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Abstract 

Although circannual rhythms controlling different physiological processes and various 

aspects of behavior have been reported in numerous organisms, our understanding of the 

underlying biological mechanisms is still quite limited. We examined the mechanisms 

controlling the circannual pupation rhythm of the varied carpet beetle, Anthrenus verbasci. 

This rhythm is self-sustainable, exhibits temperature compensation of the periodicity, and is 

entrainable to environmental changes. In addition, the circannual phase response curves to a 

photoperiod pulse display Type 0 or Type 1 resetting, depending on the duration of the pulse. 

Thus, we infer that this rhythm is derived from a self-sustaining biological oscillator with a 

period of about a year, i.e., a circannual clock, analogous to the circadian clock. Furthermore, 

a circadian clock appears to mediate photoperiodic time measurement for phase resetting of 

the circannual clock. Based on these results and previous research performed in other 

organisms, we discuss the general characteristics of the physiological mechanisms 

underpinning circannual rhythmicity. 

 

Keywords: Anthrenus verbasci; circannual clock; circannual rhythm; circadian clock; 
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Introduction 

 

Most organisms have evolved endogenous rhythms corresponding to various environmental 

cycles, including daily cycles, tidal cycles, and annual cycles, to enhance the rate of survival 

and reproduction. When isolated from external temporal cues, these biological rhythms 

free-run with an inherent period close to, but significantly different from, that of the 

environmental cycle. Appropriate environmental cues, i.e., zeitgebers, can entrain these 

endogenous rhythms to the environmental cycle (Pittendrigh, 1981a; Saunders, 2002; 

DeCoursey, 2004). The circadian rhythm, which has an endogenous period close to 24 h and 

entrains to daily cycles of light and temperature, has been studied by many researchers in a 

variety of organisms. Chronobiologists have started to uncover the mechanisms behind the 

biological clocks that generate rhythmicity, and today, the basic principles of circadian clocks 

are understood in detail (Saunders, 2002; Johnson et al., 2004; Stillman et al., 2007; Rosbash, 

2009). However, compared to circadian rhythms, the sources of other endogenous rhythms 

are only partly understood, owing to a considerable lack of research. In particular, it is 

unclear whether the mechanism that generates internal periodicity is a self-sustaining 

biological oscillator similar to the circadian clock. 

A biological rhythm with an endogenous period close to a year is called a circannual 

rhythm. The circannual rhythms of various physiological processes and behavioral traits have 

been reported in a variety of organisms, including dinoflagellates, brown algae, higher plants, 

coelenterates, annelids, mollusks, crustaceans, insects, fish, reptiles, birds, and mammals 

(Olive and Garwood, 1983; Gwinner, 1986; Goldman et al., 2004). In vertebrates, Pengelley 

and Fisher (1957, 1963) were the first to conclusively demonstrate the circannual rhythm of 

the golden-mantled ground squirrel, Spermophilus lateralis. The seasonal changes in body 

weight and food consumption, and the occurrence of hibernation, were shown to have a 

period shorter than 12 months when squirrels were maintained for 2 years under constant 

photoperiod (12-h light and 12-h darkness, LD 12:12) and temperature. 

In invertebrates, Blake (1958, 1959) first reported that a circannual rhythm regulates 

pupation of the varied carpet beetle, Anthrenus verbasci (Insecta, Coleoptera, Dermestidae), 

which normally has a two-year life cycle in southern England. Moreover, she was the first to 

show the following major properties of the circannual rhythm (Blake, 1958, 1959, 1960, 

1963): (1) a self-sustaining oscillation with a period deviating significantly from that of the 

environmental cycle; (2) temperature compensation of the period length; and (3) the existence 

of a zeitgeber entraining the rhythm to the environmental cycle and advance and delay 
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phase-shifts induced by the stimulus (see also Gwinner, 1986; Saunders, 2002). The 

importance of Blake’s work is comparable to the many studies of circannual rhythms carried 

out later in other animals, but has not received the attention it deserves (Saunders, 2002). 

Since 1996, we have been examining the pupation rhythm in a Japanese population of 

A. verbasci. In Japan, the duration of the life cycle in this species is generally considered to 

be one year. In some cases, however, two or more years are required to complete larval 

development (Kiritani, 1958; Miyazaki et al., 2009a). We re-evaluated Blake’s results and 

introduced various new approaches based on our current knowledge of circadian and 

circannual rhythms and of photoperiodism. We found that the circannual rhythm of A. 

verbasci is generated by a circannual clock analogous to the circadian clock in its phase 

response (Nisimura and Numata, 2001; Miyazaki et al., 2005, 2007), and that the circannual 

rhythm, with a period of about 40 weeks, is entrained to an exact year by naturally changing 

photoperiods (Nisimura and Numata, 2003; Miyazaki et al., 2006). Moreover, the circannual 

clock is independent of the circadian clock (Nisimura and Numata, 2002), although a 

circadian clock is involved in the time measurement system for phase resetting of the 

circannual clock in response to photoperiodic changes (Miyazaki et al., 2009b). 

Menaker (1974) stated that the major difficulty in the study of circannual rhythms is the 

ratio of the period length of a single circannual cycle to the length of the productive life of the 

biologist. Despite this difficulty, a number of researchers have studied circannual rhythms in 

a variety of species (Gwinner, 1986, 2003; Goldman et al., 2004; Paul et al., 2008; Wikelski 

et al., 2008; Lincoln and Hazlerigg, 2010). In this review, based on our results obtained in A. 

verbasci and those from studies on various other organisms, we discuss the general 

characteristics of the physiological mechanism producing circannual rhythmicity and its 

responsiveness to photoperiodic changes. 

