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ABSTRACT 

An enhanced reduced model is proposed for elastic earthquake response analysis of a 

class of mono-symmetric shear building structures with constant eccentricity.  The proposed 

reduction method consists of two parts.  The first stage is the construction of a reduced 

structural model with the degrees of freedom at representative floor levels only.  In this stage, 

an inverse eigenmode-problem formulation is used to guarantee the limited equivalence 

between the original model and the reduced model.  The reduced model is constructed so as to 

have the same fundamental natural frequency and the same lowest-mode component ratios at 

the representative floor levels as those of the original model.  The second stage is the 

transformation of earthquake input forces into a set of reduced input forces.  This 

transformation utilizes the static equivalence of lateral-torsional stiffness between these two 

models and is introduced to enhance the accuracy level of the reduced model.  Several 

examples of a three-dimensional mono-symmetric ten-story shear building model with 

constant eccentricity are presented to demonstrate the validity and accuracy of the proposed 

reduction method for earthquake response analysis. 
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1. Introduction 

Lateral-torsional coupling in earthquake response of building structures with 

eccentricity is one of the key issues in the field of earthquake structural engineering (for 

example [1-16]).  This is because such response has complicated properties and is difficult to 

tackle.  Furthermore many earthquake damages have been reported for buildings with a fairly 

large eccentricity [17].  After a versatile research on this subject, some approaches have been 

introduced in the capacity spectrum method (for example [10]).  For high-rise buildings with 

eccentricity, the allowable design response is within an elastic limit due to their importance 

and safety margin.  In this case, a huge amount of computer resources is necessary to compute 

the earthquake response for many candidate ground motions [18].  Furthermore, when 

structural engineers seek an optimal or better design in terms of structural member sizes or 

passive damper locations, a versatile sensitivity analysis is required to obtain the redesign 

directions [19].  A time-history response analysis may be required to assure the accuracy and 

reliability of the response evaluation.  To reduce these computational costs, a sophisticated 

reduced model is desired.  Although some reduced models have been proposed, it is difficult 

to guarantee the accuracy for a wide range of structural and earthquake input parameters. 

An enhanced reduced model is proposed in this paper for elastic earthquake response 

analysis of a class of mono-symmetric shear building structures with constant eccentricity.  

The proposed reduction method consists of two parts.  The first stage is the construction of a 

reduced structural model with the degrees of freedom at representative floor levels only.  In 

this stage, an inverse eigenmode-problem formulation [20-22] is used to guarantee the limited 

equivalence between the original model and the reduced model.  More specifically, the 

reduced model is constructed so as to have the same fundamental natural frequency and the 

same lowest-mode component ratios at the representative floor levels as those of the original 

model.  The second stage is the transformation of earthquake input forces into a set of reduced 

input forces.  This transformation utilizes the static equivalence of lateral-torsional stiffness 
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between these two models and is introduced to enhance the accuracy level of the reduced 

model. 

Several reduction examples into one-mass and two-mass systems of a three-dimensional 

mono-symmetric ten-story shear building model with constant eccentricity throughout the 

stories are presented to demonstrate the validity and accuracy of the proposed reduction 

method for elastic earthquake response analysis.  It is shown that the transformation of 

earthquake input forces into a set of reduced input forces is inevitable for accurate simulation 

of the earthquake response of the original model by the reduced structural model and the two-

mass system exhibits a higher accuracy than the one-mass system. 

 

2. Reduced model of building structures with eccentricity 

2.1 Model description 

Consider a three-dimensional mono-symmetric shear building model as shown in 

Fig.1(a).  The building floor plan is shown in Fig.1(b) and is assumed to be uniform 

throughout the stories.  The center of mass is located at the central point and the center of 

rigidity of every floor exists at another common point.  Let ie  denote the distance between the 

center of mass and the center of rigidity in the i-th story.  From the assumption stated before, 

ie e  for all i.  The vibration in the y-direction does not include the lateral-torsional vibration 

and only the vibration in the x-direction exhibits the lateral-torsional vibration. 

Let ik  and iK  denote the x-directional story stiffness and rotational stiffness around the 

center of rigidity, respectively, in the i-th story.  The eccentricity ratio is defined by 

/Xi i XiR e r  where /Xi i ir K k  is the radius of gyration of stiffness.  The y-directional story 

stiffness in the i-th story is denoted by ik  in terms of a prescribed parameter  .  Let M , K , 

C , (1)  and (1)h  denote the mass matrix, the stiffness matrix, the damping matrix, the 

undamped fundamental natural circular frequency and the lowest-mode damping ratio of the 

shear building model in the x-directional lateral-torsional vibration.  It is assumed that the 

damping matrix C  is given by 
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2.2 Structural model reduction based on inverse eigenmode-problem formulation 

While the reduction of the original structural system can be made into reduced models 

with any number of degrees of freedom, two examples of a one-mass system and a two-mass 

system are shown for simple and essential presentation of the proposed reduction method. 

