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Abstract

A simple undirected graph G = (V,E) is a rigidity circuit if |E| = 2|V |−2 and |EG[X]| ≤
2|X| − 3 for every X ⊂ V with 2 ≤ |X| ≤ |V | − 1, where EG[X] denotes the set of edges
connecting vertices in X. It is known that a rigidity circuit can be decomposed into two
edge-disjoint spanning trees. Graver, Servatius and Servatius (1993) asked if any rigidity
circuit with maximum degree 4 can be decomposed into two edge-disjoint Hamiltonian paths.
This paper presents infinitely many counterexamples for the question. Counterexamples are
constructed based on a new characterization of a 3-connected plane graph in terms of the
sparsity of its medial graph and a sufficient condition for the connectivity of medial graphs.

Keywords: Rigidity circuits; Edge-disjoint Hamiltonian paths; Medial graphs; Sparsity; Con-
nectivity

1 Introduction

A simple undirected graph G = (VG, EG) is a rigidity circuit if it satisfies |EG| = 2|VG| − 2 and
the following sparsity condition:

|EG[X]| ≤ 2|X| − 3 for every X ⊂ VG with 2 ≤ |X| ≤ |VG| − 1, (1)

where EG[X] denotes the set of edges connecting vertices in X. Rigidity circuits arose in the
study of combinatorial rigidity; see [6].

Any vertex of a rigidity circuit has degree at least 3. This implies that, if G is a rigidity
circuit with degree at most 4, G has exactly four vertices of degree 3 and the other vertices have
degree 4. Any rigidity circuit is known to be decomposable into two edge-disjoint spanning trees
by Nash-Williams’ forest-partition-theorem [15]. Motivated by these facts, Graver, Servatius
and Servatius [6, Exercise 4.69 (Open Question)] posed the question whether any rigidity circuit
with maximum degree 4 can be decomposed into two edge-disjoint Hamiltonian paths. In this
paper we present counterexamples to the question, even in a restricted case.

Theorem 1. There are infinitely many 3-connected planar rigidity circuits with maximum degree
4 which cannot be decomposed into two edge-disjoint Hamiltonian paths.
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For the proof we present a simple construction of counterexamples based on classical results
on the Hamiltonian decomposability of regular graphs as well as a new characterization of 3-
connected plane graphs in terms of the sparsity of medial graphs (Theorem 2) and a sufficient
condition for the connectivity of medial graphs (Theorem 6). In Section 2 we present these new
properties of medial graphs. The proof of Theorem 1 will be given in Section 3. We conclude
the paper with remarks on the rigidity of medial graphs in Section 4. For more detail on the
Hamiltonian decomposability, see e.g., [5].

Just before this submission, we learned that counterexamples were also discovered by [12]
independently of us. We remark that [12] mainly concerns with longest paths of rigidity circuits
while the main contribution of this paper is to clarify the relation between medial graphs and
planar rigidity circuits.

2 Sparsity and Connectivity of Medial Graphs

2.1 Preliminaries

Throughout the paper the vertex set and the edge set of an undirected graph G are denoted by
VG and EG, respectively. For F ⊆ EG, VG(F ) denotes the set of endvertices of F . G is called
simple if G has neither loops nor parallel edges.

A vertex subset S ⊂ VG (resp., an edge subset S ⊂ EG) is called a separator (resp., a cut)
if the removal of S disconnects G. G is called k-connected (resp., k-edge-connected) if the size
of any separator (resp., any cut) is at least k. A separator (resp., a cut) is called nontrivial if
its removal disconnects G into at least two nontrivial connected components, where a connected
component is called trivial if it consists of a single vertex. G is called essentially k-connected
(resp., essentially k-edge-connected) if the size of any nontrivial separator (resp., any nontrivial
cut) is at least k.

