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Sensitivity Reduction by Strongly Stabilizing Controllers
for MIMO Distributed Parameter Systems
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Abstract—This note investigates sensitivity reduction problem by stable
stabilizing controllers for a linear time-invariant multi-input multi-output
distributed parameter system. The plant we consider has finitely many
unstable zeros, which are simple and blocking, but can possess infinitely
many unstable poles. We obtain a necessary condition and a sufficient
condition for the solvability of the problem, using the matrix Nevanlinna-
Pick interpolation with boundary conditions. We also develop a necessary
and sufficient condition for the solvability of the interpolation problem,
and show an algorithm to obtain the solutions. Our method to solve the
interpolation problem is based on the Schur-Nevanlinna algorithm.

Index Terms—Strong stabilization, H∞-control, distributed parameter
systems.

I. I NTRODUCTION

In this note, we study the problem of finding stable controllers
that stabilize a multi-input multi-output distributed parameter system
while reducing, simultaneously, the sensitivity of the system. That is,
the problem ofstrong stabilization with sensitivity reduction.

A background motivation for seeking stable controllers is that
unstable poles of the controllers are known to lead to performance
degradation in feedback systems under various performance objec-
tives [1]–[3]. Moreover, stable controllers are also robust to sensor
failures [4] and to plant nonlinearities [5]. Stable controllers have
other theoretical or practical advantages, see, e.g., [1], [6], and the
references therein.

For finite dimensional systems, various approaches have been de-
veloped for finding stable stabilizing controllers that achieve a desired
H∞ performance level, see, e.g., [6]–[12] and their references. For
infinite dimensional systems, some works have also been reported
recently [13]–[15]. For example, [14] has extended the technique used
in [8] to find strongly stabilizing controllers that lead to optimalH∞

sensitivity levels for a class of single-input single-output systems with
time delays. In [16], it was shown that every stabilizable linear multi-
input multi-output plant is strongly stabilizable. However, strong
stabilization with sensitivity reduction for multi-input multi-output
distributed parameter systems is largely open at present.

We generalize the method of [9] to a class of multi-input multi-
output distributed parameter systems. The plants we consider have
only finitely many unstable zeros, all of which are simple and block-
ing, but they are allowed to have infinitely many unstable poles. We
obtain stable controllers for the sensitivity reduction problem, using
the matrix Nevanlinna-Pick interpolation problem with boundary
conditions. We also prove that the interpolation problem is solvable
if and only if the Pick matrix consisting of the interior conditions is
positive definite. To obtain solutions of this interpolation problem,
we show an iterative algorithm similar to the well-known Schur-
Nevanlinna algorithm [1].

The note is organized as follows: Section II gives the statement
of the sensitivity reduction problem with stable controllers. In Sec-
tion III, we reduce this problem to the interpolation with unimodular
matrices inH∞ under some assumptions. We propose an algorithm
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for attaining low sensitivity by stable controllers in Section IV.
The algorithm is based on the matrix Nevanlinna-Pick interpolation
problem with boundary conditions, so we discuss the interpolation
problem in Section V. We give a numerical example in Section VI,
and conclusion in Section VII.

A. Notation

Let C+ denote the open right half-plane{s ∈ C | Re s > 0},
and let C̄+ be the closed right half-plane{s ∈ C | Re s ≥ 0}.
H∞ denotes the set of functions that are bounded and analytic
in C+. We denote byF∞ the field of fractions ofH∞. M(R)
is used as a generic symbol to denote the set of matrices with
elements in a commutative ringR, of whatever size. When it is
necessary to show explicitly the size of a matrix, the notation
G ∈ Rp×q is used to indicate thatG is a p × q matrix with
entries inR. For a complex matrixM , its conjugate transpose is
denoted byM∗. For H ∈ M(H∞), the H∞ norm is defined as
‖H‖∞ := sups∈C+

‖H(s)‖, where ‖M‖ denotes the maximum
singular value of the matrixM .

II. PROBLEM STATEMENT

Consider the linear, continuous-time, time-invariant feedback sys-
tem given in Fig. 1. Let plantP and controllerC belong toM(F∞).
The feedback system in Fig. 1 isinternally stable if the transfer
matrix H(P,C) from u1, u2 to e1, e2

H(P,C) =

[
(I + PC)−1 −(I + PC)−1P
C(I + PC)−1 I − C(I + PC)−1P

]
∈ M(H∞).