 

Characteristics of the circannual rhythm 

 

Self-sustainability 

 

Biological rhythms exhibit self-sustainability when examined under constant conditions 

without input from environmental cues (Pittendrigh, 1981a; Saunders, 2002; Johnson et al., 

2004). A constant 24-h light-dark cycle has been used routinely to detect circannual rhythms, 

because unchanging photoperiods contain no information about the duration of a year 

(Gwinner, 1986). Figure 1A shows the frequency of pupation times of A. verbasci when 
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larvae were reared under LD 12:12 at 20°C. These insects exhibited rhythmic pupation. 

Larvae pupated 23–31 weeks after hatching as the first pupation group. The second group 

pupated 49–74 weeks after hatching. A third pupation group was observed 89–109 weeks 

after hatching. The interval between the medians of the first and second groups was 37 weeks, 

and that of the second and third groups was 37.5 weeks. This periodicity can be explained by 

the gate concept, which was originally introduced for the allowed time for eclosion in the 

circadian rhythm of flies (Pittendrigh, 1966). Thus, the existence of an endogenous 

circannual rhythm in the process of pupation was demonstrated in a Japanese population of A. 

verbasci (Nisimura and Numata, 2001). We repeated the experiments under LD 12:12 at 20°C 

from various times of the year and observed a similar rhythmicity, although the third pupation 

group has not been clearly observed in many cases (Nisimura and Numata, 2001, 2003; 

Miyazaki et al., 2005, 2009b). The timing of pupation in the first and second cycles was 

negligibly affected by slowing larval development with a diet of low-nutrient food, although 

the percentage of pupae in each cycle changed remarkably (Miyazaki et al., 2009a). 

It has been reported that, for some species, circannual rhythms persist under constant 

light or darkness. For example, the circannual hibernation rhythm of S. lateralis persists with 

a period shorter than 12 months, irrespective of whether the lighting conditions are constant 

darkness, constant light, or LD 12:12 (Pengelley et al., 1976; see also Gwinner, 1986). Figure 

1B shows the frequency of pupation times of A. verbasci when larvae were continuously 

maintained under constant dim light. The periodic pattern was less clear than that under LD 

12:12 (Nisimura and Numata, 2001). When we first obtained these results, we thought that 

this indistinct rhythm resulted from the damping of the circannual rhythm, as observed for the 

circadian eclosion rhythm under constant light in flies (Pittendrigh, 1966; Saunders, 2002). 

However, later experiments revealed that the circannual rhythm of A. verbasci clearly persists 

under constant light after pre-exposure to LD 12:12 for 8 weeks. The pattern of pupation was 

similar to that under continuous LD 12:12 (Fig. 2; Miyazaki and Numata, 2010). The 

circannual rhythmicity observed under constant light indicates that daily light-dark cycles are 

not necessary to sustain this endogenous rhythm, as observed in a British population under 

constant darkness (Blake, 1958, 1959). As described later, the change in the photoperiod is a 

zeitgeber for this circannual rhythm. It is likely that the circannual rhythm of A. verbasci 

oscillates under constant light, but the initial circannual phase of newly hatched larvae varies 

among individuals. Therefore, for a circannual rhythm to be clearly observed under constant 

light, it is necessary to synchronize the phase of the larvae by subjecting them to 24-h 

photoperiodic cycles. 
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The circannual period of A. verbasci is 8–10 months (Blake, 1959; Nisimura and 

Numata, 2001; Miyazaki et al., 2009b). The circannual periods under constant conditions are 

shorter than one year in many species, although longer periods have also been reported 

(Gwinner, 1986). Individual circannual periods often show great variability, even within a 

single species (Gwinner, 1986). The circannual period under constant dim light in the 

dark-eyed junco, Junco hyemalis, ranges from 6 to 20 months (mean, 13.7 months) in 

testicular development, and from 6 to 21 months (mean, 15.0 months) in the onset of 

post-nuptial molts (Holberton and Able, 1992). These deviations from 12 months, of about 

–50% and +75% in extreme cases, represent considerable variations, compared to deviations 

from 24 h of approximately –13% (21 h) and +17% (28 h) in circadian free-running periods 

(Aschoff, 1979). In addition, some species display circannual rhythms only under certain 

photoperiodic conditions (Gwinner, 1986, 1996; Schaffelke and Lüning, 1994; Paul et al., 

2008). For example, the European starling, Sturnus vulgaris, shows a clear circannual rhythm 

in testicular development under LD 12:12, but not under LD 11:13 or LD 13:11 (Schwab, 

1971). The circannual rhythm of A. verbasci was also obscure under LD 15:9 and LD 16:8, 

and arrhythmic under LD 14:10 (Nisimura and Numata, 2003). The influence of photoperiod 

on the circannual period has also been reported (Gwinner, 1986 for review). In the rainbow 

trout, Oncorhynchus mykiss, the circannual period is significantly shorter under LD 18:6 and 

constant light than under LD 6:18 (Duston and Bromage, 1986). The circannual period of A. 

verbasci was 5 weeks longer under LD 13:11 than under LD 12:12 (Nisimura and Numata, 

2003). Under LD 10:14 in one experiment, the rhythm persisted with a much longer period of 

52 weeks (Nisimura and Numata, 2002), but in another experiment, pupation after the first 

peak was asynchronous and the period length could not be determined (Miyazaki and Numata, 

2009). Although circannual rhythms in some species, including the African stonechat, 

Saxicola torquatus, and the Siberian chipmunk, Tamias sibiricus, have been reported to 

persist for approximately ten years (Gwinner, 1996; Kondo et al., 2006), circannual rhythms 

in most organisms tend to dampen within several cycles under constant conditions in the 

laboratory (Gwinner, 1986). In general, both inter- and intra-individual variability in the 

endogenous period in the same species is considerably larger for most circannual rhythms 

than for circadian rhythms. Thus, Gwinner (1986) concluded that circannual rhythms have 

weaker self-sustainability than circadian rhythms. 