If G satisfies the sparsity condition (1), G is said to be sparse. Similarly, a simple graph G
is called weakly sparse if it satisfies the following weak sparsity condition:

|EG[X]| ≤ 2|X| − 3 for every X ⊂ VG with 2 ≤ |X| ≤ |VG| − 2. (2)

Let G be a plane graph. A corner {e, f} of a face is a pair of consecutive edges in the face
boundary, where e = f may hold if they are incident to a vertex of degree 1. The medial graph
G⋆ of G is defined as a graph whose vertex set is EG and whose edge set is the set of all corners
in G. Namely, two vertices are joined by an edge if they form a corner of a face in G. If G has an
edge e incident to a vertex of degree 1, then the vertex corresponding to e is incident to a loop
in G⋆. Also, if two edges e and f are incident at a vertex of degree 2, then G⋆ contains parallel
edges between the corresponding two vertices. See Figure 1 or Figure 3 for an example. Notice
that G⋆ always becomes 4-regular. We also remark that every simple 4-regular plane graph is
the medial graph of a plane graph (see e.g., [2]).

To avoid ambiguity, a vertex (resp., a vertex subset) of G⋆ corresponding to e ∈ EG (resp.,
F ⊆ EG) is denoted by e⋆ (resp., F ⋆) throughout the paper. Observe that, for each edge
e⋆f⋆ ∈ EG⋆ , there is the unique vertex v ∈ VG that is incident with e and f in G. We define
ϕ : EG⋆ → VG as a surjective map from e⋆f⋆ ∈ EG⋆ to this unique vertex v ∈ VG, and let
ϕ−1(v) := {e⋆f⋆ ∈ EG⋆ : ϕ(e⋆f⋆) = v} for each v ∈ VG.
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2.2 Sparsity Theorem

Theorem 2. Let G be a simple plane graph without isolates. Then, the medial graph G⋆ is
weakly sparse if and only if G is 3-connected.

Proof. (“If”-part:) Note that G⋆ is simple because G is 3-connected. Suppose for a contradiction
that there exists X ⊂ VG⋆ for which the weak sparsity condition is violated. Then, by taking
an inclusionwise-minimal violating set, we can find a rigidity circuit C⋆ in G⋆ (since edge sets
of rigidity circuits are minimal dependent sets of the rigidity matroid). Since VC⋆ violates (2),
we have

|VC⋆ | ≤ |VG⋆ | − 2. (3)

We divide VG into three subsets V1, V2, V3 as follows: v ∈ V1 iff e⋆ ∈ VC⋆ for all edges e incident
with v in G; v ∈ V3 iff e⋆ /∈ VC⋆ for all edges e incident with v in G; V2 := V \ (V1 ∪ V3). Notice
that G has no edge between V1 and V3 from the definition.

Claim 3. |V2| ≤ 2.

Proof. Since G⋆ is 4-regular, the maximum degree of C⋆ is at most four. This implies that C⋆

has exactly four vertices of degree 3 and the others being degree 4 since C∗ is a rigidity circuit.
Let e⋆1, e

⋆
2, e

⋆
3, e

⋆
4 be these four vertices of degree 3 in C⋆. By the 4-regularity of G⋆ again, G⋆ has

the edge e⋆i f
⋆
i such that e⋆i f

⋆
i /∈ EC⋆ for each i = 1, . . . , 4. Notice that, among all of EG⋆ , only

e⋆i f
⋆
i can connect between VC⋆ and VG⋆ \ VC⋆ .
Let vi = ϕ(e⋆i f

⋆
i ) for i = 1, . . . , 4. Recall that each vertex of V2 is incident to some edges

e and f with e⋆ ∈ VC⋆ and f⋆ /∈ VC⋆ . We thus have V2 ⊆ {vi : i = 1, . . . , 4}. Moreover,
since ϕ−1(vi) forms a cycle, there must be at least one edge e⋆f⋆ in ϕ−1(vi) \ {e⋆i f⋆

i } such that
e⋆ ∈ VC⋆ and f⋆ /∈ VC⋆ . This implies that there is an index j with j ̸= i such that vi = vj for
each i = 1, . . . , 4. Consequently we obtain |V2| ≤ 2 from V2 ⊆ {vi : i = 1, . . . , 4}.

Claim 4. V1 ̸= ∅ and V3 ̸= ∅.

Proof. To see V1 ̸= ∅, consider an edge e⋆f⋆ ∈ EC⋆ . By Claim 3, at least one of endpoints of e
or f does not belong to V2. Since e⋆ ∈ VC⋆ and f⋆ ∈ VC⋆ , this endpoint cannot belong to V3,
implying V1 ̸= ∅.

