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Abstract—This note investigates sensitivity reduction problem by stable A. Notation
stabilizing controllers for a linear time-invariant multi-input multi-output .
distributed parameter system. The plant we consider has finitely many Let Cir denote the open ,”ght half-plangs € C | Res > 0},
unstable zeros, which are simple and blocking, but can possess infinitely and letCy be the closed right half-plangs € C | Res > 0}.
many unstable poles. We obtain a necessary condition and a sufficient 4> denotes the set of functions that are bounded and analytic

condition for the solvability of the problem, using the matrix Nevanlinna- Cy. We denote byF> the field of fractions ofH{™. M(R)

Pick interpolation with boundary conditions. We also develop a necessary . . .
and sufficient condition for the solvability of the interpolation problem, is used as a generic symbol to denote the set of matrices with

and show an algorithm to obtain the solutions. Our method to solve the €lements in a commutative rin&, of whatever size. When it is

interpolation problem is based on the Schur-Nevanlinna algorithm. necessary to show explicitly the size of a matrix, the notation
Xa L . . .
Index Terms—Strong stabilization, #°°-control, distributed parameter G 6 Rp ? is used to indicate .thaG.'S ap. X g matrix W'th.
systems. entries in R. For a complex matrix\/, its conjugate transpose is
denoted byM™. For H € M(H*°), the H> norm is defined as
H 1= sup, H(s)||, where ||M|| denotes the maximum
L INTROBUCTION |Hllse = sup,cc, [H(s)] )

singular value of the matrid/.
In this note, we study the problem of finding stable controllers

that stabilize a multi-input multi-output distributed parameter system 1

while reducing, simultaneously, the sensitivity of the system. That is, . . ] ) L
the problem ofstrong stabilization with sensitivity reduction. Consider the linear, continuous-time, time-invariant feedback sys-

A background motivation for seeking stable controllers is th4€M given in Fig. 1. Let plan?” and controlleiC belong toM(F7°).
unstable poles of the controllers are known to lead to performantB® feedback system in Fig. 1 isternally stableif the transfer
degradation in feedback systems under various performance obf@@trix H(P;C) from uy, uz to e1, e

. PROBLEM STATEMENT

tives [1]-[3]. Moreover, stable controllers are also robust to sensor (I+PC)~* —(I+PC)'P -
failures [4] and to plant nonlinearities [5]. Stable controllers have (P, C) = C(I+PC)" T—-C(I+PC)'P|€ M(H™).
other theoretical or practical advantages, see, e.g., [1], [6], and the (I1.1)

references therein.

For finite dimensional systems, various approaches have been We.say thatC' stabilizesP, and P is stabilizableif the feedback sys-
veloped for finding stable stabilizing controllers that achieve a desiré@in is internally stable. Lt () represent the set of all controllers
> performance level, see, e.g., [6]-[12] and their references. Hhat StabI|IZE‘P..P is strongly stabilizablgf C(P) contains a stable
infinite dimensional systems, some works have also been reporftroller, that isM(H>) N C(P) # 0.
recently [13]-[15]. For example, [14] has extended the technique used
in [8] to find strongly stabilizing controllers that lead to optinfaf Uz
sensitivity levels for a class of single-input single-output systems with
time delays. In [16], it was shown that every stabilizable linear multi-
input multi-output plant is strongly stabilizable. However, strong —
stabilization with sensitivity reduction for multi-input multi-output
distributed parameter systems is largely open at present.

