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Abstract 

The nuclear factor erythroid 2-related factor 2 (Nrf2)-antioxidant response element (ARE) 

pathway is a cellular defense system against oxidative stress. Activation of this pathway 

increases expression of antioxidant enzymes. Epidemiological studies have demonstrated that 

the consumption of fruits and vegetables is associated with reduced risk of contracting a variety 

of human diseases. The aim of this study is to find Nrf2-ARE activators in dietary fruits and 

vegetables. We first attempted to compare the potency of ARE activation in six fruit and six 

vegetables extracts. Green perilla (Perilla frutescens var. crispa f. viridis) extract exhibited high 

ARE activity. We isolated the active fraction from green perilla extract through 

bioactivity-guided fractionation. Based on nuclear magnetic resonance and mass spectrometric 

analysis, the active ingredient responsible for the ARE activity was identified as 

2′,3′-dihydroxy-4′,6′-dimethoxychalcone (DDC). DDC induced the expression of antioxidant 

enzymes, such as γ-glutamylcysteine synthetase (γ-GCS), NAD(P)H: quinone oxidoreductase-1 

(NQO1), and heme oxygenase-1. DDC inhibited the formation of intracellular reactive oxygen 

species and the cytotoxicity induced by 6-hydroxydopamine. Inhibition of the p38 

mitogen-activated protein kinase pathway abolished ARE activation, the induction of γ-GCS 

and NQO1, and the cytoprotective effect brought about by DDC. Thus, this study demonstrated 

that DDC contained in green perilla enhanced cellular resistance to oxidative damage through 

activation of Nrf2-ARE pathway. 

 

Keywords: chalcone; green perilla; Nrf2-ARE pathway; oxidative stress; 6-hydroxydopamine. 
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Introduction 

Oxidative stress, also referred to as a reactive oxygen species (ROS)-antioxidant 

imbalance, occurs when the net amount of ROS exceeds the antioxidant capacity. Oxidative 

stress is thought to play a major role in the pathogenesis of a variety of human diseases, 

including aging, carcinogenesis, metabolic syndrome, cardiovascular, neurodegenerative and 

kidney diseases [1], [2], [3], [4], [5], and [6]. Epidemiological evidence indicates that a 

significant reduction in the risk of ischemic stroke, some forms of cancer, and Alzheimer’s 

disease can be obtained by increasing fruit and vegetable consumption [7], [8] and [9]. 

Therefore, it is widely believed that dietary fruit and vegetable intake is beneficial in preventing 

disease onset and slowing disease progression. 

Vitamins C and E, polyphenols, and carotenoids are thought to be responsible for most 

of the antioxidant activity in foods. Various studies have suggested that dietary antioxidants may 

protect against cardiovascular diseases, neurodegenerative diseases, and some forms of cancer 

[10], [11], [12], and [13]. The direct antioxidant capacities of food extracts have been 

comparatively assessed using TEAC (Trolox Equivalent Antioxidant Capacity), FRAP (Ferric 

Reducing Ability of Plasma), and ORAC (Oxygen Radical Absorbance Capacity) assays [14], 

[15], and [16]. Although the radical-scavenging activities of phytochemicals from foods are 

responsible, at least in part, for human health-promoting effects, it is unclear whether the direct 

antioxidant activities of phytochemicals in vitro can completely explain their systemic 

antioxidant effects in vivo [17].  

Accumulating evidence suggests that many phytochemicals, such as sulforaphane and 

curcumin, enhance the expression of antioxidant enzymes and cytoprotective proteins, for 
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example, NAD(P)H: quinone oxidoreductase-1 (NQO1), superoxide dismutase, glutathione 

S-transferase, glutathione peroxidase, heme oxygenase-1 (HO-1), γ-glutamylcysteine synthetase 

(γ-GCS), catalase, and thioredoxin [18]. The enhanced expression of antioxidant enzymes and 

cytoprotective proteins is mainly controlled by the nuclear factor erythroid 2-related factor 2 

(Nrf2)-antioxidant response element (ARE) pathway. Under normal physiological conditions, 

Nrf2 is inactive due to binding with the skeletal actin-binding protein, Kelch-like 

ECH-associated protein 1 (Keap1). Under conditions of oxidative stress, Nrf2 is no longer 

sequestered by Keap1 and is subsequently translocated to the nucleus and bound to ARE. This 

results in the transcriptional activation of a number of phase 2 detoxifying and antioxidant 

enzymes [19]. Nrf2-ARE pathway functions as a cellular defense system against oxidative stress 

and has recently received attention as a potential therapeutic target for cancer chemoprevention, 

and cardiovascular and neurodegenerative diseases [20], [21], and [22]. Nevertheless, compared 

to ORAC values in the database of the U.S. Department of Agriculture’s Agricultural Research 

Service, limited data exists comparing this indirect antioxidant property among foods, although 

the potency of induction of NQO1 in selected vegetables has been examined [23].  

To discover novel Nrf2-ARE activators, the present study was designed to compare the 

ARE activity of the extracts of fruits and vegetables that are widely consumed in either Eastern 

or Western food cultures. Fruits and vegetables tested included the following: peach (Amygdalus 

persica), apple (Malus pumila Mill.), strawberry (Fragaria L.), cranberry (Vaccinium 

oxycoccos), raspberry (Rubus idaeus), satsuma mandarin (Citrus unshiu Marc.), green perilla 

(Perilla frutescens var. crispa f. viridis), tossa jute (Corchorus olitorius L.), crown daisy 

(Glebionis coronaria L.), celery (Apium graveolens var. dulce), parsley (Petroselium crispum), 
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and red perilla (Perilla frutescens var. crispa f. purpurea). We carried out a bioactivity-guided 

fractionation to isolate the active constituents from the fruit and vegetable extracts. After 

chemical identification, the active compounds were evaluated for their protective activity against 

6-hydroxydopamine (6-OHDA)-induced cell toxicity. 
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Materials and Methods 

Materials 

Fruit and vegetable samples were obtained from Ehime Beverage (Matsuyama, Japan), 

Skylight Biotech (Akita, Japan), and Sanyo Foods (Tokyo, Japan). 6-Hydroxydopamine 

hydrochloride and trans-cinnamaldehyde were purchased from Sigma (St. Louis, MO, USA). 

trans-Cinnamoyl chloride and (E)-chalcone were obtained from Wako (Osaka, Japan). 

2′-Hydroxychalcone was obtained from TCI (Tokyo, Japan). 2′,4′-Dimethoxychalcone, 

2′-hydroxy-4′,6′-dimethoxyacetophenone, 2′-hydroxy-4′-methoxychalcone, 

2′-hydroxy-6′-methoxychalcone, and 2′,6′-dimethoxychalcone were purchased from Indofine 

Chemical (Hillsborough, NJ, USA). SB203580 and LY294002 were obtained from Calbiochem 

(San Diego, CA, USA). Flavokawain B was purchased from LKT (St. Paul, MN, USA). 

