レベルセットモデルを用いた 平均温度最小化問題に対するトポロジー最適化

TOPOLOGY OPTIMIZATION FOR MINIMUM MEAN TEMPERATURE PROBLEM USING LEVEL SET MODEL

山田崇恭¹⁾ 西脇眞二²⁾ 泉井一浩³⁾ 吉村允孝⁴⁾ Takayuki YAMADA, Shinji NISHIWAKI, Kazuhiro IZUI and Masataka YOSHIMURA

¹⁾修士 日本学術振興会 特別研究員 (DC2)·京都大学工学研究科 (〒 606-8501 京都市左京区吉田本町)
 ²⁾Ph. D. 京都大学教授 工学研究科 (〒 606-8501 京都市左京区吉田本町)
 ³⁾博士 京都大学助教 工学研究科 (〒 606-8501 京都市左京区吉田本町)
 ⁴⁾博士 京都大学教授 (-H21.3) 工学研究科 (〒 606-8501 京都市左京区吉田本町)

This paper presents a new topology optimization method for minimum mean temperature problem using the level set method and the Finite Element Method (FEM). First, an optimization problem is formulated based on the concept of the phase field method and level set model. Based on the formulation and the level set method, a new level set-based topology optimization algorithm is constructed that employs the FEM when solving the equilibrium equations and updating the level set function. In addition, a design example is provided to confirm the usefulness of the proposed topology optimization method.

Key Words: Topology Optimization, Finite Element Method, Level Set Method, Thermal Problem

1. 緒言

エンジンなどの発熱を伴う、機械製品においては、熱 応力などの熱に関する特性が、製品の機械的性能に大 きな影響を与えるため、通常の機械的性能の最大化に 加え、放熱特性を最大化させることが要求される、こ の問題を解決するために、トポロジー最適化 [1] の適 用が考えられる、トポロジー最適化は、構造物の最適 な形状および形態を創成設計する方法であるため、性 能の大幅な向上が期待される、しかしながら、トポロ ジー最適化は、構造最適化問題を材料分布問題に置き 換えて解くため、幾何学的に複雑な形状を創成する可 能性を持ち、さらには、外形形状を明確に表現できな いグレースケールを最適設計解として許容する問題を 持つ. そのため、物理的、数学的に最適な解であって も、工学的に応用する段階において、製造不可能など の問題を生じる.この問題に対し、山田らは、レベル セット法 [2),3] による形状表現を用いて、構造物の外 形形状を明確に表現し、さらには、最適構造の複雑度 を定性的に設定可能とした新しいトポロジー最適化の 方法論を提案している [4]. この方法は、仮想的な界面 エネルギーを導入し、構造最適化問題を、仮想的な界 面エネルギーと目的汎関数の和を最小化される問題と して定式化し、界面エネルギーの大きさを設定するこ とにより、最適構造の複雑度を設定することを可能と している.

そこで、本研究では、山田らによって提案されてた、 レベルセット法による形状表現を用いたトポロジー最 適化を平均温度最小化問題に展開する.

2. 定式化

(1) レベルセット法による形状表現を用いたトポロ ジー最適化

レベルセット法を用いて固定設計領域 D 内の物体領 域 Ω の境界 $\partial \Omega$ を表現する. すなわち, レベルセット 関数を ϕ として, 次式に示すように, 物体領域 Ω の境 界 $\partial \Omega$ を, レベルセット関数のゼロ等位面によって表 現する.

$$\begin{cases} 0 < \phi(\mathbf{x}) \le 1 & \text{if } \forall \mathbf{x} \in \Omega \setminus \partial \Omega \\ \phi(\mathbf{x}) = 0 & \text{if } \forall \mathbf{x} \in \partial \Omega \\ -1 \le \phi(\mathbf{x}) < 0 & \text{if } \forall \mathbf{x} \in D \setminus \Omega \end{cases}$$
(1)

なお、上式において、レベルセット関数に上限値と下 限値をそれぞれ、1 と -1 に設定しているが、これは 後述の目的汎関数に付加する界面エネルギーをレベル セット関数により表現するために必要とする.これに より、レベルセット関数は通常設定される符号付き距 離関数の性質をもたず、図1に示すように、空洞領域 では -1、物体領域では1をとり、境界近傍において滑 らかに分布するスカラー関数となる.

