator

(3.6) Teip(x) = p(x —c);

then the equation for (w,¢) is given by

(3.7) w=JDw + F(w,c), ¢= B(w,c),
with the nonlinear terms F' and B defined by

. B(w,c) - VQ.
Flw,e):= <f’(Qc)w1 L Xa(w)Nc(w)) ’

where A., N, are translates of A, N:
Ac(w) == A(Tiw) = (H(Q) = (VQc|w1)) ' w(w, Vw)/2,
Ne(w) := 1eN(r7w) = [(Qc +w1) — f(Qc) — f(Qe)wr.

Choosing some appropriate Strichartz norm, for example,

(3.8) B(w, ¢) := xs(w)Ac(w),

(3.9)

W LeH + ||wq 2 d>3),
(3.10) fwllses = 4 1] lwillppze (d = 3)
lwllLgor, (d < 2)

with p = %, we have by the Strichartz estimate for the free Klein—Gordon equation

(3.11)
willseo,r) < 10Ol + 1 Fl| Liwco.ry,  Nelln=o,ry S (O] + T Bllzeo,7),
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where the nonlinear terms are estimated by Holder,
F(0,¢) =0, B(0,¢)=0,
[aB(w”, &) S (e (lw” [l A 6)* + (ll<w® [l A 8)(|w” [l A D),
(3.12)  [9F(”, ) ino,r) S T e llw” [[see + [lw” [[se]

+ [llac™{| oo + [l9w” [[see] (w0 [|ser A 6)

on the time interval 0 < t < T < 1. Hence if §,7 > 0 are small enough, we obtain a
local solution of (w,c) on (0,7) in H x R? by the standard iteration. By Gronwall, it
is extended to any finite time intervals. In particular,

(3.13) i llstr—1,1) S Nw(O)ll3¢s  lelzoo 1,1y S 1e(0)] + ([[w(0) |2 A 6)%,

and moreover, if |[w(0)|l3 > 6, then ||w(t)||x > 0 for [¢| < 1, and so ¢(t) = 0 and
F = (0, f'(Q)wy). Hence we obtain by the usual iteration and continuation argument

l<w® [|see(=1,1) S l<w” (0)] %,
(3.14) 9| Loe (—1,1) S ([<w®(0) [ A 6)([[w” (0)[|2 A D),

[9F(W”, ) Liae,-1,1) S l<w” (0)]l2.

Next we prove the second and third estimates in (3.4). Since they are now obvious
for ||v(0)]|% > Cod, we may assume that ||v(0)]|y < Cod. For the vy part, we have by
the energy inequality

(3.15) [lva — " 0a(0)| Ly mo,ry < 1D *Ms(0)ll 20,01y S I0ll3eeco,r) S I10(0)I13:-
For the v part, we have

(3.16) (L) = xs(WIA@)(F(@)n[Vn) + AW)(LVvaly) + (N(v)]r2)],

and so

(3.17) HVIE]S S I1(A@)f(@)n, A(v)D*va, N ()| La L2 0.0 V]| Lg=c0,1)
< ()3,

and we are done. 0

Denote the nonlinear propagator for (3.2) on H by
(3.18) Ut):H—=H, U)v(0)=uv(1).

3.2. Smallness of nonlinearity. The following estimate on the nonlinear term
by the mobile distance will be the basis of all the succeeding arguments.

LEMMA 3.2. For any two solutions v’ (t) = U(t)v?(0) € C(R;H) of (3.2), we
have

3.19
(3:19) sup [P (1) = %t O + |15 Py | S o 0),
<1

where the implicit constants are determined by d, f, Q, and kK.
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Proof. Without loss of generality, we may assume that for some ¢(t) € R?

(320)  ms0”(t)? = [[Pasw” (D)% + I1V° (1) — 7y (DT + la(®O)Pbs (7' ()1 )?

for |t| < 1. Decompose each solution by

(3.21) V= > Mg + 40 VG IVQ+ A
+,keK

Case (I): ||v”(0)||& < C18. The previous lemma implies that ||v”(¢)|| g < C2d,
and so ¢s([|77 (t)||g) = 1, for [t| <1 and j = 0,1. The discrete components solve

DNy = kAN g + Prp<Ms(v”),
(322) > > > > >
O™ = —<” + P <aMs(v”), Oy = P,<aMs(v7),
where the nonlinear term is bounded by

(3.23) H<1M5(UD)HH—2 S (5IT~1§UI>,

which is proved as follows: (2.29) and the translation invariance of w(v, Vv) imply

a3 ()] S lalo” ] /8 S so® /5,
(3.24) [QA@P)] S STID~ e 3¢ + 11 = 747 2] S Stise®,

|<aVV™ || -2 < |D 7 av™|| 3 < mso™.

The nonlinear part is estimated by using Sobolev

NG -2 S INO®) = TN COlae + [ 100N 00

S OllvY = ruillae + lalllvr 7 S dthsv”,

(3.25)

where ¢ := min(2,1 + 1/p) for d > 2 and p := 1 for d = 1. Thus we obtain (3.23).
Therefore, we have for |t| < 1,

t

(3.26) v (1) — e Et e 0) 1 < | / Stigr” (s)ds .
0

The linearized solution enjoys the obvious bound

(3.27) le”'<v3(0) |5 < € [[<w3(0)] -

For the difference in the v component, we need the mobile distance. Let
(3.28) =1y, (=1, Qi=17Q=Q(-J),
for j = 0,1, where ¢/ (t) € R? are the solutions of
(3.29) & =xs() A7), L0)=0, '(0)=q(0),
where ¢ has been chosen in (3.20). Then we have

(3.30) P =JL0¢ + ¢ - (PIVP)E — PINE) + PI(0, M),
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where £7, P}, and PJ are linear operators and M7 is the nonlinear part, defined by
(3.31) L3 =7, Pl=7IP(r7)*, M :=xs5u)Nu (),

and 27 =77 vi + (7. Hence the difference satisfies

(3.32)  <a® = JLO9C" + P2(0,9M”) + R, ||R|l < d[isv” + |<ac™| + [|<C7|2],

using (3.24) as well as ||v7]|% < 6. The Strichartz estimate for the free Klein-Gordon
equation yields (regarding J(L° — D)<¢” as a perturbation, which can be done by
partitioning the time interval)

. Str(0,1) ~ 2 L1L2(0,1) LM, (0,1)
(3.33) < S 1<¢7(0)]2 + [lad”|] + || R

where the nonlinear part is estimated by applying Holder to the second-order Taylor
expansion of f,

(3:34)  f(Q" + ) — f(Q) — f(Q)~ =/O /O [f"(Q7 + af21)8(=])?] dadd),
and
AF(Q” +27) — F(Q) — f{(Q7)2]

3.35 Lol
o :/ / [F(Q% +620)2(Q” +025) + £"(Q° + af2})02) <2 dadd,
0 0

where Q% := (1 — @)Q" + aQ' and 2 := (1 — a)z° + az!. Thus we get

(3.36)
[9M" |l Liz2(0,1) S (1 + ||Z>Hsrr(0,1))p_2||Zl>||scr(0,1)[H<10>||Lt°°(0,1) + (192" | stx(0,1)]-

On the other hand, we have

92" [Iser0,1) S 1€ [ Loe (0,1) + 190G ]| Loere0,1) + 1167 [ s6e(0,1)»

3.37 -
547 Ror® S 0+ 19 + 1|
Combining these estimates with (3.33)—(3.36), (3.26), and (3.27), we obtain

(3.38) Oilzglﬁlévb S e lleio,1) + 1967 Iser0,1) + [[<vgllsero,1) S @sv”(0).