 

2.2.1 Transformation into one-mass system 

Consider a one-mass system, as shown in Fig.1(a), with the same mass 1m  and the mass 

moment of inertia 1I  as the total mass and the total mass moment of inertia of the original 

shear building model.  The reduced mass is located at the top floor.  The center of mass of the 

one-mass system exists at the center of the floor and the center of rigidity is located at the 

same point as the original model, i.e. 1e e . 

Let 1k , 1K  and 1e  denote the x-directional story stiffness, the rotational stiffness around 

the center of rigidity and the distance between the center of mass and the center of rigidity, 

respectively, of the one-mass reduced system.  The x-directional displacement of the center of 

mass of the one-mass system and the angle of rotation of the floor are denoted by 1x  and 1 .  

Then the governing equations of the undamped eigenvibration in the x-direction of the one-

mass system may be expressed by 

 

 
 1 1 1 1 1 1 0m x k x e    (2) 

 
  1 1 1 1 1 1 1 1 1 0I K e k x e       (3) 

 

Let (1) (1)
1 1{ }Tu   and (1)  denote the lowest eigenmode and the undamped fundamental 

natural circular frequency of the one-mass reduced system.  The lowest-mode vibration 

components of the one-mass system may be expressed in terms of (1) (1)
1 1{ }Tu   and (1)  by 
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The translational and rotational accelerations of the center of mass corresponding to the 

lowest-mode vibration components can then be described by 
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Substitution of Eqs.(4) and (5) into Eqs.(2) and (3) provides 

 

 
 (1)2

1 1 1 1 1 1 0m x k x e      (6) 

 

  (1)2
1 1 1 1 1 1 1 1 1 0I K e k x e         (7) 

 

The inverse eigenmode-problem formulation [20-22] yields the following expression for the 

x-directional story stiffness and the rotational stiffness of the one-mass reduced system. 

 

 

(1)2 (1)2 (1)21 1 1 1
1 (1)

11 1 1 1
1 1 (1)

1 1

1 1
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K
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


    (9) 

 

Let us introduce the following conditions on the limited equivalence of the original 

model and the one-mass reduced system, i.e. the equivalence of the undamped fundamental 

natural circular frequency and the lowest-mode component ratio. 

 

 
(1) (1)   (10) 
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Substitution of Eqs.(10) and (11) into Eqs.(8) and (9) leads to the solution of 1k  and 1K  to the 

inverse eigenmode problem. 
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2.2.2 Transformation into two-mass system 

Consider a two-mass system, as shown in Fig.2, with the masses 1 2,m m  and the mass 

moments of inertia 1 2,I I  reduced from the original shear building model.  There are several 

possibilities.  In this paper two floor levels (5-th and 10-th) are selected as the representative 

ones.  Each set of the masses and the mass moments of inertia between the representative 

floor levels are summed up into the representative floor level just above them.  Both centers of 

mass of the two-mass system exist at the center of the floor and the centers of rigidity are 

located at the same point as the original model, i.e. 1 2e e e  . 

Let 1 2,k k  and 1 2,K K  denote the x-directional story stiffnesses and the rotational 

stiffnesses around the center of rigidity of the two-mass reduced system, respectively.  The x-

directional displacements of the centers of mass of the two-mass system and the angles of 

rotation of the floors are denoted by 1 2,x x  and 1 2,  , respectively. 

The governing equations of undamped free vibration of the two-mass reduced model 

may be expressed as 
 

 
      1 1 1 1 1 1 2 2 1 2 2 1 0m x k x e k x x e          (14) 
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     2 2 2 2 1 2 2 1 0m x k x x e        (15) 

 

         1 1 1 1 2 2 1 1 1 1 1 1 2 2 2 1 2 2 1 0I K K e k x e e k x x e                 (16) 

 

       2 2 2 2 1 2 2 2 1 2 2 1 0I K e k x x e            (17) 

 

Let (1) (1) (1) (1)
1 2 1 2{ }Tu u    and (1)  denote the lowest eigenmode and the undamped 

fundamental natural circular frequency of the two-mass reduced system.  The lowest-mode 

vibration components of the two-mass reduced system may be expressed by 
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The translational and rotational accelerations of masses corresponding to the lowest-mode 

vibration components can then be described by 
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Substitution of Eqs.(18) and (19) into Eqs.(14)-(17) provides 

 

 
      (1)2

1 1 1 1 1 1 2 2 1 2 2 1 0m x k x e k x x e            (20) 

 

     (1)2
2 2 2 2 1 2 2 1 0m x k x x e         (21) 

 

         (1)2
1 1 1 1 2 2 1 1 1 1 1 1 2 2 2 1 2 2 1 0I K K e k e e k ex x x                   (22) 
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       (1)2
2 2 2 2 1 2 2 2 1 2 2 1 0I K e k x x e              (23) 

 

The inverse eigenmode-problem formulation [20-22] as described for the one-mass reduced 

model yields the following expression for the x-directional story stiffnesses and the rotational 

stiffnesses around the center of rigidity of the two-mass reduced system. 