(II.1)

We say thatC stabilizesP , andP is stabilizableif the feedback sys-
tem is internally stable. LetC(P ) represent the set of all controllers
that stabilizeP . P is strongly stabilizableif C(P ) contains a stable
controller, that is,M(H∞) ∩ C(P ) 6= ∅.

y2
P (s)C(s)

e1u1+

− e2

y1 +
+

u2

Fig. 1. Feedback system.

Our problem is stated as follows:

Problem II.1. GivenP ∈ M(F∞), W1, W2 ∈ M(H∞) andρ > 0,
determine whether there exists a controllerC ∈ M(H∞)∩C(P ) such
that

‖W1(I + PC)−1W2‖∞ < ρ. (II.2)

Also, if one exists, find such a controllerC.

Our aim is to give a sufficient condition for the solvability of
Problem II.1 under some assumptions. We also propose a design
method for such a controller.

III. STRONG STABILIZATION AND SENSITIVITY REDUCTION

In this section, we reduce strong stabilization to interpolation
by unimodular matrices inH∞, and we formulate an interpolation
problem with anH∞ norm condition equivalent to Problem II.1 under
some assumptions. The interpolation problem is similar to the matrix
Nevanlinna-Pick interpolation problem, but the solution needs to be
unimodular inM(H∞).
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Let us first study strong stabilization only. The following lemma
gives a necessary and sufficient condition for strong stabilization:

Lemma III.1. Let P ∈ M(F∞) be stabilizable. Suppose thatP
has the formP = D−1N , whereD, N ∈ M(H∞) are strongly left
coprime in the sense of [17], i.e., there existX, Y ∈ M(H∞) such
that

NX +DY = I. (III.1)

Then P is strongly stabilizable if and only if there exists aC ∈
M(H∞) such that

(D +NC)−1 ∈ M(H∞). (III.2)

Proof: (⇐) We have

(I + PC)−1 = (I +D−1NC)−1

= (D−1(D +NC))−1 = (D +NC)−1D.

Moreover,

(I + PC)−1P = (D +NC)−1N,

C(I + PC)−1 = C(D +NC)−1D,

C(I + PC)−1P = C(D +NC)−1N.

SinceC, D, N , and(D+NC)−1 are inM(H∞), we obtain (II.1).
HenceP is strongly stabilizable.

(⇒) SinceP is stabilizable,P admits a strongly right coprime
factorization [17]:

P = ÑD̃−1, Ñ , D̃ ∈ M(H∞).

Moreover, (III.1) is satisfied for someX, Y ∈ M(H∞). Then all
controllers are of the form(X + D̃Q)(Y − ÑQ)−1, whereQ ∈
M(H∞) [17]. SinceP is strongly stabilizable, there exists aQ0 ∈
M(H∞) such thatC = (X + D̃Q0)(Y − ÑQ0)

−1 ∈ M(H∞).
Additionally, we have from (III.1)

D +NC = D +N(X + D̃Q0)(Y − ÑQ0)
−1

= (D(Y − ÑQ0) +N(X + D̃Q0))(Y − ÑQ0)
−1

= (Y − ÑQ0)
−1.

Hence we obtain(D +NC)−1 = Y − ÑQ0 ∈ M(H∞).
Lemma III.1 suggests the following problem to find stable stabi-

lizing controllers.

Problem III.2. Given D, N ∈ M(H∞), find a C ∈ M(H∞)
satisfying (III.2).

Under the following assumption onD and N , we can reduce
Problem III.2 to an interpolation problem with unimodular matrices.

Assumption III.3. D, N ∈ M(H∞) are strongly left coprime.
N is square andN has the formN = φNo, where φ ∈ H∞

and No, N−1
o ∈ M(H∞), and φ is a nonzero rational function

satisfying φ(∞) 6= 0, and possesses distinct zerosz1, . . . , zn in
C̄+. All elements ofNo, D, X, andY in (III.1) are meromorphic
functions.