 

Temperature compensation 
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Biological oscillators are based on intricate biochemical mechanisms. Although most 

biochemical processes depend on temperature, temperature compensation is required for 

accurate time measurement in biological rhythms (Pittendrigh, 1981a; Saunders, 2002; 

Johnson et al., 2004). Aperiodic fluctuations in temperature perturb time measurement and 

need to be eliminated by buffering mechanisms, i.e., compensation mechanisms. In fact, 

period length is almost fully temperature compensated in circadian rhythms under 

steady-state conditions at various constant temperatures (Sweeney and Hastings, 1960; Balzer 

and Hardeland, 1988; Saunders, 2002). In biological rhythms with longer periods, however, 

the demonstration of temperature compensation is sometimes difficult. Firstly, it is difficult to 

maintain strict constant conditions for a long duration, and secondly, a desired constant 

temperature under experimental conditions often interferes with the regulation of seasonal 

physiological events (Gwinner, 1986; Balzer and Hardeland, 1988). Nevertheless, 

temperature compensation has been reported in some circannual rhythms (Gwinner, 1986). 

Temperature compensation was shown in the circannual rhythm period of a hibernating 

homeotherm, S. lateralis, which spends many months each year in deep torpor with a body 

temperature close to that of its environment. In this animal, although the period of the first 

circannual cycle during hibernation is slightly longer at 3°C than at 12°C, this difference 

disappears in the second and third cycles (Pengelley and Asmundson, 1969). Much larger 

differences would have been expected if the processes underlying circannual rhythms showed 

a temperature dependence similar to that of many other physiological processes. These results 

suggest that the circannual period is, at least to a certain extent, temperature compensated 

(Gwinner, 1986). 

More conspicuous examples of temperature-compensated circannual rhythms are 

present in poikilotherms (Gwinner, 1986). In our studies of A. verbasci, when larvae were 

exposed under LD 12:12, pupation began 21–27 weeks after hatching at constant 

temperatures between 17.5°C and 27.5°C, and the second group pupated about 40 weeks after 

the first. High temperatures did not result in earlier pupation as might be expected from 

observations of normal developmental processes. In fact, the first pupation peaks were 

slightly delayed by higher temperature (Fig. 3; Nisimura and Numata, 2001). We concluded 

that the timing of pupation displayed temperature compensation, in line with the results of 

Blake (1958, 1959). 

Temperature compensation of the circannual period has also been shown in various 

other invertebrates, e.g., oviposition of the slug, Limax flavus (10–20°C; Segal, 1960; see also 

Gwinner, 1986), growth and development of the hydroid, Campanularia flexuosa (10–24°C; 
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Brock, 1975a, b), and sexual maturation of the polychaete, Nereis diversicolor (5–10°C; 

Olive and Garwood, 1983). Thus, in invertebrates, compensation mechanisms appear to 

modulate time measurement in circannual rhythms under conditions of changing 

environmental temperature. 

 

Entrainability 

 

Biological rhythms can be entrained by zeitgebers from environmental cycles, thereby 

maintaining a stable phase relationship to environmental cycles (Pittendrigh, 1981a; Saunders, 

2002; Johnson et al., 2004). In many species, a change in photoperiod is the dominant 

zeitgeber for entraining the circannual rhythm to an annual cycle (Gwinner, 1986; Goldman 

et al., 2004; Paul et al., 2008). For example, the circannual rhythms were entrained to 

sinusoidal photoperiodic cycles when the zeitgeber periods were 4–24 months and 2–12 

months in antler replacement of the sika deer, Cervus nippon, and in testicular development 

of S. vulgaris, respectively (Goss, 1969; Gwinner, 1977; see also Gwinner, 1986). The 

circannual rhythms of growth in two kelp species, Pterygophora californica and Laminaria 

hyperborea, were also entrained to sinusoidal photoperiodic cycles with a period of 3–12 

months (Lüning and Kadel, 1993; Schaffelke and Lüning, 1994). Although the endogenous 

period of circannual rhythms in many species often deviates considerably from 12 months, 

entrainment to the natural year is uneventfully accomplished by a range of entrainment 

proportionally much larger than that for circadian rhythms (Gwinner, 1986; Goldman et al., 

2004). Gwinner (1986) suggested that at least some circannual rhythms with weaker 

self-sustainability were more dependent on environmental zeitgebers and more easily affected 

by them than circadian rhythms. 

When we exposed A. verbasci larvae to natural annual changes in photoperiod in Japan, 

at a constant 20°C, pupation peaks were observed in January or February in both the first and 

second cycles (Fig. 4A; Nisimura and Numata, 2003; Miyazaki et al., 2006), similar to the 

observations by Blake (1960) of A. verbasci populations in England. Therefore, a circannual 

pupation rhythm in A. verbasci, displaying a periodicity of about 40 weeks under LD 12:12, 

is entrained to exactly one year by exposure to natural changes in photoperiod. 

Blake (1963) suggested that the first and second cycles of the pupation rhythm in A. 

verbasci were controlled differently. She argued that, in the first cycle, pupation was 

advanced by increasing day length, but that in the second cycle, pupation was inhibited by 

decreasing day length. However, our results obtained by altering continuous short day (LD 
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12:12) and long day (LD 16:8) cycles at various time points indicate that whether pupation is 

advanced or delayed depends on the phase at which the photoperiodic stimulus is applied, 

rather than the cycle of the circannual rhythm (Nisimura and Numata, 2001; Miyazaki et al., 

2005, 2007). Phase-dependent shifts in rhythm are important factors in entrainment and have 

been observed in many different circadian rhythms. This topic will be explored in detail later. 