We generalize the method of [9] to a class of multi-input multiFig. 1. Feedback system.
output distributed parameter systems. The plants we consider have
only finitely many unstable zeros, all of which are simple and block- Our problem is stated as follows:
ing, but they are allowed to have infinitely many unstable poles. We . - -
obtain stable controllers for the sensitivity reduction problem, usiriD oblem II.1. Given P M.(]: ), Wi, W € M(Hoo ) andp > 0,
the matrix Nevanlinna-Pick interpolation problem with boundar etermine whether there exists a controee M(#*°)NC(P) such
conditions. We also prove that the interpolation problem is solvab réat 1
if and only if the Pick matrix consisting of the interior conditions is Wil +PC)™ Wallo <p. (1.2)
positive definite. To obtain solutions of this interpolation problenp|sg if one exists, find such a controllét.
we show an iterative algorithm similar to the well-known Schur-

Nevanlinna algorithm [1]. Our aim is to give a sufficient condition for the solvability of

The note is organized as follows: Section I gives the stateméeptoblem Il.1 under some assumptions. We also propose a design
of the sensitivity reduction problem with stable controllers. In Sedhethod for such a controller.
tion Ill, we reduce this problem to the interpolation with unimodular
matrices inH>° under some assumptions. We propose an algorithm I[I1l. STRONG STABILIZATION AND SENSITIVITY REDUCTION
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Let us first study strong stabilization only. The following lemmdunctions. Defined; := D(z;) fori =1,...
gives a necessary and sufficient condition for strong stabilization:

Lemma Ill.1. Let P € M(F°) be stabilizable. Suppose th&t
has the formP = D™'N, whereD, N € M(H*) are strongly left
coprime in the sense of [17], i.e., there exi§t Y € M(7°°) such
that

NX + DY =1. (I.1)

Then P is strongly stabilizable if and only if there exists@ e
M(H>°) such that

(D+ NC)™" € M(H™). (1n.2)

Proof: (<) We have

(I+pPC)y'=I+D'NC)!
= (D YD+ NC)) ' =(D+NC)'D.
Moreover,

(I+PC)'P=(D+NC)'N,
C(I+PC)""=C(D+ NC)'D,
C(I+PC)'P=C(D+ NC) 'N.

SinceC, D, N, and(D+ NC)~! are inM(#H*), we obtain (II.1).

HenceP is strongly stabilizable.

(=) SinceP is stabilizable,P admits a strongly right coprime
factorization [17]:

P=ND"', N, DeM(H™).
Moreover, (1ll.1) is satisfied for som&’, Y € M(#>). Then all
controllers are of the form{X + DQ)(Y — NQ)™ !, where@Q ¢
M(#H>) [17]. Since P is strongly stabilizable, there exists( €
M(H>°) such thatC = (X 4+ DQo)(Y — NQo)™* € M(H™).
Additionally, we have from (II1.1)
D+ NC =D+ N(X +DQo)(Y — NQo)™*
= (D(Y — NQo) + N(X + DQo))(Y — NQo)~ "
= (Y = NQo)™".

Hence we obtaifD + NC)™' =Y — NQo € M(H™). ]

,n. Then Problem I11.2
is equivalent to Problem I1Il.4 with interpolation dafa;};—,; and

{Ai} i

Proof: Let C' be a solution of Problem IIl.2. Defing := D +
NC. Then by (lI.2)U satisfiesl/, U~! € M(H>) and

D(ZZ) + (Zﬁ(zz)No(Zl)C(Zl) D(Z»L) = A;.

Hence,U is a solution to Problem l11.4.
Conversely, suppose thaf is a solution to Problem 111.4 with

U(Z»L) = =

{zi}i—, and {A;};~,. Define
C = %No’l(U — D).

Then C satisfies(D + NCO)™! = U™! € M(H™) and ¢C =
N;HU — D) € M(H™®). If C ¢ M(H*>), thenC has some poles
in C4 that are canceled by the zeros ¢f Let 2, be one of such
poles. Then we havd; ! (z;,) (U (21,) — Ax) = (¢C)(2x) # 0, which
contradicts (111.3). [ ]

Before proceeding to sensitivity reduction by strongly stabilizing
controllers, we need to recall the definitions of co-inner and co-outer
matrix functions.F’ € M(H*°) is said to beco-innerif F(5)" is
inner. Similarly, G € M(H) is said to beco-outerif G(35)" is
outer.

The following theorem shows that every function M (H>)
admits a unique co-inner-outer factorization.

