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Abstract

In this paper, we propose a control method for establishing periodic rotation inherent in parametric pendulum based on a delayed
feedback control. The experiments elucidate the existing range of periodic rotation in the domain of delay. The range of existence
possibly represents the tolerance of proposed control with mistuned delay. It is confirmed that forced synchronization governs the
existence and the width. The result assures that the frequency synchronization characteristics overcome the mistuned difference of
delay in the control through entrainment.
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1. Introduction

Pendulum is a simple physical system, but is of significance
in science and engineering. A parametrically excited pendu-
lum demonstrates coexisting oscillation and rotation. Rotation
of parametric pendulum [1–3] exhibits a conversion from the
external vibration into its rotational motion. The converting
motion is effective from the viewpoint of applications such as
energy scavenging from vibration of nature [4]. In this paper,
we propose a control method for establishing the periodic ro-
tation inherent in the parametric pendulum based on a delayed
feedback control. The tolerance of the control method with mis-
tuned delay is confirmed experimentally.

Delayed feedback control [5] is one of practical methods
for controlling chaos [6–8]. It is well known that the control
method is proposed for continuous systems based on the OGY
method [6] to stabilize an unstable periodic orbit embedded in
chaotic attractors. A lot of experimental applications of the
control have been carried out with benefits of the property to
require no exact system model [9–12]. On the implementation
of the control, the setting of the delay is requested at the exact
period of the target orbit for the stabilization of the unstable pe-
riodic orbit. Then the control gain is adjusted on an empirical,
theoretical or numerical basis. The adjustment is comparatively
easy because the delayed feedback control stabilizes the target
orbit in a certain range of the control gain [5]. On the other
hand, the period of target orbit has to be estimated correctly if
we have no preliminary information of the period. The bifur-
cation diagram with respect to the delay time reveals that the
delayed feedback control still settles the chaotic system into a
periodic orbit in spite of the mistuned delay time [5, 12–14].
The range of periodic orbit in the diagram is called window.
The result indicates the substantial adjustability on the delay.
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In comparison with the control gain, the delay time has not at-
tracted attentions in terms of the effect to the performance of
control, which might be caused by the difficulty in functional
analysis and calculation [15].

The delayed feedback control can substantially synchronize
the current state of the system to its delayed state [11, 16].
The control is associated with synchronization in chaotic sys-
tems [17]. The current state, the delayed state, and the feedback
loop correspond to a response subsystem, a drive subsystem,
and a coupling, respectively. Control and synchronization for
chaos can be applied to periodic orbit. Based on the delayed
feedback control, we propose a control method to establish sta-
ble periodic rotation depending on the initial condition and the
external excitation. This paper focuses on experimental inves-
tigations for window of periodic rotation in the domain of de-
lay. The existence and width of the window is governed by
frequency synchronization.

The proposed control is implemented to an experimental
setup of parametric pendulum for maintaining the periodic rota-
tion. Since the periodic rotation coexists with low energy states
and motions [18], the control is required to sustain the peri-
odic rotation against irregularity, noise, and frequency variation
of vibration of nature in the energy scavenging. In particular,
the frequency variation causes the mistuned delay in the control
scheme. It is also confirmed that the existence of the window
of periodic rotation in the domain of delay possibly represents
the tolerance of proposed control with mistuned delay. The tol-
erance with incorrect delay is definitely associated with the sta-
bility of delay systems [19].

2. Experimental setup and start-up control

The experimental setup shown in Fig. 1 for parametric pen-
dulum is constructed by exciting a mechanical pendulum verti-
cally. The mechanical pendulum is configured at the mass m =
189.1 g and the length l = 138.3 mm by constructing a rod and
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Figure 1: Experimental setup for parametric pendulum.

