<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>タイトル</td>
<td>Naledのイエバエにたいする毒性と温度および溶媒の関係 殺虫剤の生物試験にかんする研究 第44報</td>
</tr>
<tr>
<td>著者</td>
<td>長沢 純夫 柴 三千代</td>
</tr>
<tr>
<td>雑誌名</td>
<td>防虫科学</td>
</tr>
<tr>
<td>発行年月</td>
<td>1964-05</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/158404</td>
</tr>
<tr>
<td>タイプ</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>テキストバージョン</td>
<td>publisher</td>
</tr>
</tbody>
</table>

京都大学

7. Naled のイエボエにたいする毒性と温度および溶媒の関係 蟻虫剤の生物試験にかんする研究 第44報、長沢純夫・柴千代（イバラ農薬研究所）39. 4. 30. 受理

Naled は共通の害虫にたいしてすぐれた効力を有する一方、人畜にたいする毒性がきわめて低くないことから、とくに防除用薬剤としてその利用性が注目されて いる。しかし分類が他の殺虫剤にくらべてかなり高いため、その防除策のひとつとして、これにゴマ油を加用することがなされている。油を殺虫剤に加用する ことは、別に light spray oil の DDT にたいする場 合などはその accessibility が増し生物試験結果の均 一性が期待され、ゴマ油の DDT にたいする場合は若干その有効性がたかめられるが、一方でパレント リンゴ油をくわえて、いちどしい相乗効果をみ いだした Eagleson の報告は、その有効成分 sesamin の発見をうながし、これに類似したいくつかの相乘 剤の工業製造をもたらすにいたっている。今回筆者ら は naled をアクセトンに溶解してイエボエに滴下処理 するときに、ゴマ油を加用した場合と、アクセトンのみ の場合に有効度、温度20℃と30℃において比較検 した。その結果をここに報告する。本文にうるさい先立ち、供試昆虫の育成に助力された伏見子謙に謝意を表 する。

実験材料および方法

供試昆虫：この実験にもちえたイエボエ Musca domestica vicina Macq. は1947年に1対の卵巣か ら出発した、いわゆる "高機能" と称される木製育虫 系統である。その幼虫期の餌食は常法の豆腐製麺に よっておこない、成虫期の餌は砂糖と水をあたえ た。実験には羽化後4〜5日目の雄個体をもち た。

供試薬剤：Naled (Dibrom®, 1,2-dibromo-2,2- dichloroethyl dimethyl phosphate) は、ジブロム現 代会から提供をうけた表示有効成分25%の工業製品 原体をもちえた。これをアクセトンで最高濃度 0.0156 μg/mm³に稀粋し、順次倍数稀粋して3段階の薬液 を調製した。ゴマ油はアクセトンに2%を加用、これを もって naled の最高濃度 0.0156μg/mm³の溶液を つくり、同様に3段階の濃度に稀粋してもいた。

試験方法：この実験は Finney によってのべられ た解析方法をそのまま適用することを目的に、その論 潤ながらてつぎの様々な計画でおこなかった。すなわ ち供試標本体は、約40〜50:1の1cm, 厚さ7cm のガラス容器にいれ、ラベルの大きさをかぶせた上、2層 によって、その1層を処理前24時間25℃、他1層を 30℃の定温器内においた。1層として稀釀牛乳を滴下紙 に浸しておいた。薬液の処理は供試標本体をラベルガス でふくらく麻痺し、その背骨部に1個体あたり1mm³ をマイクロリット管で滴下処理した。処理 後の前と同様稀釀牛乳をあたえ、ふたたび25℃および 30℃の定温器内にし、24時間後にその生存を記録し た。なお別にアクセトンのみの処理による対照区をも うけ、その発育をもたえた。すなわち薬液処理前、および処理後の放置温度にかんして4つの組合せができる、溶媒にゴマ油を加用した場合と、加用しない場合をと かがえると、組合せ8つの組合せができることがなる。 これは2×2×2、といえども2θの factorial system の配置であり、薬液処理前の放置温度、処理後の放置 温度およびゴマ油の3要因は、それぞれふたつの相対 する条件、すなわちはじめのふたつの要因について は、20℃と30℃、後者のゴマ油については加用、無加用 の相対の条件をそなえている。Finney のそれになら つ20℃放置に C, 30℃放置に H, ゴマ油の加用に O のコードレターをあたえ、それぞれの8つの組合せ を第1表にしめすに区別した。とすれば C, H, Oを とるもので、薬液処理前の24時間前、20℃に放 置し、処理後24時間 30℃に加熱、処理薬剤はゴマ油 を加用した naled であることを指す。この実験 は1964年3月10〜26日におわたる期間にいくかえしここ らされたもので、薬剤250匹の個体がもたらされた。 薬液処理前24時間の温度をのぞいては、飼育および 試験操作中の温度は、すべて25℃, 関係温度70%の環 境条件下においておこなわれた。
実験結果と考察