Suppose V3 = ∅. Then, since |V2| ≤ 2 and G is simple, every edge of G except for (at most)
one edge is incident to some vertex in V1. This implies |VC⋆ | ≥ |VG⋆ | − 1, contradicting (3).

Recall that G has no edge between V1 and V3. Thus, Claim 4 implies that V2 is a separator
of G. This contradicts the 3-connectivity of G by Claim 3. (If V2 = ∅, G is not connected.)

(“Only-if”-part:) Suppose G is not 3-connected. We show that G⋆ has a loop or G⋆ has a
nontrivial cut S of size at most 4. If G⋆ has a loop, then G is not weakly sparse by definition.
If G⋆ has such a cut S, then for the vertex set X of a connected component of G⋆ − S we have
|EG⋆ [X]| ≥ 2|X| − 2 by the 4-regularity of G⋆. Hence G⋆ is not weakly sparse.

By definition G⋆ contains a loop if and only if G has a vertex of degree 1. Hence, throughout
the rest of the proof, we assume that G does not have a vertex of degree 1 and prove that G⋆

has a nontrivial cut of size at most 4. For a corner {e, f} of a face of G and a subgraph H of
G, we say that {e, f} is partially included in H if e ∈ EH and f /∈ EH . To prove the existence
of a nontrivial cut of size at most 4 in G⋆, it is sufficient to find a subgraph H of G such that
(i) 2 ≤ |EH | ≤ |EG| − 2 and (ii) at most four corners of G are partially included in H. We now
prove G contains a subgraph H satisfying (i) and (ii).
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IfG is not connected, then a connected componentH satisfies (i) and (ii) since any component
of G is nontrivial. If G is connected but not 2-connected, then G has a separator {v}. Let
Zk = {1, . . . , k} be the cyclic group of order k, and let NG(v) = {v1, v2, . . . , vk} be the neighbors
of v indexed by elements in Zk in the consecutive ordering around v. The connected components
of G − v induce a partition of NG(v), and the planarity implies this partition is non-crossing
(i.e., if vi and vk belong to a component and vj and vl belong to the other component, then
i, j, k, l are not arranged in the order ijkl). In other words, G − v has a connected component
H ′ with VH′ ∩NG(v) = {vi, . . . , vj}, where the indices are arranged consecutively.

Let H be the subgraph of G induced by VH′ ∪ {v}. We may assume 2 ≤ |EH | ≤ |EG| − 2,
since otherwise G contains a vertex of degree 1. Observe that, among all corners of G, only
{vvi−1, vvi} and {vvj , vvj+1} are partially included in H. Thus H is a subgraph satisfying (i)
and (ii).

If G is 2-connected, then G has a separator S of size 2. Let S = {u, v} and let their neighbors
be NG(u) = {u1, . . . , uk} and NG(v) = {v1, . . . , vl} indexed by elements in Zk and elements in
Zl in the consecutive order around u and v, respectively. Take any connected component H ′ of
G−S, and let H ′′ be a subgraph of G induced by VH′∪S. Let H = H ′′−uv if uv ∈ EG; otherwise
let H = H ′′. Observe that, since G is 2-connected and plane, the vertices of VH′ ∩ NG(u) are
consecutively indexed. Thus, exactly two corners of G incident to u are partially included in
H. Symmetrically, exactly two corners incident to v are partially included in H. Thus, exactly
four corners of G are partially included in H, and we found a subgraph H satisfying (i) and (ii).
This completes the proof.

Corollary 5. Let G be a simple 3-connected plane graph. Then, the graph G⋆ − e⋆ obtained
from the medial graph G⋆ by removing any vertex e⋆ ∈ VG⋆ is a rigidity circuit.

Proof. By Theorem 2, G⋆ − e⋆ is sparse. Also, since G⋆ is 4-regular, we have |EG⋆−e⋆ | =
|EG⋆ | − 4 = 2|VG⋆ | − 4 = 2|VG⋆−e⋆ | − 2, implying that G⋆ − e⋆ is a rigidity circuit.

2.3 Connectivity Theorem

We also have a sufficient condition for the connectivity of G⋆. The result for k = 3 will be used
in the proof of Theorem 1.