Compared to the photoperiod, the role of non-photoperiodic cues has not been 

sufficiently examined, although seasonal changes in temperature, daytime light intensity, and 

social stimuli have been suggested as potential zeitgebers in various species (Gwinner, 1986, 

2003; Goldman et al., 2004; Paul et al., 2008). In many cases, non-photoperiodic cues act by 

directly driving or suppressing expression of the trait without entrainment of the endogenous 

rhythm (Paul et al., 2008). When A. verbasci larvae are exposed to natural fluctuations in 

light and temperature, they pupate each year in April, rather than in January and February 

(Nisimura and Numata, 2003; Miyazaki et al., 2009a). It is likely that low temperatures 

between December and March suppress pupation until April, and that this suppression also 

contributes to the synchrony of pupation in the field. However, there remains the possibility 

that natural temperature changes act as an effective zeitgeber for the circannual rhythm of A. 

verbasci, as suggested by Blake (1960). 

 

Three different hypotheses for circannual rhythm generation 

 

Circannual clock hypothesis 

 

A simple hypothesis to explain the generation of the circannual rhythm assumes the existence 

of a self-sustaining biological oscillator with a period of about a year, i.e., a circannual clock, 

analogous to the circadian clock (Pengelley and Asmundson, 1974; Mrosovsky, 1978; 

Gwinner, 1981a). However, the most troublesome feature of this hypothesis is the long-term 

nature of the oscillator. Many animals exhibiting circannual rhythms, including hibernating 

mammals and migratory birds, have short life spans of a few years (Gwinner, 1986), and 

therefore it is difficult to examine the circannual clock hypothesis in these organisms. Then, 

the other two hypotheses that do not involve a circannual clock, as mentioned below, may 

have arisen. However, for A. verbasci, our data suggest that the pupation rhythm is generated 

by a circannual clock similar to the circadian clock, because the phase response curves 

obtained in this circannual rhythm share many similar features with phase response curves 

obtained in circadian rhythms (Miyazaki et al., 2005, 2007; and see later sections for detail). 
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Frequency de-multiplication hypothesis 

 

Gwinner (1973) proposed the frequency de-multiplication hypothesis, which states that 

circannual rhythms are derived from circadian rhythms through a process of frequency 

de-multiplication. In other words, organisms generate circannual rhythms by transforming the 

circadian periodicity of about a day to one cycle of about a year. The possibility that circadian 

rhythms are involved in the production of circannual rhythms is appealing, because circadian 

rhythms are a ubiquitous feature of animal physiology. Moreover, Gwinner (1973) observed a 

positive correlation between circadian and circannual periods under constant dim light in S. 

vulgaris. 

The frequency de-multiplication hypothesis requires that the period of the circannual 

rhythm is proportional to the period of the entrained circadian rhythms. Therefore, rigorous 

tests of this hypothesis can be performed by exposing individuals to light-dark cycles of 

different periods (T). We reared A. verbasci larvae under different constant photoperiods, 

ranging from T = 20 to 26 h (Nisimura and Numata, 2002). Because the range of entrainment 

in circadian rhythms is usually between 18 h and 30 h (Aschoff and Pohl, 1978), the circadian 

rhythms of the larvae should entrain to the LD 10:10, LD 10:14, and LD 10:16 photoperiods. 

Based on the result under LD 10:14 (T = 24), in which the first group of larvae pupated 25 

weeks after hatching, the frequency de-multiplication hypothesis predicts that pupation 

should occur 21 and 27 weeks after hatching under LD 10:10 (T = 20) and LD 10:16 (T = 26), 

respectively (Fig. 5). However, the first group of larvae pupated 27 weeks after hatching 

under LD 10:10 and 25 weeks after hatching under LD 10:16. Thus, there is no positive 

correlation between the period of the light-dark cycle and the timing of pupation in A. 

verbasci (Nisimura and Numata, 2002). To date, similar experiments have been performed in 

three species of birds and one mammal, but results supporting the frequency 

de-multiplication hypothesis have not been obtained (Gwinner, 1981b; Carmichael and 

Zucker, 1986; Wikelski et al., 2008). 

Furthermore, circannual rhythms are exhibited by most individuals even after 

disruption of circadian activity patterns by ablating the suprachiasmatic nucleus in mammals, 

or the pineal gland in birds, which are the locations of the circadian pacemaker (e.g., Zucker 

et al., 1983; Pant and Chandola-Saklani, 1992). These results also do not support the 

frequency de-multiplication hypothesis. 
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Sequence of linked stages hypothesis 

 

There is the hypothesis that circannual rhythms merely result from a sequence of linked 

physiological stages, with each stage normally taking a given amount of time to complete and 

then leading to the next, and so on (i.e., a chain of interval timers). The last stage is linked 

back to the first (Mrosovsky, 1978). Circannual rhythms in some hibernators, e.g., the edible 

dormouse, Glis glis, the little pocket mouse, Perognathus longimembris, and the 

thirteen-lined ground squirrel, Spermophilus tridecemlineatus, can be explained by this 

hypothesis, but those in others cannot (Mrosovsky, 1978). 

Mrosovsky (1974) suggested that a circannual clock and a sequence of stages can be 

characterized as a pendulum-type oscillator and a relaxation oscillator, respectively. However, 

because the latter is one-dimensional, the sequence of linked stages hypothesis cannot explain 

some features of phase resetting of rhythms (see Lakin-Thomas, 1995 for details; see also 

Oda et al., 2000), e.g., Type 0 resetting and arrhythmicity induced by a zeitgeber pulse in the 

circannual rhythm of A. verbasci (Miyazaki et al., 2005, 2007), which we discuss further in 

the following section. 

