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Abstract 

A functionalized single-walled carbon nanotube (SWCNT) of a finite length with a ring-like 

hydrogenation around its surface is designed toward fabrication of a molecular field-effect 

transistor (FET) device.  The molecular wire thus designed is equipped with a quantum dot inside, 

which is confirmed by theoretical analysis for electronic transport.  In particular, the 

current-voltage (I-V) characteristics under influence of the gate voltage are discussed in details. 
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1  Introduction 

Carbon nanotube (CNT) is a well known allotrope of carbon material and has been attracting 

much attention as one of the principal parts for making molecular electronic devices [1].  For 

instance, there is a possibility to make high-speed transistor due to ballistic conduction 

characteristics when a single CNT chain is used [2].   

A model structure of molecular field-effect transistor (FET) is shown in Fig. 1 as one of the 

nanoelectronic devices.  The molecular FET is comprised of a source electrode to supply an 

electron, a drain electrode to accept the electron, a molecular wire equipped with the site acting as 

quantum dot to characterize the electric current between the both electrodes, and a gate electrode to 

afford electric field effect to the quantum dot [3].  Quantum dot in CNT has thus been rather 

eagerly studied [4-14].  An early study by Postma et al. has even utilized the two defects (bending 

points) in a single-walled CNT (SWCNT) chain as the energy barrier to generate a quantum dot for 

fabrication of a single electron transistor (SET) [4].   

However, it will be desirable that the quantum dot does not come from such accidental fact like 

defects.  In the present study, we theoretically design a more sophisticated and chemically possible 

functionalization to divide an SWCNT chain by two energy barriers so as to generate the molecular 

wire with a quantum dot inside as shown in Fig. 1, and then theoretically investigate the electronic 

transport behavior of thus designed system.  In particular, the current-voltage (I-V) characteristics 

of the system under the application of the gate voltage are also to be analyzed to check the resonant 

tunneling for the electron flow. 

 

2  Computational method and models   

The molecular FET system is set up as shown in Fig. 2, which consists of the left and right 

electrodes (L and R) having chemical potential, μL and μR, respectively, and the central region C 
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with several discrete orbital energy levels.  This discreteness is introduced by separation of a long 

single molecule such as a CNT chain with two energy barriers to isolate the region C.  How to 

make the energy barriers will be described a bit later. 

The transport calculation was performed using the non-equilibrium Green's function (NEGF) 
method [3] based on the density functional theory (DFT) using the Perdew-Zunger local density 
approximation parameterization (LDA-PZ) [15] with the single zeta basis function [16].  The 
TranSIESTA-C 1.3 program package [17, 18] was employed for the present calculation. 

Since the thorough prescription of the computation is given elsewhere [19], some essence of the 

formulation is noted in the below.  The NEGF G is given by 

   G(ε) = ε − H − ΣL − ΣR[ ]−1

                                       
(1) 

where ε and H represent the one-electron energy and the Hamiltonian in the central region, 

respectively, defined in Fig. 2.  Within the DFT framework employed in the present study, this 

Hamiltonian is written as 

     [ ]nV
m

H eff2
2

2
+∇−=

h
                                           (2) 

Veff[n] signifying the effective potential consisting of the ion potential, the Hartree potential, and 

the exchange correlation potential as usual in the DFT scheme, and [n] symbolically representing 

the electron density.  ΣL(R) stands for the self-energy expressing effect of the combination of the 

electrodes and the central region of molecular wire with its real part representing the shift of energy 

levels and its imaginary part their broadening.  The self-energy ΣL(R) is written in terms of the 

surface Green's function of the electrodes g L(R) and the interaction term VL(R) between the electrode 

and the central molecular region as 

     RL/RL/

†

RL/RL/ VgV=Σ                                               (3) 

The transmission probability is calculated by 
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(4)
  

where Tr and Im signify the trace of matrix and the imaginary part, respectively.  This quantity is 
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important since it gives the electric current value as  

I(V ) = G0 dε{ nF (ε − μL ) − nF (ε − μR )[ ] × T(ε)}
−∞

∞∫
   

                 (5) 

with the conductance quantum 

G0 ≡ 2e2

h
                                                    (6) 

and the Fermi distribution function nF . 

As a matter of course, both the μL and μR values are equal at the source-drain (bias) voltage Vsd 

= 0 V, where electric current does not occur.  However, this voltage balance alters when positive 

Vsd, for example, is applied as shown in Fig. 2.  The electrons in the both electrodes are filled up 

to μL and μR and the average of these is taken as the zero energy for ε.  The potential difference 

between μL and μR is denoted as the bias window, and an electron drifts from the right (R) to the left 

(L) electrodes via the energy levels of the region C (the electric current Isd flows from L to R).  