Theorem 6. Let G be a simple plane graph and k be an integer with 1 ≤ k ≤ 3. If G is
k-connected, essentially (k + 1)-edge-connected and k-cycle-free, then G⋆ is (k + 1)-connected.

Proof. Suppose G⋆ is not (k + 1)-connected. Then, there is a separator S⋆ ⊂ VG⋆ of G⋆ such
that |S⋆| ≤ k. We may assume that S⋆ is a minimum separator of G⋆. The removal of S⋆

disconnects G⋆ into two nonempty parts, whose vertex sets are denoted by E⋆
1 , E

⋆
2 ⊂ VG⋆ . Note

that {S,E1, E2} is a partition of EG into nonempty subsets.

Claim 7. Every vertex v ∈ VG(E1) ∩ VG(E2) is incident to at least two edges in S.

Proof. Note that, from v ∈ VG(E1) ∩ VG(E2), v is incident to an edge in Ei for each i = 1, 2.
Since ϕ−1(v) forms a cycle, at least two elements of ϕ−1(v) need to be deleted to separate E⋆

1

and E⋆
2 in G⋆. This implies the claim.

Since G has no k-cycle and |S| ≤ k ≤ 3, S is cycle-free. If any two edges of S do not share a
vertex, then VG(E1) and VG(E2) are disjoint from Claim 7. Since |VG(Ei)| ≥ 2, S is a nontrivial
cut of G with |S| ≤ k, contradicting the essential (k + 1)-edge-connectivity of G.
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Thus, let us assume that S is not vertex-disjoint. In this case, we may assume k ≥ 2 by
|S| ≤ k, and hence G is 2-connected. We define a subset X of VG(S) as follows. Consider the
graph (VG(S), S) edge-induced by S. For each connected component of (VG(S), S), if it consists
of a single edge then insert arbitrary one endvertex of the edge into X; otherwise insert all
vertices incident to at least two elements of S into X (in other words, insert all vertices except
for leaf nodes). Since some elements of S share a vertex, there is a connected component in
(VG(S), S) which consists of at least two edges and in which at least two vertices do not belong
to X. This implies |X| ≤ |S| − 1 ≤ k − 1. Moreover VG(E1) ∩ VG(E2) ⊆ X by Claim 7, and
also S is dominated by X (i.e., every edge in S is incident to a vertex in X). Therefore, if
VG(Ei) \X ̸= ∅ for i = 1, 2, X is a separator of G with |X| ≤ k − 1.

Suppose VG(Ei) ⊆ X for some i ∈ {1, 2}. Since |X| ≤ k − 1 and VG(Ei) ≥ 2, we must have
k = 3. When k = 3, we have |VG(Ei)| ≤ |X| = 2 and Ei consists of a single edge e. Since
|S| ≤ k = 3, an endpoint v of e is incident to at most one edge of S. Claim 7 thus implies
v /∈ VG(Eī) for ī ∈ {1, 2}− i, and hence v is a vertex of degree at most 2 in G, contradicting the
3-connectivity of G. Consequently, we obtain VG(Ei) \X ̸= ∅ for i ∈ {1, 2}, and hence X is a
separator of G with |X| ≤ 2. This contradicts the 3-connectivity of G.

The following theorem is a corresponding statement for the case of k = 4.

Theorem 8. Let G be a simple plane graph. If G is 4-connected, essentially 5-edge-connected
and 4-cycle-free, then G⋆ is essentially 5-connected.

Proof. The proof strategy is basically the same as that of Theorem 6. Suppose G⋆ is not
essentially 5-connected. Then, there is a nontrivial separator S⋆ ⊂ VG⋆ of G⋆ such that |S⋆| ≤ 4,
and we may assume that S⋆ is a minimum separator. The removal of S⋆ disconnects G⋆ into two
nonempty parts, whose vertex sets are denoted by E⋆

1 , E
⋆
2 ⊂ VG⋆ . As in the proof of Theorem 6,

{S,E1, E2} forms a partition of EG into nonempty subsets, and Claim 7 holds by the exactly
same argument. For k = 4 we also need the following property of S.

Claim 9. If S contains a cycle, then S is exactly a 3-cycle.