Theorem II1.6 ([18]). Let H be in(H>)?*9. H admits a co-inner-
outer factorization of the fornff = GF, whereG € (H*>)?*" is

co-outer andF € (H*)"*9 is co-inner for some. F' and G are

unique to within multiplication by a constant unitary matrix.

Let us next consider Problem II.1. We place the following addi-
tional assumption o1, Ws, and D:

Assumption II1.7. All elements of W, and W, are meromorphic
functions.W; is unimodular inM(#°°). If we factorizeDW5 in the
form DWy = (DW3)co - (DW2)c;, Where(DWa)., is co-outer and
(DW2).; is co-inner, the( DW2)., is also unimodular ifMI(7*).

We can obtain a solution for Problem Il.1 under Assumption 111.3

Lemma 1.1 suggests the following problem to find stable stab@nd I11.7, using a solution of the following problem.

lizing controllers.

Problem 11l.2. Given D, N € M(H*), find aC € M(H™)
satisfying (111.2).

Under the following assumption o® and N, we can reduce

Problem 111.8. Suppose thats, ..., z, € C, are distinct, and that
Bi, ..., B, are complex square matrices. Suppose alsohat0.
Find anF € M(H*>) satisfyingF~! € M(H>), | F|l« < p, and
F(ZZ):BZ for: = 1,...,n.

Problem 111.2 to an interpolation problem with unimodular matricesTheorem 111.9. Consider Problem Il.1. We assume that there exist

Assumption 1I1.3. D, N € M(H>) are strongly left coprime.
N is square andV has the formN = ¢N,, where¢p € H™
and N,, N;' € M(H*>), and ¢ is a nonzero rational function
satisfying ¢(co) # 0, and possesses distinct zeres ..., z, in
C+. All elements ofN,, D, X, andY in (lll.1) are meromorphic
functions.

Under Assumption 111.3, we prove that Problem 111.2 is equivalent

to the following problem:

Problem 1ll.4. Givenz,...
Ay,..., Ap, find aU € M(H™) satisfyingU ! € M(#>) and

We start with the following lemma:

t=1,...,n.

Lemma 1lI.5. Consider Problem 111.2 under Assumption 111.3. We
restrict the solutions to matrices whose elements are meromorphic

,zn € C, and complex square matrices

D, N € M(H) such thatP = D™ N. Let Assumptions 111.3 and
111.7 hold. Define

Bi = W1(Zi)D(Zi)71(DWQ)CD(ZZ‘), = 17...,TL.

If there exists a solutiod” of Problem 111.8 with{z;};—1, {B:}i=1
and p, then

C:=N Y DWs)eoF "Wy — P! (n.4)

gives a solution of Problem I1.1.

Proof: First of all, we prove thatD(z;) is invertible for: =
1,...,n.Sinced(z) = 0, D(z;)Y (z;) = I follows by (Ill.1). Hence
D(z) 7" exists andD(z) ™" = Y (z).

Since
Wi(I + PC) "Wy = Wi(D + NC) ' DW,
=Wi(D+ NC) " (DWa)eo - (DW2)ei,



defining F’ := W1(D + NC)~*(DW2).o, We have conditions is positive definite. Moreover, we can obtain a solution to
1 _ _ _ the interpolation problem. The details are given in the next section.
WA+ PC) " Walloo = [[F(DW2)eilloc = |[Fllee. (11.5) We construct a solution of Problem 11.1 by the following algorithm.
Suppose that there exists a solutiéh to Problem 111.8 with A solution to Problem 11.1:
{zi}i=1, {Bi}i=1 andp. ThenC in (l1.4) satisfies (11.2) by (Il.5)  Step 1Let A € C satisfy|\| = p. Let G(z;) be defined as follows:
andC € M(H*) N C(P) by Lemma IIl.1 and 1ll.5. Hence&” in
€ M(#>) N C(P) by Glz:) = SWi(2)D(=0) " (DWa)eolz) =1, i=1,...,m.