For the sharper estimate on the v part, we use
(3.39) (m577)? < I(7°)* <" |15 + [ac™ 2,
1(7%) "¢ I = (L2027 [PY<¢”) + || Pary* (a + <) I3

with equality at ¢ = 0. For the distance term, we have from (3.37) and (3.38)
(3.40) [ac® (t)| < [«ac”(0)] + Cdms0”(0).

For the translated part, we have

{LOaC™|PPa¢™) — (L0a¢"[a¢”)| S (9Pt 13 < |02,

3.41
(341 1P (@ + <) S |4 262,
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and

(342)  O(LOACTIAC) = —(£(Qu)® - VQaC"[<C%) +2(L0<CT [ POaM + R).
Hence for |¢t| < 1, using (3.38) and (3.36) as well,

1y NEIPC

S [<e26% + 82(|<9C7 [T o gy + 119G o e[ PYM” + Rl 13y S 6% (ms0”(0))*

Plugging this and (3.40) into (3.39), we obtain the desired upper estimate on the

part. For the lower estimate one reverses time, completing the proof in Case (I).
Case (II): min; ||v7(0)||3 > Cod. The previous lemma implies that ||v7 (¢)| g >

Copd > ¢, and so for |t| <1 and j =0,1,

(3.44) WI(t) = (0), [V (Olle = Ol [Pa”(®)]e < [[Pasv®(0)]|&-

To estimate the v part, let ((¢) := v°(t) — v(t,x — q(0)). Then

(3.45) ¢ = JLE=(0,[f(Q) = f'(Qa0))Tao) 1)
where the right-hand side is bounded in H by
(3.46) 2017 (0)[l3« S omsv™(0),

where we used that a < d¢s(a). Hence using the energy inequality for £, we get
[(£<IE)6] < dmsv” (0)[IC]| pgone

(3.47) X 1 o
1PC®) 5 = | Parg? |5 S 1a(0) 7 (0) 12 S Sisv? (0),
and so
(3.48) (@) SISOl + 14O P17 O)le)
< (Mm577(0))? + C8* (g0 (0))*

This completes the proof in Case (II).
Case (III): ||[v°(0)||% > C18 > Cod > ||v'(0)||3¢- The previous lemma
implies that |[v°()]|% = C18 > Cod = ||vt(t)]|% for |t| < 1, and so by (2.29),

(3.49) igv” () = [0 (t) |2 = [[v°(0) ]3¢ = Mmsv™(0) 2 4.

For the difference from the linearized solution, (3.15) yields the desired estimate. The
estimate on the increment of the + part is similar to Case (I), but now ¢ = ~°
evolves linearly, which means that the nonlinear terms in <¢” depends only on (!.
Hence (3.36) is replaced with

(3.50) laM®lpizz = 1M Lire S 0" 15 S 6%

~

Noting that § < ms(v°(0), v1(0)), the rest of the argument goes through as in Case (I).

Case (IV): ||v°(0)||3 < Cod <K C16 < ||v1(0)||3. Although this is symmet-
ric with the previous case, we have to check the mobile distance part, since there we
introduced asymmetry with (3.20). The difference appears in (3.39):

(3.51) (m50”)? < [[(7%)"<a¢"||% + |« Pos (v || 2)*
However, this is admissible, because

(3.52) (<" o5 (7 1 2)]5 < 6%¢5(l|v" (0)]| ) = dtigv™(0),
and the remaining argument is the same as in the previous case. O
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3.3. Evolution of graphs, center-stable case. Now we consider the graphs
of v>g — v_ satisfying a Lipschitz condition. It is convenient to extend them to the
whole H. Our class of graphs for the contraction argument is given by

(3.53) Gus:={G:H — P_-H |G =GoPsy, G0)=0, |[<GW")||p < fmsv”}
for small £ > 0, and the graph of G € G, is denoted by
(3.54) (Gl :={peH|P-p=C(p)}

A center-unstable manifold will be found as the unique invariant graph by the con-
traction mapping principle in G s.

For p > d/(d—2), the Sobolev inequality does not imply that © is bounded in L2,
and consequently we cannot prove strict invariance of Gy 5 for ¢ > 0, but the “almost
invariance” given below is sufficient for the contraction argument.

LEMMA 3.3. There exists C, > 1 such that if £,0 > 0 satisfy

(3.55) kP +0 <k <Lk,
then for any two solutions vi(t) = U(t)v?(0) (j = 0,1) satisfying
(3.56) [|<v” (0)]| g < €msv™(0),

one has

(3.57)

Proof. The linearized solutions of the discrete modes are estimated by
g PP < [Pae s < max(eH, e | P,

e Poglle < | Poe” olle < e Pogl| -
The previous lemma implies that

l<o” (@)l 2 < [lae”“ 0" (0)]| 5 + Comgv™(0)

(3.59) Z -
< [max(e 2 e=*) ¢ 4 Colmsv” (0),
and also
(3.60) msv” (t)? > |le’ 1 av(0)]|% 4+ msy” (0)% — C6*msv™ (0)%

Plugging (3.58) into the last estimate, we obtain

[e72RE(1 — £2) + e~ 2002 — C82)msn” (0)2 (0 <t < 1),

(361)  mat (1) > {[e—zkit — C8inge (0)? (I < ).

Combining it with (3.59) yields for |¢| <1,

(3.62) a” ()] < (5 + C8)(eF + Co)msv” () < 20e*Fsv™ (1),
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provided that § < ¢ < 1. For 1/2 <t < 1, we obtain

e G (O B e e I
<

(1 —k/3+C5/O1L+ C(S + r + k) |mso™ < linsv”

under the condition (3.55) and x < k < 1. O

As an immediate consequence of the above lemma together with a mapping degree
argument, we obtain the following result.

LEMMA 3.4. Under the condition (3.55), U(t) for |t| < 1 defines a map U(t) :
Ges — Gopes uniquely by the relation U(t)[G] = [U(t)G|. Moreover, if 1/2 <t <1,
then U(t) maps Gy s into itself.

Proof. The previous lemma yields for any ¢ ! € U(t)[G],

(3.64) <™ | g S fmsb.

Since £ < 1, it implies ||<¢” ||p < Msp%,. Then the conditions U(t)[G] C [U(t)G]
and U(t)G o P>o = U(t)G define U(t)G uniquely and consistently on the set

(3.65) PooU()[G] + P_H.

The proof is complete once the above is shown to be H, for which we use the degree
argument. Suppose for contradiction that there exists ¢ € P>oH \ P>oU(t)[G]. In
other words, for any a € P_H,

(3.66) U(=t)(a+) & [G].

Let m(a) :== P_U(—t)(a + ¢) — G(U(—t)(a + v)); then m is a continuous map from
P_H to itself, such that 0 € m(P_H). On the other hand, if |a| > §, then

(3.67) m(a) = e~ "Fta — Ge TFM).
Define @ : RE — P_H, ¥ : RE\ {0} — SE~1 and m : (0,00) x SE-1 — §K-1 by

(3.68) (X)) = Z Xkgp—, Y(X)= x|’ m(R,0) =T od ' omod(RA).
keK

Then m is continuous, but the degree of m(R,-) is 0 for small R > 0 and 1 for
large R, which is a contradiction. Hence U(¢)G is well-defined as a map on ‘H which
is right-invariant for P>¢. The Lipschitz bounds are immediate from the previous

lemma. 0

3.4. Contraction of graphs, center-stable case. We introduce the following
norm in G := {J,- o Ge,s:

1G]z
1le

It is easy to see that the set G is independent of 6 > 0. For any G € G5 and any
Y € H, we have |G(¥)| g < fiws(1,0) < ][9] g, and so

(3.69) IG|lg := sup
PYeH

(3.70) 1Gllg <.