上述のレベルセット法による形状表現を用いて,目 的汎関数を F,体積制約に対する制約汎関数を G で表

 $\square -1$ Fixed design domain D and level set function ϕ

す構造最適化問題を次式で定義する.

$$\inf_{\phi} \qquad F(\Omega(\phi)) = \int_{\Omega} f(\mathbf{x}) \mathrm{d}\Omega \qquad (2)$$

subject to
$$G(\Omega(\phi)) = \int_{\Omega} \mathrm{d}\Omega - V_{\max} \le 0$$
 (3)

ここで、 $f(\mathbf{x})$ は目的汎関数の被積分関数で、 V_{max} は許容される体積の上限値である.上式の構造最適化問題においては、レベルセット関数 ϕ は固定設計領域D内の至る所で不連続性を持つことを許容している.その結果、得られる最適構造が、至るところで不連結となる解を許容する、いわゆる不適切な (ill-posed) 問題となるため、何らかの方法で最適化問題を適切な (well-posed) 問題にする正則化 (regularization) を必要とする.

他方,通常のトポロジー最適化においては,最適構 造を,固定設計領域内 D において,0 あるいは1の値 をとる特性関数により表現するため,得られる最適構 造が,至るところで不連結となる解を許容する不適切 な問題となる.この問題を解決し,最適化問題を適切 な問題にする正則化の方法として,均質化法が利用さ れている.しかし,最適構造を表現する関数の相違に より,本最適化問題に,この正則化の方法を適用する ことは難しい.

そこで、本研究では、フェーズフィールド理論[6),7] の定式化で利用されている界面エネルギーの導入によ り、問題の正則化を行う.この方法の基本的な考え方 は、次式に示すように、目的汎関数を、目的汎関数と レベルセット関数の勾配の大きさによって表現される 仮想的な界面エネルギーとの和への置き換えである.

$$\inf_{\phi} \quad F(\Omega(\phi), \phi) = \int_{\Omega} f(\mathbf{x}) \mathrm{d}\Omega + \int_{D} \frac{1}{2}\tau \mid \nabla\phi \mid^{2} \mathrm{d}\Omega$$
(4)

subject to
$$G(\Omega(\phi)) = \int_{\Omega} \mathrm{d}\Omega - V_{\max} \le 0$$
 (5)

ここで、 *τ* は、 仮想的な界面エネルギーの大きさの寄 与度を決定するパラメータである. このパラメータは、 正則化の度合いを決定するだけではなく,構造の複雑 性を定性的に決定するため,ここでは複雑度係数と呼 ぶ.この値の設定により,工学的に有効な最適設計解 を創成することを可能としている.詳細は文献[4]を参 照されたい.

(2) 平均温度最小化問題の定式化

線形熱伝導体で構成される物体領域と空洞領域で構成される固定設計領域 Dに対し、境界 Γ_t において温度 T_0 で温度規定、境界 Γ_h において熱伝達係数 h の熱伝達境界、境界 Γ_q において熱流束 q の熱流束境界、固定設計領域 Dに対して内部発熱 Q が与えられている熱拡散最大化問題について考える.ただし、境界 Γ_t 及び境界 Γ_q は、固定設計領域の境界 ∂D 上に設定しているものとする.また、境界 Γ_h は固定設計領域内部において、物体領域の境界上で設定され、設計変数であるレベルセット関数の値に依存して決定される設計変数依存性の境界条件となる.このとき、熱拡散最大化問題は、文献 [5] で定式化されているように、次式に示す全ポテンシャルエネルギー最大化問題として定式化される.

$$\inf_{\phi} F(\Omega(\phi)) = -\left(\frac{1}{2}a(u_t, u_t) - l(u_t)\right) \tag{6}$$

subject to
$$a(u_t, v_t) = l(u_t)$$
 (7)

for
$$\forall v_t \in U \quad u_t \in U_t$$

$$G(\Omega(\phi)) \le 0 \tag{8}$$

ここで、上式中の各表記は次式で定義される.