Table 1: Size of mechanical pendulum.
Rod Bob
Mass 39.6 g Mass 144.9 g
Length 180.0 mm Diameter 50.0 mm
Diameter 6.0 mm Width 10.0 mm

a bob in Tab. 1. The pendulum is supported by a mechanical rig
mounted on an electromagnetic shaker. The shaker generates a
sinusoidal excitation in the vertical direction which corresponds
to the parametric excitation. We propose a control method for
establishing the periodic rotation inherent in the experimental
setup. Fig. 2 shows the block diagram of the proposed con-
trol implemented to the vertically excited mechanical pendu-
lum. The dynamics of the experimental setup is described by

dθ
dt
= v, (1a)

dv
dt
= − D(θ, v)

ml2
− g + a cos(2π f t + ϕ)

l
sin θ +

Fu(t)
ml2
, (1b)

u(t) = K
(
θ(t − τ) + Θ − θ(t)), (1c)

where t denotes the time, θ the angular displacement of pen-
dulum from the downward position, v the angular velocity, and

Parametric
Pendulum

control system

Figure 2: Block diagram of the start-up control with time delay for the periodic
rotation inherent in the parametric pendulum.
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Figure 3: Establishment of the periodic rotation inherent in the vertically
excited mechanical pendulum from its periodic oscillation at a = 1.1 m/s2,
f = 2 Hz, K = 0.072 A/rad, τ = T = 1/ f = 0.5 s, and Θ = 2π. The points
in the figure below denote the stroboscopic points taken at every excitation pe-
riod T . The vertical dash line represents the moment of onset of the control.

g the gravity acceleration. The vertical excitation is regulated
with the amplitude a and the frequency f . The constant ϕ de-
notes the initial phase of excitation. Since we have no exact
model of the damping effect, the damping here is described as
the function D(θ, v). The linear viscous coefficient is estimated
at around 1×10−4 N·m/s. The function u(t) denotes the control
input with the control gain K, the delay time τ, and the peri-
odicity on Θ. The control input u(t) is applied as a torque to
the mechanical pendulum by a DC motor through gears with
F = 0.18 N·m/A. The required angular displacement θ is mea-
sured by an angle sensor, which consists of angular potentiome-
ter. The delayed feedback loop can be implemented as a pro-
gram in a computer for control with A/D and D/A converters.
Now we target the periodic rotation at which the pendulum ro-
tates once during the excitation period T = 1/ f . For the tar-
get rotation the angular displacement θ(t) exhibits the periodic-
ity θ(t) = θ(t − T ) + 2π. Thus we set the delay time τ = T and
the periodicity on Θ = 2π so that the establishment of periodic
rotation is accomplished. Here it should be noted that the con-
trol parameter Θ cannot be replaced by carrying out modulo 2π
operation for θ. Consider a situation which can be described as
θ(t) = 3π + ϵ and θ(t − T ) = π − ϵ under the control, where
ϵ is a small parameter. This represents that the pendulum ro-
tates almost periodically. The modulo 2π operation possibly
changes from θ(t) = 3π + ϵ to θ(t) = −π + ϵ. Then, under
the start-up control without Θ, the control input is obtained at
u(t) = 2K(π−ϵ). The corresponding torque is too large to estab-
lish the periodic rotation even though the pendulum exhibited
almost periodic rotation. Therefore, the control parameter Θ is
necessary to reflect the periodicity of rotation. For plotting the
following figures, we perform the modulo 2π operation for the
angular displacement θ(t).

Figure 3 shows an example of the control for starting up the
periodic rotation inherent in the experimental setup. The ver-
tical excitation is fixed at a = 1.1 m/s2 and f = 2 Hz so that
the periodic rotation coexists with a periodic oscillation. The
control gain is adjusted at K = 0.072 A/rad. The result shows
that the periodic rotation is established from the periodic oscil-
lation. After the establishment of rotation, the control input u(t)
disappears. It suggests that the periodic rotation is inherent in
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Figure 4: Bifurcation diagram of rotation with respect to the delay time τ in
the experimental setup under the start-up control. The vertical excitation is
fixed at a = 1.2 m/s2 and frequency f = 2.3 Hz. The control parameters are
adjusted at K = 0.072 A/rad and Θ = 2π. The diagram is plotted by upward
and downward shift of the control frequency fτ corresponding to the reciprocal
of the delay time τ from the excitation frequency f = 2.3 Hz. The points denote
the stroboscopic points of steady rotations.

the experimental setup at the parameters.

