# トポロジー最適化を用いた 熱光起電力フィルタの設計手法

## TOPOLOGY OPTIMIZATION FOR A THERMOPHOTOVOLTAIC FILTER

## 川井一平<sup>1)</sup>, 内田直孝<sup>1)</sup>, 泉井一浩<sup>1)</sup>, 西脇眞二<sup>1)</sup>, 吉村允孝<sup>1)</sup>, 野村壮史<sup>2)</sup> Ippei KAWAI, Naotaka UCHIDA, Kazuhiro IZUI, Shinji NISHIWAKI, Masataka YOSHIMURA and Tsuyoshi NOMURA

<sup>1)</sup>京都大学大学院 工学研究科 (〒 606-8501 京都市左京区吉田本町) <sup>2)</sup>株式会社豊田中央研究所 (〒 480-1192 愛知県愛知郡長久手町大字長湫字横道 41 番地の 1)

In this paper, we propose a topology optimization method for a Thermophotovoltaic filter which has Frequency Selectie Surfaces inside. First, we formulate a multi-objective function using S parameter in order to get the design proposal of TPV filter having desired high pass characteristics. Secondly, we propose a new method to get rid of gray scale, adding a penalty function concerning material density to objective function. In the end, numerical examples are presented to make sure the usefulness of our proposed method.

Key Words : Topology optimization, Thermophotovoltaic filter, Frequency Selective Surfaces

## 1. 緒言

近年,光電変換技術の進歩に伴い,熱光起電力(Thermophotovoltaic 以下 TPV) 発電システムが注目されて いる. TPV 発電システム中に用いられる光電変換 (Photovoltaic 以下 PV) セルは,一定波長以下の入射光し か電力に変換することができず、電力に変換できない 波長域の光を入射させると発電効率が低下することが 知られており、高効率な発電システムを実現するため に、ハイパスフィルタの利用が考えられる.以下、特に TPV 発電システムで使用することを想定したハイパス フィルタを TPV フィルタと記述する. ハイパスフィル タの設計にあたっては、周波数選択板 (Frequency Selective Surface 以下 FSS)[1]の利用が考えられる. FSS とは特定の周波数帯の電磁波のみを透過または反射さ せることができる特徴を有する非常に薄い構造体であ り、その特性を利用することにより TPV フィルタを設 計することも可能である.

しかしながら, TPV フィルタのような電磁波デバイ スの設計は,通常設計者の勘と経験に基づいて行われ ており,この方法では常に所望の性能を有する構造物 を設計することは難しく,システマチックに設計する 方法が望まれている.そのような方法のひとつとして, トポロジー最適化があげられる.

トポロジー最適化 [2] とは、形状設計問題を材料分布 問題に置き換えを行うことにより、外形形状だけでな く、トポロジーをも変更できる最も自由度の高い構造 最適化方法である.これまでにも機械製品の構造設計 などに広く利用されており、設計対象物の抜本的な性 能改善が行えるとして注目を集めている.近年ではト ポロジー最適化の電磁波伝搬問題への適用も広く研究 されるようになっている.[3] 本論文では、トポロジー 最適化を用いて、周波数選択板 (Frequency Selective Surface 以下 FSS) を含む TPV フィルタを設計する ための構造最適化問題の新しい定式化を行う. さらに, この定式化において材料密度についてのペナルティ関 数を導入することで,グレースケール問題を解消する 手法を提案し,最後に数値例を示すことにより,本研 究の有用性について検証する.

## 2. 定式化

## (1) **TPV** フィルタ

Fig.1 に示すように, TPV 発電システムは, 熱源, エミッタ, TPV フィルタ, PV セルの4つの要素から構 成され, 熱源から発生するふく射光をフィルタリング した後, PV セルに入射させ, 光起電力効果により起電 力を得るシステムであり, 太陽光発電システムと比較 すると, 時間や場所によらず安定した発電が可能であ り, 発光部分と受光部分の位置関係を自由に決めるこ とができるといったメリットを持つ. 本研究では, 偏 向状態の影響を受けにくいという特徴を持つ, 正方形 開口型の FSS を 2 層並べ, 周囲の誘電体分布を変化 させることにより, 所望のハイパス特性を有する TPV フィルタを得ることを考える.