Under Assumption III.3, we prove that Problem III.2 is equivalent
to the following problem:

Problem III.4. Givenz1, . . . , zn ∈ C̄+ and complex square matrices
A1, . . . , An, find aU ∈ M(H∞) satisfyingU−1 ∈ M(H∞) and

U(zi) = Ai, i = 1, . . . , n. (III.3)

We start with the following lemma:

Lemma III.5. Consider Problem III.2 under Assumption III.3. We
restrict the solutions to matrices whose elements are meromorphic

functions. DefineAi := D(zi) for i = 1, . . . , n. Then Problem III.2
is equivalent to Problem III.4 with interpolation data{zi}ni=1 and
{Ai}ni=1

Proof: Let C be a solution of Problem III.2. DefineU := D +
NC. Then by (III.2)U satisfiesU, U−1 ∈ M(H∞) and

U(zi) = D(zi) + φ(zi)No(zi)C(zi) = D(zi) = Ai.

Hence,U is a solution to Problem III.4.
Conversely, suppose thatU is a solution to Problem III.4 with

{zi}ni=1 and{Ai}ni=1. Define

C :=
1

φ
N−1

o (U −D).

Then C satisfies(D + NC)−1 = U−1 ∈ M(H∞) and φC =
N−1

o (U −D) ∈ M(H∞). If C 6∈ M(H∞), thenC has some poles
in C̄+ that are canceled by the zeros ofφ. Let zk be one of such
poles. Then we haveN−1

o (zk)(U(zk)−Ak) = (φC)(zk) 6= 0, which
contradicts (III.3).

Before proceeding to sensitivity reduction by strongly stabilizing
controllers, we need to recall the definitions of co-inner and co-outer
matrix functions.F ∈ M(H∞) is said to beco-inner if F (s̄)∗ is
inner. Similarly,G ∈ M(H∞) is said to beco-outer if G(s̄)∗ is
outer.

The following theorem shows that every function inM(H∞)
admits a unique co-inner-outer factorization.

Theorem III.6 ( [18]). Let H be in(H∞)p×q. H admits a co-inner-
outer factorization of the formH = GF , whereG ∈ (H∞)p×r is
co-outer andF ∈ (H∞)r×q is co-inner for somer. F andG are
unique to within multiplication by a constant unitary matrix.

Let us next consider Problem II.1. We place the following addi-
tional assumption onW1, W2, andD:

Assumption III.7. All elements ofW1 and W2 are meromorphic
functions.W1 is unimodular inM(H∞). If we factorizeDW2 in the
form DW2 = (DW2)co · (DW2)ci, where(DW2)co is co-outer and
(DW2)ci is co-inner, then(DW2)co is also unimodular inM(H∞).

We can obtain a solution for Problem II.1 under Assumption III.3
and III.7, using a solution of the following problem.

Problem III.8. Suppose thatz1, . . . , zn ∈ C̄+ are distinct, and that
B1, . . . , Bn are complex square matrices. Suppose also thatρ > 0.
Find anF ∈ M(H∞) satisfyingF−1 ∈ M(H∞), ‖F‖∞ < ρ, and
F (zi) = Bi for i = 1, . . . , n.

Theorem III.9. Consider Problem II.1. We assume that there exist
D, N ∈ M(H∞) such thatP = D−1N . Let Assumptions III.3 and
III.7 hold. Define

Bi := W1(zi)D(zi)
−1(DW2)co(zi), i = 1, . . . , n.

If there exists a solutionF of Problem III.8 with{zi}ni=1, {Bi}ni=1

andρ, then

C := N−1(DW2)coF
−1W1 − P−1 (III.4)

gives a solution of Problem II.1.

Proof: First of all, we prove thatD(zi) is invertible for i =
1, . . . , n. Sinceφ(zi) = 0, D(zi)Y (zi) = I follows by (III.1). Hence
D(zi)

−1 exists andD(zi)
−1 = Y (zi).

Since

W1(I + PC)−1W2 = W1(D +NC)−1DW2

= W1(D +NC)−1(DW2)co · (DW2)ci,
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definingF := W1(D +NC)−1(DW2)co, we have

‖W1(I + PC)−1W2‖∞ = ‖F (DW2)ci‖∞ = ‖F‖∞. (III.5)

Suppose that there exists a solutionF to Problem III.8 with
{zi}ni=1, {Bi}ni=1 andρ. ThenC in (III.4) satisfies (II.2) by (III.5)
andC ∈ M(H∞) ∩ C(P ) by Lemma III.1 and III.5. HenceC in
(III.4) is a solution to Problem II.1.