3. Bifurcation with respect to delay

Figure 4 shows an experimental bifurcation diagram of rota-
tion with respect to the delay time τ at a = 1.2 m/s2, f = 2.3 Hz,
K = 0.072 A/rad, and Θ = 2π. The diagram is plotted
through the stroboscopic observation at every excitation pe-
riod T = 1/ f = 1/2.3 s. The points represent steady rotations
measured by decreasing and increasing the delay time τ from
the excitation period T . According to the experimental proce-
dure, we display the bifurcation parameter at the reciprocal of
the delay time, denoted by 1/τ =: fτ, in Fig. 4.

The inherent periodic rotation is maintained by fixing the de-
lay time at τ = T in the delayed feedback loop. Fig. 5(b) shows
the periodic rotation with the null control input u(t). The pe-
riodic rotation is denoted by the single stroboscopic point in
Fig. 4, which implies that the period of the rotation is coinci-
dent with the excitation period T . Decreasing the delay time τ
shifts the stroboscopic point of angular displacement θ(t) in the
positive direction. The shifted single stroboscopic point cor-
responds to a periodic rotation that does not exist without the
control. We show the controlled periodic rotation at τ = 1/3 s
in Fig. 5(c). The control input u(t) remains and vibrates periodi-
cally. Further decrease of the delay time τ induces a bifurcation
marked by B in Fig. 4. At around τ = 1/3.3 s the periodic
rotation disappears and a quasiperiodic rotation appears. The
quasiperiodic rotation is depicted by a number of the strobo-
scopic points in Fig. 4. Fig. 5(d) shows the quasiperiodic rota-
tion at τ = 1/3.4 s. The average frequency is higher than the
excitation frequency. Increase of the delay time τ shifts the the
stroboscopic point of θ(t) in the negative direction in a symmet-
ric fashion. By increasing the delay time τ to 1/2.18 s, another
bifurcation marked by A occurs. We observe quasiperiodic rota-
tions for the longer delay time τ. Fig. 5(a) shows the quasiperi-
odic rotation of θ(t) and control input u(t) at τ = 1/2.1 s.
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(a) τ = 1/2.1 s.
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(b) τ = T = 1/ f = 1/2.3 s.
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(c) τ = 1/3.0 s.
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(d) τ = 1/3.4 s.

Figure 5: Steady rotation under the start-up control at the different delay time τ
in the bifurcation diagram of Fig. 4.

The bifurcation diagram elucidates the window of periodic
rotation in the domain of the delay. That is, the delayed feed-
back loop can track a periodic rotation in a certain range of the
delay time τ. The existence of the window of periodic rota-
tion in the domain of delay represents the tolerance of proposed
control with mistuned delay. The width of window corresponds
to the tolerable range of incorrect delay.

For the window of periodic rotation the maximum of input
torque is much smaller than the maximum torque induced by
the gravity. The periodic rotation can be sustained by the small
torque, that is, it implies the sufficiently low energy consump-
tion of the control.

4. Theoretical discussion on existence of window

The experimental bifurcation diagram clarified the tolerance
of proposed control with mistuned delay. The tolerable range of
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Figure 6: Bifurcation diagram of rotation with respect to the torque N in the
driven parametric pendulum (4) at γ = 0.1, p = 0.5, and ω = 2. The branches
consist of the stroboscopic points taken at every excitation period 2π/ω.

delay indicates the performance of the start-up control. How-
ever, the analysis of the system with delay is complicated be-
cause of the infinite dimension of state space. The periodic state
represented by the window implies that the infinite dimensional
state space degenerates to low dimension. We can theoretically
estimate the tolerable range of delay by considering a system
without delay.