#### (2) トポロジー最適化

トポロジー最適化における基本的な考え方は、最適 構造を含む固定設計領域と、材料の存在をあらわす特 性関数を導入することにある.この特性関数および固 定設計領域の導入により、トポロジー最適化における 最適設計問題は、固定設計領域における材料分布問題 に置き換えられる.しかし、この特性関数は、固定設 計領域内で、不連続な特性を持つことになる.本研究 では、電磁波伝播問題の代表物理テンソルである比誘 電率  $\varepsilon_r$  を、密度法を用いて以下のように連続近似する.





$$\varepsilon_{\mathbf{r}}(\rho(\mathbf{x})) = \varepsilon_{\mathbf{r}}^{\mathbf{air}} + (\varepsilon_{\mathbf{r}}^{\mathbf{solid}} - \varepsilon_{\mathbf{r}}^{\mathbf{air}})\rho(\mathbf{x}) \tag{1}$$

ここで、 $\rho(\mathbf{x})$ は正規化された体積密度、 $\varepsilon_r^{alr}$ は空気の比誘電率、 $\varepsilon_r^{solid}$ は、使用する誘電体材料の比誘電率であり、等方性材料を仮定し、比誘電率は実数であるとした.

## (3) 電磁波伝搬問題の支配方程式

電磁波伝搬問題は、マクスウェル方程式により支配 される.周波数領域に着目すると、マクスウェル方程 式は、以下のように記述される.

$$\nabla \times \mathbf{E} = -j\omega \mathbf{B} \tag{2}$$

$$\nabla \times \mathbf{H} = j\omega \mathbf{D} + \mathbf{J} \tag{3}$$

ここで、 $\varepsilon$ , $\mu$ はそれぞれ、誘電率、透磁率、であり、 E,D,H,B,Jはそれぞれ、電場、電束密度、磁場、磁 束密度、電流密度、 $\omega$ は、角周波数である、本研究で は電場を未知数とするため、式 (2)、式 (3)から磁場を 消去した次のヘルムホルツ方程式が支配方程式となる.

$$\nabla \times (\frac{1}{\mu} \nabla \times \mathbf{E}) - \omega^2 \varepsilon \mathbf{E} = 0 \tag{4}$$

#### (4) 最適化問題の定式化

本研究では、電磁波の透過率の評価にSパラメータ を用いる.この節では、まずSパラメータについて説 明した後、目的関数を定式化する.

高周波デバイスの性能は、各ポート間の信号の伝達 特性を表すSパラメータによって記述することができ る.Sパラメータ  $|S_{ij}|$ は、ポート j からの入力信号に 対するポート i への出力信号の振幅比と位相差を与え る複素数であり、

$$S_{ij} = \frac{\int_{\Gamma_i} (\mathbf{n}_i \times \mathbf{\Phi}_j) \cdot (\mathbf{n}_i \times \mathbf{e}_i) d\Gamma}{\int_{\Gamma_i} (\mathbf{n}_j \times \mathbf{\Phi}_j^{inc}) \cdot (\mathbf{n}_j \times \mathbf{e}_j) d\Gamma} - \delta_{ij}$$
(5)

と記述できる. ここで,  $\Gamma_i$ ,,  $\Gamma_j$ はポート*i*, *j*の定義される面,  $\Phi_j$ は, ポート*j*からの入力による電磁界,  $\mathbf{n}_i$ ,  $\mathbf{n}_j$ はそれぞれ $\Gamma_i$ ,,  $\Gamma_j$ における法線ベクトル場,  $\Phi_i^{inc}$ 

はポート j の入射電磁界,  $\mathbf{e}_i$ ,  $\mathbf{e}_j$  はポート i, ポート j での規格化されたモードを表す実数のベクトル場,  $\delta_{ij}$  はクロネッカーのデルタを表す.