2′,3′-Dihydroxy-4′,6′-dimethoxychalcone was synthesized and provided by Pharmaeight (Kyoto, 

Japan). 

 

Cell culture, transfection, and luciferase reporter analysis 

Rat adrenal pheochromocytoma PC12 cells were maintained in Dulbecco’s modified 

Eagle medium supplemented with 5% fetal calf serum and 10% horse serum. Cell cultures were 

incubated at 37°C in a humidified atmosphere of 95% air and 5% CO2.  

PC12 reporter cells were generated by stable transfection of ARE-luciferase construct. 

The annealed oligonucleotide of the rat NQO1 ARE (top strand: 

CTCAGAGATTTCAGTCTAGAGTCACAGTGACTTGGCAAAATCA; bottom strand: 

CATGGAGTCTCTAAAGTCAGATCTCAGTGTCACTGAACCGTTTTAGTTCGA) was 
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ligated to the KpnI and HindIII site of the pGL4.27 vector (Promega, Madison, WI, USA). The 

cells were transfected with the plasmid using Lipofectamine 2000 (Invitrogen, Carlsbad, CA, 

USA) according to the manufacturer’s instructions. The culture medium was supplemented with 

hygromycin B (300 µg/ml) to select drug-resistant stable transfectants. In the reporter gene 

assays, firefly luciferase activity in cell lysates was measured with a luminometer using 

Picagene LT 2.0 Luminescence Reagent (Toyo Ink, Tokyo, Japan). 

 

Preparation of fruit and vegetable extracts 

The extraction solvent chosen in this study was diethylether, which is useful for 

extracting low molecular weight compounds [24]. Raw leaves (100 g) were oven dried at 75°C 

and pulverized, and then were suspended in distilled water (200 mL). Ether/water extraction 

was performed by adding an equal volume of diethylether to the aqueous mixture from juice 

(100 mL) or raw leaves (200 mL) and rigorously shaking for a few minutes using a separating 

funnel. The ether layer was evaporated to dryness in a vacuum rotary evaporator. Solvent 

extraction was repeated at least thrice. The residues were transferred to a glass tube and 

evaporated to dryness under nitrogen gas. The extracts were dissolved in dimethylsulfoxide 

(DMSO) and filtered through a 0.22-µm membrane.  

The extraction solvent chosen in some cases was ethanol, which is generally 

recognized as safe. Raw leaves (100 g) were oven dried at 75°C and pulverized, and then 

immersed in ethanol solution (100 mL) for 2 days. The residues were re-extracted with ethanol 

solution (100 mL) for a further 3 days. The combined extract solutions were concentrated using 

a rotary evaporator under vacuum. The residues were evaporated to dryness under nitrogen gas 
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and freeze-dried. The dried extracts were dissolved in ethanol and filtered through a 0.22-µm 

membrane. 

 

Purification of the active compound 

The ether extract was fractionated with a silica gel column chromatography (60 × 5 

mm i.d., 70–230 mesh) and eluted with n-hexane-ethyl acetate (25%→50%→75%→100% 

ethyl acetate, each 3 mL). Twelve fractions were collected in 1 mL volumes. The fractions were 

evaporated to dryness under nitrogen gas. The residues were dissolved in DMSO.  

Separation of the ether extract was also performed by high-pressure liquid 

chromatography (HPLC) with UV detection using a YMC-Pack Pro C18 column (150 × 4.6 

mm i.d., with 5 µm particle size) (YMC, Kyoto, Japan) using a flow-rate of 1 mL/min, at a 

temperature of 40°C. Mobile-phase A consisted of 99% (v/v) distilled water, 1% (v/v) 

acetonitrile, and 0.1% (v/v) trifluoroacetic acid (TFA). Mobile-phase B consisted of 99% (v/v) 

acetonitrile, 1% (v/v) distilled water, and 0.1% (v/v) TFA. The injected volume was 50 µL and 

the detection was performed at a wavelength of 300 nm. The eluates were collected in volumes 

of 1 mL for 1 min each. The fractions were evaporated to dryness under nitrogen gas and 

freeze-dried. The residues were dissolved in DMSO. 

 

Nuclear magnetic resonance (NMR) and mass spectrometry (MS) 

The structure of the isolated compound was chemically identified by NMR and mass 

spectrometry. NMR spectra were recorded using an Avance II 800US2 spectrometer (Bruker 

BioSpin, Rheinstetten, Germany) at 800 MHz in DMSO-d6. Chemical shifts for 1H- and 
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13C-NMR were referenced to tetramethylsilane (0.00 ppm). Assignments were made via 

1H-NMR, 13C-NMR, distortionless enhancement by polarization transfer (DEPT), total 

correlation spectroscopy (TOCSY), heteronuclear multiple quantum coherence (HMQC) and 

heteronuclear multiple-bond correlation (HMBC). High-resolution electron impact (EI)-MS 

analysis was performed on a JEOL JMS-600H mass spectrometer (Tokyo, Japan).  

 

Evaluation of cell viability 

The cell viability of PC12 cells was determined by 

3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays. The culture 

medium was replaced with serum-free medium containing 0.5 mg / mL MTT tetrazolium salt 

(Nacalai Tesque, Kyoto, Japan) and incubated at 37°C for 30 min. The medium was removed 

and the cells were scraped and solubilized into a 2-propanol solution. Aliquots were transferred 

to a 96-well plate and the absorbance was measured at 570 nm. The viability of the cultures was 

expressed as a percentage of the absorbance measured in control cells. 

 

Small interfering RNA (siRNA) sequences and transfection 

siRNAs were purchased from Invitrogen. The siRNA sequence targeting Nrf2 #1 was 

5′-UUAAGACACUGUAACUCGGGAAUGG-3′ and Nrf2 #2 was 

5′-UUUAAGUGGCCCAAGUCUUGCUCCA-3′. Stealth™ RNAi Negative Control Medium 

GC Duplex #2 (Invitrogen) was used as a negative control siRNA. PC12 cells in 35 mm culture 

dishes were transfected with each siRNA (200 pmol) using 7.5 µL Lipofectamine 2000 

according to the manufacturer’s protocol. The medium was changed after 9 h and cultures were 
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incubated for further 48 h. 