 

 

(1)21 1 2 2
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1
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As in the case of the one-mass reduced system, let us introduce the following conditions 

on the limited equivalence of the original model and the two-mass reduced system, i.e. the 

equivalence of the undamped fundamental natural circular frequency and the lowest-mode 

component ratios. 

 

 
(1) (1)   (28) 
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where B  is an arbitrary constant.  Substitution of Eqs.(28) and (29) into Eqs.(24)-(27) leads to 

the solution to the inverse eigenmode problem. 
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2.3 Limitations 

The proposed procedure applies to elastic, mono-symmetric, shear type buildings, 

whose centers of mass and centers of rigidity are all on the same two vertical axes.  

Extensions to more general models, e.g. setback building models, may be possible by 

introducing the inverse problem formulation for such models in place of Eqs.(12), (13) and 

Eqs.(30)-(33).  This extension will be shown elsewhere. 

 

3. Reduction of earthquake input 

It has been confirmed through extensive investigations that the structural reduction 

explained in the previous section is insufficient from the viewpoint of computational accuracy.  

To compensate for this, a concept of reduction of earthquake input is introduced in this paper. 
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Consider an N-story shear building model.  Let 1 1( ) { }T
N Nt x x  x    denote the 

displacement vector of centers of mass.  The equations of motion of the original model 

subjected to a base acceleration ( )gu t  can be expressed by 

 

( ) ( ) ( ) ( )gt t t u t   Mx Cx Kx Mr  
 

(34)
 

 

where {1 1 0 0}Tr    is the influence coefficient vector.  The right-hand side of Eq.(34) is 

called ‘part of seismic inertia force’.  Its physical meaning is shown in Fig.3. 

Let M , K , C  and ( )tx  denote the mass matrix, the stiffness matrix, the damping 

matrix and the displacement vector of centers of mass of the reduced model.  Consider the 

equations of motion of the reduced model subjected to a reduced input force ( )tf  at the 

centers of mass.  Then the equations of motion of the reduced model may be described by 

 

 ( ) ( ) ( ) ( )t t t t  Mx Cx Kx f 
 

(35) 

 

It is assumed here that the reduced earthquake input ( )tf  can be derived from the limited 

equivalence of the displacements of centers of mass at the representative floors in the case 

where the original model and the reduced model resist with the restoring force only.  These 

assumptions and conditions are described by 

 

* ( )gu t Kx Mr
 

(36)
 

 

* ( )tKx f  (37) 

 
* *x Tx

 

(38) 

 

where T  denotes the transformation matrix positioning the representative floor number in the 

original model.  Equations (36) and (37) mean that both models resist statically only in this 

situation.  On the other hand, Eq.(38) requires the equivalence of the displacements of centers 

of mass at the representative floors of both models.  Even if the natural periods, mode shapes 
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and damping ratios of the original model and the reduced model are equivalent, the dynamic 

responses of these models may be different.  This is because the modal participation factors of 

these models may exhibit different values.  To compensate for this difference, the inertia 

forces are modified by employing the equivalence of the static stiffness.  It should be 

remarked again that the displacements *x  and  *x  have been introduced only for constructing 

the reduced earthquake input force ( )tf  and do not express the actual displacements. 

Substitution of Eq.(38) into Eq.(37) provides 

 

*( )t f KTx  (39) 

 

From Eq.(36), the following relation can be derived. 

 
* 1 ( )gu t x K Mr

 
(40)

 

 
Substitution of Eq.(40) into Eq.(39) leads to the following expression of the reduced 

earthquake input force. 

 

1( ) ( )gt u t f KTK Mr
 

(41) 

 

It should be remarked that, if the earthquake response is limited to an elastic range, it is 

sufficient to compute 1K  once.  This is not computationally demanding.  Fig.4 shows the 

schematic diagram of the reduction process of earthquake input and the reduced earthquake 

input forces on the reduced model.  Ont the other hand, Fig.5 illustrates the simple sum of 

earthquake input forces.  

Since simple examples are useful for understanding of the proposed concept, a one-mass 

system and a two-mass system are dealt with in the following. 