Transmission probability T expresses this electron drift ratio through the entire molecular wire.  In 

the present calculation, actual integration for the current formula I(V) in Eq.(2) was restricted in the 

range of μL to μR apart from the range -∞ to +∞, which is considered to be enough.  

   A metallic SWCNT(6, 6) of a finite length was employed throughout this study.  Two kinds of 

systems in Figs. 3(a) and (b) are considered.  Note also that in the present study two CNT’s with 

the half infinite lengths were employed as the electrodes instead of the conventional metallic 

electrodes.   

These regions L and R are represented by two CNT rings, and the region C by six rings as 

shown in Fig. 3(a).  Let us call this simple system CNT.  On the other hand, Fig. 3(b) called 

H-CNT has the structure in which the regions L and R consist of two CNT rings, whereas the 

region C of twelve rings with the z1 and z2 peripheries each on which twelve hydrogen atoms are 

added around the CNT surface to isolate the zH region.  The position of the hydrogen atoms are 

also illustrated in Fig. 4.  Introduction of these twenty-four hydrogen atoms makes the σ-bonded 
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zone due to the sp3 hybridization at z1 and z2 rings, which act as the energy barriers to turn the zH 

region into a quantum dot in H-CNT.     

 

3  Results and discussion  

   Calculated Isd - Vsd characteristics of CNT and H-CNT (inset) are shown in Fig. 5.  There are 

three remarkable features: (1) The ohmic behavior is seen up to 1.6 V for CNT, (2) a current peak 

appears at 1.6 V for H-CNT accompanied by the succeeding negative differential resistance (NDR) 

signifying that current falls down with increase in the applied voltage, and (3) the Isd - Vsd curve 

saturates at about 1.8 V for CNT.  It is also seen that the current in H-CNT is in the order of one 

hundredth of that of CNT for Vsd ranging from 1 to 2 V.  In what follows these will be analyzed in 

detail by examining the electronic structures in terms of transmission spectra, band structures, and 

molecular orbitals. 

The transmission spectra of CNT and H-CNT with different Vsd are shown in Figs. 6(a) and (b), 

respectively.  The energy ε corresponds to that in Fig. 2.  The origin of energy ε is the average 

chemical potentials (or Fermi energies) of μL and μR as described above.  The transmission spectra 

area surrounded by dashed triangular lines corresponds to those within the bias window. 

For CNT all the transmission spectra remain 2 in the bias-window range up to 1.6 V where the 

Isd - Vsd charactreristics become ohmic since the bias window width is proportional to Vsd.  This 

suggests that CNT behaves as a good molecular wire in itself.  On the other hand, these spectra 

for H-CNT are generally smaller than 2 except for several sharp peaks.  In particular, there is a 

small peak at Vsd = 1.6 V as pointed by an arrow in the range of the bias window.  This small peak 

corresponds to the current peak at Vsd = ca. 1.6 V in the inset of Fig. 5 at which the NDR appears.   

In addition, there appears, in the range of the bias window of CNT, a drop of the transmission 

spectra down to less than 2 at Vsd = 1.8 V as shown in Fig. 6(a).  This feature is to be explained by 
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considering the band structure as follows:  Figure 7 shows the band structures of semi-infinite 

regions R and L calculated at Vsd = 2 V along with the transmission spectrum depicted from Fig. 

6(a) with μR and μL being 1 eV and -1 eV, respectively.  The solid lines of the band structures 

contribute to electric current flowing through the region C.  When ε is equal to 0 eV in Fig. 7, the 

transmission spectrum shows the value 2 since there are “two” band branches in both the regions R 

and L signifying the electronic state is 2 in the both electrodes.  On the other hand, for ε of 1.5 eV, 

the band branch of the left electrode (L) becomes “one” so that the transmission spectrum shows 

the value 1.  This situation is able to explain the decreasing tendency of the gradient of the Isd - Vsd 

curve seen in Fig. 5.  Similar gradient behavior has also been observed experimentally [20], the 

reason of which was attributed to the phonon-electron coupling.  However, the present study 

indicates that invoking of the phonon-electron coupling is not necessarily indispensable.     

   The unoccupied orbitals of the molecular projected self-consistent Hamiltonian (MPSH) [17, 

18] of CNT shown in Figs. 8(a) and (b) have the orbital energies of -0.01 and 0.01 eV, respectively.  

