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We propose a theory to describe time-dependent solvation structure near solid-liquid interface. Re-
cently, we have developed two-dimensional-reference interaction site model to describe solvation
structure near solid-liquid interface at the equilibrium state. In the present study, the theory is
extended to treat dynamical aspect of the solvation; site-site Smoluchowski-Vlasov equation and
surrogate Hamiltonian description are utilized to deal with the time-dependency. This combina-
tion enables us to access a long-time behavior of solvation dynamics. We apply the theory to a
model system consisting of an atomistic wall and water solvent, and discuss the hydration struc-
ture dynamics near the interface at the molecular-level. © 2012 American Institute of Physics.
[http://dx.doi.org/10.1063/1.4729750]

I. INTRODUCTION

Solvation dynamics near solid-liquid interface has been
extensively studied for a long time. Studies using cyclic
voltammetry and impedance spectroscopy have shown that
dynamical behavior of solution is crucial to understand chem-
ical process near the interface.1–3 According to a recent de-
velopment of experimental methods, the dynamics has been
revealed at the molecular-level.4–16 For example, McGuire
and Shen investigated vibrational dynamics of water near the
interface of silica with time-resolved sum-frequency vibra-
tional spectroscopy.11 Yamakata and Osawa investigated the
dynamics of water molecules on CO-covered Pt electrode us-
ing laser-induced temperature jump method.13

Theoretical and computational methods also provide
valuable insights by usually considering a solid as an atom-
istic wall. Molecular dynamics (MD) simulation is a represen-
tative of the methods, and the molecular-level knowledge that
cannot be obtained with the experimental methods, has been
accumulated.17–21 Time-dependent density functional theory
has been also successfully applied to investigate the solva-
tion dynamics.22, 23 Senapati et al. studied the polarization re-
laxation of liquid consisting of dipolar hard sphere near the
interface by the theory.24–26 Reference interaction site model
(RISM) theory is a statistical mechanics for molecular liquids,
and can be regarded as an alternative to MD simulation.27–31

One of the differences from MD simulation is that the RISM
theory analytically treats an ensemble of infinite number of
solvent molecules. In other words, the RISM theory is free
from the so-called sampling problem. The theory has been
successfully applied to solvation of various systems such as
hydration of protein.29, 32–40 Recently, we proposed a two-
dimensional (2D)-RISM theory for solvation structure near
solid-liquid interface at the equilibrium state.41

Although original RISM is a theory for static prop-
erty, related theories to describe solvation dynamics are also
available. Site-site Smoluchowski-Vlasov (SSSV) equation,

a)Author to whom correspondence should be addressed. Electronic mail:
hirofumi@moleng.kyoto-u.ac.jp. FAX: +81-75-383-2799.

which is essentially a diffusion equation for molecular liq-
uid, is solved utilizing the solution of the RISM theory.42, 43

The equation has been successfully applied to describe the
van Hove time correlation function of pure solvents such as
water and acetonitrile. The linear response theory is applica-
ble to the non-equilibrium state using time correlation func-
tion of the equilibrium state.30, 44 Raineri and co-workers pro-
posed surrogate Hamiltonian description, which is regarded
as an extended linear response theory.45–47 The theory is also
solved using the solution of RISM theory and is guaranteed
that the state appropriately converges to the final equilibrium
state at t (time) → ∞. The theory is thus accessible to long-
time solvation dynamics, which is one of the remarkable ad-
vantages compared to MD simulation. The surrogate Hamil-
tonian description requires the van Hove function as input.
Ishida et al. utilized the SSSV equation to obtain the van Hove
function and applied the surrogate description to solvation dy-
namics around benzonitrile and pyridinium N-phenoxide after
the vertical excitation.48, 49 In this study, we propose a theory
to treat solvation dynamics near solid-liquid interface. This
theory utilizes the surrogate Hamiltonian description and the
SSSV equation. The remarkable feature of the theory is to
treat the solvation dynamics as time-dependent 2D density
distribution, which focuses on the anisotropic solvation struc-
ture near the interface.