(

$$a(u_t, v_t) = \int_{\Omega(\phi)} \nabla u_t \kappa \nabla v_t \mathrm{d}\Omega \tag{9}$$

$$l(v_t) = \int_{\Gamma_q} q v_t d\Gamma + \int_D Q v_t d\Omega + \int h(u_t - T_{amb}) v_t d\Gamma$$
(10)

$$G(\Omega(\phi)) = \int d\Omega - V_{\max}$$
(11)

 $J_{\Omega(\phi)}$ さらに, κ は熱伝導テンソル, T_{amb} は周囲温度を表

し、 U_t は以下の式にて定義される温度関数空間である.

$$U_t = \{ v_t \in H^1(D) \text{ with } v_t = T_0 \text{ on } \Gamma_t \}$$
(12)

なお,式(6)においては,全ポテンシャルエネルギー にマイナス符号を付加し,目的関数の最小化問題とし て定式化している.

3. 最適化法の構築

(1) 最適化アルゴリズム

最初に、適当な初期構造を示すレベルセット関数 ϕ を与える.次に、有限要素法を用いて、温度場 u_t を解 析する.温度場 u_t を用いて、目的汎関数と感度を計算 する.ここで、目的汎関数が収束していれば、最適解 が得られたと判断して最適化を終了する.収束してい なければ、レベルセット関数 ϕ を更新し、温度場を解 析するステップに戻る.以上の手続きにより、最適構 造を示す、レベルセット関数値を得る.

(2) レベルセット法に基づく温度場の数値解法

本研究では、レベルセット関数を用いて形状表現を 行うために、空洞領域を、十分に小さな熱伝導率を持 つ物体とみなして、温度場の解析を行う.さらに、固 定設計領域 D の内部に、熱伝達境界を与える場合には、 レベルセット関数の分布に基づいて境界条件を与える 方法 [8] を用いる.この方法の基本的な考え方は、次式 に示すように、ディラックのデルタ関数 δ(x) を用いて、 物体境界に沿った境界積分を固定設計領域における領 域積分への置き換えである.

$$\int_{\partial\Omega} \xi(\mathbf{x}) \mathrm{d}\Gamma \longrightarrow \int_D \xi(\mathbf{x}) \delta(\mathbf{x}) \mathrm{d}D \tag{13}$$

さらに,定義より,ディラックのデルタ関数 δ(x) はレベ ルセット関数 φ を用いて次式で表現することができる.

$$\delta(\mathbf{x}) = \nabla H(\phi(\mathbf{x})) \cdot \mathbf{N} \tag{14}$$

ここで、Nは、ヘビサイド関数 $H(\phi(\mathbf{x}))$ に対する法線 ベクトルである.上式の関係を用いることにより、ディ ラックのデルタ関数 $\delta(\mathbf{x})$ を、多次元変数から、単次元 変数へ置き換えることが可能となる.すなわち、ディ ラックのデルタ関数 $\delta(\mathbf{x})$ は次式で与えられる.

$$\delta(\mathbf{x}) = \frac{\mathrm{d}H(\phi(\mathbf{x}))}{\mathrm{d}\phi} \nabla \phi(\mathbf{x}) \cdot \frac{\nabla \phi(\mathbf{x})}{|\nabla \phi(\mathbf{x})|}$$
$$= \frac{\mathrm{d}H(\phi(\mathbf{x}))}{\mathrm{d}\phi} |\nabla \phi(\mathbf{x})|$$
(15)

これにより,式(13)に示す,境界積分から領域積分への変換は,次式で与えることができる.

$$\int_{\partial\Omega} \xi(\mathbf{x}) \mathrm{d}\Gamma \longrightarrow \int_{D} \xi(\mathbf{x}) \frac{\mathrm{d}H(\phi(\mathbf{x}))}{\mathrm{d}\phi} \mid \nabla\phi(\mathbf{x}) \mid \mathrm{d}D$$
(16)

以上の結果を用いて、次式により得られる解を、平衡 方程式 (7) の解として近似することが可能となる.

$$\int_{D} \nabla u_{t} \kappa \nabla v_{t} H_{a}(\phi) d\Omega =$$

$$\int_{\Gamma_{q}} q v_{t} d\Gamma + \int_{D} Q v_{t} d\Omega$$

$$+ \int_{D} h T_{amb} v_{t} \frac{dH_{a}(\phi(\mathbf{x}))}{d\phi} \mid \nabla \phi \mid d\Omega$$
(17)

ここで、 $H_a(\phi)$ は、次式に示すように、空洞領域で正 の微小値 d > 0、物体領域で 1 をとり、境界近傍の幅 w の区間において連続的に分布する、近似されたヘビ サイド関数である.

$$H_{a}(\phi) = \begin{cases} d & (\phi < -w) \\ \left(\frac{1}{2} + \frac{\phi}{w} \left(\frac{15}{16} - \frac{\phi^{2}}{w^{2}} \left(\frac{5}{8} - \frac{3}{16} \frac{\phi^{2}}{w^{2}}\right)\right)\right)(1-d) + d \\ & (-w < \phi < w) \\ 1 & (w < \phi) \end{cases}$$
(18)

本研究では,式(17)に基づいて温度場の解析を行う.