(ll1.4) is a solution to Problem 11.1. [ ]
The following corollary gives a necessary condition for the solv- step 2 Solve the matrix Nevanlinna-Pick interpolation problem
ability of Problem I1.1. with boundary conditions ofs.

Corollary 11.10. Consider Problem 1.1 whose solutions are re- Step 3 Calculate a solution of Problem 111.8 by (IV.1).

stricted to meromorphic matrix functions. Under the same hypotheses>teP 4 Compute a solution of Problem I1.1 by (l1l.4).

of Theorem 111.9, suppose that Problem 1.1 is solvable. Then there

exists anF € M(#H>) such that||F||.. < p and F(z;) = B; for V. THE MATRIX NEVANLINNA -PICK INTERPOLATION PROBLEM
t=1,...,n. The matrix Nevanlinna-Pick interpolation was studied well in [1],
[20], and many works related to the interpolation have been reported
over the last several years. For example, a theory of the interpolation
with complexity constraints has been developed in [21].

Our objective in this section is to show that the matrix Nevanlinna-
Remark 1ll.11. For simplicity, we assume that the unstable zerosick interpolation problem with boundary conditions is solvable if
of ¢ are distinct in Assumption 111.3. However, even when they argnd only if the Pick matrix consisting of the interior conditions is
not distinct, we can develop the results similar to Lemma Ill.5.  positive definite. Another aim is to show an algorithm similar to the

Remark I1.12. If D is a matrix whose elements are rational, then weChur-Nevanlinna algorithm [1] for obtaining the solutions.

can allows to be strictly proper. However, ib is not rational and if  Since the results in [1], [20] are developed for the unit disk=

¢ is strictly proper, in the same way as [14], we should reptagéth 1 € C | [z <1}, it is convenient to map the open right half plane
6-(s) = ¢(s)(1 + es)™, wheree > 0 andm is the relative degree onto the unit disk via the bilinear transformation

Proof: Obvious from the proof of Theorem 111.9. ]
At the end of this section, we discuss the assumptionp dh
Assumption II1.3.

of ¢. This makes sure that we do not have to deal with interpolation SEs 7= 2 1_
conditions at infinity, but this leads to an improper term like PD s+1
controllers in the controller. That is, in this section, we defirfg> as the set of functions that are

bounded and analytic iB, and the#{> norm is defined a$ H || :=

Remark I11.13. We assume that) is scalar, and then we re-
% sup,cp [|H(2)|| for H € M(H*).

duce strong stabilization with sensitivity reduction to theatrix
Nevanlinna-Pick interpolation. However, this assumptiorpafould
be weakened at the cost of going to tla@gentialNevanlinna-Pick A. Interpolating interior conditions

interpolation [19]. Details will be reported in a future work. Let us first introduce the interpolation problem with interior
conditions only. The problem is solved in [1], [20]. We here extend
IV. DESIGN OFSTABLE CONTROLLERSATTAINING Low the approach of [1], [20], when we consider the interpolation problem
SENSITIVITY with both interior and boundary conditions.

In this section, we develop a design method of strongly stabilizing We give the statement ¢fie matrix Nevanlinna-Pick interpolation
controllers, extending the technique of [9] to multi-input multi-outpuroblemas follows:

systems with time delays. , Problem V.1 ( [1], [20]). Given distinct complex numbets, ...,
The design method is based on the following lemma. A» € D and complex matrice#?, ..., F, satisfying||F:| < 1 for
Lemma IV.1. Suppose that? € M(H™) is square and that everyi, find a® € M(H™) satisfying||®[| < 1 and®(X;) = F;
|Glles < 1. Then, for every complex numbev # 0, fori=1,...,n.
A In what follows, we use the notation of the form
= §(G +1) (v.1) (AM,...,An; F1,...,F,) to indicate the interpolation data as
satisfiesF, F~' € M(H>) and || F||oo < |)|. above, i.e. associating valué$ at \;.