A system without delay is introduced to model the periodic
rotation for the incorrect delay time τ. In the window of the ex-
perimental bifurcation diagram the angular displacement θ∗(t)
of the periodic rotation can be expressed with a periodic func-
tion x(t):

θ∗(t) = 2π f t + x(t), where x(t) = x(t − T ). (2)

The corresponding control input u∗(t) also possesses the same
periodicity and is transformed into

u∗(t) = K(θ∗(t − τ) + 2π − θ∗(t)) = 2πK(1 − f τ) + y(t), (3)

where y(t) := K[x(t−τ)− x(t)]. The function y(t) obviously has
the same periodicity as x(t). From Eq. (3) we simplify the con-
trolled system as the following nondimensionalized parametric
pendulum driven by a constant torque N:

dθ
dt
= v,

dv
dt
= −γv − (1 + p cosωt) sin θ + N. (4)

The constant torque N corresponds to 2πK(1 − f τ). The lin-
ear viscous damping is assumed at the coefficient γ. We can
neglect the periodic input y(t) in the representation because the
torque y(t) is sufficiently small in comparison with the effect of
the vertical excitation.

Figure 6 shows a bifurcation diagram of rotation with respect
to the torque N in the system (4) at γ = 0.1, p = 0.5, and ω = 2.
The stable branch exhibits qualitatively similar structure with
the window in the domain of delay in Fig. 4. The stable pe-
riodic rotation disappears through the saddle-node bifurcation,
denoted by C and D, at both sides of the branch. For appropriate
torque N a stable rotational limit cycle exists in the system (4)
without the parametric excitation. The Melnikov’s method [20]
gives the existence condition N > 4γ/π =: N0 ≈ 0.127. Thus
the rotational limit cycle is entrained by the parametric excita-
tion for N > N0. The stable rotation for N > N0 corresponds

to the entrained rotation. The quasiperiodic rotation through
the bifurcation D can be regarded as out of the synchronized
state [21, 22]. Therefore, the bifurcation structure of periodic
rotation is governed by the frequency synchronization.

We can qualitatively identify the bifurcations A and B in the
experimental setup with the modeled bifurcations C and D, re-
spectively. Decreasing (Increasing) delay induces the increase
(decrease) of the constant input 2πK(1 − f τ) and the change of
periodic input y(t), respectively. Here the periodic input y(t) is
much smaller than the effect of periodic excitation. Thus, the
bifurcation with respect to the delay time τ in Fig. 4 is caused
by the change of the constant input torque 2πK(1 − f τ). The
bifurcations in Figs. 4 and 6 are accompanied by the change of
the constant torque. It is confirmed that the qualitative identifi-
cation of the bifurcations A and B with the saddle-node bifurca-
tion C and D in terms of the bifurcation with respect to constant
torque. The identification implies that the stable branch in the
system (4) without delay models the window of periodic rota-
tion in the system (1) with delay. The width of window corre-
sponds to the tolerable range of mistuned delay in the proposed
control. Therefore we can estimate the tolerable range of pro-
posed control without analyzing the system with delay in the
functional space.

The existence and width of stable branch is governed by the
frequency synchronization. Because the system (4) models the
system (1) to the extent of the periodic rotation, the existence
and width of window of periodic rotation is also governed by
the frequency synchronization.

5. Concluding remarks

In this paper the window of periodic rotation was experimen-
tally investigated in the bifurcation diagram with respect to de-
lay time under the delayed feedback. We proposed a control
method for maintaining the periodic rotation in the vertically
excited mechanical pendulum based on the delayed feedback
control. The experiments elucidated the periodic window in
the domain of delay with small input torque. The existence of
the window in the domain of delay represents the tolerance of
proposed control with mistuned delay. Therefore the proposed
control can maintain the periodic rotation in a certain range of
delay with sufficiently low energy consumption. In addition,
we introduced a simple model without delay for the periodic
rotation of the mechanical pendulum controlled by the delayed
feedback. It was confirmed that forced synchronization gov-
erned the existence and width of the window. The result implies
that the frequency synchronization overcomes the mistuned dif-
ference of delay in the control method.
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