実験の結果を表示すると，第1表のごとくである。なおここですべての薬剤はそれぞれの対照区における生存率をもって，Abbott の式により補正をおくとした結果である。

中央致死薬量の算定：第1表にしめした処理薬量 X を対数変換したときに生ずる負数をなくして，以後の計算操作を簡便にするために，まずこれを100倍した上でその対数 X をとり，これに対応する致死率 Y をプロット y に変換して，両者の関係をもとめたのが第1図である。常法*1 により，これらの回帰直線の方程式を計算した。第2表はその要約である。第1図にみる様に，H. H. O. および C. C. O. のしめす薬量 一致死率回帰直線は，のどりの6回回帰直線にくらべてかなりそのかたむきはゆるやかである。しかしFinney*1 の方法によってその平行性を検定した結果は，第3表にしめす様に A/s²=3.35 となり，有意水準0.05における F の値 3.50 よりも少く，これら

<table>
<thead>
<tr>
<th>Table 1. Results of toxicity tests on the common housefly.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dosage (µg/ml)</td>
</tr>
<tr>
<td>----------------</td>
</tr>
<tr>
<td>No. of flies</td>
</tr>
<tr>
<td>0.0039</td>
</tr>
<tr>
<td>0.0078</td>
</tr>
<tr>
<td>0.0156</td>
</tr>
<tr>
<td>Control</td>
</tr>
</tbody>
</table>

Dosage (µg/ml) |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of flies</td>
<td>Mortality</td>
<td>No. of flies</td>
<td>Mortality</td>
<td>No. of flies</td>
</tr>
<tr>
<td>0.0039</td>
<td>75</td>
<td>2.6%</td>
<td>80</td>
<td>1.4%</td>
</tr>
<tr>
<td>0.0078</td>
<td>80</td>
<td>30.4</td>
<td>80</td>
<td>28.4</td>
</tr>
<tr>
<td>0.0156</td>
<td>78</td>
<td>53.9</td>
<td>79</td>
<td>96.2</td>
</tr>
<tr>
<td>Control</td>
<td>80</td>
<td>13.8</td>
<td>79</td>
<td>7.5</td>
</tr>
</tbody>
</table>

Dosage in logarithms

Fig. 1. Relations between the toxicity of naled to the common housefly, temperature, and solvent. The scale of log-doses has been shifted horizontally for each curve to avoid overlapping.
Table 2. Summary of calculations for fitting probit lines.