The following corollary gives a necessary condition for the solv-
ability of Problem II.1.

Corollary III.10. Consider Problem II.1 whose solutions are re-
stricted to meromorphic matrix functions. Under the same hypotheses
of Theorem III.9, suppose that Problem II.1 is solvable. Then there
exists anF ∈ M(H∞) such that‖F‖∞ < ρ andF (zi) = Bi for
i = 1, . . . , n.

Proof: Obvious from the proof of Theorem III.9.
At the end of this section, we discuss the assumption ofφ in

Assumption III.3.

Remark III.11. For simplicity, we assume that the unstable zeros
of φ are distinct in Assumption III.3. However, even when they are
not distinct, we can develop the results similar to Lemma III.5.

Remark III.12. If D is a matrix whose elements are rational, then we
can allowφ to be strictly proper. However, ifD is not rational and if
φ is strictly proper, in the same way as [14], we should replaceφ with
φε(s) = φ(s)(1 + εs)m, whereε > 0 andm is the relative degree
of φ. This makes sure that we do not have to deal with interpolation
conditions at infinity, but this leads to an improper term like PD
controllers in the controller.

Remark III.13. We assume thatφ is scalar, and then we re-
duce strong stabilization with sensitivity reduction to thematrix
Nevanlinna-Pick interpolation. However, this assumption ofφ could
be weakened at the cost of going to thetangentialNevanlinna-Pick
interpolation [19]. Details will be reported in a future work.

IV. D ESIGN OFSTABLE CONTROLLERSATTAINING LOW

SENSITIVITY

In this section, we develop a design method of strongly stabilizing
controllers, extending the technique of [9] to multi-input multi-output
systems with time delays.

The design method is based on the following lemma.

Lemma IV.1. Suppose thatG ∈ M(H∞) is square and that
‖G‖∞ < 1. Then, for every complex numberλ 6= 0,

F :=
λ

2
(G+ I) (IV.1)

satisfiesF , F−1 ∈ M(H∞) and‖F‖∞ < |λ|.

Sketch of proof: We can easily prove this lemma by the small
gain theorem and the triangle inequality, so we omit the proof.

We obtain the following theorem from Lemma IV.1.

Theorem IV.2. Consider Problem III.8. Letλ be a complex number
satisfying|λ| = ρ. If G ∈ M(H∞) satisfies‖G‖∞ < 1 and

G(zi) =
2

λ
Bi − I, i = 1, . . . , n,

thenF defined by (IV.1) is a solution of Problem III.8.

Proof: Obvious from Lemma IV.1.
The problem of findingG in Theorem IV.2 and that of finding

F in Corollary III.10 are a matrix Nevanlinna-Pick interpolation
problem with boundary conditions. The interpolation problem is
solvable if and only if the Pick matrix consisting of the interior

conditions is positive definite. Moreover, we can obtain a solution to
the interpolation problem. The details are given in the next section.

We construct a solution of Problem II.1 by the following algorithm.
A solution to Problem II.1:

Step 1: Let λ ∈ C satisfy|λ| = ρ. LetG(zi) be defined as follows:

G(zi) =
2

λ
W1(zi)D(zi)

−1(DW2)co(zi)− I, i = 1, . . . , n.

Step 2: Solve the matrix Nevanlinna-Pick interpolation problem
with boundary conditions ofG.

Step 3: Calculate a solution of Problem III.8 by (IV.1).
Step 4: Compute a solution of Problem II.1 by (III.4).

V. THE MATRIX NEVANLINNA -PICK INTERPOLATION PROBLEM

The matrix Nevanlinna-Pick interpolation was studied well in [1],
[20], and many works related to the interpolation have been reported
over the last several years. For example, a theory of the interpolation
with complexity constraints has been developed in [21].

Our objective in this section is to show that the matrix Nevanlinna-
Pick interpolation problem with boundary conditions is solvable if
and only if the Pick matrix consisting of the interior conditions is
positive definite. Another aim is to show an algorithm similar to the
Schur-Nevanlinna algorithm [1] for obtaining the solutions.

Since the results in [1], [20] are developed for the unit diskD :=
{z ∈ C | |z| < 1}, it is convenient to map the open right half plane
onto the unit disk via the bilinear transformation

s 7→ z =
s− 1

s+ 1
.