 

3.1 One-mass system 

For this model, part of Eq.(38) can be expressed by 
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* *

1 10x x  (42a) 

 

 * *
1 10   (42b) 

 

The transformation matrix T in Eq.(38) for this model is described by 

 
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

 
 
 

T  (43) 

 

3.2 Two-mass system 

For this model, part of Eq.(38) can be expressed by 

 

 
* *

1 5x x ,
 

* *
2 10x x  (44a, b) 

 

 * *
1 5  , * *

2 10   (44c, d) 

 

The transformation matrix T in Eq.(38) for this model is described by 

 
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1



 
 
 
 
 
 

T  (45) 

 

4. Numerical examples 

Consider a three-dimensional mono-symmetric ten-story shear building model, as 

shown in Fig.1(a), with only x-directional constant eccentricity subjected to three 

representative ground motions (El Centro NS 1940, Taft EW 1952 and Hachinohe NS 1968).  

Table 1 shows the structural parameters of the original ten-story model.   The floor size is 

given by 40( )X YL L m  .  Then floor masses are given by 61000 1.6 10 ( )i X Ym L L kg   . 

Based on the inverse eigenmode-problem formulation [20-22], the x-directional story 

stiffnesses are determined by 
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(1)2ˆ
N

i j
j i

k jm


   (46) 

 

where (1)̂  denotes the undamped fundamental natural circular frequency of the model in the 

case of no eccentricity.  Equation (46) is derived from the assumption of the straight-line 

lowest eigenmode in the case of no eccentricity.  The fundamental natural period of the 

original model in the case of no eccentricity is assumed to be T̂ =1.0(s). 

The eccentricity ratio is given by / 0.2Xi i XiR e r   where /Xi i ir K k  and the y-

directional stiffness ratio to the x-direction is given by 0.5  .  The damping matrix of the 

original model is assumed to be stiffness-proportional and is expressed by  (1) (1)2 /h C K .  

On the other hand, the damping matrix of the reduced model is given by  (1) (1)2 /h C K .  

The damping ratio is assumed to be (1) (1) 0.02h h  .  The Newmark-  method (  =1/4) has 

been used and the time increment of numerical integration has been set as 0.002(s). 

 

4.1 One-mass system 

Consider first the reduction into a one-mass system.  Table 2 presents the structural 

parameters of the one-mass reduced model. 

Fig.6 shows the comparison of top-floor x-directional displacements of center of mass 

among the ten-story original model, the one-mass reduced model under reduced earthquake 

input and the one-mass reduced model under simple earthquake input for El Centro NS 1940.  

It can be observed that the one-mass reduced model under reduced earthquake input can 

simulate the response of the original model within a reasonable accuracy and the 

transformation of earthquake input forces into a set of reduced input forces is inevitable for 

accurate simulation of the earthquake response of the original model by the reduced structural 

model. 

Fig.7 illustrates the comparison of angles of floor rotation among the ten-story original 

model, the one-mass reduced model under reduced earthquake input and the one-mass 

reduced model under simple earthquake input for El Centro NS 1940.  It can be seen that, 
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although the one-mass reduced model under reduced earthquake input can simulate the 

response of the original model within a reasonable accuracy, the accuracy level deteriorates 

compared to the displacements of center of mass.  This is because the angle of floor rotation 

in the second eigenmode is relatively large compared to that in the lowest eigenmode and the 

compensation by the reduced earthquake input is not sufficient in the evaluation of the angle 

of floor rotation. 

Fig.8 presents the comparison of displacements of the positive corner column (see 

Fig.1(b)) among the ten-story original model, the one-mass reduced model under reduced 

earthquake input and the one-mass reduced model under simple earthquake input for El 

Centro NS 1940.  It can be observed that the one-mass reduced model under reduced 

earthquake input can simulate the response of the original model within a reasonable accuracy 

and the accuracy level is between the displacement of center of mass and the angle of floor 

rotation. 

Fig.9 indicates the comparison of displacements of the negative corner column (see 

Fig.1(b)) among the ten-story original model, the one-mass reduced model under reduced 

earthquake input and the one-mass reduced model under simple earthquake input for El 

Centro NS 1940.  As in Fig.8, it can be observed that the one-mass reduced model under 

reduced earthquake input can simulate the response of the original model within a reasonable 

accuracy and the accuracy level is between the displacement of center of mass and the angle 

of floor rotation. 

 

4.2 Two-mass system 

Table 3 illustrates the structural parameters of the two-mass reduced model.  The natural 

periods of the original model, the two-mass reduced model and the one-mass reduced model 

are shown in Table 4.  It can be seen that, since the present paper deals with only the model 

with a common center of mass and a common center of rigidity throughout the stories, the 

natural periods of the reduced models coincide with those of the original model.  Fig.10 

shows the effective modal masses divided by the total mass of the original model.  The 
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effective modal masses larger than the fourth mode are omitted for the original model.  Fig.11 

illustrates the eigenmodes multiplied by the modal participation factors for the original model, 

the two-mass reduced model and the one-mass reduced model.  A small difference can be 

seen and this problem is compensated by the introduction of the procedure of reduction of 

earthquake input. 