<table>
<thead>
<tr>
<th>Series</th>
<th>x</th>
<th>y</th>
<th>Σw</th>
<th>[wx^2]</th>
<th>[wxy]</th>
<th>[wy^2]</th>
<th>[wxy]/[wx^2]</th>
</tr>
</thead>
<tbody>
<tr>
<td>H. H.</td>
<td>0.93821</td>
<td>4.61196</td>
<td>68.53</td>
<td>1.49948</td>
<td>10.99079</td>
<td>87.33123</td>
<td>80.55957</td>
</tr>
<tr>
<td>C. H.</td>
<td>0.91600</td>
<td>4.86839</td>
<td>101.61</td>
<td>4.69097</td>
<td>24.53160</td>
<td>132.47056</td>
<td>130.56851</td>
</tr>
<tr>
<td>H. C.</td>
<td>0.90729</td>
<td>4.72578</td>
<td>61.56</td>
<td>0.96839</td>
<td>7.15807</td>
<td>55.64664</td>
<td>52.91047</td>
</tr>
<tr>
<td>C. C.</td>
<td>0.87468</td>
<td>5.12130</td>
<td>88.47</td>
<td>3.92242</td>
<td>17.83989</td>
<td>94.48342</td>
<td>94.38433</td>
</tr>
<tr>
<td>H. H. O.</td>
<td>0.98981</td>
<td>4.58114</td>
<td>105.27</td>
<td>4.91069</td>
<td>14.63443</td>
<td>47.42217</td>
<td>43.61213</td>
</tr>
<tr>
<td>C. H. O.</td>
<td>0.93933</td>
<td>4.84730</td>
<td>66.23</td>
<td>1.50656</td>
<td>10.52473</td>
<td>75.30176</td>
<td>73.52508</td>
</tr>
<tr>
<td>H. C. O.</td>
<td>0.92436</td>
<td>5.17170</td>
<td>75.52</td>
<td>2.22220</td>
<td>15.55510</td>
<td>109.81124</td>
<td>108.88360</td>
</tr>
<tr>
<td>C. C. O.</td>
<td>0.84454</td>
<td>4.73303</td>
<td>98.29</td>
<td>4.21431</td>
<td>13.26077</td>
<td>45.40457</td>
<td>41.72641</td>
</tr>
</tbody>
</table>

Σ = 665.48, 23.32312, 114.54938, 647.87159, 626.17028

Table 3. Analysis of variance of mortality probits.

<table>
<thead>
<tr>
<th>Degrees of freedom</th>
<th>Sum of squares</th>
<th>Mean square</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Common slope</td>
<td>1</td>
<td>Σ[wxy]/[wx^2]=562.60</td>
<td>A=9.08</td>
</tr>
<tr>
<td>Departure from parallelism</td>
<td>7</td>
<td>63.57</td>
<td>A=9.08</td>
</tr>
<tr>
<td>Separate slope</td>
<td>8</td>
<td>Σ[wxy]/[wx^2]=626.17</td>
<td></td>
</tr>
<tr>
<td>Heterogeneity</td>
<td>8</td>
<td>Σ[wxy]/[wx^2]=21.70, s^2=2.71</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>16</td>
<td>Σ[wxy]/[wx^2]=647.87</td>
<td></td>
</tr>
</tbody>
</table>

Table 4. Values of log LD50 and calculation of treatment effect.

<table>
<thead>
<tr>
<th>Series</th>
<th>m</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>Means</th>
<th>(3) for x</th>
</tr>
</thead>
<tbody>
<tr>
<td>H. H.</td>
<td>1.017</td>
<td>1.960</td>
<td>3.773</td>
<td>7.606</td>
<td>0.951</td>
<td>7.334</td>
</tr>
<tr>
<td>C. H.</td>
<td>0.943</td>
<td>1.813</td>
<td>3.833</td>
<td>-0.282</td>
<td>-0.071</td>
<td>0.02258</td>
</tr>
<tr>
<td>H. C.</td>
<td>0.963</td>
<td>2.045</td>
<td>-0.187</td>
<td>-0.404</td>
<td>-0.101</td>
<td>0.02268</td>
</tr>
<tr>
<td>C. C.</td>
<td>0.850</td>
<td>1.788</td>
<td>-0.095</td>
<td>0.072</td>
<td>0.018</td>
<td>0.02259</td>
</tr>
<tr>
<td>H. H. O.</td>
<td>1.075</td>
<td>-0.074</td>
<td>-0.147</td>
<td>0.060</td>
<td>0.015</td>
<td>0.02254</td>
</tr>
<tr>
<td>C. H. O.</td>
<td>0.970</td>
<td>-0.113</td>
<td>-0.257</td>
<td>0.092</td>
<td>0.023</td>
<td>0.02267</td>
</tr>
<tr>
<td>H. C. O.</td>
<td>0.889</td>
<td>-0.105</td>
<td>-0.039</td>
<td>-0.110</td>
<td>-0.028</td>
<td>0.02254</td>
</tr>
<tr>
<td>C. C. O.</td>
<td>0.899</td>
<td>0.010</td>
<td>0.115</td>
<td>0.154</td>
<td>0.039</td>
<td>0.02268</td>
</tr>
</tbody>
</table>