 

Real-time PCR analysis 

Total RNA was extracted using a FastPure® RNA kit (Takara, Shiga, Japan). Total 

RNA was reverse-transcribed using a PrimeScript® RT-PCR kit (Takara). Real-time PCR was 

performed using SYBR® Premix Ex Taq™ II (Takara). The final solution contained 0.4 µM 

primers and 2 µL of cDNA in a total volume of 25 µL. The protocol involved denaturation at 

95°C for 30 sec, and amplification (40 cycles: 95°C for 5 sec, 60°C for 30 sec). The primer 

sequences were Nrf2 forward 5′- GAGACGGCCATGACTGAT-3′, Nrf2 reverse 

5′-GTGAGGGGATCGATGAGTAA-3′, glyceraldehyde 3-phosphate dehydrogenase 

(GAPDH) forward 5′-ATGGGAAGCTGGTCATCAAC-3′, and GAPDH reverse 

5′-GATCTCGCTCCTGGAAGATG-3′. The mRNA levels of tested genes were quantified 

using standard curves generated by serially diluted reference samples. The relative levels of 

Nrf2 mRNA were analyzed by normalizing with GAPDH mRNA expression.  

 

Western blotting 

Treated cells were washed twice with cold Tris-buffered saline, harvested using a cell 

scraper and lysed in buffer containing Tris (20 mM, pH 7.0), sodium β-glycerophosphate (25 

mM), ethylene glycol tetraacetic acid (2 mM), Triton X-100 (1%), phenylmethylsulfonyl 

fluoride (1 mM), aprotinin (1%), dithiothreitol (2 mM) and vanadate (1 mM) on ice. Lysates 

were centrifuged at 17,000 g for 30 min at 4°C. After normalization of protein concentrations, 

supernatants were mixed in equal amounts with a sample loading buffer. After denaturation by 
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boiling at 100°C for 5 min, samples were loaded onto a SDS-polyacrylamide gel, separated 

electrophoretically, and transferred to a polyvinylidene fluoride membrane (Millipore, Bedford, 

MA, USA). The membranes were incubated for 1 h with Tris-buffered saline containing 0.1% 

Tween 20 and 5% dehydrated skim milk to block nonspecific binding. Subsequently, the 

membranes were probed with primary antibody [anti-phospho-p38 MAPK (#4631, 1:1,000 

dilution, Cell Signaling Technology, Danvers, MA, USA), anti-p38 MAPK (#9212, 1:1,000 

dilution, Cell Signaling Technology), anti-phospho-Akt (#9271, 1:1,000 dilution, Cell Signaling 

Technology), anti-Akt (#9272, 1:1,000 dilution, Cell Signaling Technology), anti-γ-GCS 

(#RB-1697, 1:1,000 dilution, Neomarkers, Fremont, CA), HO-1 (#SPA-895, 1:100,000 dilution, 

Stressgen, Victoria, Canada), anti-β-actin (#A1978, 1:20,000 dilution, Sigma)] and with 

horseradish peroxidase-conjugated secondary antibody (1:1,000 dilution, GE Healthcare, 

Waukesha, WI, USA) for 1 h. The membrane-bound secondary antibody was detected with an 

enhanced chemiluminescence detection system (ECL, GE Healthcare, Buckinghamshire, UK). 

The band intensities were analyzed with computer software, ImageJ 1.33u (National Institute for 

Health, Bethesda, MD, USA). 

 

Measurement of intracellular reduced glutathione (GSH) levels 

The levels of GSH were determined using monochlorobimane (MCB, Sigma), which 

forms a fluorescent conjugate together with GSH. PC12 cells were incubated with 

Krebs–Ringer–HEPES buffer (125 mM NaCl, 4.8 mM KCl, 25 mM HEPES, 1.2 mM MgSO4, 

1.2 mM KH2PO4, 5.6 mM glucose, 2.2 mM CaCl2, pH7.4) containing MCB (50 µM) for 30 

min, and lysed in Triton X-100 (1%). The fluorescence intensity of the lysates was measured 
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using a spectrofluorometer (Ex 355 nm, Em 460 nm).  

 

Detection of intracellular ROS 

Levels of intracellular ROS were measured by flow cytometry and microscopic 

analysis as the fluorescence of 2′,7′-dichlorofluorescein (DCF) and ethidium (ETH), which are 

the oxidation products of 2′,7′-dichlorodihydrofluorescein (H2DCF) and dihydroethidium 

(DHE). H2DCF is more sensitive to hydrogen peroxide and hydroxyl radicals than to superoxide 

anions, whereas DHE is particularly sensitive to superoxide anions. H2DCFDA (Molecular 

Probes, Eugene, OR, USA) is a diacetylated form of H2DCF that is freely membrane permeable 

and enters the cells. After entering the cells, the diacetyl groups of H2DCFDA are cleaved by 

intracellular esterases and the resulting H2DCF can be oxidized to highly fluorescent DCF by 

ROS. DHE (Sigma) is a lipophilic cell-permeable dye that can undergo oxidation to red 

fluorescent ETH in the presence of ROS. ETH then binds irreversibly to the double-stranded 

DNA causing amplification of the red fluorescent signal. 

For flow cytometry, treated cells were incubated for 30 min with the probe 

(H2DCFDA: 30 µM, and DHE: 10 µM) at 37°C. A FACScan (Becton-Dickinson, Rutherford, 

NJ, USA) flow cytometer, equipped with a 488-nm argon ion laser and supplied with the Cell 

Quest software, was applied to measure ROS levels in the cells. Signals were obtained using a 

530-nm bandpass filter (FL-1 channel) for DCF and a 585-nm bandpass filter (FL-2 channel) for 

ETH. Each determination was based on the mean fluorescence intensity of 1,000 cells. For 

microscopic analysis, cells were incubated with H2DCFDA (10 μM) and a cell-permeable 

nuclear indicator Hoechst 33342 (100 µg/mL; Molecular Probes) for 30 min at 37°C. The cells 
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were rinsed twice with phenol red-free DMEM, and then treated with 6-OHDA. Fluorescence 

was visualized using an Olympus IX81 inverted microscope and Metamorph software.  

For flow cytometry, H2DCFDA was used at 30 μM, a concentration that permitted the 

quantification of baseline fluorescence as well as peak fluorescence without saturation. For 

microscopic analysis, however, the images at peak fluorescence were saturated because of a 

limited dynamic range. It was therefore necessary to reduce the concentration of H2DCFDA to 

10 μM. At this concentration, peak images were not saturated, but baseline levels were too low 

to be quantified with precision. 