 

Phase response curves and the biological oscillator 

 

In circadian rhythms, the response to a zeitgeber depends on the phase subjected to the 

zeitgeber. Phase response curves (PRCs) are constructed to represent these phase-dependent 

responses. A circadian PRC is a plot of the magnitude of phase shifts (phase advances and 

delays) obtained by giving a light pulse at various phases of a free-running rhythm under 

constant darkness (Pittendrigh, 1981b; Johnson, 1999; Johnson et al., 2004). A light pulse in 

early subjective night generally delays a phase whereas a light pulse in late subjective night 

advances a phase. A pulse applied in subjective day has little or no effect on the phase. The 

strength of a light pulse, i.e., intensity, duration, or both, often changes the amplitude of phase 

shifts in the PRC. Strong pulses produce Type 0 PRCs with large phase shifts and a distinct 

break point at the transition between delays and advances, whereas weak pulses produce Type 

1 PRCs with small phase shifts and a continuous transition between phase delays and 

advances (Fig. 6A, B). 

In contrast to circadian rhythms, reports of PRCs to zeitgeber pulses in circannual 

rhythms are uncommon (Paul et al., 2008). In the circannual spawning rhythm of the rainbow 

trout, Oncorhynchus mykiss, a pulse of constant light for 2 months induced a 
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phase-dependent phase shift. However, because the treatment was performed on the rhythm 

entrained to naturally changing day length, the response curve obtained did not satisfy the 

definition of the PRC, in which a free-running rhythm is perturbed under constant conditions 

(Randall et al., 1998). 

To construct a complete PRC to photoperiod pulses for a circannual rhythm, we kept A. 

verbasci larvae under LD 12:12 and exposed the larvae to LD 16:8 for 4 weeks (4-week 

long-day pulse) during various phases of the rhythm (Miyazaki et al., 2005). When larvae 

were exposed to a 4-week long-day pulse, 4 weeks after hatching, pupation of the first and 

second groups was delayed by 9–9.5 weeks, compared to control insects (Fig. 7B). However, 

when a 4-week long-day pulse was given 16 weeks after hatching, pupation was advanced by 

2–3 weeks in both groups (Fig. 7C). Thus, whether a 4-week long-day pulse advances or 

delays the phase of the circannual rhythm depends on the phase in which the pulse is given. 

Based on these observations, we constructed a circannual PRC (Fig. 6C) where the period of 

the rhythm under continuous LD 12:12 (37 weeks; Fig. 7A) is shown in terms of angle 

degrees (0–360°). The initial phase under LD 12:12, i.e., the beginning of this experiment, is 

represented as 180°. The range 0–180° is considered subjective summer and 180–360° is 

considered subjective winter. This circannual PRC to 4-week long-day pulses closely 

resembles the Type 0 PRC of circadian rhythms (Fig. 6A, C). 

We also constructed a circannual PRC to 2-week long-day pulses (Fig. 6D). The phase 

shifts are relatively smaller than those caused by a 4-week long-day pulse, and a PRC to 

2-week long-day pulses has a continuous transition between delays and advances in the 

middle of the subjective winter. Therefore, this curve is categorized as Type 1 (Miyazaki et al., 

2007). 

In circadian rhythms, the two types of phase resetting, dependent on the strength of the 

zeitgeber stimulus, can be theoretically explained by the concept that a circadian clock is a 

biological oscillator that has two or more state variables. A number of different oscillator 

types have been proposed, including an adjustable-amplitude oscillator, a limit cycle 

oscillator, and a multi-oscillator system (Lakin-Thomas, 1995; Winfree, 2000; Johnson et al., 

2004). It is known that arrhythmicity of a circadian rhythm can be evoked by a single light 

pulse of a certain strength delivered near the middle of the subjective night. This 

phenomenon can be explained by the notion that the oscillator is driven to the phaseless 

singularity in the phase space or that the phases of individual oscillators of the 

multi-oscillator system are scattered (Winfree, 1970, 2000; Lakin-Thomas, 1995; Johnson et 

al., 2004). In the circannual rhythm of A. verbasci, arrhythmicity of pupation can also be 
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evoked by a 4-week long-day pulse administered in the middle of the subjective winter 

(Miyazaki et al., 2007). According to the theoretical explanations for Type 1 and Type 0 

phase resetting and the loss of rhythmicity induced by a zeitgeber pulse, the mechanism 

behind the circannual rhythm of A. verbasci is thought to be a biological oscillator with two 

or more state variables with circannual variation (Lakin-Thomas, 1995; Johnson et al., 2004). 

This implies that the circannual rhythm of A. verbasci is generated by a circannual clock 

specialized for adaptation to annual cycles, much like the circadian clock and its adaptation to 

daily cycles. 

Recently, a circannual PRC for reproduction in the European hamster, Cricetus cricetus, 

was constructed by exposing hamsters, normally maintained under long days (LD 16:8), to 

short days (LD 10:14) for 1 month (Monecke et al., 2009). The shape of the PRC was nearly 

identical to the circannual PRC to LD 16:8 for 4 weeks in A. verbasci, a species 

taxonomically quite distant from C. cricetus. Therefore, these phase responses may signify a 

fundamental and common characteristic of circannual rhythms, and the concept that the 

circannual rhythm is produced by a circannual clock specialized for annual cycles seems to 

be applicable to many diverse organisms. 

 

Photoperiodism for entrainment 

 

Entrainment under natural day length 

 

The circannual rhythm of A. verbasci shows endogenous periodicity of about 40 weeks under 

continuous LD 12:12, but is entrained to a strictly annual period by changes in photoperiod. 

This entrainment can be explained as a phase delay induced by a decrease in day length in 

late summer or early autumn (Nisimura and Numata, 2001, 2003). However, it is necessary to 

know the exact temporal changes in the phase of the circannual clock under natural day 

length to understand the biological entrainment mechanisms operating under natural 

conditions. 