Proof. Suppose S contains a cycle. Since G is 4-cycle-free, S cannot be a 4-cycle. Since G is
simple, either S is exactly a 3-cycle, or |S| = 4 and S contains a 3-cycle. Suppose the latter
case. Let e, f, g denote edges of S forming the 3-cycle, and let h denote the remaining edge of S.
If this 3-cycle is not a face of G, then the 4-connectivity of G implies that there are at least two
edges inside and outside of the 3-cycle in G, respectively, and hence {e⋆, f⋆, g⋆} is a nontrivial
separator of G⋆, contradicting the minimality of S.

Thus, we may assume that the 3-cycle efg forms a face of G. Then, G⋆ has the 3-cycle face
connecting the vertices e⋆, f⋆ and g⋆. Let e⋆1 and e⋆2 be the other two vertices in the neighbors
of e⋆ in G⋆. Also f⋆

i and g⋆i are defined analogously.
From the minimality of S⋆, adding the two edges e⋆e⋆1 and e⋆e⋆2 makes G⋆−S⋆ connected, and

hence G⋆−S⋆ consists of two connected components, one containing e⋆1 and the other containing
e⋆2. The similar things hold for f and g, and thus none of ei, fi and gi is equal to h. Let C⋆

1

and C⋆
2 be the connected components of G⋆ − S⋆. From the symmetry, we may assume without

loss of generality that e⋆i , f
⋆
i and g⋆i belong to C⋆

i for each i = 1, 2. This however contradicts the
planarity of G⋆ as G⋆ has a 3-cycle face connecting e⋆, f⋆ and g⋆.

By Claim 9, we split the proof of Theorem 8 into two cases.
Case 1. If S is a 3-cycle, let X = VG(S). Notice that Claim 7 implies (VG(E1) \ X) ∩

(VG(E2) \X) = ∅. If VG(Ei) \X ̸= ∅ for i = 1, 2, then X is a separator of G, and it contradicts
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the 4-connectivity of G. If VG(Ei) ⊆ X, then we have Ei ⊆ S because G is simple and S is a
3-cycle on X with |X| = 3. This however contradicts that {S,E1, E2} is a partition of E.

Case 2. Let us consider the case when S is cycle-free. If any two edges of S do not share a
vertex, then VG(E1) and VG(E2) are disjoint from Claim 7. Since |VG(Ei)| ≥ 2, S is a nontrivial
cut of G with |S| ≤ 4, contradicting the essential 5-edge-connectivity of G.

Let us assume that S is not vertex-disjoint. We define a subset X of VG(S) as in the proof
of Theorem 6: For each connected component of (VG(S), S), if it consists of a single edge then
insert arbitrary one endvertex of the edge into X; otherwise insert all vertices incident to at
least two elements of S into X. As shown in the proof of Theorem 8, X has the following three
properties: (i) |X| ≤ |S| − 1 ≤ k − 1 = 3, (ii) VG(E1) ∩ VG(E2) ⊆ X, and (iii) S is dominated
by X. These imply that, if VG(Ei) \X ̸= ∅ for i = 1, 2, X is a separator of G with |X| ≤ 3.

Suppose contrary VG(Ei) ⊆ X for some i ∈ {1, 2}. We have |VG(Ei)| ≤ |X| ≤ 3. Also, since
|Ei| ≥ 2 as S∗ is a nontrivial separator, we have |VG(Ei)| = |X| = 3. Since |S| ≤ 4 and |Ei| ≥ 2,
there is a vertex v in VG(Ei) that is incident to at most one edge of S. Claim 7 thus implies
v /∈ VG(Eī) for ī ∈ {1, 2}− i, and hence v is a vertex of degree at most 3 in G, contradicting the
4-connectivity of G. Consequently, VG(Ei) \X ̸= ∅ for i ∈ {1, 2}, but this also contradicts the
4-connectivity of G.

We have three remarks on Theorems 6 and 8: The converse direction of Theorem 6 is not
true in general (see Figure 1(a)); The k-cycle-freeness is necessary (see Figure 1(b)); Theorem 8
cannot be extended to the cases k ≥ 5 (see Figure 2).

(a) (b)

Figure 1: A graph (left) and the medial graph (right). (a) A non-3-connected plane graph whose
medial graph is 4-connected. (b) A 3-connected and essentially 4-edge-connected plane graph
whose medial graph is not 4-connected.