中央致死濃度を算定した。その結果が第4表 m の値の数値である。なおここで m の variance は

\[V(m) = \frac{1}{b^2} \left[\sum w + \frac{(m - \bar{x})^2}{\sum w} \right] \]

の式によってもとめられる。

効力の比較: 2^t の factorial system の計算にしたがっておこなわれた実験結果の解析方法については、Yates^9) によって論じられ、Finney^10) によってその適用例が示されている。そして長沢、栄^11) も著しく DDt のイエメンにたいする活性と温度、および中間体の関係を解析するにあたってこれを応用した。それはまず、第4表の第1欄にしめした順序に要因の組合せをならべ、それぞれの m、すなわち log LD50 を第2欄にかさいる。つぎの第3欄の(1)の数値を、第2欄の m にもついて計算する。(1)の最初の4ケの数値は、第2欄の m を3ケつず順次くわえた数値で、つぎの4ケの数値は、その差、すなわち下の数値から上の数値をひいた結果である。第4欄の(2)の数値は、(1)の数値から、第5欄の(3)の数値が(2)の数値から同様にしてもとめた数値である。第5欄の(3)の数値の最初は、8ケの m の合計で、第6欄の第1行目の数値はその平均である。第6欄ののこりの数値は、第5欄ののこり7ケの数値を、それぞれ4で割った結果である。これらのがうち第2行目の数値は、処理前20°に放置したもの
Table 5. The effect of storage condition before and after treatment and of soy bean oil on the mean value of the log LD₉₀ (+3.000) and of LD₉₀ (μg/μl).

<table>
<thead>
<tr>
<th>Before or After treatment</th>
<th>Storage at °C</th>
<th>log LD₉₀ Addition of oil</th>
<th>LD₉₀ Addition of oil</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Absent</td>
<td>Present</td>
</tr>
<tr>
<td>Before</td>
<td>30</td>
<td>0.990</td>
<td>0.982</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>0.897</td>
<td>0.935</td>
</tr>
<tr>
<td></td>
<td>Mean</td>
<td>0.943</td>
<td>0.958</td>
</tr>
<tr>
<td>After</td>
<td>30</td>
<td>0.980</td>
<td>1.023</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>0.906</td>
<td>0.894</td>
</tr>
<tr>
<td></td>
<td>Mean</td>
<td>0.943</td>
<td>0.958</td>
</tr>
</tbody>
</table>
Table 6. Estimated relative dosage values (measured on logarithmic scale).

<table>
<thead>
<tr>
<th>Relative dosage value for</th>
<th>Storage before treatment</th>
<th>Storage after treatment</th>
<th>Soy bean oil</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean (30°C)</td>
<td>Mean (20°C)</td>
<td>Mean (30°C)</td>
</tr>
<tr>
<td>Cold instead of hot storage before treatment</td>
<td>0.071</td>
<td>—</td>
<td>0.089</td>
</tr>
<tr>
<td>Cold instead of hot storage after treatment</td>
<td>0.101</td>
<td>0.119</td>
<td>0.083</td>
</tr>
<tr>
<td>Addition of soy bean oil to acetone</td>
<td>—0.015</td>
<td>0.008</td>
<td>—0.038</td>
</tr>
</tbody>
</table>

Table 7. Estimated relative potencies.