That is, in this section, we defineH∞ as the set of functions that are
bounded and analytic inD, and theH∞ norm is defined as‖H‖∞ :=
supz∈D ‖H(z)‖ for H ∈ M(H∞).

A. Interpolating interior conditions

Let us first introduce the interpolation problem with interior
conditions only. The problem is solved in [1], [20]. We here extend
the approach of [1], [20], when we consider the interpolation problem
with both interior and boundary conditions.

We give the statement ofthe matrix Nevanlinna-Pick interpolation
problemas follows:

Problem V.1 ( [1], [20]). Given distinct complex numbersλ1, . . . ,
λn ∈ D and complex matricesF1, . . . , Fn satisfying‖Fi‖ < 1 for
every i, find aΦ ∈ M(H∞) satisfying‖Φ‖∞ < 1 andΦ(λi) = Fi

for i = 1, . . . , n.

In what follows, we use the notation of the form
(λ1, . . . , λn; F1, . . . , Fn) to indicate the interpolation data as
above, i.e. associating valuesFi at λi.

It is well known that Problem V.1 is solvable if and only if the
associated Pick matrix is positive definite.

Theorem V.2 ( [1], [20]). Consider Problem V.1. Define the block
matrix

P :=

P11 · · · P1n

...
...

Pn1 · · · Pnn

 , (V.1)

where

Pkl :=
1

1− λ̄kλl

(I − F ∗
kFl), k, l = 1, . . . , n.

Then Problem V.1 is solvable if and only ifP > 0.

Let B := {M ∈ Cp×q | ‖M‖ < 1}. We need the following
lemma when we construct an algorithm for obtaining solutions of
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the interpolation problem, and when we consider the problem with
boundary conditions.

Lemma V.3 ( [1], [20]). Let E ∈ B. Define

A := (I − EE∗)−1/2, B := −(I − EE∗)−1/2E,

C := −(I − E∗E)−1/2E∗, D := (I − E∗E)−1/2,

where M1/2 denotes the Hermitian square root ofM . Then the
mapping

TE : B → B : X 7→ (AX +B)(CX +D)−1 (V.2)

is well defined and bijective.

We obtain a solution of Problem V.1 withTE in (V.2) by the
following corollary.

Corollary V.4 ( [1], [20]). Consider Problem V.1. Define

y(z) :=
|λ1|(z − λ1)

λ1(1− λ̄1z)
, (V.3)

F ′
i :=

1

y(λi)
TF1(Fi), i = 2, . . . , n. (V.4)

Then the original problem is solvable if and only if the
Nevanlinna-Pick problem withn − 1 interpolation conditions
(λ2, . . . , λn; F ′

2, . . . , F
′
n) is solvable. Moreover, there exist a so-

lution Φn of the original problem withn conditions and a solution
Φn−1 of the problem withn − 1 conditions such thatΦn(z) =
T−1
F1

(y(z)Φn−1(z)).

For computing solutions of Problem V.1, Corollary V.4 suggests
an iterative algorithm called the Schur-Nevanlinna algorithm. In
addition, it follows from Corollary V.4 that there exist solutions
whose entries are rational, whenever the problem is solvable.

B. Interpolating interior and boundary conditions

In this subsection, we consider the matrix Nevanlinna-Pick inter-
polation problem with boundary conditions. To solve this problem,
we reduce it to the interpolation problem with boundary conditions
only, which is always solvable.

We denote byRH∞ the subset ofH∞ consisting of rational
functions. Let∂D be the boundary of the unit discD. The matrix
Nevanlinna-Pick interpolation problem with boundary conditionsis
stated as follows:

Problem V.5. Given distinct complex numbersλ1, . . . , λn ∈ D, r1,
. . . , rm ∈ ∂D and complex matricesF1, . . . , Fn, G1, . . . , Gm such
that ‖Fi‖ < 1, ‖Gj‖ < 1 for every i, j. Find aΦ ∈ M(RH∞)
satisfying‖Φ‖∞ < 1 and

Φ(λi) = Fi, Φ(rj) = Gj , i = 1, . . . , n, j = 1, . . . ,m.

The scalar version of Problem V.5 is studied in [22, Chap. 2]
and [23]. The tangential one is also developed in [19, Chap. 21].
The approach of [22, Chap. 2] and [19, Chap. 21] is based on the
corresponding Pick matrix. On the other hand, the method of [23] is
based on the Schur-Nevanlinna algorithm. We here extend the method
of [23] to the matrix case.