Fig.12 presents the comparison of the reduced earthquake input and simple earthquake 

input for the two-mass reduced model under El Centro NS 1940.  It can be observed that the 

reduced earthquake input is slightly magnified from the simple earthquake input. 

Fig.13 shows the comparison of displacements of center of mass among the ten-story 

original model, the two-mass reduced model under reduced earthquake input and the one-

mass reduced model under reduced earthquake input for El Centro NS 1940.  It can be seen 

that the accuracy level of the two-mass system is higher than that of the one-mass system. 

Fig.14 illustrates the comparison of angles of floor rotation among the ten-story original 

model, the two-mass reduced model under reduced earthquake input and the one-mass 

reduced model under reduced earthquake input for El Centro NS 1940.  Fig.15 presents the 

comparison of displacements of the positive corner column (see Fig.1(b)) among the ten-story 

original model, the two-mass reduced model under reduced earthquake input and the one-

mass reduced model under reduced earthquake input for El Centro NS 1940.  On the other 

hand, Fig.16 indicates the comparison of displacements of the negative corner column (see 

Fig.1(b)) among the ten-story original model, the two-mass reduced model under reduced 

earthquake input and the one-mass reduced model under reduced earthquake input for El 

Centro NS 1940.  From Figs.14-16, it can be understood that the accuracy level of the two-

mass system is higher than that of the one-mass system as in Fig.13. 

 

4.3 Results for three representative earthquake ground motions 

Table 5 shows the comparison of various responses among the ten-story original model, 

the two-mass reduced model under reduced earthquake input and the one-mass reduced model 

under reduced earthquake input for three representative ground motions (El Centro NS 1940, 
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Taft EW 1952 and Hachinohe NS 1968).  In Table 5, not only the actual responses but also 

the errors from the responses of the original model are presented.  It can be observed that the 

two-mass reduced model can simulate the response of the original model more accurately than 

the one-mass reduced model for all of three representative ground motions except a few cases. 

 

4.4 Comparison in terms of modal responses 

Figs.17(a)-(d) show the comparison of modal responses between the ten-story original 

model and the two-mass reduced model under reduced earthquake input for El Centro NS 

1940.  The top-floor x-directional displacements of center of mass in the lowest two modal 

responses are compared in Fig.17(a).  It can be observed that the second mode contributes 

significantly to the total response because the natural period of the second mode is close to 

that of the fundamental mode.  It appears from Fig.17(a) that the lowest modal response of the 

ten-story original model and that of the two-mass reduced model under reduced earthquake 

input coincide well.  This is supported by the fact that the fundamental natural frequencies, the 

lowest-mode damping ratios and the lowest-eigenmode components at the top floor of both 

models coincide perfectly due to Eqs.(28), (29) and the assumption (1) (1) 0.02h h  .  

However, it should be remarked that the eigenmodes multiplied by the modal participation 

factors in the lowest-mode vibration of both models are different (see Fig.11) and the lowest 

modal response of the ten-story original model and that of the two-mass reduced model under 

reduced earthquake input are also different due to the difference of the eigenmodes multiplied 

by the modal participation factors (see Fig.11).  This difference is reduced by introducing the 

concept of reduced earthquake input.  As for the modal response in the second-mode vibration, 

the second natural frequencies, the second-mode damping ratios and the second eigenmode 

components at the top floor of both models also coincide perfectly in this model.  However, 

the eigenmodes multiplied by the modal participation factors in the second mode of both 

models are different (see Fig.11) and the second modal response of the ten-story original 

model and that of the two-mass reduced model under reduced earthquake input are also 

different. 
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The angles of top-floor rotation in the lowest two modal responses are compared in 

Fig.17(b).   It can be seen that the second-mode response appears in the reverse direction to 

the lowest-mode response.  The x-directional displacements of top-story positive and negative 

corner columns in the lowest two modal responses are compared in Fig.17(c) and (d), 

respectively.  It can be understood that the two-mass reduced model under reduced earthquake 

input can simulate the lowest two modal responses of the original model not only in the top-

floor x-directional displacement of center of mass but also in the angle of top-floor rotation 

and in the x-directional displacements of top-story positive and negative corner columns. 

It should be remarked finally that the present reduced model can simulate only the 

displacements at the representative floor levels.  If the interstory drifts are needed, the 

selection of the representative floor levels should be made carefully.  When the interstory drift 

at the top story is required, the top two floor levels should be selected as the representative 

floor levels.  This issue has to be discussed in the future. 

 

5. Various eccentricities and lateral-torsional stiffness ratios 

In order to investigate the accuracy of the proposed reduction method for various 

eccentricities and lateral-torsional stiffness ratios, additional analysis has been conducted for 

El Centro NS 1940.   