In Sec. II, we first briefly explain the 2D-RISM theory
that describes the 2D density distribution in the equilibrium
state, because its solution is required to treat solvation dy-
namics. Note that the original 2D-RISM theory is applica-
ble only for static properties, and the time-dependency cannot
be treated. We then propose a new formula to describe the
time-dependent 2D density distribution based on the surro-
gate Hamiltonian description. To obtain the van Hove func-
tion required as an input in the proposed formula, the SSSV
equation is employed. Thanks to their analytical feature, dis-
tribution function at arbitrary time t is available with the same
computational cost. We apply the proposed theory to the sys-
tem in which an atomistic wall is immersed in water solvent.
Solvation dynamics near the wall-water interface is discussed
at the atomic-level.

0021-9606/2012/136(24)/244502/6/$30.00 © 2012 American Institute of Physics136, 244502-1
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FIG. 1. Cylindrical coordinate system.

II. THEORY

A. 2D-RISM theory

The 2D-RISM theory describes the 2D density distribu-
tion near the interface in an equilibrium state. Since a detailed
explanation of the theory is given in the previous paper,41

only the essential points are summarized. The 2D distribution
function is expressed with the cylindrical coordinate system
shown in Fig. 1. An origin of the coordinate system is defined
as a position of an arbitrary site α in the wall. An axis perpen-
dicular to the wall is z axis, ρ is distance from the z axis on a
plane parallel to the wall, and φ is an angle along the wall. In
this coordinate system, the position of a solvent site η (rη) is
treated with a vector rαη(= rη − rα) = {ραη, zαη, φαη}, where
rα is the position of wall site α.

Using the analogous procedure to derive RISM
equation,29–31 2D-RISM equation in the reciprocal (k) space
is given as follows:41

hαη(kρ, kz) =
∑
α′η′

wαα′ (kρ, kz) c̃α′η′(kρ, kz)

× [
ωV

η′η(|k|) + nV hV
η′η(|k|)], (1)

where kρ and kz are the ρ- and z-components of k. hαη is the
2D total correlation function between sites α and η, cαη is
the 2D direct correlation function between sites α and η, ωV

η′η
is the intramolecular correlation function of solvent, and hV

η′η
is the site-site total correlation function of bulk solvent. ωV

η′η
and hV

η′η have the same meanings as those used in the original
RISM equation.27–31 wαα′ in Eq. (1) is the 2D-intramolecular
correlation function of the wall written as

wαα′ (kρ, kz) = eikz·zαα′ J0(kρραα′ ), (2)

where J0 is the 0th Bessel function.
As seen from Eq. (1), the equation to be solved is a ma-

trix equation whose matrix size is dependent on the number
of wall sites. But the size is drastically reduced by combin-
ing with polymer-RISM equation.32–36 Each unit of the wall
is here labeled as αi (i = 1, . . . , N) consisting of a finite set of
atomic sites {αi, α

′
i , . . ., α

(M)
i }. If respective units are equiva-

lent to each other, Eq. (1) is rewritten as

hαη(kρ, kz) =
∑
α′η′

Wαα′ (kρ, kz)c̃α′η′ (kρ, kz)

× [
ωV

η′η(|k|) + nV hV
η′η(|k|)], (3)

where the subscript i is omitted from c̃αiη
and hαiη

because
of the identity, and the summation over the units is required
only once to obtain the new intramolecular correlation func-
tion Wαα′ given as

Wαα′ (kρ, kz) = 1

N

N∑
ij

wαiα
′
j
(kρ, kz). (4)

To relate the two unknown functions in Eq. (3), c̃αη and
hαη, the following KH-type closure29, 38 is adopted:

gαη(ραη, zαη) =
{

exp
{
χαη(ραη, zαη)

}
for χαη(ραη, zαη) ≤ 0

χαη + 1 for χαη(ραη, zαη) > 0
(5)

χαη(ραη, zαη) = −βuαη(ραη, zαη) + hαη(rαη, zαη) − c̃αη(ραη, zαη),

where gαη(ραη, zαη) = hαη(ραη, zαη) + 1 is a 2D pair correla-
tion function (2D-PCF) between the wall site α and the sol-
vent site η, β = 1/kBT, kB is Boltzmann’s constant, and uαη is
the interaction potential between α and η given as the sum of
coulombic and Lennard-Jones terms.