Our aim of this subsection is to prove the following theorem.

Theorem V.6. Problem V.5 is solvable if and only if Problem V.1
with the interpolation data(λ1, . . . , λn; F1, . . . , Fn) is solvable.

To prove Theorem V.6, we need to reduce Problem V.5 to the
following problem.

Problem V.7. Given distinct complex numbersr1, . . . , rm ∈ ∂D
and complex matricesG1, . . . , Gm satisfying‖Gj‖ < 1 for every

j. Find aΨ ∈ M(RH∞) satisfying‖Ψ‖∞ < 1 andΨ(rj) = Gj

for j = 1, . . . ,m.

This problem is calledthe boundary Nevanlinna-Pick interpolation
problem.

Lemma V.8 ( [24]). Problem V.7 is always solvable.

We can prove Lemma V.8 in the same way as in [24]. However,
by the Schur-Nevanlinna algorithm, we here prove Lemma V.8 in a
more straightforward way than that given in [24].

Proof of Lemma V.8: It suffices to show that there exists
a boundary Nevanlinna-Pick interpolation problem withm − 1
interpolation conditions in such a way that if the problem withm−1
conditions is solvable, then the original problem withm conditions
is also solvable.

Let ε > 0. We define

yε(z) :=
1

r1

z − r1
(1 + ε)− r̄1z

,

G′
j :=

1

yε(rj)
TG1(Gj), j = 2, . . . ,m.

First we show that there existsε > 0 such that‖G′
j‖ < 1 for every

j. SinceGj is in B, TG1(Gj) is also inB by Lemma V.3. Hence
there existsε such that

0 < ε < min
j=2,...,m

(
|rj − r1| ·

(
1

‖TG1(Gj)‖
− 1

))
. (V.5)

For everyε in (V.5), G′
j satisfies

‖G′
j‖ =

∥∥∥∥ 1

yε(rj)
TG1(Gj)

∥∥∥∥
=

∣∣∣∣1− εr1
rj − r1

∣∣∣∣ · ‖TG1(Gj)‖

≤
(
1 +

ε

|rj − r1|

)
· ‖TG1(Gj)‖ < 1.

Next suppose that there exists a solutionΨm−1 ∈ M(RH∞)
of a boundary Nevanlinna-Pick problem withm − 1 conditions
(r2, . . . , rm; G′

2, . . . , G
′
m). ThenΨm(z) := T−1

G1
(yε(z)Ψm−1(z))

is a solution of the original problem withm conditions. In fact,
‖yεΨm−1‖∞ < 1, because‖yε‖∞ < 1. Therefore,Ψm is in
M(RH∞) and‖Ψm‖∞ < 1 by Lemma V.3. Next we confirm that
Ψm satisfies the interpolation conditions. Forj = 2, . . . ,m, we have

Ψm(rj) = T−1
G1

(yε(rj)Ψm−1(rj))

= T−1
G1

(yε(rj)G
′
j) = T−1

G1
(TG1(Gj)) = Gj .

Furthermore, forj = 1,

Ψm(r1) = T−1
G1

(yε(r1)Ψm−1(r1)) = T−1
G1

(0) = G1.

HenceΦm is a solution of the original problem withm conditions.
It has been proved that we can reduce every Problem V.7 to another

problem V.7 that has one interpolation condition less. Continuing this
way, we arrive at Problem V.7 with only one condition, which always
admits a solution. Therefore, Problem V.7 is always solvable.

Finally, we prove Theorem V.6 by Corollary V.4 and Lemma V.8.
Proof of Theorem V.6:The necessity is straightforward.

We show the sufficiency as follows. Suppose that Problem V.1 with
the interpolation data(λ1, . . . , λn; F1, . . . , Fn) is solvable. Using
Corollary V.4, we can show the existence of a function satisfying
n−1 interior conditions andm boundary conditions derived by (V.4).
Sincey defined by (V.3) is an inner function, the new interpolating
value on the boundary

Ḡj :=
1

y(rj)
TF1(Gj)
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satisfies‖Ḡj‖ < 1 by Lemma V.3. Continuing this way, we can
finally reduce Problem V.5 to Problem V.7. Moreover, Problem V.7
is always solvable by Lemma V.8. Therefore, Problem V.5 is solvable
if Problem V.1 with conditions(λ1, . . . , λn; F1, . . . , Fn) is solvable.