G is a Banach space with this norm, where each Gy s is a bounded closed set. The
contraction argument is completed by the next lemma.
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LEMMA 3.5. In addition to (3.55), let
(3.71) § < k2

Then the map U(t) is a contraction on Gy s for all t > 1/2.
Proof. Let T € [1/2,1]. For any G’ € Gy 5 for j = 0,1 and any ¢ € H, let

(3.72) V(1) = Ut~ T)[Psots + UT)G )]

Since P>gv?(T) = P>ov!(T), we have

(3.73) myv” (1) = ||« (T)]| -

Applying Lemma 3.2 from ¢t =T, we get for 0 <t < T,

(3.74) (1) — £ D (T) | 5 + o (1) S Ol (T)] .

Hence using the same estimate on the linearized solution as in (3.58)

On the other hand, since v’ (0) = G7(17(0)) and G7 € G5,

I« (0)]| 2 < [[<G” (v°(0)) Il + |<G" (v" (0) |

(3.76) )
< <G [lgl[v26(0) || & + msv%0(0).

Equation (3.4) as well as (3.58) yields

(3.77) [020(O)I < (e + Co) 03

Inserting this and the second inequality of (3.75) into (3.76), we obtain
(3.78) <" (0)||z < (T + CVB)||I<G l|g | ¥l| & + €8] <™ (T)]| -
Combining this and (3.75), we conclude that

l<” (T)l| < (1= C36)~H (T — C8) (e + OVO) <G|l ]| 2

(3.79)
< e E=RIT(1 4 CVE)||<G” ||| Y| &-

Equation (3.71) and k¥ < k imply that there exists A < 1, determined by k, «, 6, ¢
such that

[« (D)l
1¥]le

Taking the supremum over all ¢ € H yields

(3.80) < AJJaG® -

(3.81) [U(T)G" g < All<G"|lg,

as desired. The case T' > 1 is now obvious by iteration. o
Thus we obtain the next theorem.
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THEOREM 3.6. Suppose that £, > 0 satisfy (3.55) and (3.71). Then there exists
a unique G, € Gy 5 such that U(t)G. = G, for all t > 0. The uniqueness holds for
any fized t > 0.

Proof. For any T > 1/2, the above lemma implies that there is a unique fixed
point of U(T) in G, 5. Since the equation is invariant for time translation, it implies
that U(t)G € Ge, e is also a fixed point for all 0 < ¢ < 1. Then the uniqueness of
the fixed point implies that U ()G = G for all 0 < ¢t < 1 and so for all ¢t > 0. If
U(t)H = H for some t > 0 and some H € Gy s, then by iteration U(T)H = H for
some T > 1/2, and so H = G. a

Since U(t) is invertible, U(¢)[G.] = [G,] for all t € R.

The conditions (3.55) and (3.71) are satisfied for £ = O(d) as § — 40, which
implies that

(3.82) (Gl 20, olln <6 = |wle, gis)| S 6%

in other words, [G. | is normal at 0 to (—k,1)py for each k € K.

Notice that the above construction did not really use the special property of the
generalized null space of the linearized operator. However, the constructed manifold
makes sense for the original equation only on the subset H, , for which we need the
property that the generalized null space is exactly generated by the symmetries of the
equation.

3.5. Evolution of graphs, unstable case. We now carry out an analogous
procedure for the finite-dimensional unstable manifold. Thus, we now consider the
graphs of vy — v< satisfying a Lipschitz condition

(3.83) 926 ={G:H = P<o” | G=GoP, G0) =0, msG(v") < ||<0f ||}
for small £ > 0, and the graph of G € gl;fé is denoted by
(3.84) (Gl :={p e M| Pwop=Gp)}

The unstable manifold will be found as the unique invariant graph by the contraction
mapping principle in QZ& We formulate the analogue of Lemma 3.3 in this case.

LEMMA 3.7. There exists Cr, > 1 such that if £,0 > 0 satisfy (3.55), then for any
two solutions vi(t) = U(t)v’ (0) (j = 0,1) satisfying

(3.85) m50Z0(0) < £||<w.(0)]| e,
one has
. Crl|af®lle (1t <1),
3.86 2o(t) < N
(3:86) Mavzo(t) < {e||<w>+(t)|E (1/2<t<1).

Proof. We again have (3.58) for the linearized solutions of the discrete modes. In
particular,

(3.87) <0’ (8)]| & > min(eX, )<’ (0)]| & — Comsv™(0).

By Lemma 3.2, for ¢ > 0,

(3.88) msvo(t)? < Jlae’ o (0)[1% + msy(0)% + C*msv”(0)?
' < (¥ 4 OS2 (1 + %) + 7)< (0)]13

and one now concludes by combining these estimates; cf. Lemma 3.3. d
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One now has the following analogue of Lemma 3.4.

LEMMA 3.8. Under condition (3.55), U(t) for |t| <1 defines a map U(t) : Qzé —
QgL“ uniquely by the relation U(t)[G] = [U(t)G]. Moreover, if t > L, then U(t)
maps Qzé into itself.

Proof. The mapping properties for |[t| < 1 and % < t < 1 are an immediate
consequence of the previous lemma. The extension to ¢ > % then follows by iteration.
As in the case of the center-stable version, the main issue is to show that PLU(t)[G| =
P.H = H for all [t| < 1. Thus take ¢y € H and denote the R-ball in H by Bf.
Lemma 3.2 implies that if 0 < ¢ < 1, then

[PAUG W +GW)n 2 B VIt <1, Vi € 9By
for any G € QZ s and with absolute implicit constants. This shows that with ®(¢) =
¥+ G),
deg(PLU(t)®, B, v0) =1 V[t <1
provided R is sufficiently large, and we are done. d

3.6. Contraction of graphs, unstable case. Let Gt := Urso gj& As before,

the set G is independent of 6 > 0. We introduce the following quasi-distance d in
Gt: for any G',G? € G let

msG”
(3.89) d(G',G?) := sup MG (Y)
ver |[Yle
It is clear that this expression is finite and that it satisfies a triangle inequality with
the same multiplicative loss as in Proposition 2.2:

(3.90) A (G1,G3) < Ca(d (GY,G?) + dy (G2, GP)).

Moreover, Gt is a complete quasi-distance space, in which QZ 5 is closed. Recall that
the Banach fixed point theorem is valid in complete quasi-distance spaces.

LEMMA 3.9. Let X be a complete quasi-distance space, and let A : X — X be
a contraction. Then there is a unique fized point . € X of A, which is obtained by
Ty = limy, 00 A" () for any x € X.

Proof. Let C > 1 be the constant in the quasi-triangle inequality in X, let
A € (0,1) be the Lipschitz constant of A, and fix m € N so that A™C < 1. Take any
zo € X and let x,, = A" (x¢) for each n € N. Then

(3.91)
d(anrlaxn) = d(Am(ﬁn)a Am(xnfl)) < Amd(l'naﬁnfl) << Amnd(xlaxO)'

Hence for any k > j > 1, by repeated use of the quasi-triangle inequality,

k
d(zy, ;) < Cd(wg, 1) + Cd(wj1, ;) < - < Y Cd(my, m-1)

(3.92) ) Ak
< Z (CA™)! I A™Id(zy, 20) < &d(x Zo)
=2 1,%0) S T apm AT o).