It is well known that Problem V.1 is solvable if and only if the
Sketch of proof: We can easily prove this lemma by the smalhssociated Pick matrix is positive definite.

gain theorem and the triangle inequality, so we omit the prool

We obtain the following theorem from Lemma IV.1. Theorem V.2 ( [1], [20]). Consider Problem V.1. Define the block

Theorem IV.2. Consider Problem 111.8. Leh be a complex number matrix Py - P,
satisfying|\| = p. If G € M(H*°) satisfies|G||- < 1 and P 7 V)
G(Zi)zéBi_I, i=1, ..., n, P -+ P
then F defined by (IV.1) is a solution of Problem 111.8. where )
Proof: Obvious from Lemma IV.1. n Py = m(l - FR), kl=1,...,n

The problem of findingc in Thgorem IV'.Z and_thaF of f|nd|r!g Then Problem V.1 is solvable if and only I > 0.
F in Corollary 111.10 are a matrix Nevanlinna-Pick interpolation

problem with boundary conditions. The interpolation problem is Let B := {M € CP*? | ||M|| < 1}. We need the following
solvable if and only if the Pick matrix consisting of the interiolemma when we construct an algorithm for obtaining solutions of



the interpolation problem, and when we consider the problem with Find a¥ € M(RH™) satisfying ||¥]. < 1 and ¥(r;) = G;

boundary conditions. forj=1,...,m.
Lemma V.3 ( [1], [20]). Let E € B. Define This problem is callethe boundary Nevanlinna-Pick interpolation
A= (I—EE*)71/2, B = —([—EE*)fl/QE, problem
Ci=—(I— E*E)‘”QE*, D:=(- E*E)_1/2, Lemma V.8 ( [24]). Problem V.7 is always solvable.

We can prove Lemma V.8 in the same way as in [24]. However,
by the Schur-Nevanlinna algorithm, we here prove Lemma V.8 in a
more straightforward way than that given in [24].
Te:B—B:X— (AX + B)(CX + D)™ " (V.2) Proof of Lemma V.8: It suffices to show that there exists
a boundary Nevanlinna-Pick interpolation problem with — 1
interpolation conditions in such a way that if the problem with- 1
We obtain a solution of Problem V.1 witif’z in (V.2) by the conditions is solvable, then the original problem with conditions

where M'/? denotes the Hermitian square root &f. Then the
mapping

is well defined and bijective.

following corollary. is also solvable.
Corollary V.4 ( [1], [20]). Consider Problem V.1. Define Lete>0. We deflnle
P S
y(z) = 2= M) (V.3) vl = i e
)\1(1 — )\12’) , 1 X
1 G =——Tc,(Gy), j=2,...,m.
F = WTF1 (Fy), i=2,...,n. (V.4) Ye(r5)

o _ _ _ First we show that there exists> 0 such that|G}|| < 1 for every
Then the original problem is solvable if and only if the.

. X ) ) . o j. SinceGj; is in B, Tg, (G;) is also inB by Lemma V.3. Hence
Nevanlinna-Pick problem withn — 1 interpolation con_dltlons there exists: such that
(A2y..., An; F3,..., Fy) is solvable. Moreover, there exist a so- 1
lution ®,, of the original problem withn conditions and a solution 0 <e< min (|rj —r1|- (7 - 1)) . (V.5)
§=2em 1T, (Gy)l

®,_1 of the problem withn — 1 conditions such that,(z) = T (
Tr' (y(2)Pn-1(2)). For everye in (V.5), G’ satisfies

For computing solutions of Problem V.1, Corollary V.4 suggests ol = 1 T (C
an iterative algorithm called the Schur-Nevanlinna algorithm. In IG5l = ye(r5) 1 (G5)
addition, it follows from Corollary V.4 that there exist solutions ery
whose entries are rational, whenever the problem is solvable. = ‘1 - — ‘ N6, (G)]