4. 数值例

数値例により、本研究で提唱する方法論の妥当性を 検証する.図2に固定設計領域Dとその境界条件を示 す.固定設計領域は1×10⁻²m×1×10⁻²mの正方形領

⊠-2 Fixed design domain

域とし、設計領域を、要素長1×10⁻⁴mの構造格子で 要素分割した.また、許容される体積の最大値 Vmax は 固定設計領域の30%,複雑度係数 ~ は 0.005 とし,温 度場の解析及び、レベルセット関数場の更新には、い ずれの場合においても、四節点のアイソパラメトリッ ク四角形要素を用いた.解析モデルの材料は、いずれ の場合も等方性材料を想定し、熱伝導率を148W/mK とした. 図に示すように、下端中央を $T_0 = 25^{\circ}C$ で温 度既定,上端左方と右方に熱流束 q = 1W/m² を与え. その他の境界では断熱境界を与える. ここでは、初期 構造が最適構造に与える影響を検討するため, 3つの 初期構造に対して最適化を図る. すなわち, Case 1 で は固定設計領域の全領域が物体により占められた構造. Case 2 では 4 つの穴が空いた構造, Case 3 では, 多く の穴が空いた構造をそれぞれ初期構造とした.図3に. 初期構造,最適化過程及び,最適構造を示す.図中,黒 色の領域が物体領域であり, 白色の領域が空洞領域で ある.得られた最適構造は、ほぼ同一で、物理的に妥 当な構造が得られることがわかった.したがって、本 研究で提案する方法では、初期構造の設定の影響が小 さいことがわかった.

5. 結言

本研究では、レベルセット法による形状表現を用い たトポロジー最適化を、平均温度最小化問題に展開し た.その結果、物理的に妥当で、明瞭な最適構造が得 られることがわかった.

☑-3 Configuration of the design problem 1: (a) Initial configuration lacking a hole; (b) Initial configuration with four holes; (c) Initial configuration with a large number of holes.

参考文献

- Bendsøe, M. P. and Kikuchi, N. : Generating Optimal Topologies in Structural Design Using A Homogenization Method, *Computer Methods in Applied Mechanics and Engineering*, Vol.71, pp. 197-224, 1988.
- Wang, M. Y., Wang, X. and Guo, D.,: A Level Set Method for Structural Topology Optimization, Computer Methods in Applied Mechanics and Engineering, Vol.192, pp. 227-246, 2003.
- Allaire, G., Jouve, F. and Toader, A.: Structural Optimization Using Sensitivity Analysis and A Level-Set Method, *Journal of Computational Physics*, Vol.194, pp. 363-393, 2004.
- 4) 山田崇恭,西脇眞二,泉井一浩,吉村允孝,竹澤晃 弘:レベルセット法による形状表現を用いたフェー ズフィールド法の考え方に基づくトポロジー最適化, 日本機械学会論文集A編, (accepted).
- 5)伊賀淳郎,西脇眞二,泉井一浩,吉村允孝:材料分

布の連続性を仮定した熱拡散問題のトポロジー最適 化, 日本機械学会論文集 A 編, Vol.73, pp. 2426-2433, 2008.

- Cahn, J. W. and Hilliard, J. E.: Free Energy of A Nonuniform System. I. Interfacial Free Energy, *The Journal of Chemical Physics*, Vol.28, pp. 258-267, 1958.
- Allen, S., M. and Cahn, J. W.: A Microscopic Theory for Antiphase Boundary Motion and its Application to Antiphase Domain Coarsening, *Acta Metall*, Vol.27, pp. 1085-1095, 1979.
- Osher, S. and Fedkiw, R., Level Set Methods and Dynamic Implicit Surfaces pp. 14-15, 2003, Springer.