Hence z, — 3z € X, and by the continuity of A, A" (Zs) = Too. Then
(3.93) A(A(Zo0 ), Too) = (A (200), A™ (200)) € A™d(A(To0), Too),

which implies that A(z+) = Zoo. The uniqueness follows in the well-known way. O
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The following is an analogue of Lemma 3.5, but here the evolution time has to be
long enough to absorb the quasi-triangle factor Cy in using the “chain-rule” in G7.

LEMMA 3.10. There are §o > 0 and T > 0 such that if 6 < &y and (3.55) is
satisfied, then the map U(t) is a contraction on QZ(; forallt >T.

Proof. Let GY,G? ¢ QZ(;, T>0,v% € Hy, and
(3.94) V() =U =T+ UMDE )] (5=0,1).
Tterating Lemmas 3.1 and 3.2 from ¢t = T down to ¢ = 0, we obtain
(3.95) [v"@)|e < CeT|p|le,  mav™(t) < Ce“Tmgv™(T) = Ce msvy(T)
for 0 <t < T with some constant C' > 1 (determined by d, @, f, and k). Hence if
(3.96) 6 < e 2¢T )02,
then by iteration of those lemmas again, we deduce that

1030)| & < e 512 |Y| g,

(3.97) ~ ~ _
msvZo(0) > e_ZKngvgo(T), |< (0)|| 2 < \/gmgv‘go(T).

Since v%O(O) = GI(v?(0)) and G7 € QZ(;,

5vZ0(0) < Ca[MsG” (v°(0)) + s G (v7(0))]

3.98
(3.98) < Cald ()] 0) | + £} (0)] 5]

Plugging (3.97) into the above, we obtain

(3.99) msv2o(T) < e* T Cyld (G™)Ce 5121 g + £Vomgv2 o (T)].
Choosing T so large while keeping (3.96), we can ensure that

(3.100) ms(U(T)G")h = msvZo(T') < Al e

for some constant A € (0, 1) determined by d, f, @, k, T, and §. Obviously, this remains
true even if we replace T with any 7”7 € [T, 2T, taking ¢ even smaller if necessary.
Hence iterating U (t) allows one to draw the same conclusion for all ¢t > T. O

By the same arguments as in Theorem 3.6 one now concludes the following.

THEOREM 3.11. Suppose that €,6 > 0 satisfy the assumptions of the previ-
ous lemma. Then there exists a unique G+ € GS5 such that U(t)GT = G for all
t > 0. The uniqueness holds for any fixed t > 0. Moreover, if v(0) € [GF], then
U #)v(0)||x — O exponentially as t — —oo; in fact, for any e > 0,

(3.101) e~ E= DU v(0)|l5 =0,  t— —oc.

Proof. The estimate (3.101) follows from the previous proof. In fact, (3.97)
implies
(3.102) lo(®)lle < e |lv(O)llz  (t — oo),

where v(t) := U(t)v(0), but we could take the exponent arbitrarily close to k by
choosing § even smaller. Since v(t) comes into any § ball as t = —oo, we may apply
such decay estimates for ¢ sufficiently close to —oo, thereby deducing (3.101) for all
e > 0. d
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4. The unstable manifold. We now describe the unstable manifold in the
original u-formulation of the equation; see (1.1). Let G be as in Theorem 3.11. For
any v(0) € [gzgj with [|v(0)|lx < 0, define v(t) = U (¢)v(0),

(4.1) u(t) = (G +0)(t,- — (1), c(0) =co, &t) = A(v(t)),

where cg € R? is a fixed vector. By construction, u solves (1.1), and by (3.101) one
has ¢(t) — 0 and ¢(t) — ¢(—o0) exponentially fast as ¢ — —oo. In particular, u has
vanishing momentum: P(u) = 0. Then by design (cf. (2.24)-(2.26)), w(v, JV@) is
constant, and since it converges to zero as t — —oo, it must vanish. To summarize,
we have obtained the following characterization of the unstable manifold.

COROLLARY 4.1. The unstable manifold M, is the set of all @(0) with u defined
in terms of G} by means of (4.1). M, is invariant in backward time, and all solutions
starting in M, converge to a trajectory of the form Cj( —¢(t)) exponentially fast as
t — —oo with ¢(t) = 0 as t = —oo exponentially fast. M, is a Lipschitz manifold of
dimension K + d.

The dimension count is a result of the fact that [G}] is of dimension K, and the
translations (see ¢ in (4.1)) add another d dimensions.

5. Trapping property of the center-stable manifold.

5.1. Restriction by the orthogonality. For any Banach space X, denote the
ball around 0 of radius R > 0 by

(5.1) Br(X) :=={p € X | ¢l < R}.
LEMMA 5.1. If ¢ <1, and § > 0 is small enough (depending only on d, f,Q),
then for any G € Gy 5, there is a unique map G : P,y Bs(H) — Po—"H such that

[G]:={¢+G) | ¢ € Py Bs(H)}

(5.2)
— {0 € [GINHL | Pysp € P,y Bs(H),| Pl < 6.

Moreover, G is Lipschitz continuous in the mobile distance ms.
Proof. For any ¢ € H and v € R?, put

(5.3) V() = +v-IVG, F) i=1h(v) + G(v)).

It suffices to show that for any ¢ € P, Bs(H), there is a unique fixed point v € Bs(R?)
for the map

(5.4) v N(v) == H(Q) T 'w(@v), Ve(v))/2.

For any 17 € Bs(R%) (j = 0,1), we have

(5.5) @) =w” - IVQ + <G+ v” - IVQ).

Hence using ||t < 6 and G € G 5 as well, we deduce that

(5.6) N S I3 S 62, [aw (@), VEr?))| < olav”l.

Therefore N : Bs(R%) — Bs(R?) is a contraction for small §,¢ > 0, and so has a
unique fixed point v = N(v) € Bs(R?). Since N is Lipschitz for ¢ in the mobile
distance, so is the fixed point v(1), as well as G. O

Hence [G| N#H, is a Lipschitz manifold in the mobile distance around 0 with
codimension K + 2d = dim Py_H.
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5.2. Solutions on the center-stable manifold with the orthogonality. Let
G = G, € Gy s be the map for the center-unstable manifold of the localized equation

given by Theorem 3.6, and let G = G, be the map for its orthogonal restriction
given by the above lemma. The invariance of [G| means that for any v(0) € [G],
v(t) := U(t)v(0) stays on [G] for all t € R. Let ¢(t) be the solution of

(5.7) c(0) =0, ét) = A(v(t)),

and u(t) = (Q+v)(t, z—c(t)). Ifv(0) € Bs(#), then u solves the original equation (1.1)
as long as v(t) € Bs(H). Meanwhile, the momentum P(u) = w(v, VQ) + w(v, Vv)/2
is preserved, and so is w(v, JVQ), because of ¢ = A(v). Hence if v(0) € H1 N Bs(H),
then v(t) remains there as long as v(t) € Bs(H).

To see that the solution stays in the neighborhood for ¢ < 0, expand the conserved

energy by u = (Q 4 v)(z — ¢

(5.8) E(u)=J(@Q) ==Y kA M- + 5 <£w|~y> C(v),
keK

where the nonlinear energy C' is defined by

(5.9) C(v) = f(Q+wv1) = f(Q) — {f(Q)]vr) — %(f”(@)vllvﬁ = o([v[l3,)-
Suppose that for some tg < 0

(510) 0Ol =e <6 max lo@®lla <6 lolto)l > VE + (< 0).