If we compare the phase shifts induced by the photoperiod pulse under natural 

photoperiod with those shown in the circannual PRC, we can describe the temporal change in 

phase under natural day length in terms of the phase in the PRC. Therefore, we examined the 

phase responses to 4-week long-day pulses given between 4 August and 24 November under 

natural day length at a constant temperature of 20°C (Miyazaki et al., 2006). These pulses 

caused a phase shift in the first pupation group, as under LD 12:12. A long-day pulse given 
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on 4 August, 1 September, or 29 September caused a phase delay, and a pulse given on 27 

October or 24 November caused a phase advance. Pupation was least synchronous just before 

the transition from delay to advance (Fig. 4). These phase responses were similar to those in 

the subjective winter of a circannual PRC to 4-week long-day pulses under LD 12:12 (Fig. 

6C). Therefore, the circannual clock changes its phase at least from early August to late 

November under natural day length, as occurs in the subjective winter under LD 12:12. In the 

second pupation group, however, larvae pupated at the same time as control larvae not 

subjected to a long-day pulse, regardless of the phase response of the first group (Fig. 4). This 

result can be explained by entrainment to the geophysical year by long days during spring 

and summer. 

We also examined the range of photoperiodic changes effective for circannual phase 

shifts in A. verbasci by exposing larvae to various longer photophases for 4 weeks against a 

background of LD 12:12 or LD 10:14 (Miyazaki and Numata, 2009). Phase advances were 

smaller than phase delays and the magnitude of the change depended on the amplitude of the 

photoperiodic changes rather than the absolute photophase duration. In contrast, a clear phase 

delay was induced when the photoperiodic change exceeded a critical value in the photophase 

between 13 and 14 h, regardless of the amplitude of the change. It is likely that the response 

in phase delay is more important in the seasonal timing of pupation under natural conditions 

because the endogenous period of this rhythm is considerably shorter than one year. In 

photoperiodic responses of many species, an important feature is the existence of a critical 

day length above or below which behavioral and physiological responses are observed 

(Saunders, 2002; Goldman et al., 2004; Nelson et al., 2010). To entrain a circannual period to 

the natural annual cycle, A. verbasci in central Japan probably uses a critical value in the 

photophase between 13 and 14 h for determining whether the day length is long or short. It is 

thought that stable entrainment to the natural year is established by giving long-term 

exposure to a photophase longer than 13 h during spring and summer, or during late 

subjective summer or early subjective winter of the circannual rhythm, where phase delay 

responses to long days are exhibited in the PRC (Figs. 4A and 6C). 

An important role of long days in summer has also been suggested in entrainment of 

the circannual rhythm in luteinizing hormone secretion of the sheep, Ovis aries (Woodfill et 

al., 1994). In pinealectomized ewes, which do not respond to changes of day length, 

photoperiodic information was applied during one of the four seasons each year via infusion 

of melatonin, a hormone that mediates the effects of the photoperiod. The infusion was 

designed to simulate season-specific melatonin secretion. Infusion during the summer was 
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most effective in entrainment to annual cycles and maintained the proper relationship 

between the phase of the rhythm and the season during which the infusion was provided. 

The response and phase setting of circannual rhythms to photoperiodic changes likely 

varies, depending on the species or subspecies (Gwinner, 1986; Helm et al., 2009). To better 

understand the full diversity of responses of circannual rhythms to photoperiodic changes, 

further research will be required in a wide variety of species. 

 

Involvement of a circadian clock 

 

A wide variety of species have evolved photoperiodism without relation to circannual 

rhythms. In such photoperiodism, the photoperiodic time measurement system generally 

involves a circadian clock (Saunders, 2002; Goldman et al., 2004; Nelson et al., 2010). In 

phase responses in the circannual rhythm of A. verbasci, photoperiodic time measurement is 

also necessary, although unlike regular photoperiodism, the effects of photoperiod are indirect 

and are due to resetting of the circannual rhythm. The Nanda–Hamner protocol has frequently 

been used to clarify the involvement of a circadian system in photoperiodic responses. In this 

protocol, groups of organisms are subjected to light-dark cycles with a fixed short photophase 

followed by a variable scotophase to give cycle lengths (T) of up to 72 h or more. If 

organisms show short-day responses when T is a multiple of 24 h, but not when T is not a 

multiple of 24 h, the response is considered positive, thus indicating the involvement of a 

circadian system in photoperiodic time measurement. 

The Nanda–Hamner protocol has been used to examine the reproductive activities of 

several vertebrate species exhibiting circannual rhythms. In O. mykiss, the effects of constant 

48-h, 54-h, and 60-h photoperiods were examined over 2 years, but the circadian nature of the 

photoperiodic responses was obscure (Duston and Bromage, 1986). Positive responses to the 

Nanda–Hamner protocol were demonstrated for birds and mammals (e.g., Gwinner and 

Eriksson, 1977; Almeida and Lincoln, 1982), although these observations were conducted 

over a period of less than a year. 

We examined the effects of exposure to the Nanda–Hamner protocol (LD 12:12, LD 

12:24, LD 12:36, LD 12:48, and LD 12:60) on the circannual rhythm of A. verbasci to 

examine whether the circadian system is involved in photoperiodic time measurement for 

entrainment (Miyazaki et al., 2009b). Figure 8 shows the results when larvae were exposed to 

various photoperiods for 120 days and then transferred to LD 12:12. When larvae were 

exposed to LD 12:36 or LD 12:60, for which T is a multiple of 24 h, the pupation pattern was 
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similar to that under continuous LD 12:12. In contrast, under LD 12:24 (T = 36 h), the 

pupation pattern was similar to that under LD 16:8, being considerably delayed compared to 

that under LD 12:12. Under LD 12:48 (T = 60 h), pupation was also delayed and was less 

synchronous than that of the first group under LD 12:60 (T = 72 h) or constant darkness. 