B. Extension to time-dependent solvation structure

Solvation dynamics treated in this study is as follows. At
time t < 0, the solvent is in equilibrium with the wall in a pre-
cursor state (P). At t = 0, the wall state is suddenly changed
from P to a successor state (S), for example, by charging the
wall. The solvent responds to the P → S transition, and re-
laxes to the new equilibrium state. The dynamical response

of solvent is here described by the time-dependent 2D-PCF
(gαη(ραη, zαη, t)) with the surrogate Hamiltonian description.

Since the framework of surrogate Hamiltonian descrip-
tion for 1D distribution function has been already described
in detail by Raineri and co-workers,45–47 we here omit the de-
tails of derivation. In the surrogate Hamiltonian description,
the distribution function of solvent in an equilibrium state is
assumed to be described by a linear equation with respect to
a wall-solvent coupling δ
̂D ,

f D(�) = f V (�)[1 − βδ
̂D], (6)

where superscript D is P or S, � is a set of coordinates and
momenta of solvent sites, and f D(�) is the distribution func-
tion in the presence of the wall at the state D. f V (�) is the
distribution function of bulk solvent (i.e., in the absence of
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the wall), and δ
̂D is written as

δ
̂D = 
̂D −
∫

d�f V (�)
̂D, (7)


̂D = 1

(2π )3

∫
dk

∑
αη

nV ĥαη(k)ψD
αη(−k). (8)

In Eq. (7), the second term of the right-hand side is vanished
because f V (�) does not depend on 
̂D . ĥαη(k) in Eq. (8) is
given as

ĥαη(k) = 1

nV

[{∑
i

eik·rαηi

}
− (2π )3 nV δ (k)

]
, (9)

where rαηi
= rηi

− rα , and rηi
is the position of site η of ith

solvent molecule.
Based on Eq. (6), the non-equilibrium ensemble average

of a dynamical variable Ĝ(t) in the condition of P → S transi-
tion at t = 0 is given as45–47

〈Ĝ(t)〉 =
∫

d�f (�, t)Ĝ(t) = 〈Ĝ〉S
 + βC(t), (10)

where f (�, t) is the time-dependent distribution function of
solvent, and

〈Ĝ〉D =
∫

d�f D(�)Ĝ (11)

is the ensemble average of static variable Ĝ in the equilibrium
state D (= P or S). C(t) is the time correlation function defined
as

C(t) =
∫

d�f V (�)Ĝ(t)(δ
̂S − δ
̂P). (12)

Notice that 
̂D or ψD
αη (cf. Eq. (8)) is not yet explicitly given.

If 
̂D is given as the factual interaction energy between the
wall and solvent, such as the sum of coulombic and Lennard-
Jones terms, then the standard linear response formula is
yielded.45 In the surrogate Hamiltonian description, ψD

αη is
given as the renormalized potential that gives the static aver-
age 〈Ĝ〉D (cf. Eq. (11)) identical to the average given without
the assumption of Eq. (6). ψD

αη of the surrogate description for
the 2D density distribution function is found from the follow-
ing equation:

hD
αη(kρ, kz) = 〈ĥαη(k)〉D,φαη

=
〈∑

α′η′
ek·rαα′ {−βψD

α′η′(k)
} [

wV
η′η(|k|) + nV hV

η′η(|k|)]
〉

φαη

, (13)

where 〈· · · 〉φαη
denotes the averaging over φαη, and the as-

sumption of Eq. (6) is used. The procedure to derive Eq. (13)
is analogous to that for 1D distribution function hD

αη(|k|)
(Refs. 45–47). If ψD

α′η′(k) in Eq. (13) is defined as

−βψD
αη(k) = c̃D

αη(kρ, kz), (14)

then the same formula as Eq. (1) is obtained. Note that Eq. (1)
is derived without the assumption of Eq. (6), whereas Eq. (13)
is derived using the assumption. Equation (14) is therefore
the definition of ψD

αη for the time-dependent 2D distribution
function.