次に,目的関数の設定を行う.前述のように,入力 信号に対する出力信号の振幅比は S パラメータの絶対 値で与えられる.本研究では,いくつかの異なる波長 の入射電磁波に対して |*S*<sub>ij</sub>|を求め,以下のように多目 的目的関数を定義することにより,ハイパスフィルタ の設計を行った.

minimize 
$$\sum_{k} w_k |S_{ij}^{\lambda_k}| \quad w_k = \begin{cases} -1 & \text{if } \lambda_k \le \lambda_b \\ 1 & \text{if } \lambda_k > \lambda_b \end{cases}$$
(6)

subject to

$$V = \int_{D} \rho(\mathbf{x}) d\mathbf{\Omega} \le V^{U} \tag{7}$$

$$\varepsilon_{\mathbf{r}}(\rho(\mathbf{x})) = \varepsilon_{\mathbf{r}}^{\mathbf{air}} + (\varepsilon_{\mathbf{r}}^{\mathbf{dielectric}} - \varepsilon_{\mathbf{r}}^{\mathbf{air}})\rho(\mathbf{x})$$
(8)

 $0 \le \rho(\mathbf{x}) \le 1 \tag{9}$ 

$$\nabla \times (\frac{1}{\mu} \nabla \times \mathbf{E}) - \omega^2 \varepsilon \mathbf{E} = 0$$
 (10)

ここで、 $|S_{ij}^{\lambda_k}|$ は、波長 $\lambda_k$ の入射電磁波に対する $|S_{ij}|$ であり、 $\lambda_b$ は、目的とするフィルタの通過域と減衰域 の境目となる波長である.また、V は、誘電体の総体 積、 $V^U$ は、誘電体の体積制約の上限値である.

しかしながら,後に示すが,式(6)を目的関数として 最適化を行うと,最適構造として設計変数が1と0の 中間値を持つ構造がえられる.これは,グレイスケー ルと呼ばれ,構造力学分野においてもみられる現象で あるが,トポロジー最適化においては最適解として設 計変数が0か1の解のみを前提としており,そのよう な解は,現実的な解とは言えない.本研究では,目的 関数に次式のようなペナルティを与える項を加えるこ とにより,この問題の克服を試みる.

$$p_{cos} = \frac{1}{2} [1 - \cos\{2\pi\rho(\mathbf{x})\}]$$
(11)

$$p_{sin} = \sin\{\pi\rho(\mathbf{x})\}\tag{12}$$

式 (12),式 (11) の設計領域 D における積分値を目的関数に加えて、新たな目的関数は次のように定義できる. ただし、p は、 $p_{cos}$  または  $p_{sin}$  をあらわし、制約条件 は変わらない.

minimize 
$$\frac{\sum_{k} w_{k} |S_{ij}^{\lambda_{k}}|}{(\sum_{k} w_{k} |S_{ij}^{\lambda_{k}}|)_{\text{initial configuration}}} + \alpha \int_{D} p d\Omega$$
$$w_{k} = \begin{cases} -1 & \text{if } \lambda_{k} \leq \lambda_{b} \\ 1 & \text{if } \lambda_{k} > \lambda_{b} \end{cases}$$
(13)

ここで, α は重み係数であり, この値を適当に設定す ることにより, 目的関数および目的関数の設計変数に 対する感度のスケールを調整することができる.

## 3. 数值実装法

#### (1) 最適化の手順

最適化のフローチャートを Fig.2 に示す.本研究にお いては,設計モデルの作成及び有限要素解析には COM-SOL Multiphysics(以下 COMSOL)[4] を利用し,その 他の処理については Matlab を利用した. COMSOL は, COMSOL 社により開発されたマルチフィジクスシュミ レーションソフトウェアであり,複雑な形状や制約条件 をもつモデルや,連成問題を容易に解析でき,Matlab により制御可能であるといった特徴をもち,内田ら [5] によりトポロジー最適化での利用が提案されている.