Table 6 shows the comparison of accuracies among the original model, the two-mass 

reduced model under reduced earthquake input and the two-mass reduced model under simple 

earthquake input (El Centro NS 1940) for various eccentricities 1.70,3.40,5.10( )ie m  

( 0.1,0.2,0.3XiR  ).  The parameter /Xi i ir K k  has been set as 17.0( )Xir m .  There is no 

special difference from the accuracy for the model in Sections 4.1 and 4.2. 

Table 7 presents the comparison of accuracies among the original model, the two-mass 

reduced model under reduced earthquake input and the two-mass reduced model under simple 

earthquake input (El Centro NS 1940) for various lateral-torsional stiffness ratios 

34.0,17.0,11.3( )Xir m  ( 0.1,0.2,0.3XiR  ).  The eccentricity has been set as 3.40( )ie m .  

There is no special difference from the accuracy for the model in Sections 4.1 and 4.2. 
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6. Application to model with non-proportional damping 

In order to show that the proposed method can be applied to non-classically damped 

models, an example ten-story model is considered which includes passive viscous dampers 

with a constant damping coefficient only at the lower five stories.  All the dampers are located 

at the center of mass and the damping coefficient is determined so that the approximate 

additional lowest-mode damping ratio attains 0.10. 

Table 8 shows the comparison of various responses among the ten-story original model, 

the one-mass reduced model under reduced earthquake input and the one-mass reduced model 

under simple earthquake input for El Centro NS 1940.  It can be seen that, although the 

accuracy is reduced slightly, a reasonable response evaluation can be made 

 

7. Conclusions 

An enhanced reduced model is proposed for elastic earthquake response analysis of a 

class of mono-symmetric shear building structures with constant eccentricity.  The principal 

results may be summarized as follows. 

(1) The proposed reduction method consists of two parts.  The first stage is the construction of 

a reduced structural model with the degrees of freedom at representative floor levels only.  

In this stage, an inverse eigenmode-problem formulation is used to guarantee the 

equivalence of the undamped fundamental natural frequency and the lowest-mode 

component ratios at the representative floor levels between the original model and the 

reduced model.  More specifically, the reduced model is constructed so as to have the 

same fundamental natural frequency and the same lowest-mode component ratios at the 

representative floor levels as those of the original model. 

(2) The second stage is the transformation of earthquake input forces into a set of reduced 

input forces.  This transformation utilizes the static equivalence of lateral-torsional 

stiffness between these two models and is introduced to enhance the accuracy level of the 

reduced model. 
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(3) Reduction examples of a three-dimensional mono-symmetric ten-story shear building 

model with constant eccentricity into a one-mass system and a two-mass system revealed 

that the proposed reduction method possesses a reasonable and acceptable accuracy and 

the two-mass system exhibits a higher accuracy than the one-mass system.   

(4) It has been demonstrated numerically that the transformation of earthquake input forces 

into a set of reduced input forces is inevitable for accurate simulation of the earthquake 

response of the original model by the proposed reduced structural model. 

(5) It has been shown that the proposed reduction method can be applied to non-classically 

damped models for which the classical normal mode decomposition is not possible. 

 

Only the buildings with constant eccentricity throughout the stories have been treated in 

this paper for a simple presentation of a new model reduction method.  It has been confirmed 

that this model reduction theory is applicable to more general buildings with irregular 

eccentricities, e.g. setback buildings.  That theory will be presented in the future. 
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Table 1 Structural parameters of original model 

 
story 

number 
( )im kg  2( )iI kg m ( / )ik N m  ( )ie m ( / )iK N m rad  ( )Xir m

1 61.60 10  84.27 10 93.47 10  3.40  121.00 10  17.0
2  61.60 10  84.27 10 93.41 10  3.40  119.84 10  17.0  
3  61.60 10  84.27 10 93.28 10  3.40  119.47 10  17.0  
4  61.60 10  84.27 10 93.10 10  3.40  118.93 10  17.0  
5  61.60 10  84.27 10 92.84 10  3.40  118.20 10  17.0  
6  61.60 10  84.27 10 92.53 10  3.40  117.29 10  17.0  
7  61.60 10  84.27 10 92.15 10  3.40  116.20 10  17.0  
8  61.60 10  84.27 10 91.71 10  3.40  114.92 10  17.0  
9  61.60 10  84.27 10 91.20 10  3.40  113.46 10  17.0  

10  61.60 10  84.27 10 86.32 10  3.40  111.82 10  17.0  
 
 
 

Table 2 Structural parameters of one-mass reduced model 
 

story 
number 

( )jm kg  2( )jI kg m ( / )jk N m  ( )je m ( / )jK N m rad  ( )Xjr m

1 71.60 10 94.27 10  86.32 10  3.40  111.82 10  17.0
 
 
 