Using Eq. (14), the following equation is derived from
Eq. (10):

hαη(kρ, kz, t)

= 〈
ĥαη(k, t)

〉
,φαη

=
∑
α′η′

wαα′ (kρ, kz) c̃S
α′η′(kρ, kz)

[
ωV

η′η(|k|) + nV hV
η′η(|k|)]

+ wαα′ (kρ, kz)
{
c̃S
α′η′(kρ, kz) − c̃P

α′η′ (kρ, kz)
}
sV
η′η(|k|, t).

(15)

Here, ĥαη(k, t) in Eq. (15) is defined by rewriting rαηi
in

Eq. (9) as rαηi
(t) (= rηi

(t) − rα), where rηi
(t) is the position

of ηi at time t. sV
η′η(|k|, t) in Eq. (15) is the van Hove function

of bulk solvent

sV
η′η(|k|, t) = 1

V

∫
d�f V (�)nV ĥη′(k, t) ĥη(−k), (16)

where V is the system volume, and ĥη(k, t) is defined by
rewriting rαηi

in Eq. (9) as rηi
(t).

To calculate sV
η′η, here we use the SSSV equation,42, 43

∂

∂t
sV (|k|, t) = −|k|2DV

× [{ωV (|k|)}−1 − nV c̃V (|k|)] · sV (|k|, t),
(17)

where sV has the element sV
η′η, DV is the diffusion coefficient,

and the matrix elements of ωV and c̃V are the intramolecular
and direct correlation functions of bulk solvent, respectively.
The SSSV equation can be analytically solved by using the
inverse Laplace transformation for some simple cases such as
a triatomic molecule.42

Utilizing the same procedure of deriving Eq. (3) from
Eq. (1), Eq. (15) is rewritten to deal with the identity of the
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units as follows:

hαη(kρ, kz, t)

=
∑
α′η′

Wαα′ (kρ, kz) c̃S
α′η′ (kρ, kz)

[
ωV

η′η(|k|) + nV hV
η′η(|k|)]

+ Wαα′ (kρ, kz)
{
c̃S
α′η′(kρ, kz) − c̃P

α′η′(kρ, kz)
}
sV
η′η(|k|, t).

(18)

Equation (18) is the central equation in this study for the time-
dependent 2D distribution near the interface. In the equa-
tion, Wαα′ {c̃S

α′η′ − c̃P
α′η′ } describes the perturbation affecting

the solvent due to the P→S transition, where the geometrical
information of the wall is expressed by Wαα′ . sV describes the
response of solvent to the perturbation.

The procedure of the present theory is as follows. hV
η′η

is calculated with the RISM equation for bulk solvent. The
renormalized potentials, c̃S

α′η′ and c̃P
α′η′ , are calculated with the

2D-RISM theory (Eqs. (3) and (5)). The van Hoff function sV
η′η

at time t is calculated by the SSSV equation (Eq. (17)). Us-
ing these obtained functions (hV

η′η, sV
η′η, c̃S

α′η′ , c̃P
α′η′), Eq. (18) is

solved, and thereby gαη(ραη, zαη, t) (= hαη(ραη, zαη, t) + 1)
is obtained.

Now, we summarize the features of the present theory.
Although the SSSV equation is not appropriate to treat the
short-time region (t < 0.1 ps), the SSSV equation analyti-
cally yields the van Hove function at arbitrary time t within
the same computational cost.42, 43 In addition, the solution of
Eq. (18) converges to the solution of Eq. (3) for the state S at
t → ∞. In other words, the present theory has the advantage
in treating the long-time region. It is complementary feature
with MD simulation that has an advantage in treating short-
time dynamics.