Figure 2: A subgraph of a 5-connected, essentially 6-edge-connected, 5-cycle-free graph G whose
medial graph is not essentially 6-connected.

3 Proof of Theorem 1

For a plane graph G, let FG be the set of faces of G. Grinberg’s criterion [7] asserts that if a plane
graph is Hamiltonian then there is a bipartition {F1, F2} of FG such that

∑
f∈F1

(d(f) − 2) =
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∑
f ′∈F2

(d(f ′)− 2), where d(f) denotes the degree of a face f . In [2], Bondy and Häggkvist ob-
served an extension of Grinberg’s criterion to the decomposability into two edge-disjoint Hamil-
tonian cycles. As a corollary, they also mentioned the following.

Theorem 10 (Bondy and Häggkvist [2]). Suppose a plane graph G does not satisfy Grinberg’s
criterion. Then, the medial graph G⋆ cannot be decomposed into two edge-disjoint Hamiltonian
cycles.

We remark that there is a non-Hamiltonian plane graph G for which G⋆ can be decomposed
into two edge-disjoint Hamiltonian cycles [2].

Corollary 5 and Theorem 10 yield the following.

Corollary 11. Suppose G is a simple 3-connected plane graph and does not satisfy Grinberg’s
criterion. Then, for any vertex e⋆ ∈ VG⋆, G⋆− e⋆ is a rigidity circuit that cannot be decomposed
into two edge-disjoint Hamiltonian paths.

The Herschel graph is a minimum non-Hamiltonian 3-connected planar graph, which also
violates Grinberg’s criterion [2]. Figure 3 shows the Herschel graph and its medial graph. Since
the Herschel graph is 3-connected, essentially 4-edge-connected and 3-cycle-free, its medial graph
is indeed weakly sparse and 4-connected, and therefore any graph obtained by removing a vertex
is a 3-connected rigidity circuit that cannot be decomposed into two edge-disjoint Hamiltonian
paths, by Theorem 6 and Corollary 11.

(a)

(b)

Figure 3: (a)The Herschel graph and (b)the medial graph.

To construct infinitely many indecomposable rigidity circuits, we need the following obser-
vation taken from the Herschel graph.

Proposition 12. Let G be a plane graph such that |FG| is odd and each face is a 4-cycle. Then,
G does not satisfy Grinberg’s criterion.

Proof. Suppose there is a bipartition {F1, F2} of FG that satisfies the Grinberg’s criterion. Then,
from

∑
f∈Fi

(d(f)− 2) = 2|Fi|, we have |F1| = |F2|. This contradicts the parity of |FG|.

This leads to the following construction of graphs. Suppose we are given 3-connected and
essentially 4-edge-connected plane graphs G0, G1 and G2 each of which has the property that the
number of faces is odd and each face is a 4-cycle. Take two internal faces f1 and f2 from G0, and
replace f1 and f2 byG1 andG2 as shown in Figure 4. LetG be the resulting plane graph. Clearly,
every face of G is a 4-cycle, and |FG| = (|FG0 |−2)+(|FG1 |−1)+(|FG2 |−1) =

∑
i=0,1,2 |FGi |−4,

which is odd. By Proposition 12, G does not satisfy the Grinberg’s criterion. Also, G is clearly
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3-connected, essentially 4-edge-connected, and 3-cycle-free, implying that G⋆ is 4-connected by
Theorem 6. In total, for any vertex e⋆ ∈ VG⋆ , G⋆ − e⋆ is a 3-connected rigidity circuit that is
indecomposable into two edge-disjoint Hamiltonian paths.

This completes the proof of Theorem 1.

Figure 4: Recursive construction of counterexamples. Here, all of G0, G1 and G2 are the Hershel
graphs. The two internal squares of Figure 3(a) are replaced.

Motivated by Nash-Williams’ conjecture, Martin [14] and Grünbaum and Malkevitch [9]
showed how to construct 4-connected planar 4-regular graphs from cyclically 4-connected planar
non-Hamiltonian cubic graphs (see e.g., [2, 5]). Although the construction presented above is
much simpler, another sequence of counterexamples can be constructed based on these results.
Let us briefly explain it since the approach can be applied to non-planar case.