Fig.2 Flowchart of optimization procedure

#### (2) 感度解析の方法

先に述べたように,設計変数更新のためには,目的 関数の設計変数に関する設計感度を算出する必要があ る.しかし,一般に状態変数は設計変数の陰関数である から,設計感度を直接求めることができない.そこで, 随伴変数法という方法が広く使われている.本研究で は,感度解析に Self-Adojoint S-parameter Sensitivity という Nikolova ら [6] が提案している計算手法を利用 している.この手法は,随伴変数法の一種とみなすこ とができ,Sパラメータを目的関数とする問題に対し て広くかつ容易に適用可能である.

この手法によると、入力ポートと出力ポート(仮に ポート 1、ポート 2 とする)を 1 つずつ持つモデル の場合、ポート 1 からの入力による  $S_{21}$  の感度解析に 必要な随伴場は、ポート 2 からの入力による電場に複 素係数  $\kappa_{21}$  をかけたものであたえらる. これは、一般 に、m 個のポートを持つ系についても適用することが でき、S パラメータに対する感度は次式により求める ことができる.

 $\frac{\partial S_{kj}}{\partial p_i} = -\kappa_{kj} (\boldsymbol{\Phi}_k)^T \frac{\partial \mathbf{A}}{\partial p_i} \boldsymbol{\Phi}_j \tag{14}$ 

 $j, k = 1, 2, \cdot \cdot \cdot, m$ 

ここで、 $p_i$ は i 番目の設計変数、 $\kappa_{kj}$ はポート k、j に依存して決定される複素係数、 $\Phi_k$ 、 $\Phi_j$ は、それぞ れポート k, j からの入力による電場, A は, 系を離散 化した際に得られるシステムマトリクスである.

なお, <sub>*k*<sub>kj</sub></sub> は, ポートの形状, 強度, 位相, 励振モードに依存する複素係数であり, 次式であたえられる.

$$\kappa_{kj} = \frac{1}{2\gamma_k \phi_{0k} \int_{\Gamma_s} (\mathbf{n} \times \mathbf{\Phi}_j^{inc}) \cdot (\mathbf{n} \times \mathbf{e}_j) d\Gamma} \qquad (15)$$

ここで、 $\gamma_k$  はポート k の伝播定数、 $\phi_{0k}$  はポート k の励振強度を増幅するための係数、 $\Gamma_j$  はポート j 面, n はポート j 面の法線ベクトル、 $\Phi_j^{inc}$  はポート j の入射電場、 $\mathbf{e}_j$  はポート j での規格化されたモードを表す実数の場である.

## 4. 数值例

## (1) 設計条件の設定

いくつかの数値例を用いて,本研究で提案する手法 の妥当性および有効性について検証した、使用する材 料は、比誘電率  $\varepsilon_r^{dielectric} = 4.8$ , モデルは Fig.3 に示 す. このうち, 中央部が設計領域であり, 入力ポート (ポート1)からの入力信号に対する出力ポート(ポート 2) への出力信号の振幅比を与える |S21| により透過率 の評価を行う. 設計領域は 59×299 の四角形有限要素 に分割,それぞれの節点に設計変数を配置したので,設 計変数は 18000 個である. 式 (7) で与えられる体積制 約の上限値については  $V^U = 0.6$  に設定し,密度の初 期値は、設計領域中のすべての点において 0.6 とした. また, 前述のとおり, FSS を2層配置し, より良いハ イパス性能を得るために,それぞれの層で FSS の大き さを若干変えている.なお、本研究のモデルでは、垂 直入射, TE 波 (Transverse Electric Wave) を仮定し, 1(μm) から 5(μm) まで 0.1(μm) きざみで計 41 種類の 波長の電磁波を入射させ, $\lambda_b = 2.4(\mu m)$ とした.上面 と下面には、境界条件として次式で与えられる完全磁 気導体 (Perfect Magnetic Conductor) を適用した.