 

Statistics 

The statistical significance of the differences between three or more groups was 

analyzed with a one-way analysis of variance (ANOVA) and post hoc multiple comparison 

using Turkey’s test, unless otherwise stated. Statistical significance was defined as p < 0.05. Data 

are expressed as the mean ± standard error of the mean (SEM). 
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Results 

Comparison of ARE activity between the extracts of fruits and vegetables 

To evaluate the effects of fruit and vegetable extracts on the cellular defense response 

against oxidative stress, we established rat PC12 stable reporter cell lines expressing the 

luciferase coding sequences controlled by ARE from the rat NQO 1 gene. At first, PC12 

reporter cells were treated with the ether extracts of fruits and vegetables for 9 h. The ether 

extracts of cranberry (juice) and green perilla (raw leaves) significantly increased luciferase 

activity (Fig. 1A), although cell death was not apparent at this time point. At the same 

concentration, native PC12 cells were treated with the ether extracts of fruits and vegetables for 

48 h. The ether extracts of cranberry (juice), green perilla (raw leaves) and tossa jute (raw 

leaves) significantly decreased cell viability (Fig. 1B). Because the ether extract of cranberry, in 

particular, exhibited a potent cytotoxic effect, further luciferase assay-guided chromatographic 

separation was carried out on the ether extract of green perilla. The ether extracts of green perilla 

increased luciferase activity in a concentration-dependent manner (Fig. 1C). An ethanol extract 

(25–100%) of green perilla (raw leaves) was evaluated for ARE-dependent transcriptional 

activity. The higher the ethanol concentration was, the higher the luciferase activity of the 

ethanol extract (Fig. 1D).  

 
Bioactivity-guided purification of the ARE activator from green perilla  

The ether extract of green perilla (raw leaves) was subjected to a silica gel column 

chromatography using n-hexane-ethyl acetate (25%→50%→75%→100% ethyl acetate) to 

separate 12 fractions; among them, fraction 8 exhibited significantly increased luciferase activity 

(Fig. 2A). The ether extract of green perilla (raw leaves) was also subjected to reversed-phase 

HPLC with a C18 column and a water/acetonitrile solvent system (mobile-phase A, 99:1; 
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mobile-phase B, 1:99) containing 0.1% TFA under a gradient of 1–100% mobile-phase B for 30 

min (Fig. 2B). Fraction 18 exhibited significantly increased luciferase activity (Fig. 2C). The 

eluted active fraction 18 was collected and subjected to the second purification step. In the 

second purification by HPLC under an isocratic condition of 30% of mobile-phase B, 

significantly increased luciferase activities were observed in fractions 34–36 (Fig. 2D and E). An 

aqueous extract after ether/water extraction of green perilla was also subjected to reversed-phase 

HPLC under a gradient of 1–100% mobile-phase B for 30 min, but there were no active 

fractions (data not shown).  

 

Structure elucidation of the ARE activator from green perilla 

The active fractions 34–36 at the second purification step were collected and subjected 

to the third preparative HPLC with a water/acetonitrile solvent system (mobile-phase A, water; 

mobile-phase B, acetonitrile) under a gradient of 40–45% of mobile-phase B for 10 min. The 

main peak collected showed a single band in thin layer chromatography (TLC) analysis (data 

not shown). By this method, 11 mg of this compound was obtained from 100 g fresh weight of 

green perilla leaves. Furthermore, high-resolution MS analysis demonstrated that the molecular 

formula of this compound was C17H16O5 (observed: 300.0985, calculated mass: 300.0988). 

NMR studies (1H, 13C, DEPT, TOCSY, HMQC, and HMBC) revealed that the chemical 

structure of this compound was 2′,3′-dihydroxy-4′,6′-dimethoxychalcone (DDC; Fig. 3A), 

previously reported by Ichino et al. [25]. DDC has been previously isolated from leaves of 

Uvaria dulcis and whole plants of Sarcandra hainanensis, but pharmacological properties of the 

compound have not yet been investigated [26] and [27]. 
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Activation of ARE-dependent transcription by DDC  

DDC was synthesized from 2′-hydroxy-4′,6′-dimethoxyacetophenone and 

trans-cinnamoyl chloride by Friedel–Crafts reaction [25]. 1H-NMR analysis demonstrated that 

synthetic DDC showed identical chemical shifts and peak pattern with the isolated compound 

(data not shown). Synthetic DDC was tested for its effect on ARE activity. Treatment of PC12 

reporter cells with DDC resulted in a significant increase in luciferase activity. The effect of 

DDC on ARE activity was concentration-dependent and peaked at 9–12 h (Fig. 4A and B). At 

concentrations (< 30 µM) that had enough ARE activity, exposure to DDC for 48 h exhibited no 

cytotoxic effect (Fig. 4C). A structure–activity relationship of chalcone derivatives (Fig. 3B and 

C) was investigated to clarify the structural requirements for DDC. Chalcone (compound 1) 

without any substituted group and cinnamaldehyde (compound 8), a substructure of chalcone, 

exhibited a slight increase in luciferase activity. Among the tested chalcone derivatives, 

dimethoxychalcone, including DDC, compound 6, and compound 7 had comparatively potent 

activity (Fig. 4D). Sulforaphane (3 µM), a well-known ARE activator, was used as a positive 

control. Treatment of PC12 cells with sulforaphane (10 µM and more) for 48 h exhibited 

cytotoxicity (data not shown). Thus, we successfully identified DDC as the active compound 

responsible for the induction of ARE-dependent transcription in green perilla. 

 

Regulation of DDC-induced ARE-dependent transcriptional activation 

 In general, binding of Nrf2 to ARE is necessary for antioxidant gene expression. To 

confirm the involvement of Nrf2 in DDC-induced ARE activation, PC12 cells were transfected 
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with siRNAs against Nrf2. Quantitative real-time PCR analysis demonstrated that the mRNA 

level of Nrf2 was partially decreased by Nrf2 siRNA (Fig. 5A). The increase in luciferase 

activity by DDC was also partially suppressed by transfection of siRNA directed against Nrf2 

(Fig. 5B). It has been reported that the phosphorylation of Nrf2 plays an important role in 

nuclear translocation and transcriptional activation through ARE. Our previous report showed 

that nuclear translocation of Nrf2 in PC12 cells was mediated via phosphorylation by protein 

kinases [28]. After treatment with DDC, phosphorylated p38 mitogen-activated protein kinase 

(MAPK) and phosphorylated Akt were transiently increased around the 1-h time point (Fig. 5C 

and D). Furthermore, the increase in luciferase activity by DDC was suppressed by SB203580, 

an inhibitor of p38 MAPK, and LY294002, an inhibitor of phosphoinositide 3-kinase (PI3K), in 

an additive manner (Fig. 5E). 

 

Induction of antioxidant enzymes by DDC 

 The Nrf2-ARE pathway is critical in mediating the induction of γ-GCS, a rate-limiting 

enzyme in glutathione synthesis, NQO1, and HO-1. The induction of these antioxidant enzymes 

by DDC in PC12 cells was investigated. Treatment with DDC for 24 h increased γ-GCS protein 

level, GSH content, NQO1 activity and HO-1 protein level at concentrations that are 

comparable with those that increased ARE-dependent luciferase activity (Fig. 6A, C, E, and G). 