Then |E(u) — J(Q)| ~ £2. Since v(t) € [G] and G € G5, (5.8) implies that

(5.11) (L) S D KAk | + B(u) = J(Q) < 6% +€° < 62
k
for ¢y <t < 0, which together with v(¢) € H, implies
(5.12) D e (o) P = [luto) 1%
k
Now consider the nonlinear energy functional
E(w):= )+ Z Mo+ + M)
(5.13) ek .
= Z + A+ (L) — C(o).
keK

Since v(t) € H 1, we have £(v) =~ ||v]|3,, and moreover, the equation of A\x+ (see (3.3))
together with conservation of F(u) yields

(5.14) SEW) = TR0, - A1) + ol old ),
k
and so
(5.15) Le(ult) 2 YR, =~ Eulto)).
k

Therefore £(v(t)) cannot increase beyond O((6? + £2) as t < 0 decreases.
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In conclusion, for any v(0) € [G.] such that ||v(0)]|% < 8, the solution v(t) =
U(t)v(0) remains on [G, |, ||v(t)||x < 6 for all ¢ < 0 and u(t) = (@ + v)(z — ¢)
with ¢ = A(v) solves the original equation (1.1) for all ¢ < 0. Thus we obtain a
center-unstable manifold of the original equation with zero total momentum.

More precisely, fix 0 < §’ < § and let

(5:16)  Mewo:={(@+UM) @ —c) | p € [G.], llpll < &', t <0, c€ R

then for any initial data u(0) = (Q+ U (t)¢)(x — ¢) € Meuo, the solution u(t) of (1.1)

ison Meyo for all t < 0 and P(u(t)) = 0. Moreover, U(t)p € [G.| and ||U(t)¢|ln S 6
for all ¢ < 0. The nonlinear projection

(5.17) Pl :HosumveH; u=(G+v)(—c)

is uniquely defined in a neighborhood of the translation family of stationary solutions

(5.18) 0(Q) = 1{Q(z — @) }4era  Ho

by solving the equation
(5.19) 0= w(v, JVQ) = w(u(z + ¢), JVQ) = w(u, JVQ(z — ¢)).

Indeed it can be solved locally by the implicit function theorem, since if u = Cj(x —
co) + 1, [¥ll2 < 0, then

Vew(u, JVQ(z — ¢)) = —w(Q(z — ¢o) + 1, JV2Q(z — c))

(5.20) = H(Q) + O(|ec — ¢o| + 9).

Since the mapping u — ¢ thereby defined is smooth, the map u — (v, ¢) is (locally)
bi-Lipschitz in the mobile distance from Ho to H @& R?. Since My 0 is mapped onto

a 0-neighborhood of [G.| ® R%, the codimension of Moo in Ho is equal to that of
[G.] in H,, which is K.

Thus we have obtained a center-unstable manifold M, o of #(Q) in Ho with
codimension K. Its time inversion

(521) Mcu,O = MCS,O - HO

is a center-stable manifold of .74 (Q).

5.3. Lorentz extension of the center-stable manifold. Using the Lorentz
transform

(5.22)  u(t,x) = up = u((p)t +p-w,@ +p((p) = Vlp| ?p-z +tp) (p €RY),
we can further extend M, ¢ to a manifold M. of codimension K around the soliton
manifold .7(Q). Indeed, (1.1) is invariant for any Lorentz transform, while the total

energy and momentum are transformed,

(5.23) E(up) = E(u)(p) + P(u) - p,  P(up) = P(u)(p) + E(u)p.
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E? — |P)? is invariant, which is positive around .#(Q). Hence there is a unique
p € R? for each solution u near the traveling waves such that P(u,) = 0 and E(u,) =
E(u)? = [P().

However, one needs to be more careful because the Lorentz transform mixes
space-time and a solution from M,s o may not be global in the negative time. Indeed,
from [17, 18] we know that “half” of the solutions on M., ¢ (namely, as given by the
separating surface M, o) blow up in negative time, at least when Cj is the ground
state and f(u) = |u[PT!, p > 14 4/d.

The local well-posedness implies that for any 7" > 0 there is § > 0 such that for
any initial data within distance § from .#,(Q), the solution extends at least for times
|t| < T. The exponential decay of @ implies that for any § > 0 there is R > 0 such
that for any such initial data, the free energy in the exterior region |z — ¢q| > R is less
than O(6?) for some ¢ € R%. The local well-posedness, the conservation of the energy,
and the Sobolev inequality imply that every solution with small initial free energy is
global, keeping the same size of free energy for all time. Hence the finite speed of
propagation of the free Klein—-Gordon equation implies that for small § > 0, every
solution with free energy O(62) in |[z—gq| > R at t = 0 is extended to the whole exterior
cone |x — g| > R+ |t| with the same size of the free energy on any time slice of it.

Thus, in conclusion, there is R > 0 and §(T) > 0 for any T > 0 such that
every solution starting on M., ¢ and within distance ¢ from .%(Q) is extended to the
space-time region

(5.24) {(t,x) e R*™ |t > T or |z —q| > R+ |t}

for some ¢ € R%. For any Lorentz transform L, there is 7 > 0 such that the image
of the above region under L contains {(¢,z) | ¢ > 0}. In other words, the image of
any solution on M., close to .#,(Q) is extended to a forward global solution. The
invariance of the solution set of M., for the space and backward time translations
is also inherited by the image, because such a translation of the Lorentz transform is
the Lorentz transform of another translation. It is also easy to see that this solution
remains close to the corresponding traveling wave.

However, it seems difficult to make the above argument uniform with respect to
the Lorentz transform: the larger the momentum p, the smaller the neighborhood
of A (Q) needs to be chosen. This is why the resulting manifold is not strictly
Lorentz invariant but only within a neighborhood of #(Q) depending on the Lorentz
transform (but the neighborhood can be chosen uniformly for p in compact sets).

Thus we obtain a center-stable manifold M, of the soliton manifold . (Q). M.
can be identified with the set of forward global solutions starting from it, where each
solution is characterized uniquely by the total momentum and its Lorentz transform
with O-momentum starting from M. . In this way,? we can define a bi-Lipschitz map
from a neighborhood of .#(Q) in H to a neighborhood of .#,(Q)®R? in HoPR?. Since
it maps M., onto the intersection of M, o ®R? with a neighborhood of .7, (Q) ®R?,
the codimension of M s in H is also K.

5.4. Solutions off the center-stable manifold. It remains to describe the
dynamics of the manifold or, more specifically, the repulsive property of the center-
unstable manifold in negative time. For this we need some sort of opposite to
Lemma 3.3.

2The general solution close to (@) may well blow up in both time directions, but the smaller

neighborhood yields the bigger lower bound on the existence time, which is sufficient for the con-
struction of this bi-Lipschitz map.
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LEMMA 5.2. If £, > 0 satisfy
(5.25) 0 < Uk,

then for any two solutions vi = U(t)v’(0) (j = 0,1) satisfying

(5.26) max([|<wg (0)]|z, ms7”(0)) < £]|<w” (0)] &,
one has
> - 2| (@) le (-1/2<t<0),
(5.27) max([|<wgy (¢)[[ £, sV (1)) < {£||<1U[>(t)|E (C1<t<-1/2)
and
> se B2l (0)|p (—1/2<t<0),
(5.28) [<v” ()] & > {ezkt/2||<w'i(0)|E (C1<t<_1/2).