The line graph L(G) of G is the graph on the vertex set EG where two vertices are connected
if and only if the corresponding edges share a vertex in the original graph G. If G is a 3-regular
plane graph, then L(G) is equal to the medial graph G⋆. Similar to Theorem 2, we have a
characterization of 3-connected 3-regular graphs in terms sparsity.

Theorem 13. Let G be a simple 3-regular graph. Then, L(G) is weakly sparse if and only if G
is 3-connected.

Proof. Observe that, in the proof of sufficiency of Theorem 2, we did not use the planarity of
G⋆ (except for defining the medial graphs), and we can apply the exactly same proof to show
the sufficiency.

To see the necessity, suppose G is not 3-connected. As in the proof of Theorem 2, it is
sufficient to show that L(G) has a nontrivial cut of size at most 4. If G is 2-connected, G has a
separator S = {u, v} of size 2. Let X be the vertex set of a connected component in G−S, and
let H be the subgraph of G induced by X ∪ {u, v}. Observe that L(G) has at most four edges
between EH and E \ EH , and hence L(G) has a cut of size at most 4. By the 3-regularity of
G, this cut is nontrivial in L(G). By the same argument we can find a nontrivial cut of size at
most two in L(G) if G is not 2-connected. Therefore, L(G) is not weakly sparse.

Kotzig [13] proved that a 3-connected 3-regular graph G is Hamiltonian if and only if L(G)
can be decomposed into two edge-disjoint Hamiltonian cycles. (Similar but weaker statements
were also claimed in [9, 14].) We thus obtain a characterization of the decomposability for a
certain family of rigidity circuits by Theorem 13.

Corollary 14. A simple 3-regular graph G is 3-connected and Hamiltonian if and only if L(G)−v
is a rigidity circuit which can be decomposed into two edge-disjoint Hamiltonian paths for every
vertex v in L(G).
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Corollary 14 has a computational implication. Namely, the problem of deciding whether a
planar rigidity circuit can be decomposed into two Hamiltonian paths or not is NP-complete
since the problem of computing a Hamiltonian cycle in a planar 3-connected 3-regular graph is
NP-complete [4].

4 Concluding Remarks

A graph G is called minimally rigid if it satisfies (1) with |EG| = 2|VG|− 3, and G is called rigid
if it contains a minimally rigid subgraph with |VG| vertices. G is further called redundantly rigid
if G−e is rigid for every e ∈ EG. From a combinatorial characterization of 2-dimensional generic
global rigidity by Connelly [3] and Jackson and Jordán [10], G is said to be globally rigid if it is
3-connected and redundantly rigid. Since any rigidity circuit is redundantly rigid by definition,
our counterexamples given in Theorem 1 are in fact globally rigid.

From Corollary 5, it can be easily checked that G⋆ is redundantly rigid for any 3-connected
plane graph G. We also know that G⋆ is 3-connected if G is 3-connected by Theorem 6 with
k = 2, and hence if G is 3-connected plane graph then G⋆ is globally rigid. The converse
implication is however not true in general. Figure 5 shows examples of non-3-connected graphs
where the medial graphs of (a) and (b) are globally rigid and not rigid, respectively.

Jordán [11] recently proved that the line graph L(G) of a 3-regular graph G is globally rigid
if and only if G is 3-edge-connected. Figure 5(b) however indicates that G⋆ may not be rigid
even when G has high edge-connectivity. (Replace each unit of the wheel of five vertices by a
highly edge-connected graph.)

Medial graphs have been also appeared in a proof [8] of Steiniz’s theorem for realizations
as 1-skeletons of convex 3-polytopes. Originating from Cauchy’s rigidity theorem, 3-connected
planar graphs have a strong relation to the rigidity of graphs when viewing them as 1-skeletons
of convex 3-polytopes (see e.g., [6, Chapter 1.2]). Theorem 2 thus combinatorially connects two
separated notions in rigidity theory, rigidity of 3-polytopes and generic global rigidity in the
plane, although a direct geometric connection is not clear.

(a)

(b)

Figure 5: Non-3-connected plane graphs (left) and the medial graphs (right): (a) globally rigid,
(b) non-rigid.
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