III. COMPUTATIONAL DETAIL

2D Fourier transform to solve the present equation con-
sists of the Hankel transform with respect to ρ and 1D
Fourier transform with respect to z. The Hankel transform
is performed using Talman’s algorithm.50 The number of
grid points along ρ is 512 with the spacing of �ln (ρ/ρ0)
= 0.02, where ρ0 is 1 bohr. The minimum of ρ, ρmin, is set
to ln (ρmin/ρ0) = −5.12. The number of grid points along z is
4096 with the spacing of �z = 0.02 bohr. To apply our theory
to a charged wall, Ng’s method51 is employed. These details
of the transforms are the same as the previous study.41

The system treated here consists of a single wall im-
mersed in water solvent. Atomic sites of the wall are arranged
in accord with the face of a cubic lattice. The lattice constant
(a) is 1.5 Å and the Lennard-Jones parameters of the atomic
sites are σ = 1.500 Å and ε = 0.101 kcal mol−1.41 The num-
ber of unit N is set to 625 (= 252). It was checked that the
peak height of distribution is almost unchanged when N is
larger than or equal to 625.41 For solvent water molecule,
simple point charge like model is employed (oxygen site;
σ O = 3.166 Å and εO = 0.155 kcal mol−1, hydrogen site;
σ H = 1.000 Å and εH = 0.056 kcal mol−1).52 The diffusion
coefficient of water is set to 2.3 × 10−5 cm2 s−1, which is the
experimental data.53 Calculations are carried out at 298.15 K

and the number density of water solvent of nV = 0.033426
Å−3.

In the following, we rewrite gαη(ραη, zαη, t) as gO(ρ, z, t)
or gH(ρ, z, t) for simplicity, where gO(ρ, z, t) and gH(ρ, z, t)
are time-dependent 2D-PCFs of the wall site–solvent oxygen
site and the wall site–solvent hydrogen site, respectively.

IV. RESULTS AND DISCUSSIONS

A. Distribution of oxygen

Figure 2 shows the contour map of gO(ρ, z, t), where each
atomic site of the wall is suddenly charged to −0.04213 |e|
at t = 0 s, corresponding to the surface charge density of
−0.3 C m−2. The distributions at t = 0 s and t = ∞ s are,
of course, identical to those around the neutral and charged
walls, respectively.41 The peak at z = 2 Å corresponds to the
first solvation shell, and the height is 3.78 (ρ = 0.9 Å and z
= 2.0 Å) at t = 0 s. As the time proceeds, the peak becomes
slightly higher to 3.86 (t = 1 ps), and finally reaches to 4.01 (t
= ∞ s). This peak becomes monotonously higher as the time
proceeding. Another maximum at z ∼ 5 Å corresponds to the
second solvation shell. Similar to the first solvation shell, the
distribution also increases as the time proceeds, and the area
with gO > 1.2 is gradually expanded. These increases of the

Å

gO(ρ, z, t)

0.0 

2.0 

4.0 

0.0

1.5

0.0

1.5
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1 5
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100 fs

ρ
/

z / Å
0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0
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0.0

1.5
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 s

0.0

1.5

10 ps

FIG. 2. Contour map of time-dependent 2D-PCFs between wall site and oxy-
gen site. From top to bottom, the distributions are at t = 0 s, t = 10 fs,
t = 100 fs, t = 1 ps, t = 10 ps, t = ∞ s, respectively.
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distribution of solvent water in the first and second solvation
shells suggest that water molecules tend to be attracted to the
wall as the time proceeds. At the short range region (z < 2 Å),
distribution with gO < 0 (shown by white color) is found. For
example, gO at t = 100 fs has minimum at z = 0 Å, and the
mean value in the core region (z = 0 Å and ρ < 1.5 Å) is
−0.2. As shown in the following discussion, gH has also the
negative value, and the mean value at t = 100 fs in the core
region (z = 0 Å and ρ < 0.8 Å) is −0.1. As noted by Raineri
et al., this type of artifact could be often observed in analytical
solvation-dynamics theory.46 Nishiyama et al. utilized surro-
gate description and also discussed the negative value.54, 55