The effects of DDC on γ-GCS protein level, GSH content, and NQO1 activity were suppressed 

by co-treatment with SB203580 (Fig. 6B, D, and F). The effect of DDC on HO-1 protein level 

was not suppressed by either SB203580 or LY294002 (Fig. 6H and I), but decreased by a 

combination of SB203580 and LY294002 (Fig. 6J). 
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Cytoprotective effect of DDC against 6-OHDA-induced cytotoxicity 

 6-OHDA is extensively used to induce cell death through oxidative processes in 

different cell types, including human neuroblastoma SH-SY5Y cells, PC12 cells and rat ventral 

mesencephalic dopaminergic neurons [28], [29], and [30]. To test the protective effect of DDC 

on oxidative stress, PC12 cells were challenged with 6-OHDA. Pre-treatment with DDC for 24 

h alone provided protection against 6-OHDA-induced cytotoxicity to a similar extent as 

pre-treatment followed by co-treatment during the toxin exposure. However, co-treatment with 

DDC slightly exacerbated 6-OHDA-induced cytotoxicity (Fig. 7A). Pre-treatment with DDC 

provided protection at concentrations that are comparable with those that increased 

ARE-dependent luciferase activity (Fig. 7B). The cytoprotective effect of DDC was suppressed 

by SB203580 (Fig. 7C). To confirm the indirect antioxidant properties of DDC, intracellular 

ROS levels were measured using oxidant-sensitive dyes (H2DCFDA and DHE). Pre-treatment 

with DDC for 24 h suppressed the increase in intracellular ROS levels induced by 6-OHDA (Fig. 

7D-F). In particular, DDC decreased the basal level of DCF-sensitive ROS (Fig. 7E). Therefore, 

our results suggest that the cytoprotection of DDC is mediated by indirect antioxidant properties 

via ARE activation. 
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Discussion 

In this study, we compared the effects of various fruit and vegetable ether extracts on 

ARE-dependent transcriptional activation. Green perilla extract exhibited a high level of ARE 

activity. Furthermore, we identified DDC from the extract as an active ingredient responsible for 

the ARE activity. Our data demonstrated that DDC enhanced the induction of antioxidant 

enzymes through activation of the Nrf2-ARE pathway and provided protective action against 

6-OHDA-induced cytotoxicity. 

Perilla (Perilla frutescens; Labiatae) is an annual herbaceous plant native to Asia. 

There are two forms, the green form (green perilla) and the red form (red perilla), which differ in 

their accumulation of anthocyanins [31]. It has been reported that perilla leaves and seeds 

contained the anti-allergic, anti-inflammatory, anti-carcinogenic, and anti-human 

immunodeficiency virus substances, such as rosmarinic acid and α-linolenic acid [32], [33], [34], 

and [35]. Because of their high abundance of antioxidant polyphenolic compounds, perilla leaf 

water extracts possessed potent radical scavenging activity [36]. In addition, we show that green 

perilla leaf ether extract potentiates the cellular defense system against oxidative stress. Although 

we showed that red perilla juice failed to increase ARE activity, red perilla leaf ether extract 

possessed ARE activation potency, although the effect was not so potent as green perilla leaf 

extract (data not shown). Considering that ARE activity of green perilla ethanol extracts 

increased in proportion to ethanol concentration and that green perilla water extract failed to 

increase ARE activity, it is suggested that the active ingredients responsible for ARE activation 

in perilla have comparatively low solubility in water. 

Chalcone is a class of flavonoid compounds that are widely biosynthesized in plants 
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and exhibits a basic structure of two benzene rings linked through an α, β-unsaturated carbonyl 

group. Chalcone derivatives possess a diverse spectrum of biological activities, including 

anti-oxidative, anti-inflammatory, anti-cancer, and immunosuppressive potential [37], [38], and 

[39]. DDC has been previously isolated and identified from leaves of Uvaria dulcis and whole 

plants of Sarcandra hainanensis [26] and [27]. However, to our knowledge, there are no reports 

on the existence of DDC in green perilla, which is a dietary vegetable. Furthermore, the present 

study is the first report on the biological activity of DDC.  

The present study provides the first evidence that DDC intensively induces 

Nrf2-dependent ARE activation. The activation of the Nrf2-ARE pathway by various 

electrophiles and compounds that are acceptors for Michael reactions is attributed to changes in 

redox environment and/or direct cysteine modification in Keap1 [40]. The α, β-unsaturated 

carbonyl moiety in the chalcone skeleton provides the basis for the reaction of a Michael 

acceptor with a nucleophile. Previous study found that the α, β-unsaturated carbonyl moiety was 

crucial for nucleophilic addition reactions with thiols and for increasing intracellular ROS levels 

[41]. Talalay et al. [42] demonstrated that many α, β-unsaturated carbonyl compounds induced 

antioxidant enzymes and that the potency of inducers paralleled their efficiency in Michael 

reactions. Although the α, β-unsaturated carbonyl moiety in chalcone plays a basic role in ARE 

activation, the present structure–activity relationship study revealed that the substituted groups 

on chalcone were of critical importance for potency. In addition, depending on cell type and 

inducer, multiple signaling kinases have been reported to regulate the Nrf2-ARE pathway, 

which include p38 MAPK, extracellular signal-regulated kinase, c-jun NH2-terminal kinase, 

PI3K and protein kinase C [43]. Our findings indicate that p38 MAPK pathway and PI3K/Akt 
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pathway additively participated in ARE activation induced by DDC. Further studies are needed 

to elucidate the mechanisms of Nrf2-dependent ARE activation induced by DDC. 

Our data demonstrated that DDC provided protection against 6-OHDA-induced 

cytotoxicity. The cytoprotection of DDC against 6-OHDA toxicity did not require co-treatment 

but pre-treatment before the toxin challenge. The mechanisms underlying the effectiveness of 

DDC against 6-OHDA cytotoxicity are not completely known, but the indirect antioxidative 

properties of DDC could explain its protective effect. We showed that DDC was able to 

completely reverse the drastic increase in ROS formation induced by 6-OHDA. DDC increased 

antioxidative enzymes, such as γ-GCS, NQO1, and HO-1 in a concentration-dependent manner. 