Thus, photoperiods for which T was not a multiple of 24 h (i.e., LD 12:24 and LD 12:48) 

produced a large phase delay compared to LD 12:12. These results clearly indicate that the 

circannual rhythm of A. verbasci shows a positive Nanda–Hamner response in phase resetting 

to photoperiod. Therefore, a circadian clock is most likely involved in photoperiodic 

entrainment of this rhythm, although it is not responsible for generating the circannual 

rhythm, as described above. 

 

Conclusions and future directions 

 

In the circannual pupation rhythm of A. verbasci, we confirmed self-sustainability (i.e., 

persistence), temperature compensation of the period, and entrainability to a zeitgeber 

(Nisimura and Numata, 2001), all of which are key characteristics of a clock mechanism 

linked to environmental cycles (Pittendrigh, 1981a; Saunders, 2002; Johnson et al., 2004). 

The characteristics of this rhythm indicate that the frequency de-multiplication hypothesis 

does not accurately describe the underlying mechanism (Nisimura and Numata, 2002). The 

circannual PRCs were obtained by giving long-day pulses, and the shapes of the curves 

closely resembled those of circadian PRCs to light pulses (Miyazaki et al., 2005, 2007). 

Similarities to circadian rhythms in the resetting patterns indicate that the mechanism 

producing circannual rhythmicity in A. verbasci is a circannual clock analogous to the 

circadian clock (Miyazaki et al., 2007). 

The circannual clock has most likely evolved to increase the chances of survival and 

reproductive success, by allowing the organism to better predict and adapt to seasonal 

changes (Pittendrigh, 1981a; Gwinner, 1981a, 1986; DeCoursey, 2004). To permit accurate 

and consistent seasonal responses, A. verbasci refers not only to ambient photoperiod, but 

also to the phase of a circannual clock (Miyazaki et al., 2006), and it refers to a circadian 

clock to judge photoperiod (Miyazaki et al., 2009b). Figure 9 shows a schematic diagram of 

the physiological system behind the circannual rhythm of A. verbasci. Thus, in the field, an 

annual rhythm of A. verbasci is established by a combination of exogenous factors and 

endogenous physiological mechanisms comprising circadian and circannual clocks. It is 

likely that this schema is also applicable to certain other organisms, e.g., O. aries (Lincoln et 
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al., 2006; Lincoln and Hazlerigg, 2010). 

The neural and molecular mechanisms that generate circannual rhythmicity remain 

unknown, not only for A. verbasci, but for other species as well. In S. lateralis, various neural 

tissues and endocrine glands, including the suprachiasmatic nucleus and the pineal gland, 

have been ablated, but the anatomical location of the circannual pacemaker is still unclear 

(Zucker, 2001). In O. aries, however, Lincoln et al. (2006) suggested that the 

adenohypophysis is the site of the pacemaker for the circannual rhythm of prolactin secretion. 

The adenohypophysis secrets prolactin with circannual periodicity, without neural inputs 

from the brain, and is a target of pineal melatonin signals transmitting photoperiodic 

information.  

Recently, a few models have been proposed to generate the circannual rhythm in 

mammals. In T. sibiricus, the complex of hibernation-specific proteins is secreted by the liver. 

Before hibernation, this complex is transported to the brain where it mediates the onset of 

hibernation (Kondo et al., 2006). For circannual rhythm generation in this species, Kondo 

(2007) proposed a model in which levels of this hibernation-specific protein complex in the 

brain and periphery form a negative feedback loop. In the circannual rhythm of O. aries, 

MacGregor and Lincoln (2008) proposed a physiological model consisting of a negative 

feedback mechanism comprising the components of the pars tuberalis and pars distalis within 

the adenohypophysis. These two models postulates a negative feedback loop formed by a 

number of different tissues. In contrast, Lincoln and Hazlerigg (2010) proposed that 

circannual rhythmicity is autonomously generated by cyclical histogenesis in specific sites in 

various tissues, such as the brain, pituitary, and periphery.  

Because circannual rhythms have also been observed in coelenterates (Brock, 1975a), it 

is possible that animals can exhibit circannual rhythmicity without the need for a central 

nervous system. Furthermore, circannual rhythms are observed even in eukaryotic unicellular 

organisms, and therefore, molecular feedback loops within a single cell, similar to those in a 

circadian clock, may be involved in generating the circannual rhythm (Anderson and Keafer, 

1987; Matrai et al., 2005). If circannual rhythms have evolved independently several times 

and are of heterogeneous origin in different groups of organisms (Farner, 1970; Gwinner, 

1981a, 1986), entirely different mechanisms may drive the circannual rhythm in different 

species. 

Several approaches are available to uncover the mechanism behind circannual 

rhythmicity in A. verbasci. Because a photoperiodic response involving a circadian system 

resets the phase of a circannual clock in this species (Fig. 9), one way is to identify the 
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anatomical location of a circannual clock by reference to the centers for photoperiodism and 

circadian rhythmicity. One may proceed by studying the expression and regulation of 

circadian clock genes, similar to the approach used to unravel the molecular mechanisms of 

insect photoperiodism (Goto et al., 2010). Another method is provided by studies in birds. In 

avian circannual rhythms, there are clear differences in the degree of rhythmicity, timing of 

behavior, and responsiveness to photoperiod among populations living in different areas. This 

geographic variation is clearly attributable to genetic differences, because crossbreeding 

produces an intermediate response in the hybrid progeny (Gwinner, 1986, 1996; Helm et al., 

2009). A. verbasci is a geographically widespread species, and therefore, it probably also has 

genetic variation. The genetic differences may help in elucidating the molecular mechanisms 

of circannual rhythmicity in this organism. 