<table>
<thead>
<tr>
<th>Relative potency for</th>
<th>Storage before treatment</th>
<th>Storage after treatment</th>
<th>Soy bean oil</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean (30°C)</td>
<td>Mean (20°C)</td>
<td>Mean (30°C)</td>
</tr>
<tr>
<td>Cold instead of hot storage before treatment</td>
<td>1.18</td>
<td>—</td>
<td>1.23</td>
</tr>
<tr>
<td>Cold instead of hot storage after treatment</td>
<td>1.26</td>
<td>1.31</td>
<td>—</td>
</tr>
<tr>
<td>Addition of soy bean oil to acetone</td>
<td>0.97</td>
<td>1.02</td>
<td>0.92</td>
</tr>
</tbody>
</table>

さきの処理前30°Cに放置した系におけるlog LD₅₀におよぼすオメガ油の影響に対するvarianceを計算する場合は，mについては

(1.075 + 0.889 - 1.017 - 0.963) = 0.016

それぞれ平均値の変数0.008のvarianceは

\[\text{V(M)} = \frac{0.49 \times (0.05357 + (0.0538^2) + 23.323212)} {0.033^2} \]

第5表の底行は，前半の数値の逆対数をもと，さきの負数をなくして計算を便利にするため1000倍しておいてから，これを1000でわって実数単位にしめた平均中央数死滅数である。

これらの関係を，簡単なひとつつの表としてまとめたのが第6表である。この表の最初のmeanの値の3ケの数値は，第4表で述べた100%かけられた対応する3ケの数値の符号を正負逆にしてかきかえたものである。ここでとえば，最初の0.071は，処理前20°Cに放置した場合は，30°Cに放置した場合にくらべて0.071有効であることを意味している。処理後30°Cまたは20°Cに放置した場合の相対量は，この0.071に交互作用値0.018を減算および加算することによってもとめられる。しかしこの場合正負符号を逆にするところ計算後に指定することになる。これを表にかきかえる様にする。すなわち

\[-0.071 - 0.018 = -0.089 \]
\[-0.071 + 0.018 = 0.453 \]

同様にオメガ油を加用しない場合，加用した場合は，その交互作用値0.023を減算，加算してもとめる。以下同様にしてその平均値に対応する交互作用値を減算，加算して第6表に示す様な数値をえる。

第7表は第6表の数値の逆対数をしめたものである。これをみると，処理前20°C放置の影響の平均は，30°C放置にくらべて18%まで有効値がまっている。さらにこれを，処理後の放置条件においてかんがえると，処理後30°Cに放置した場合23%，20°Cに放置した場合は13%増し，またこれをオメガ油を加用した場合とそうでない場合とにおいてかんがえると，加用しない場合は24%増し，加えた場合は12%増加することがわかかる。つぎの行は，処理後20°Cにおいた場合を，30°C放置にくらべた相対力値をしめし，最後の行の数値は，オメガ油加用の有無による影響をしめすものである。さきにしらした様にnaledの有効度にたいするオメガ油の影響はみとめられないと，温度についてはnaledは高温における以上低温においてより有効であるといえ，消毒作用の温度係数は負であると結論される。

摘 要

イエバエの成虫にnaledを処理する前，後24時間の放置を含む，20°Cおよび30°Cにて，さらに潜媒にともないアセトンにオメガ油を加用した場合と，アセトン単用の場合とにわたって，2°のfactorial systemの実験計画をたて，これにしたがっておこなわれた実験の結果を分析した。naledの有効度に関与する3要因のうち，処理後の放置温度の影響が一貫大さく，処理前の放置温度の影響がこれに次ぎ，オメガ油
A factorial experiment on alternative storage conditions for insects before and after treatment and the adjuvant effect of soy bean oil to solvent in topical application was designed to test the toxicity of naled (Dibrom®, 1,2-dibromo-2,2-dichloroethyl dimethyl phosphate) against the common house fly, Musca domestica vicina Macq. The house flies were stored at either 20° or 30° for 24 hours before treatment, and also at either 30° or 20° for 24 hours after treatment. Soy bean oil was used as a 2 per cent (v/v) solution in acetone. As seen in the estimated relative dosage values or relative potencies, the effect of storage temperature after treatment was biggest among the three factors concerning to the toxicity of naled against the house fly, and the adjuvant effect of soy bean oil was negligible. The toxicity of naled in the lower temperature was bigger than that in the higher temperature. The temperature coefficient of toxic action of naled to the house fly is seemed to be negative in the range of temperature from 20° to 30°.