€

B. Interpolating interior and boundary conditions < (1 + r; — h|) e (GH)l < 1.

In this subsection, we consider the matrix Nevanlinna-Pick inter- Next suppose that there exists a solutién,_; € M(RH™)

polation problem with boundary conditions. To solve this problem boundary Nevanlinna-Pick problem with, — 1 conditions
we reduce it to the interpolation problem with boundary condition(% s G GL). Then Uo(2) i= T5 (ye(2)¥m-1(2))
sy imy yrt m)- m - G € m—

only, which is alwaysofolvable. o . ) is a solution of the original problem withn conditions. In fact,
We denote byRH> the subset oft{™ consisting of rational yeUm_i1lle < 1, becausellycc < 1. Therefore, ¥, is in

functlolr_ls. Let_@l]i))_be theI b_oundaryI of th(_a hunlt disk. The m_a_t_rlx M(RH>®) and ||, || < 1 by Lemma V.3. Next we confirm that
Nevanlinna-Pick interpolation problem with boundary conditiags v, satisfies the interpolation conditions. Foe= 2, .. ., m, we have

stated as follows: )
Problem V.5. Given distinct complex numbess;, ..., A, € D, r1, Wi (rj) = T(ill (ve (Tj)qlfhl(rjz)l
..., Tm € 8D and complex matrices, ..., F,, G1, ..., Gm such =Tg, (ye(r;)G;) = T, (T, (G))) = Gj.
that [|[Fi[| < 1, |G,|| < 1 for everys, j. Find a® € M(RH™)  Eyrthermore, forj = 1,
satisfying||®|| < 1 and ) »

dN)=F, ®(r;))=G;, i=1,....n, j=1,...,m. V(1) = Ta, @e(r)¥m—1(r1)) = Tg, (0) = Gr.

. ) o Hence®,, is a solution of the original problem with: conditions.

The scalar version of Problem V.5 is studied in [22, Chap. 2] |t has been proved that we can reduce every Problem V.7 to another
and [23]. The tangential one is also developed in [19, Chap. 2}},pjem V.7 that has one interpolation condition less. Continuing this
The approach of [22, Chap. 2] and [19, Chap. 21] is based on 8y we arrive at Problem V.7 with only one condition, which always

corresponding Pick matrix. On the other hand, the method of [23] i§imits a solution. Therefore, Problem V.7 is always solvable.m
based on the Schur-Nevanlinna algorithm. We here extend the methogina”y we prove Theorem V.6 by Corollary V.4 and Lemma V.8.

of [23] to the matrix case. . Proof of Theorem V.6:The necessity is straightforward.

Our aim of this subsection is to prove the following theorem. We show the sufficiency as follows. Suppose that Problem V.1 with
Theorem V.6. Problem V.5 is solvable if and only if Problem V.1the interpolation datdAs, ..., An; Fi,...,Fy) is solvable. Using
with the interpolation daté\s, ..., An; Fi,..., F,) is solvable. Corollary V.4, we can show the existence of a function satisfying

n—1 interior conditions andn boundary conditions derived by (V.4).
To prove Theorem V.6, we need to reduce Problem V.5 to th§nce, defined by (V.3) is an inner function, the new interpolating
following problem. value on the boundary
Problem V.7. Given distinct complex numbers, ..., r, € JD _ 1

and complex matrice&, ..., Gy, satisfying|G;|| < 1 for every G = y(rj)TFl(Gj)



satisfies||G;|| < 1 by Lemma V.3. Continuing this way, we canP(s) = ¢D~'N,, where
finally reduce Problem V.5 to Problem V.7. Moreover, Problem V.7

3e ,—3s
is always solvable by Lemma V.8. Therefore, Problem V.5 is solvablg ) .— (s —a)(s — 5)7 D(s) = 1—ee 1 57591/15 ’
if Problem V.1 with conditiong s, ..., An; Fi,..., F,) is solvable. (s —e+1)? e? —e¥* |0 s
u —3(s—¢) s—e+1 e2(s—¢)
s—e+1l)(s—c+e e
Theorem V.2 and V.6 show that the solvability of ProblemV.5 is Vo (s) := ((6_35 — 6)3(5)(8 ey P 5)) [36“ STef ] :
also equivalent to the positive definiteness of the Pick matrix in stet+1/15