 $\mathbf{n} \times \mathbf{H} = 0 \tag{16}$ 

ここで, nは,境界条件を適用する面の法線ベクト ルである.この境界条件により,垂直入射の平面波を 仮定することができ,FSSが無限に配列された状況を 再現することができる.





## (2) 目的関数にペナルティ項を加えない場合

前節の設計条件のもと,最適化を行った結果得られ た最適構造と最適化を始める前の構造,および最適化 後の構造での周波数応答を Fig. 4 に示す.なお,黒色 の領域が体積密度 1 に対応する誘電体領域(比誘電率 4.8),白色の領域が体積密度 0 に対応する空気領域を 表す.また,破線は,誘電体が体積密度 0.6 で一様に 分布した初期構造における応答を表し,赤色の実線は 最適化後の構造における応答を表す.最適化前に比べ, 最適化後の応答ではより良いハイパス性能を示してい ることが見て取れる.しかしながら,最適構造におい て,誘電体でも空気でもない領域,すなわちグレース ケールが存在していることがわかる.



Fig.4 Numerical result 1



Fig.5 Numerical result 2



Fig.6 Numerical result 3

レースケール問題を回避する手法を提案し,数値例を 用いてその有効性を確認した.

#### 参考文献

- 1) Munk, B. A. :Frequency selective surfaces theory and design ,Wiley-Interscience , 2000.
- Bendsoe, M. P. and Kikuchi, N. :Generating optimal topologies in structural design using a homogenization method, *Computer Methods in Applied Mechanics and Engineering*, Vol.71 ,pp.197-224 ,1988.
- Kiziltas, G. et al. :Design of a frequency selective structure with inhomogeneous substrates as a thermophotovoltaic filter, *IEEE transactions on* antennas and propagation, Vol.53 ,pp.2282-2289 ,2005.
- 4) COMSOL :COMSOL Multiphysics ,http://www.comsol.com/
- 内田直孝他:汎用解析ソフト COMSOL を用いたト ポロジー最適化,日本機械学会年次大会講演論文集 ,Vol.6,pp319-320,2007.
- 6) Nikolova, N. K. et al. :Sensitivity analysis of network parameters with electromagnetic frequencydomain simulators , *IEEE transactions on microwave theory and techniques*, Vol.54 ,pp.670-681 ,2006.

## (3) 目的関数にペナルティ項を加える場合

式 (11), (12) で表される pcos, psin を加えて最適化 を行った結果を, それぞれ Fig. 5, Fig.6 に示す. な お,重み係数αは,0.14とした.まず,周波数応答を 比較すると、目的関数にペナルティ項を加えずにに最 適化した方が、より良いハイパス特性を示すことが分 かる.しかしながら、誘電体分布図を比較すると、ペ ナルティ項を加えることにより、グレースケールは大 幅に減少していることが分かる. pcos, psin を目的関 数に加えることによる効果を考察すると、どちらの関 数も,  $\rho(\mathbf{x}) = 0 \ge \rho(\mathbf{x}) = 1$  で最小値 0,  $\rho(\mathbf{x}) = 0.5$  で 最大値1をとる.ゆえに、目的関数を最小化する本研 究においては、 $p_{cos}$ 、 $p_{sin}$ を目的関数に加えることで、 正規化された密度  $\rho(x)$  を, 0 か 1 に近づけることがで きる.次に、図 5.3.1 と図 5.3.3 を比較すると、後者の ほうがよりはっきりと誘電体領域と空気領域に分かれ ている.これは、 $p_{cos}$ に比べて $p_{sin}$ の方が $\rho(\mathbf{x}) = 0$ と  $\rho(\mathbf{x}) = 1$ 付近での傾きが大きいため、前述の効果がよ り大きいためであると考えられる、なお、いくつかの 重み係数 α を用いて最適化を行ったが、得られる最適 構造はαによらず,ほぼ同じであることも確認した.

## 5. 結言

本研究では、より良いハイパス特性をもつ TPV フィ ルタの設計手法として、トポロジー最適設計手法に着 目し、その厳密な取り扱いについて記述した.また、グ