Proof. Let m(0) := ||<v* (0)|| g ~ msv”(0). Lemma 3.2 implies that

ey ()l < (e + COm(0),  [[w” (e > (e — Ca)m(0),

(5.29) msy” (t) < (€ + CHm(0),

for —1 <t < 0. Hence

(5.30) max (||, (8)]|, M5 (1)) < (67" + CO) (e — C8) | (1) &
' < BN 4 C6)||<a0” (8)]| s
and the conclusion follows from (5.25) as well as k < k. O

Let v°(0) € Bs(H) NHy \ [G+], and
(5.31) = Py’ (0), 0 (0) =1+ Gu(y).
Then we have
(5.32) w51(0) =0, [lawg(0)lIE < ™ (0)][F = [[«” (0)II% < 6%
Hence we can repeatedly apply the above lemma to deduce that
(5.33) [a” (t)ll e > ée’ﬁt/zl\ﬂvi(o)l\fs
for all ¢ < 0. In particular,
(5.34) 12 @Olle = I ®)lle — W2 (@®)]E > 6
for sufficiently large —t. _
In short, any solution starting from H N Bs(H) \ [G«| moves out of the neigh-

borhood Bs(H) for large —t. Of course, this is meaningful for the original equation
only until the (backward) exiting time, but it implies that any trapped solution in

. within distance ¢ must be on the manifold [G, | for large —t.
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Combining this with the result in the previous section, we conclude that the local
center-unstable manifold M., o is characterized as the collection of solutions with
O-momentum which stay close to .#,(Q) for all —t > 0. By symmetry, M, is the
collection of solutions with 0-momentum which stay close to .#(Q) for all t > 0.

Let McmO be the maximal forward evolution of M, 0, and let MVCS@ be the
maximal backward evolution of M. Then /{/lvcs)o is the collection of solutions that
stay close to #(Q) for large ¢, namely, the initial data set for which the solution will
be trapped by #(Q). We have the same characterization for /\76“70 for t — —oo.
By the Lorentz transform, we can extend them to solutions with nonzero momentum
which are trapped by .7(Q) with the same momentum.

6. Regularity of the center-stable manifold. The above construction im-
plies only Lipschitz continuity of the manifold. For the differential structure of [G. |,
we also have to take account of the spatial translation. In the following, we assume
that f satisfies (1.7) and o := max(1,p — 2).

DEFINITION 6.1. Let Y be a Banach space. We say that a function G : H — Y
is mobile-differentiable at ¢ € H if there is a bounded linear M : H x R® =Y such
that
(6.1) lim [[Glpge)) — [G(¢%) + M ()] /= = 0.
where 0o == (¢ + e¥)(x + eq), for any (V¥,q) € H x R?. It is obvious that M is
unique. We call 2G(p) = M the mobile derivative of G at .

Let G’() be the usual derivative in the Frechét sense. Then we have

(6.2) 2G () (¥, q) = G ()W + V- q),

provided that G is differentiable in the DH topology, but in general, it makes sense
only in the subspace ¢ = 0. Hence the mobile-differentiability is stronger than the
differentiability in H and weaker than that in DH.

If G € Gy 5 and mobile-differentiable, then

(6.3) 1G(#(e)) = G(°)lln S tmo ey, °) S Lellltlla + lalds (el

which implies
(6.4) 12G(0) (W, a)lla < Lllllla + lalds(lllla)]-

Moreover, we have

G((p + e+ o(e))(z + eq + o(€)) = G(p(e)) + o(e)
= G(p) +e2G(p) (¥, q) + ofe).

We are going to prove that G, : H — P_H is “mobile-C*®” by showing the
flow-invariance of the following set of such graphs.
DEFINITION 6.2. For each §,4,A > 0, and o € (0,1], we define Q?;;A as the set

of all G € Gy 5 that are mobile differentiable at every ¢ € H, satisfying

12G(") (@, q) = 2G (") (T ¢, 9) | e
< Al = m 5 + Blos (e 12)] ™ [1ele + lalés ("))

(6.5)
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for all 0, ', € H, and q,b € R?, where
(6.7) b= |z]® + |zl

We will prove that Q?_E;A is invariant by the flow, provided that 4,¢ are small
and A is large. First we investigate the backward evolution of the mobile derivative.
Assuming the smallness of ¢, > 0 as in (3.55) and (3.71), for any G € Gy 5 and t > 0,
define Gy : H - P_H andCAv't:’H—bey

(6.8) Gy =UMG, Gilp) = os0 + Gi(o).

Let ¢ € H, ¢,b € R%, and tq € [0,1]. For small € € R, let

(6.9) ey (t) 1= Ut — t0)Gio (0(5)),  w(e(t,2) = vy (t, 7 — c(2)),
where (w, c) = (w(.), ¢(s)) is the solution of (3.7) with the initial data
(6.10) we)(to) = (p+ev)(x —b), c(to) =b+eq.

Since the nonlinear term (F, B)(w, ¢) in (3.7) is C! from Str x L to L}H x L{°, with
a small factor on a short time interval (0,7), it is straightforward by the iteration
argument that (w, ¢) is differentiable in Str x Lg° at € = 0, with the derivative

(W(e), () — (W), ¢(0)

(6.11) (2,9) = lim e ’

ll2llste(0,1) + 1gllLoe 0,1y S 12 (to)ll# + |g(to)l-

Let 1 := z(t, + c()(t)) and F=F—\(0, f'(Qeg,)w1). Then

i =JLy+ (0,9 VI (Q)v1) + Blw,c) - Vi + 7w F(w, €) - (,9),
n(to) = Po(¥ +q- V) = q- VG () + 2Cu, (9)(¥,0),  g(to) = q,
where the subscript (0) is omitted. Mobile-differentiating the identities

(6.13) P_viy(to) = Giy(p(e)),  P-v(e)(t) = Ge(ve) (o))

(6.12)

yields

P_[n(to) +q- VG, (¢)] = 2Gy,
P_[n(t) + g(t) - Vo(t)] = 2G(v(t))(n(t), 9(t)).
Since G(p) = G(P>o¢p) and

(6.14)

(6.15) P>op(e) = P>ol(¢>0 +ev>0)(z +2q) + ¢ - V-] + o(e),

we have

(6.16) PG ()W, q) = PG (p20)(¥20 + ¢ P=oV-,q).
LEMMA 6.3. Let £,0,A > 0 satisfy (3.55), (3.71), and

(6.17) A>1/6.

Then for any G € QZ;;A and any to € [1/2,1], U(t)G € QZ;;A,
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Proof. First, (6.4) is enough to have (6.6) in the case where
(6.18) LN < l@” = 1ot | + [blos (1)
Hence we may assume
(6.19) mee” < [0° = ' le + [blos(p!) S £/A < 6.

Therefore we have either ||°]| = ||¢*|| > 6 or ||©°]|% + [|¢]|x < 6.
Next we investigate evolution of the difference of mobile-derivatives. For any
@0 pl b € H, and ¢,b € RY, let

~

vl (to) 1= G (72, (° +20), vy (t0) := Gty (72, (9" + e7 ),

(6.20) . , ) ,
vfs) t):=U(t— to)vgs) (to), wgs) (t) := TC{E)(t)UgE) (t)

for 7 =0, 1, where cgs) is the solution of

(6.21) &

&) B(wfaw o)) ooy (to) =24, c(y(to) =b+eq.
Let (27, ¢7) be the derivative at ¢ = 0 of (w{a), c{a)):

i o
(6.22) 29 = Jim —© O U cfc».

e—0 £ e—0 e

Henceforth the subscript (0) will be omitted. The initial values are

w(to) = Giy (¢°), S (to) =0, w'(to) =G (¢"), c'(to) =1,
(6.23) 20(to) = Psoth + q - Gio (9°) + 2Gi, (9°) (0, ), ¢°(t0) = q,

2 (to) = Ploth + mola - Gio (¢") + 2Gi, (") (7500, )], g'(to) =q,
where P? := 7, P,7;", and Gy : H — H? is defined by
(6.24) Gi(p) = VP_ o — PV —VGi(p).