The cytoprotection induced by DDC in accordance with the induction of γ-GCS, GSH, and 

NQO1 was abolished by inhibition of p38 MAPK pathway. These results suggest that the 

cytoprotection of DDC may be mediated by the antioxidant enzymes up-regulated by p38 

MAPK-dependent ARE activation. 6-OHDA is rapidly oxidized by molecular oxygen to form 

superoxide anions, hydrogen peroxide, and the corresponding p-quinone, which contribute to 

the cytotoxicity [27]. GSH scavenge ROS and interact with 6-OHDA-oxidized products, 

forming glutathionyl conjugates [44]. NQO1 catalyzes the two-electron reduction of quinones to 

hydroquinones, which prevents the formation of highly reactive semiquinones. In addition, 

catalase and superoxide dismutase have been reported to be up-regulated by ARE activation 

[45]. Therefore, antioxidant enzymes regulated via the Nrf2-ARE pathway may 

comprehensively participate in the cytoprotection of DDC. Elevation of HO-1 levels by DDC 

was not abolished by inhibition of either p38 MAPK pathway or PI3K/Akt pathway. However, 

inhibition of both p38 MAPK pathway and PI3K/Akt pathway suppressed the induction of 
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HO-1 levels. Therefore, these pathways may serve as a compensatory mechanism for HO-1 

upregulation. In addition, since the treatment with DDC (30 µM) in the presence of both 

inhibitors of p38 MAPK and PI3K for 24 h was injurious to cells (data not shown), elevation of 

HO-1 levels by DDC seems to play an important role in defensive mechanisms against 

DDC-induced cell damage. 

In summary, we succeeded in isolating and identifying the Nrf2-ARE activator from 

green perilla ether extract. DDC was found to induce the expression of various antioxidant 

proteins, suppress intracellular ROS formation, and thereby enhance cellular resistance to 

6-OHDA-induced cytotoxicity. Previous studies have described the nuclear localization of Nrf2 

in patients with Parkinson disease and Nrf2-mediated neuroprotection in models of Parkinson 

disease [46], [47], and [48]. Therefore, DDC may have the potential to be developed as a 

therapeutic agent aimed at reducing or preventing cell death in Parkinson disease. Therefore, we 

propose that indirect as well as direct antioxidant activity of dietary fruits and vegetables are 

beneficial to human health. 



 24 

Acknowledgements: This work was supported by grants-in-aid for Scientific Research from 

the Japan Society for the Promotion of Science and from the Ministry of Education, Culture, 

Sports, Science and Technology of Japan. We thank our colleagues for helpful discussions.  



 25 

References 

[1] Diaz MN, Frei B, Vita JA, Keaney JF Jr. Antioxidants and atherosclerotic heart disease. N 

Engl J Med. 1997 337:408-416. 

[2] Giasson BI, Ischiropoulos H, Lee VM, Trojanowski JQ. The relationship between 

oxidative/nitrative stress and pathological inclusions in Alzheimer's and Parkinson's diseases. 

Free Radic Biol Med. 2002 32:1264-1275. 

[3] Klaunig JE, Kamendulis LM. The role of oxidative stress in carcinogenesis. Annu Rev 

Pharmacol Toxicol. 2004;44:239-67. 

[4] Olinski R, Siomek A, Rozalski R, Gackowski D, Foksinski M, Guz J, Dziaman T, Szpila A, 

Tudek B. Oxidative damage to DNA and antioxidant status in aging and age-related diseases. 

Acta Biochim Pol. 2007 54:11-26. 

[5] Massy ZA, Stenvinkel P, Drueke TB. The role of oxidative stress in chronic kidney disease. 

Semin Dial. 2009 22:405-408. 

[6] Roberts C.K., Sindhu K.K., Oxidative stress and metabolic syndrome, Life Sci. 2009 

84:705–712. 

[7] Joshipura KJ, Ascherio A, Manson JE, Stampfer MJ, Rimm EB, Speizer FE, Hennekens CH, 

Spiegelman D, Willett WC. Fruit and vegetable intake in relation to risk of ischemic stroke. 

JAMA. 1999 282:1233-1239. 

[8] Riboli E, Norat T. Epidemiologic evidence of the protective effect of fruit and vegetables on 

cancer risk. Am J Clin Nutr. 2003 78:559S-569S. 

[9] Dai Q, Borenstein AR, Wu Y, Jackson JC, Larson EB. Fruit and vegetable juices and 

Alzheimer's disease: the Kame Project. Am J Med. 2006 119:751-759. 



 26 

[10] Gale CR, Martyn CN, Winter PD, Cooper C. Vitamin C and risk of death from stroke and 

coronary heart disease in cohort of elderly people. BMJ. 1995 310:1563-1566. 

[11] Morris MC, Beckett LA, Scherr PA, Hebert LE, Bennett DA, Field TS, Evans DA. Vitamin 

E and vitamin C supplement use and risk of incident Alzheimer disease. Alzheimer Dis Assoc 

Disord. 1998 12:121-126. 

[12] Le Marchand L, Murphy SP, Hankin JH, Wilkens LR, Kolonel LN. Intake of flavonoids 

and lung cancer. J Natl Cancer Inst. 2000 92:154-160. 

[13] Vokó Z, Hollander M, Hofman A, Koudstaal PJ, Breteler MM. Dietary antioxidants and the 

risk of ischemic stroke: the Rotterdam Study. Neurology. 2003 61:1273-1275. 

[14] Cao, G.; Alessio, H.; Cutler, R. Oxygen-radical absorbence capacity assay for antioxidants. 

Free Radical Biol. Med. 1993, 14, 303–311. 

[15] Miller NJ, Rice-Evans C, Davies MJ, Gopinathan V, Milner A. A novel method for 

measuring antioxidant capacity and its application to monitoring the antioxidant status in 

premature neonates. Clin Sci (Lond). 1993 84:407-412. 

[16] Benzie, I. F. F.; Strain, J. J. The ferric reducing ability of plasma (FRAP) as a measure of 

“antioxidant power”: the FRAP assay. Anal. Biochem. 1996, 239, 70–76. 

[17] Halliwell B, Rafter J, Jenner A. Health promotion by flavonoids, tocopherols, tocotrienols, 

and other phenols: direct or indirect effects? Antioxidant or not? Am J Clin Nutr. 2005 

81:268S-276S. 

[18] Dinkova-Kostova AT, Talalay P. Direct and indirect antioxidant properties of inducers of 

cytoprotective proteins. Mol Nutr Food Res. 2008 52:S128-138. 



 27 

[19] Motohashi H, Yamamoto M. Nrf2-Keap1 defines a physiologically important stress 

response mechanism. Trends Mol Med. 2004 10:549-557. 

[20] Jeong WS, Jun M, Kong AN. Nrf2: a potential molecular target for cancer 

chemoprevention by natural compounds. Antioxid Redox Signal. 2006 8:99-106. 

[21] Li J, Ichikawa T, Janicki JS, Cui T. Targeting the Nrf2 pathway against cardiovascular 

disease. Expert Opin Ther Targets. 2009 13:785-794. 

[22] Scapagnini G, Vasto S, Abraham NG, Caruso C, Zella D, Fabio G. Modulation of 

Nrf2/ARE pathway by food polyphenols: a nutritional neuroprotective strategy for cognitive 

and neurodegenerative disorders. Mol Neurobiol. 2011 44:192-201. 