Table 3 Structural parameters of two-mass reduced model 
 

story 
number 

( )jm kg  2( )jI kg m ( / )jk N m ( )je m ( / )jK N m rad  ( )Xjr m

1 68.00 10  92.13 10 89.47 10 3.40  112.73 10  17.0

2  
68.00 10  

92.13 10 86.32 10 3.40 111.82 10  17.0
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Table 4 Natural periods of original model, two-mass reduced model and 
one-mass reduced model 

 

Mode 
number 

Natural period 
Original
model 

Two-mass 
reduced model

One-mass 
reduced model 

1 1.087661 1.087661 1.087661 
2 0.883987 0.883987 0.883987 
3 0.444036 0.444036 

 
4 0.360886 0.360886 

 
 
 

Table 5 Comparison among original model, two-mass reduced model under reduced 
earthquake input and one-mass reduced model under reduced earthquake input 

 

Ground 
motion 

Response quantity 
Original 
model 

Two-mass 
reduced 
model 

Error 
(%) 

One-mass 
reduced 
model 

Error 
(%) 

El Centro 
NS 1940 

Disp. of center of 
mass (mm) 

161 157  2.29  153  4.73 

Angle of rotation 
(×10-3rad) 

10.5  10.0  4.87  9.85  6.28  

Positive column 
disp.(mm) 

207  199  3.69  192  6.94  

Negative column 
disp.(mm) 

307  289  5.88  274  10.9  

Taft EW 
1952 

Disp. of center of 
mass (mm) 

75.6  69.6  7.95  71.4  5.60  

Angle of rotation 
(×10-3rad) 

3.04  2.89  5.18  2.89  4.95  

Positive column 
disp.(mm) 

100  93.9  6.24  89.9  10.3  

Negative column 
disp.(mm) 

84.8  82.9  2.22  80.8  4.76  

Hachinohe 
NS 1968 

Disp. of center of 
mass (mm) 

117  114  2.85  110  5.58  

Angle of rotation 
(×10-3rad) 

5.94  5.71 3.83  5.56  6.37  

Positive column 
disp.(mm) 

113  111 1.36  110  2.37  

Negative column 
disp.(mm) 

194  189  3.04  183  5.97  
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Table  6 Comparison of accuracies among original model, two-mass reduced model under 
reduced earthquake input and two-mass reduced model under simple earthquake 
input (El Centro NS 1940) for various eccentricities 

 

Xir  
(m) 

ie (m) 
( )XiR  

Response quantity
Original
model 

Two-mass reduced model 
Reduced 

earthquake 
input 

Error 
(%) 

Simple 
earthquake 

input 

Error 
(%) 

17.0 

1.70 
(0.1) 

Disp. of center of 
mass (mm) 

202 197 -2.10 172 -14.9

Angle of rotation 
(×10-3rad) 

8.37 7.97 -4.81 6.91 -17.4

Positive column 
disp. (mm) 

221 206 -6.89 178 -19.4

Negative column 
disp. (mm) 

289 278 -3.89 241 -16.6

3.40 
(0.2) 

Disp. of center of 
mass (mm) 

161 157 -2.29 137 -15.1

Angle of rotation 
(×10-3rad) 

10.5 10.0 -4.87 8.67 -17.5

Positive column 
disp. (mm) 

207 199 -3.68 173 -16.4

Negative column 
disp. (mm) 

307 289 -5.88 250 -18.5

5.10 
(0.3) 

Disp. of center of 
mass (mm) 

204 202 -0.98 176 -13.8

Angle of rotation 
(×10-3rad) 

9.68 9.31 -3.81 8.09 -16.5

Positive column 
disp. (mm) 

197 192 -2.65 167 -15.4

Negative column 
disp. (mm) 

271 258 -4.69 224 -17.3
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Table  7 Comparison of accuracies among original model, two-mass reduced model under 
reduced earthquake input and two-mass reduced model under simple earthquake 
input (El Centro NS 1940) for various lateral-torsional stiffness ratios 

 

ie  
(m) 

Xir (m) 
( )XiR  

Response quantity
Original
model 

Two-mass reduced model 
Reduced 

earthquake
input 

Error
(%) 

Simple 
earthquake 

input 

Error
(%) 

3.40 

34.0 
(0.1) 

Disp. of center of 
mass (mm) 

238 232 -2.59 201 -15.3 

Angle of rotation
(×10-3rad) 

1.07 1.03 -4.46 0.89 -17.1 

Positive column 
disp. (mm) 

222 217 -2.60 188 -15.4 

Negative column 
disp. (mm) 

256 247 -3.53 215 -16.2 

17.0 
(0.2) 

Disp. of center of 
mass (mm) 

161 157 -2.29 137 -15.1 

Angle of rotation
(×10-3rad) 

10.5 10.0 -4.87 8.67 -17.5 

Positive column 
disp. (mm) 

207 199 -3.68 173 -16.4 

Negative column 
disp. (mm) 

307 289 -5.88 250 -18.5 

11.3 
(0.3) 

Disp. of center of 
mass (mm) 