Let /(t,x) = 27(t,x 4+ ¢/ (t)), then we have

P_[1°(to) + ¢+ VGiy (¢°)] = 2GCiy (") (1, 9),
(6.25) P_[n'(to) + ¢ VGio(#")] = 2G1, (9" ) (75 ¢, 0),
P_[P () + ¢°(t) - VoI ()] = DG (07 () (1P (1), ¢ (1))
Thus we obtain

DGy () (0, q) — DGy, (") (750, q)
= <[ (to) + ¢ - P-V G, (¢")]
(6.26) = e?*0a9Go (1" (0)) (0" (0), 47 (0))
— e gg”(0) - P_Vo™(0)
+ 4l (to) — e7E0n” (0)] 4 g - APV Gy, (7).
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The first term on the right of (6.26) can be rewritten by using (6.16)

(6.27) D Go(v”) (17, 97) = 4PGo(v24) (S + RV°, ¢°)
' _QQGO(’UEO)(TﬂZO +vavgo) +-@GO(U1)(771)<19>)7

where all functions are evaluated at t = 0, and the operator R is defined by
(6.28) R :=g°  PsoVP-_.

We say that a component in (6.26) is negligible if its norm in F is much smaller
than the right-hand side of (6.6). So is the last term in (6.26), since A > 1 and

(6.29) [<P_V Gy ()5 S 1D 4G (W)l S s S N16° — 70 |-

In order to estimate the other terms, we prepare rough bounds on the unknowns.
Lemma 3.1 together with G € G, s implies that
[V 501y S 1971155 [v26(0)[ 5 < (14 Ck + C8)|[vso(to)|

(6.30) '
< (1+Ck + 06 + CO|| oLyl 5-

The estimates in (3.1) together with G € Gy 5 imply

[[aw” [lse0,1) + 1197 [ Lo (0,1) S [l<w” (o) [l + |<ac” (o)
SlleSo = mebolle + blelle! | 2
+ (M50 + [blds(lle' | 5)) + 0]
S le® = netlle + bles(lle'lle)-

(6.31)

The equation for each (27, ¢7) is given as follows:
g=nB, i=F,

X = 2672 (wll2e /02w, 2y T = (H(Q) — (V2Qulun)) ™Y,

B = X%IM +I({(VQ.|21) — g(V?*Qc|w1)) B + xsIw(z, Vw),

F/._< B -VQ.+g V?Q. B )
f/(Qc)zl —g- Vf’(Qc)wl +N")°
X5Ne + X5 [(f'(Qe +wi) = f'(Qe) (21 — - VQe) + g V' (Qc)wi],

where the superscript j and the dependence on (w, ¢) are omitted. Using the estimate
llwllste(=1,1) S llw(to)||#, we obtain in the same way as for (3.1),

(6.32)

N’

X5 S Nlzllee/o, 1Bl S 6% |B| < llzlla + lgl(lw(0)ll2 A 6)°,

(6.33)
IE L1311y S [T+ (w(to)llse A O]l 2llser + llgll o] + Tllw(to) 3 llgll o

In the case ||¢°||% =~ [|@! ||z > J, we have g/ = ¢, and so by the Strichartz estimate,

(6.34) 127 st < 1127 (to) 3¢ + lalllw? (t0) 1.

In the other case ||©”||% <4,

(6.35) 127 llsex + g |z < 1127 (t0) ¢ + lg” (o).
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In both cases, (6.4) implies
||Zj||Str(O,1) + ||gj||L°°(071)
(6.36) S Nl + lallll’ [l + €lllella + lalds (1’| 2)] + lal
S le + lalos (e | e)-

For the difference estimate, we consider the two cases separately. If ||¢°|y =~
llot|l3 > 6, then ¢ = ¢ and

(637) <t =JDaz+ (0,91 Q) — ¢ VF(Q)wf — gV (Qe)w)),
and so
(6.38) 92" [stx(0,1) S 112" (o) [ + [BI12"Iser + lalll<w” [Iser + (6] [q][[w” ||str,

where the last term comes from the last one of (6.37). Inserting (6.31) and (6.36), we
obtain

9(2", g")Istrx Lo (0,1)
S e’ = net e + blos (et 1)) o]+ lalgs (e 12)]-

In the nonlinear case ||¢” ||y < 0, we have

(6.39)

laxsl S 672 (law” 2l 2”1 + [lw® l2]192” [[20),
[<B'| < l<a(w”, &)laxrall(27, 97) I xre + w2l 92", 97 ) | xres
[<F | 21g S Tlll<2”|[ser + 6llac” | oo gl oe] + 1w” Isel[<(2, 67) Istex Lo

+ [[<a(@”, )llserxzos (2", ) Istrx Los,

(6.40)

where the term with o power comes from the same term as in the linear case, i.e.,
(1—xs5)q- <V f'(Qe )wi. Hence
(6.41) 19", 6")llstwsc=0.0) S 1927 (bo)llae + [l s + [ [ Z2] (2", 67w

which, together with (6.31) and (6.36), leads to the same bound (6.39) as in the linear
case.

For the penultimate term in (6.26), we obtain from the equation of 77 (6.12) in
the same way as above,

[<P_[1f" (to) — =" (0]
(6.42) S g e 0™ lIser + 197 | oge Imsv™ || Lge
+0[1<(2", ¢7)Istex Lge + I<9(w”, &) Istex oo |27, 67)Istex Lee s

where we do not get the term with a-power, since the potential term is frozen in the n
equation. Using (6.30)—(6.36) and Lemma 3.2, we can easily observe that the above is
negligible because A > 1. Here again we have used that either [|¢”|% < 0 or g7 =g,
which will be tacitly utilized in the following, too. Hence the second term on the right
of (6.26) is also negligible by (6.30) and (6.39).

For the remaining and leading term of (6.26), we have
le” 92 Go(v) (1, 97|

< e‘“"A[Ilv%o - T<c>U120||E + |<10>|¢6(||U120||E)]a’
x [[n30 + Rl e+ 19°165 (020l 2)]
+Ctlag®|6s([[voll ) + ClIToe NS0 + R] = [0 + Rv'] ||,

(6.43)
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where ¢t = 0. The penultimate term in (6.43) is negligible thanks to ¢ <« A, (6.30) and
(6.39). The last term in (6.43) is dominated by

(6.44) 5™ = 0l + [P, 73 100l + [ IRV l¢ + [[ARY” |13

S Nzl + [ac[[12°1 ¢ + (g [[0° | + [9° s

Hence it is also negligible by using the estimates (6.30)—(6.39) and ¢ < A.

It remains to deal with the leading term of (6.43), for which we need more precise
estimates, employing the time decay of e 2%, First we consider the linearized case
|0 =~ ||| > d, using the equations

W (0) = e TE0Gy (¢7), L) =0, c(t)
W= JLy +(0,q-VF(Q)w]), ¢(t)=q.