[23] Prochaska HJ, Santamaria AB, Talalay P. Rapid detection of inducers of enzymes that 

protect against carcinogens. Proc Natl Acad Sci U S A. 1992 892394-1298. 

[24] Kume T, Asai N, Nishikawa H, Mano N, Terauchi T, Taguchi R, Shirakawa H, Osakada F, 

Mori H, Asakawa N, Yonaga M, Nishizawa Y, Sugimoto H, Shimohama S, Katsuki H, 

Kaneko S, Akaike A. Isolation of a diterpenoid substance with potent neuroprotective activity 

from fetal calf serum. Proc Natl Acad Sci U S A. 2002 99:3288-3293. 

[25] Ichino K, Tanaka H, Ito K, Tanaka T, Mizuno M. Synthesis of helilandin B, pashanone, 

and their isomers. J Nat Prod. 1988 51:906-914. 

[26] Chantrapromma K, Rat-A-pa Y, Karalai C, Lojanapiwatana V, Seechamnanturakit V. A 

chalcone and a dihydrochalcone from Uvaria dulcis. Phytochemistry. 2000 53:511-513. 

[27] Cao C, Xu L, Chen K, Peng Y, Xiao P. Chemical study on petroleum ether portion of 

Sarcandra hainanensis. Zhongguo Zhong Yao Za Zhi. 2009 34:1009-1010. 



 28 

[28] Yamamoto N, Sawada H, Izumi Y, Kume T, Katsuki H, Shimohama S, Akaike A. 

Proteasome inhibition induces glutathione synthesis and protects cells from oxidative stress: 

relevance to Parkinson disease. J Biol Chem. 2007 282:4364-4372. 

[29] Izumi Y, Sawada H, Sakka N, Yamamoto N, Kume T, Katsuki H, Shimohama S, Akaike 

A. p-Quinone mediates 6-hydroxydopamine-induced dopaminergic neuronal death and 

ferrous iron accelerates the conversion of p-quinone into melanin extracellularly. J Neurosci 

Res. 2005 79:849-860. 

[30] Yamamoto N, Izumi Y, Matsuo T, Wakita S, Kume T, Takada-Takatori Y, Sawada H, 

Akaike A. Elevation of heme oxygenase-1 by proteasome inhibition affords dopaminergic 

neuroprotection. J Neurosci Res. 2010 88:1934-1942. 

[31] Saito K, Yamazaki M. Biochemistry and molecular biology of the late-stage of biosynthesis 

of anthocyanin: lessons from Perilla frutescens as a model plant. New Phytol 2002 155:9–23. 

[32] Kawahata T, Otake T, Mori H, Kojima Y, Oishi I, Oka S, Fukumori Y, Sano K. A novel 

substance purified from Perilla frutescens Britton inhibits an early stage of HIV-1 replication 

without blocking viral adsorption. Antivir Chem Chemother. 2002 13:283-288. 

[33] Osakabe N, Yasuda A, Natsume M, Yoshikawa T. Rosmarinic acid inhibits epidermal 

inflammatory responses: anticarcinogenic effect of Perilla frutescens extract in the murine 

two-stage skin model. Carcinogenesis. 2004 25:549-575. 

[34] Chang HH, Chen CS, Lin JY. Dietary perilla oil inhibits proinflammatory cytokine 

production in the bronchoalveolar lavage fluid of ovalbumin-challenged mice. Lipids. 2008 



 29 

43:499-506.  

[35] Oh HA, Park CS, Ahn HJ, Park YS, Kim HM. Effect of Perilla frutescens var. acuta Kudo 

and rosmarinic acid on allergic inflammatory reactions. Exp Biol Med (Maywood). 2011 

236:99-106. 

[36] Meng L, Lozano YF, Gaydou EM, Li B. Antioxidant activities of polyphenols extracted 

from Perilla frutescens varieties. Molecules. 2008 14:133-140. 

[37] Kumar V, Kumar S, Hassan M, Wu H, Thimmulappa RK, Kumar A, Sharma SK, Parmar 

VS, Biswal S, Malhotra SV. Novel chalcone derivatives as potent Nrf2 activators in mice and 

human lung epithelial cells. J Med Chem. 2011 Jun 23;54(12):4147-59. Epub 2011 May 19. 

[38] Wu J, Li J, Cai Y, Pan Y, Ye F, Zhang Y, Zhao Y, Yang S, Li X, Liang G. Evaluation and 

discovery of novel synthetic chalcone derivatives as anti-inflammatory agents. J Med Chem. 

2011 54:8110-8123.  

[39] Yadav VR, Prasad S, Sung B, Aggarwal BB. The role of chalcones in suppression of 

NF-κB-mediated inflammation and cancer. Int Immunopharmacol. 2011 11:295-309.  

[40] Holtzclaw WD, Dinkova-Kostova AT, Talalay P. Protection against electrophile and 

oxidative stress by induction of phase 2 genes: the quest for the elusive sensor that responds 

to inducers. Adv Enzyme Regul. 2004;44:335-67.  

[41] Shibata T, Yamada T, Ishii T, Kumazawa S, Nakamura H, Masutani H, Yodoi J, Uchida K. 

Thioredoxin as a molecular target of cyclopentenone prostaglandins. J Biol Chem. 2003  

278 :26046-26054. 

[42] Talalay P, De Long MJ, Prochaska HJ. Identification of a common chemical signal 



 30 

regulating the induction of enzymes that protect against chemical carcinogenesis. Proc Natl 

Acad Sci U S A. 1988 85:8261-8265. 

[43] Keum YS, Jeong WS, Kong AN. Chemoprevention by isothiocyanates and their 

underlying molecular signaling mechanisms. Mutat Res. 2004 555:191-202. 

[44] Nappi AJ, Vass E. 1994. The effects of glutathione and ascorbic acid on the oxidations of 

6-hydroxydopamine. Biochim Biophys Acta 1201:498-504. 

[45] Zhu H, Itoh K, Yamamoto M, Zweier JL, Li Y. Role of Nrf2 signaling in regulation of 

antioxidants and phase 2 enzymes in cardiac fibroblasts: protection against reactive oxygen 

and nitrogen species-induced cell injury. FEBS Lett. 2005 579:3029-3036. 

[46] Ramsey CP, Glass CA, Montgomery MB, Lindl KA, Ritson GP, Chia LA, Hamilton RL, 

Chu CT, Jordan-Sciutto KL. Expression of Nrf2 in neurodegenerative diseases. J Neuropathol 

Exp Neurol. 2007 66:75-85. 

[47] Jakel RJ, Townsend JA, Kraft AD, Johnson JA. Nrf2-mediated protection against 

6-hydroxydopamine. Brain Res. 2007 1144:192-201. 

[48] Chen PC, Vargas MR, Pani AK, Smeyne RJ, Johnson DA, Kan YW, Johnson JA. 