B. Distribution of hydrogen

Change of the distribution of hydrogen site clearly shows
the formation of ordered solvation structure. Figure 3 shows
the distribution of solvent hydrogen, gH(ρ, z, t). At t = 0 s,
the peak is found in the area from z = 2.5 Å to 3.0 Å, which
is slightly distant from the first solvation shell of the oxygen
site (z ∼ 2 Å). gO(ρ, z, t = 0) and gH(ρ, z, t = 0) therefore
show that the hydrogen site tends to be located further from
the wall than the bound oxygen.41

As the time proceeds, the distribution is noticeably
changed. In particular, the change in the distribution at
z ∼ 1 Å is remarkable. Although the distribution remains
mostly unchanged just after the charging (t = 10 fs), a small

0.0 
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2.0 

Å

0.0

1.5
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0.0

1.5

10 ps

FIG. 3. Contour map of 2D-PCFs between wall site and hydrogen site. From
top to bottom, the distributions are at t = 0 s, t = 10 fs, t = 100 fs, t = 1 ps,
t = 10 ps, t = ∞ s, respectively.

peak appears around t = 100 fs (ρ = 0.79 Å and z = 0.86 Å)
and becomes monotonously higher as the time proceeds;
gH=0.41 (t = 0 s), 0.55 (t = 10 fs), 0.88 (t = 100 fs), 1.06
(t = 1 ps), 1.08 (t = 10 ps), and finally 1.12 (t = ∞). The
change at z ∼ 1 Å is mostly complete at t = 1 ps, that is, 92 %
of the total change is accomplished until t = 1 ps. The change
of distribution indicates that a contribution from another con-
figuration (solvation structure) becomes greater, namely, one
of the O−H bonds is directed perpendicular to the wall.41

The distribution of gH(ρ, z, t) found in the area from z
= 5 Å to 6 Å corresponds to the second solvation shell. This
distribution also changes as the time proceeds, although the
change is small, only about 0.1. Comparing with the distribu-
tion at z ∼ 1 Å, the change at z ∼ 5 Å is slow. The value at the
ridge (ρ = 0.79 Å and z = 5.4 Å are selected) remains almost
unchanged until t = 100 fs (gH = 1.16), and then slightly in-
creases to 1.19 (t = 1 ps), 1.21 (t = 10 ps), and 1.25 (t = ∞ s).
In contrast to the first shell (z ∼ 1 Å), the response in the sec-
ond solvation shell is relatively slow, and not completed even
at t = 10 ps (only 56%). This difference in solvation dynam-
ics would be assigned to that the change of the second shell
begins after the change of water orientation in the first shell.
Similar dynamical behavior of solvent at some point distant
from the interface has been reported in a series of works by
Senapati et al., in which the polarization relaxation near the
interface was investigated with time-dependent density func-
tional theory,24–26 as well as with MD simulation.21

V. CONCLUSION

In this study, we proposed a theory for time-dependent
solvation structure near solid-liquid interface. The proposed
theory is an extension of 2D-RISM theory, which is recently
developed by us, and allows to describe the response of sol-
vent molecule due to the sudden change of the wall state as
the time-dependent 2D density distribution function. To treat
the time dependency, the surrogate Hamiltonian description
and the SSSV equation are utilized. This utilization enables
the theory to access to long-time solvation dynamics.

The solvation dynamics of water solvent near the wall
is investigated with the proposed theory. The distribution of
oxygen corresponding to the first and second solvation shells
increases by charging the wall. More conspicuous change is
found in the distribution of hydrogen at z ∼ 1 Å. This is as-
signed to the orientation of water molecule towards the wall.
The distribution of hydrogen corresponding to the second
shell shows small and slow change compared to the first shell.
It is suggested that the solvation dynamics in the second shell
follows the orientation of water molecule in the first solvation
shell.
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