The first component on the right of (6.43) is estimated by

b7
(6.45)

||U%0 - T<1c‘>U120||E
(6.46) < [le™F0Poo (0 = m")l|m + e [P, ol | + (|65 Tl olle
< e’ =t le + Clollet |l

and the third component by
(647)  [[n20 + R0’ & < lle”"Eno(to)ll e + Clallle® |z < e"[[¥lle + Clallle® | &

Since kto > k and ¢s5(||¢7||g) > ||¢’]|g, we see that the leading term of (6.43) is
smaller than

(6.48) %A [1e° — el & + Blos (et 1e)] (1Yl e + lalés (|| 2)] -

Hence the other terms, which have been shown to be negligible, are absorbed into the
remaining half of (6.6). Thus the linearized case ||¢”|| > ¢ is done.
It remains to consider the nonlinear case ||¢”]| < 0. Let

(6.49) € =" — rqwv! = Thaw®,
then we have
(6.50) UOZO - 7-<‘CM}120 =80+ [P—77—<IC'>]U15

' € = JLE+ B, ) - VE+75[(0,<f (Qe Jwl) + <F (w”, ¢*)).

The commutator term is negligible thanks to (6.30), (6.31), and ||¢!||3 < 6. For the
discrete spectral part of {>¢, we have
[ Po+ [ — eiJuog(tO)]”E < ofla(w”, CD)HStrXLfQ(O,l)a

le™ "€ (to) || < e[| Posé(to)l| -

and for the continuous spectral part,
O (LE|PyE) /2 = B(w®, )[(f (Q)&1|VEr) — (LEIPAVE)]
(6.52) + (L& Py [(0, 9f (QerJwi) + aF (w”, ¢”)])

S 52H§H2E + 1€l 2o« (w”, CD)HStrng@(o,u

(6.51)
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Thus we deduce
1€0(0)[[ 2 < €¥[|€>0(t0) | & + CVl[a(w”, &) lIstrx Lge 0,1)

6.53
(059 < (14 Cr+ CVO)[ll¢" — e |15 + [bles (" | )],

Similarly for the n° component, (6.12) implies

I7°(to)le < I1¥lle + Clalllell 2 + Ce(ll¥lle + lal),
| Por[n°(0) — e~ 750 (o))l 2 < 611(2°, 6°) st o=
(6.54) O (Ln’|Pyn°) /2 = B(w®, ) (VF(Q)n}[Vn°®) — (Ln°|PaVn°)]
+(LP1°|(0,6° - V' (Q))
+ 700 [0, F (0, &) - (2°, ")),

and so using (6.36) we obtain

(6.55) (1200l < (14 Cr + CVo + COY]k + Clal(d + £).
Also using (6.30)—(6.36), we have

IR < 19°]110°1 e S 6(1¢lle + lal),
ps(lviolle) < (14 Ck +Cs+ COs (9 || &),
(6.56) < (0)] < [b] + Cl[<aB(w”, &)l Lse < [b] + CO[ll¢° — ' [| = + [0,
19°] < lg| + C|| Bu (w°, )2 + Bo(w®, )" || g
< lgl + Co[[4|le + lal]-

Putting (6.53), (6.55), and the above estimates together, and using x+v/0+¢ < k,
we see that the leading term in (6.43) is bounded by

(6.57) %A [l° = 70 1 + [bles (Il 1)) Tl + lalgs(lle 1))

so the remaining half can absorb the negligible terms, concluding the proof in the
nonlinear case ||¢”||g < 0. a

Mobile-differentiability of the fixed point G. € G; s now follows from the closed-
ness of géx’(; for pointwise convergence.

LEMMA 6.4. Under the assumption of the above lemma, let G, € QZ;;A be a
sequence of maps such that Gy () = G(p) asn — oo for all p € H. Then G € Q?_gA,

Proof. Since G,, € Gus, (6.4) implies that 2G,,(¢) for each ¢ € H is bounded
in (% x R?)*. Hence after extracting a subsequence, we have weak convergence of
DGn(p) in (H x RY)* for ¢ in a dense countable subset A C H. To extend the
convergence to all ¢ € H, take a sequence y,, converging to ¢ in H. Then for any
Y € H and ¢ € R?, we have

12Gk(en) (¥, q) = ZGr(em) (¥, @) &
< Allgn = omll**I¢lle + lalds(lenll£)] — 0,

as n, m — oo, uniformly for all £ € N. Hence we have the convergence

(6.58)

659) Jim P0(e) = lim lim ZGCilen) = lim Jim G (en)

weakly in (H x R%)*. To see the mobile differentiability of G, we use the mean value
theorem. For any ¢,v € H, ¢ € R% k € N, and € € R small, there is 6 € [0, 1] such
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that

(6.60) Grlpe)) — Gi(p) = e 2G1(¢") (¥, ).

. A
Since Gi, € G;'5", we have
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|2G (") (¥, q) — 2Gi() (¥, q) ||l

(6.61)

< Alle? — oll5 ]l + lalos(llls)] — 0

as € — 0, uniformly for all ¥ € N. Hence the limit G(¢) is mobile differentiable and

(6.62)

which implies G € G;';".

0

7G(@)(¥,q) = lim ZGi(0)(4,q),

Therefore the fixed point G, belongs to QZ;SA and so in particular C1® in the H

topology. Then it is easy to see that G, is also Che, as are My, 0 and My

Appendix A. Table of notation.

OF, <«OF ordered pair and difference (2.1)

(OA) minimum (2.3)

Qo sum of two powers (6.7)

Br(Q) a ball in the Banach space (5.1)

D,J,D basic operators (1.15), (2.7), (2.9)
f,d, p nonlinearity, dimension, and power | (1.6), (1.7)

N(v), N(v), Ne(w), C(v) | higher-order nonlinearity around Q | (2.20),(2.21), (3.9), (5.9)
A(v), Ac(w) transport terms (2.26), (3.9)

xs(v) localizer around 0 in H (3.1)

M (v), Ms(v nonlinearity for v (2.27), (3.2)
B(w,¢), F(w,c) nonlinearity for (c,w) (3.8)

U(t), U(t) localized flow in ‘H and on graphs (3.18), Lemma 3.4
E(u), P(u) energy and momentum (1.3), (2.22)

H, Ho, H.1 energy space and its subsets (1.4), (2.23), (2.24)
I-le, x energy norm and the parameter (2.18), (2.17)

1Yy s dags w(e) bilinear forms on H (2.4), (2.5), (2.6)

Il llstr Strichartz norm (3.10)

Q,Qc, Qp,q), the static solution, its transforms, (1.9), (1.12), (1.10)
Cj, Cj(p7 q),Z(Q), #(Q) | vector forms, and the families (1.13), (1.14), (5.18)
H(Q) = Hy3(Q) kinetic energy matrix of Q (2.14)

Ly, L linearized operators at Q (1.15),(2.8)

kK k& eigenvalues and their bounds (2.11),

Pks Gkt eigenfunctions of L, L (2.12),(2.13)

Ak s [y Us Y, Vb, Uy - - - spectral components of v (2.15), (2.16)

Py, Py, Py, Py, Py, ..., the corresponding operators (2.15), (2.16)

my, Mg, ds mobile distances and the cutoff (2.28), (2.38), (2.39)
Te, I translation operators (3.6), (3.28)

Ge,5,9, QZ;;A sets of Lipschitz maps (3.53), (3.69), Definition 6.2
[G] the graph in H (3.54)

Gy the invariant map Theorem 3.6

G projection to H Lemma 5.1

2G mobile derivative Definition 6.1

P(e) translating variation in H Definition 6.1

Gy complemented graphs (6.8)

R spectral error of the g-translation (6.28)
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