A direct way to identify molecular candidates involved in the generation of circannual 

rhythmicity is to use DNA microarrays, similar to approaches used to identify candidates that 

play a role in circadian rhythm generation (McDonald and Rosbash, 2001; Akhtar et al., 

2002). Subsequently, the precise involvement of the candidates in the circannual rhythm may 

be revealed by RNA interference (RNAi). In beetles, inhibition of gene expression in various 

physiological responses has been performed by RNAi (e.g., Tomoyasu and Denell, 2004; 

Niimi et al., 2005). Therefore, we propose DNA microarrays and RNAi as the next step to 

clarify the biological mechanism behind the circannual rhythm in A. verbasci. 

Since Konopka and Benzer (1971) first demonstrated that a gene, called period, 

regulates the circadian behavior of the fruit fly, Drosophila melanogaster, enormous 

advances in our knowledge of the genetic and molecular aspects of circadian rhythmicity 

have occurred. A clear picture of the underlying molecular feedback loops is emerging for 

numerous organisms (Saunders, 2002; Rosbash, 2009). We anticipate that our knowledge of 

the physiological and molecular mechanisms behind circannual rhythmicity will similarly 

advance greatly when researchers begin to isolate the molecular components of this 

fundamental biological process. 
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Fig. 1. Pupation of Anthrenus verbasci under LD 12:12 (A) or constant dim light of 0.006 

Wm–2 intensity (B) at 20°C. The triangle indicates the median of each pupation group. 

Modified from Nisimura and Numata, 2001. 
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Fig. 2. The effect of pre-exposure to LD 12:12 on pupation of Anthrenus verbasci under 

constant light of 0.9 Wm–2 intensity at 20°C. Larvae were maintained continuously under LD 

12:12 (A) or constant light (B), or transferred from LD 12:12 to constant light at 8 weeks 

after hatching (C). Filled bars indicate the duration of LD 12:12 exposure. The triangle 

indicates the median of each pupation group. Modified from Miyazaki and Numata, 2010. 
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Fig. 3. Pupation of Anthrenus verbasci under LD 12:12 at various constant temperatures. The 

triangle indicates the median of each pupation group. Modified from Nisimura and Numata, 

2001. 
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Fig. 4. The effect of a 4-week long-day pulse on pupation of Anthrenus verbasci under 

naturally changing daylength at 20°C. Larvae maintained under naturally changing day 

length were exposed to LD 16:8 for 4 weeks starting on 4 August (B), 1 September (C), 29 

September (D), 27 October (E), or 24 November (F). Non-exposed control larvae are shown 

in (A). The triangle indicates the median of each pupation group. A vertical dotted line 

crosses through the median of each pupation group in the control experiment (A). The solid 

curve in each panel indicates the natural day length, including 1 h of twilight in Osaka, Japan 

(35°N) for most of the experiment, and the artificial day length produced by white fluorescent 
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lamps during the LD 16:8 pulse. The shaded bar in (A) shows the critical photoperiodic range 

for determining whether the day length is long or short. Modified from Miyazaki et al., 2006. 
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Fig. 5. Evaluation of the frequency de-multiplication hypothesis for the circannual pupation 

rhythm in Anthrenus verbasci. Larvae were kept under LD 10:10 (T = 20), 10:14 (T = 24), 

and 10:16 (T = 26) at 20°C. Open circles represent medians of the first pupation group. Bars 

represent interquartiles. Closed circles and a broken line represent the timing of the first 

pupation group predicted by the frequency de-multiplication hypothesis and the results under 

LD 10:14. Based on the data of Nisimura and Numata, 2002. 
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Fig. 6. Comparison of phase response curves for circadian and circannual rhythms. (A, B) 

Phase response curves in circadian rhythms, Type 0 (A) and Type 1 (B). (C, D) Phase 

response curves in the circannual pupation rhythm of Anthrenus verbasci, a curve to 4-week 

long-day pulses (C) and a curve to 2-week long-day pulses (D). Larvae were kept under LD 

12:12 at 20°C and exposed to LD 16:8 for 4 (C) or 2 (D) weeks at various phases in the 

circannual rhythm. The circannual period under continuous LD 12:12 is shown in terms of 

angle degrees (0–360°). Open and closed circles represent the phase shifts in the first and 

second pupation group after pulse perturbation, respectively. Broken lines in (C) show the 

split into advanced and delayed groups. (C) from Miyazaki et al., 2005; (D) from Miyazaki et 

al., 2007. 
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Fig. 7. The effect of a 4-week long-day pulse on pupation of Anthrenus verbasci under LD 

12:12 at 20°C. Larvae maintained under LD 12:12 (filled bars) were exposed to LD 16:8 

(empty bars) for 4 weeks, commencing 4 weeks after hatching (B) or 16 weeks after hatching 

(C). Non-exposed control larvae are shown in (A). The triangle indicates the median of each 

pupation group. A vertical dotted line crosses through the median of each pupation group in 

the control experiment (A). Modified from Miyazaki et al., 2005. 
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Fig. 8. The effect of exposure to the Nanda–Hamner protocol for 120 days on pupation of 

Anthrenus verbasci at 20°C. Larvae were transferred to LD 12:12 after exposure to various 

photoperiods. Shaded areas represent exposure to various photoperiods. The triangle indicates 

the median of each pupation group. Modified from Miyazaki et al., 2009b. 
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Fig. 9. Schematic diagram of the physiological components of the circannual rhythm in 

Anthrenus verbasci. The relationship between the circadian clock involved in photoperiodic 

time measurement and a circadian clock controlling daily activities (dashed arrow) is unclear. 

 