202 190 -6.04 164 -18.6 

Angle of rotation
(×10-3rad) 

5.31 4.86 -8.39 4.20 -20.8 

Positive column 
disp. (mm) 

278 258 -7.21 224 -19.7 

Negative column 
disp. (mm) 

137 130 -5.40 112 -18.1 
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Table 8 Comparison of various responses among the ten-story original model, the one-mass 
reduced model under reduced earthquake input and the one-mass reduced model 
under simple earthquake input for El Centro NS 1940 

 

Response quantity 
Original 
model 

One-mass reduced model 
Reduced 

earthquake 
input 

Error 
(%) 

Simple 
earthquake 

input 

Error 
(%) 

Disp. of center of mass 
(mm) 

91.9 83.7 -8.89 62.6 -31.9 

Angle of rotation 
(×10-3rad) 

5.26 4.70 -10.5 3.52 -33.1 

Positive column disp. 
(mm) 

132 119 -9.83 89.1 -32.6 

Negative column disp. 
(mm) 

148 131 -11.7 97.7 -34.0 

 



 27

-400

-300

-200

-100

0

100

200

300

400

0 2 4 6 8 10

10-story original model (top story)
One-mass reduced model 
(reduced earthquake input)
One-mass reduced model 
(simple earthquake input)

D
is

pl
ac

em
en

t o
f 

ce
nt

er
 o

f 
m

as
s 

(m
m

)

Time (s)  
 

Fig.6 Comparison of x-directional displacements of center of mass among ten-story original 
model, one-mass reduced model under reduced earthquake input and one-mass reduced model 

under simple earthquake input (El Centro NS 1940) 
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Fig.7 Comparison of angle of floor rotation among ten-story original model, one-mass 
reduced model under reduced earthquake input and one-mass reduced model under simple 

earthquake input (El Centro NS 1940) 
 
 



 28

-400

-300

-200

-100

0

100

200

300

400

0 2 4 6 8 10

10-story original model (top story)
One-mass reduced model 
(reduced earthquake input)
One-mass reduced model 
(simple earthquake input)

D
is

pl
ac

em
en

t o
f 

po
si

tiv
e 

co
rn

er
 c

ol
u

m
n

 (
m

m
)

Time (s)  
 

Fig.8 Comparison of x-directional displacements of positive corner column (see Fig.1(b)) 
among ten-story original model, one-mass reduced model under reduced earthquake input and 

one-mass reduced model under simple earthquake input (El Centro NS 1940) 
 
 

-400

-300

-200

-100

0

100

200

300

400

0 2 4 6 8 10

10-story original model (top story)
One-mass reduced model 
(reduced earthquake input)
One-mass reduced model 
(simple earthquake input)

D
is

pl
a

ce
m

en
t o

f 
ne

ga
tiv

e 
co

rn
er

 c
ol

um
n

 (
m

m
)

Time (s)  
 

Fig.9 Comparison of x-directional displacements of negative corner column (see Fig.1(b)) 
among ten-story original model, one-mass reduced model under reduced earthquake input and 

one-mass reduced model under simple earthquake input (El Centro NS 1940) 
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Fig.10 Effective modal masses divided by the total mass of the original model 
 
 

 
 

Fig.11 Eigenmodes multiplied by modal participation factors (original model, two-mass 
reduced model, one-mass reduced model) 
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Fig.12 Reduced earthquake input and simple earthquake input to two-mass reduced model 
under El Centro NS 1940, (a) lower mass, (b) top mass 
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Fig.13 Comparison of x-directional displacements of center of mass among ten-story original 
model, two-mass reduced model under reduced earthquake input and one-mass reduced model 

under reduced earthquake input (El Centro NS 1940) 
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Fig.14 Comparison of angle of floor rotation among ten-story original model, two-mass 
reduced model under reduced earthquake input and one-mass reduced model under reduced 

earthquake input (El Centro NS 1940) 
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Fig.15 Comparison of x-directional displacements of positive corner column (see Fig.1(b)) 
among ten-story original model, two-mass reduced model under reduced earthquake input and 

one-mass reduced model under reduced earthquake input 
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Fig.16 Comparison of x-directional displacements of negative corner column (see Fig.1(b)) 
among ten-story original model, two-mass reduced model under reduced earthquake input and 

one-mass reduced model under reduced earthquake input 
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Fig.17 Comparison of modal responses between the ten-story original model and the two-
mass reduced model under reduced earthquake input for El Centro NS 1940 

(a) Top-floor x-directional displacements of center of mass in the lowest two modal responses 
(b) Angles of top-floor rotation in the lowest two modal responses 
(c) x-directional displacement of top-story positive corner column (see Fig.1(b)) in the lowest 

two modal responses 
(d) x-directional displacement of top-story negative corner column (see Fig.1(b)) in the lowest 

two modal responses 