Nrf2-mediated neuroprotection in the MPTP mouse model of Parkinson's disease: Critical 

role for the astrocyte. Proc Natl Acad Sci U S A. 2009 106:2933-2938. 

 



 31 

Figure legends 

Fig.1 Effects of fruit and vegetable extracts on ARE activity. A: Effects of ether extracts of fruits 

and vegetables on ARE activity. PC12 reporter cells were treated with ether extracts for 9 h. The 

concentrations of each extract were: peach (juice), 100 µL/mL; apple (juice), 50 µL/mL; 

strawberry (juice), 100 µL/mL; cranberry (juice), 100 µL/mL; raspberry (juice), 100 µL/mL; 

satsuma mandarin (juice), 20 µL/mL; green perilla (raw leaves), 50 mg/mL; tossa jute (raw 

leaves), 25 mg/mL; crown daisy (raw leaves), 20 mg/mL; celery (juice), 100 µL/mL; parsley 

(juice), 50 µL/mL; red perilla (juice), 100 µL/mL; crown daisy (juice), 100 µL/mL. B: Effects 

of ether extracts of fruits and vegetables on cell viability. Native PC12 cells were treated with 

ether extracts for 48 h. C: Concentration-dependent effect of ether extract of green perilla on 

ARE activity. PC12 reporter cells were treated with ether extracts of green perilla for 9 h. D: 

Effects of ethanol extracts of green perilla on ARE activity. PC12 reporter cells were treated 

with ethanol extracts of green perilla for 9 h. #p < 0.05, ###p < 0.001, compared with control. 

 

Fig. 2 Chromatographic purification of active fraction from ether extract of green perilla. A: 

Effects of fractions separated by silica gel column chromatography on ARE activity. B: 

HPLC-UV (300 nm) chromatogram of the first purification step of green perilla ether extract. C: 

Effects of first HPLC fractions of green perilla ether extract on ARE activity. D: HPLC-UV (300 

nm) chromatogram of the second purification step of green perilla ether extract. E: Effects of 

second HPLC fractions of green perilla ether extract on ARE activity. PC12 reporter cells were 

treated with each fraction of green perilla for 9 h. ###p < 0.001, compared with control. 
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Fig. 3 Chemical structures of chalcone derivatives. A: 2′,3′-Dihydroxy-4′,6′-dimethoxychalcone 

(DDC). B: Chalcone derivatives. C: Cinnamaldehyde. 

 

Fig. 4 Effect of synthetic DDC on ARE activity. A: Concentration-dependent effect of DDC on 

ARE activity. PC12 reporter cells were treated with DDC (3–30 µM) for 9 h. B: 

Time-dependent effect of DDC on ARE activity. PC12 reporter cells were treated with DDC 

(30 µM) for the indicated periods. Statistical analyses were performed using two-way ANOVA 

and post hoc multiple comparison using Bonferroni test. C: Effect of DDC on cell viability. 

Native PC12 cells were treated with DDC (1–100 µM) for 48 h. D: Effects of chalcone 

derivatives on ARE activity. PC12 reporter cells were treated with chalcone derivatives (30 µM) 

or sulforaphane (3 µM) for 9 h. ###p < 0.001, compared with control. 

 

Fig. 5 Mechanisms of ARE activation induced by DDC. A: Effect of Nrf2 siRNA on Nrf2 

mRNA expression. Native PC12 cells were incubated for 48 h after transfection with siRNA 

against Nrf2. B: Effect of Nrf2 siRNA on ARE activation induced by DDC. PC12 reporter cells 

were incubated for 48 h after transfection, and then were treated with DDC (30 µM) for a further 

12 h. C,D: Effect of DDC on phosphorylation of p38 MAPK and Akt. Native PC12 cells were 

treated with DDC (30 µM) for the indicated periods. E: Effects of p38 MAPK and PI3K 

inhibitors on ARE activation induced by DDC. PC12 reporter cells were treated with DDC (30 

µM) in the presence or absence of SB203580 and LY294002 (10–30 µM) for 9 h. ###p < 0.001 

compared with control. ***p < 0.001 compared with DDC alone. 
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Fig. 6 Effect of DDC on ARE-regulated antioxidant proteins. A, C, E, G: Effect of DDC on 

γ-GCS protein level (A), GSH content (C), NQO1 activity (E), and HO-1 protein level (G). 

Native PC12 cells were treated with DDC (3–30 µM) for 24 h. B, D, F: Effect of p38 MAPK 

inhibitor on DDC-induced elevation of γ-GCS protein level (B), GSH content (D), and NQO1 

activity (F). Native PC12 cells were treated with DDC (30 µM) in the presence or absence of 

SB203580 (10–30 µM) for 24 h. H-J: Effects of p38 MAPK and PI3K inhibitors on 

DDC-induced elevation of HO-1 protein level. Native PC12 cells were treated with DDC (30 

µM) in the presence or absence of SB203580 and LY294002 (10–30 µM) for 24 h. ##p < 0.01, 

###p < 0.001, compared with control. ***p < 0.001 compared with DDC alone. 

 

Fig. 7 Effect of DDC on 6-OHDA-induced cytotoxicity. A: Time course study on the effect of 

DDC on 6-OHDA toxicity. Native PC12 cells were exposed to 6-OHDA (200 µM) for 24 h 

with or without pre-treatment for 24 h and co-treatment with DDC (30 µM). B: 

Concentration-dependent effect of DDC on 6-OHDA toxicity. Native PC12 cells were treated 

with DDC (3–30 µM) for 24 h prior to 6-OHDA exposure, and then exposed to 6-OHDA (200 

µM) for 24 h. C: Effect of p38 MAPK inhibitor on DDC-induced cytoprotection against 

6-OHDA toxicity. Native PC12 cells were treated with DDC (30 µM) in the presence or 

absence of SB203580 (3–30 µM) for 24 h prior to 6-OHDA exposure, and then were exposed to 

6-OHDA (200 µM) for 24 h. D-F: Effect of DDC on 6-OHDA-induced ROS formation. D: 

Representative fluorescence microscope images from DCF fluorescence. Native PC12 cells 

were pretreated with DDC (30 µM) for 24 h, incubated with H2DCFDA for 30 min, and 

exposed to 6-OHDA (200 µM) for 1 h. Scale bar = 50 μm. E,F: Analysis of DCF and ETH 
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fluorescence by flow cytometry. Native PC12 cells were treated with DDC (3–30 µM) for 24 h 

prior to 6-OHDA exposure, and then were exposed to 6-OHDA (200 µM) for 3 h. #p < 0.05, ###p 

< 0.001 compared with control. *p < 0.05, **p < 0.01, ***p < 0.001 compared with 6-OHDA 

alone. †††p < 0.001 compared with 6-OHDA+DDC. 

 