These are delocalized over the central region and contribute to electric current at Vsd = 0.2 V.  On 

the other hand, as to H-CNT, it is seen in Fig. 8(c) that the unoccupied orbital whose energy is 0.63 

eV is confined in the ZH region under the condition of Vsd = 1.6 V.  It is thus understood that the 

ZH region behaves as a quantum well for H-CNT. 

  Figure 9 shows the gate voltage (Vg) dependencies of Isd - Vsd characteristics.  Note that the 

orbital energy level in the region C can be controlled by applying Vg.  It is seen that in Fig. 9(a) 

for CNT the change in Vg does not give remarkable effect to the Isd - Vsd characteristics, since there 

is no quantum dot in CNT.  On the other hand for H-CNT, the Isd - Vsd characteristics show  

typical oscillation tendency and increase in the number of peaks upon the change in Vg.  This 

obviously signifies the resonant tunneling in which the orbital energy levels are made to match to 

those of the outer wire portions by changing the gate voltage.  Moreover, Fig. 10 shows the Vg 
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dependency of the transmission spectra for H-CNT at Vsd = 0 and 2 V, respectively.  At Vsd = 0 V, 

the spectra shift to slightly higher energy upon application of Vg.  On the other hand, at Vsd = 2 V, 

the spectral peaks do not shift by Vg.  This suggests that when we use H-CNT as a molecular 

device, the effect of Vg becomes larger with the smaller Vsd. 

The electron density ρ of the C region is given by 

GIm1
π

ρ =                                                     (7) 

which depends on the space coordinates, Vsd, and Vg values.  Let us further define the electron 

density difference Δρ by the difference of the averaged ρ values on the 20Å × 20Å plane 

perpendicular to the tube axis of CNT at the C region for Vg = 0.5 and 0 V at constant Vsd = 2 V.  

In Figs. 11(a) and (b) are shown the Δρ values as the function of z for CNT and H-CNT, 

respectively.  It is seen that the Δρ value of CNT is generally smaller than that of H-CNT, which 

signifies that ρ does not change largely in CNT upon the change in Vg compared with H-CNT.  It 

is of interest for H-CNT that Δρ is positive in the ZH region but negative outside.  This means that 

ρ increases by applying Vg and electron is accumulated and confined in the ZH region.  This again 

visualizes that characteristics of quantum dot of the ZH region act as a quantum dot by the addition 

of hydrogen atoms to the side wall of SWCNT and with application of the gate voltage.  

   In conclusion, we have theoretically examined the basic Isd-Vsd characteristics of molecular FET 

using an SWCNT wire of a finite length.  Design of introducing quantum dot amid the CNT wire 

has successfully been performed by introducing hydrogen atoms regularly added around its surface.  

The resonant tunneling behavior of the electrons across the quantum dot has also been confirmed 

by applying the gate voltage.  Finally, it is obviously desirable to fabricate the actual molecular 

FET in the near future. 
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Words to Professor Wang Fosong:  It is our great honor and pleasure to dedicate our article to 

this special issue in Science China Chemistry celebrating your 80 years’ birthday.  One of us (KT) 

has been acquainted with you from 1980’s during your days in Changchung Institute for Applied 

Chemistry and is quite proud of that.  We eagerly wish you be healthy and continue to contribute 

to your Country and the whole world.          
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Figure Captions 

 
Figure 1   A conceptual diagram of molecular FET. 

Figure 2   The molecular FET system considered in the present study. 

Figure 3   Structures of (a) CNT and (b) H-CNT employed in the present research. 

Figure 4   Generation of a quantum dot in H-CNT consisting of an SWCNT (6, 6) of a finite  

length functionalized with twenty-four hydrogen atoms.  The two arrows indicate the  

peripheries z1 and z2 on which are added the hydrogen atoms . 

Figure 5   The Isd－Vsd characteristics of CNT, where the inset shows that of H-CNT. 

Figure 6   Transmission spectra T(ε) of (a)CNT and (b)H-CNT. 

Figure 7   The band structures of the L and R electrodes with the transmission spectrum for  

CNT. 

Figure 8   Orbital patterns by the MPSH (see text) with the orbital energies of (a) -0.01 and (b)  

0.01 eV contributing to electronic current at Vsd = 0.2 V for CNT and of (c) 0.63 eV at  

Vsd = 1.6 V for H-CNT. 

Figure 9  Vg dependencies of the Isd－Vsd characteristics for (a) CNT and (b) H-CNT. 

Figure 10  Vg dependencies of the transmission spectra for H-CNT at (a)Vsd = 0 V and (b)Vsd =  

2V.  

Figure 11  Electron density difference Δρ  for (a) CNT and (b) H-CNT at Vg = 0.5 and 0 V with  

Vsd = 2 V.  
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