(V.1). In addition, the proof of Lemma V.8 and that of Theorem N, given above satisfied, * ¢ M(H"°). We can easily check
V.6 suggest that we can compute a solution of Problem V.5 by @fhetherD and N := ¢N, are strongly left coprime by the matrix
iterative algorithm similar to the Schur-Nevanlinna algorithm. Nevanlinna-Pick interpolation problem in the same way as the scalar
case [22, Chap. 3].
The minimum ofp obtained by the proposed methodggin :=

V1. 0.578, and the stable controllef is given as

EXAMPLE

Consider the repetitive control system [25], [26] given in Fig. 2, C = 2. . lN,jl(G +D)7'wy - P,
whereL := 3, a(s) :==s/(s+ 1), Pmin @
where
S+; 67218 —0.79(5+0.28)(s—0.073) (s2+40.46540.056)
P(S) = 56 212 ,and G( )N (52+0.575+0.081)(52+0.515+0.18)
s5—1/15 S) = —0.057(5240.495+0.060) (52 —0.335+0.40)

s+ 6735

— +a(s)>[- —(54—1)(1—6—35)]'

(5240.5754+0.081)(s240.515+0.18)
0.031(s+1.37)(5+0.29)(s%+0.56540.37)
(s2+40.57540.081)(s240.51540.18)

—1.00(s—0.27)(s40.29) (s240.51540.18)
(s2+40.57540.081)(s240.51s+0.18)

On the other hand, by Corollary I11.10, we obtain a lower bound

I | of p achieved by a stable controlley,272.
I a(s)I 1 Cu(s) The controller we construct foP is distributed. To obtain an
' I implementable finite dimensional controller, we have to approximate
+ "+ +y | the controller; see, e.g., [29] and references therein.
“Leg Co(s) > P(s)
+H )¢ +
X, |
| , VII. CONCLUSION
In this study, the sensitivity reduction problem with stable con-
Fig. 2. Repetitive control system. trollers has been studied for a linear time-invariant multi-input multi-

output distributed parameter system. It is still open to obtain a
necessary and sufficient condition for the solvability of the problem.
The internal model principle for the class of psedorational impul§§owever, we have shown that a necessary condition and a sufficient
response matrices [26] shows that under the hypothesis of exponentifHdition can be reduced to the matrix Nevanlinna-Pick interpolation
stability of the closed-loop system, exponential decay of the err@jth boundary conditions, if the system has finitely many unstable
signal for any reference signal with a fixed peribds equivalent to  zeros and if all of them are simple and blocking. The interpolation
the existence of the internal modet“*/(1 — e~ **). The principle problem is solvable if and only if the Pick matrix consisting of the in-
is a precise generalization of the well-known finite-dimensiongrior conditions is positive definite. We can obtain the solutions of the
counterpart [27]. interpolation problem, extending the well-known Schur-Nevanlinna
It follows from this principle that the controllers we consider camilgorithm.
be separated into two paft = C,.C,, whereC,, is the part of the
internal model and has infinitely many poles on the imaginary axis,

andC, is the stable part to be designed. For the desigiipfwe can

consider the product’, P =: P, to be the new plant to be controlled.
To guarantee exponential stability, it is desirable tHatP, C) in

(11.1) has no poles in the regidd_. := {s € C| Res > —¢}, where

e > 0 is fixed [28]. Therefore, we study sensitivity reduction with

stable controllers for the following plant and weighting functions.

P(s) := Po(s —€) = Cu(s — ) P(s — €),
s+l [1 1/10}7 Wa(s) = I.

Wils) = {0571

0 1
Once we find the solutio®’ of the problem, we determine the
stable parC,(s) := C(s +¢). SinceC is in M(H>), C, does not
have poles inC_..
We takee = 0.01, so P has infinitely many unstable poles.
However it has only two zeros i€.: o ~ (0.156 + &) + 0.6075,
B =~ (0.156 + ) — 0.6074, which come fromC, (s — ¢) and are
blocking. Using the factorization method of [14], we can facdkoas

~
~
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