Theorem V.2 and V.6 show that the solvability of ProblemV.5 is
also equivalent to the positive definiteness of the Pick matrix in
(V.1). In addition, the proof of Lemma V.8 and that of Theorem
V.6 suggest that we can compute a solution of Problem V.5 by an
iterative algorithm similar to the Schur-Nevanlinna algorithm.

VI. EXAMPLE

Consider the repetitive control system [25], [26] given in Fig. 2,
whereL := 3, a(s) := s/(s+ 1),

P (s) :=

[
s+1
s+2

e−2s

s+1

0 s+2
s−1/15

]
, and

Cu(s) :=

(
e−Ls

1− e−Ls
+ a(s)

)
I =

s+ e−3s

(s+ 1)(1− e−3s)
I.

P (s)Co(s)
+

−

a(s)I

e−LsI
+

+

+

+

Cu(s)

Fig. 2. Repetitive control system.

The internal model principle for the class of psedorational impulse
response matrices [26] shows that under the hypothesis of exponential
stability of the closed-loop system, exponential decay of the error
signal for any reference signal with a fixed periodL is equivalent to
the existence of the internal modele−Ls/(1− e−Ls). The principle
is a precise generalization of the well-known finite-dimensional
counterpart [27].

It follows from this principle that the controllers we consider can
be separated into two partC = CuCo, whereCu is the part of the
internal model and has infinitely many poles on the imaginary axis,
andCo is the stable part to be designed. For the design ofCo, we can
consider the productCuP =: Po to be the new plant to be controlled.

To guarantee exponential stability, it is desirable thatH(P,C) in
(II.1) has no poles in the regionC−ε := {s ∈ C | Re s ≥ −ε}, where
ε > 0 is fixed [28]. Therefore, we study sensitivity reduction with
stable controllers for the following plant and weighting functions.

P̃ (s) := Po(s− ε) = Cu(s− ε)P (s− ε),

W1(s) :=
s+ 1

10s+ 1

[
1 1/10
0 1

]
, W2(s) := I.

Once we find the solutioñC of the problem, we determine the
stable partCo(s) := C̃(s+ ε). SinceC̃ is in M(H∞), Co does not
have poles inC−ε.

We take ε = 0.01, so P̃ has infinitely many unstable poles.
However it has only two zeros in̄C+: α ≈ (0.156 + ε) + 0.607j,
β ≈ (0.156 + ε) − 0.607j, which come fromCu(s − ε) and are
blocking. Using the factorization method of [14], we can factorP̃ as

P̃ (s) = φD−1No, where

φ(s) :=
(s− α)(s− β)

(s− ε+ 1)2
, D(s) :=

1− e3εe−3s

e−3s − e3ε

[
1 0

0 s−ε−1/15
s+ε+1/15

]
,

No(s) :=
(s− ε+ 1)(s− ε+ e−3(s−ε))

(e−3s − e3ε)(s− α)(s− β)

[
s−ε+1
s−ε+2

e−2(s−ε)

s−ε+1

0 s−ε+2
s+ε+1/15

]
.

No given above satisfiesN−1
o ∈ M(H∞). We can easily check

whetherD andN := φNo are strongly left coprime by the matrix
Nevanlinna-Pick interpolation problem in the same way as the scalar
case [22, Chap. 3].

The minimum ofρ obtained by the proposed method isρmin :=
0.578, and the stable controller̃C is given as

C̃ =
2

ρmin
· 1
φ
N−1

o (G+ I)−1W1 − P̃−1,

where

G(s) ≈

[
−0.79(s+0.28)(s−0.073)(s2+0.46s+0.056)

(s2+0.57s+0.081)(s2+0.51s+0.18)

−0.057(s2+0.49s+0.060)(s2−0.33s+0.40)

(s2+0.57s+0.081)(s2+0.51s+0.18)

0.031(s+1.37)(s+0.29)(s2+0.56s+0.37)

(s2+0.57s+0.081)(s2+0.51s+0.18)

−1.00(s−0.27)(s+0.29)(s2+0.51s+0.18)

(s2+0.57s+0.081)(s2+0.51s+0.18)

]
.

On the other hand, by Corollary III.10, we obtain a lower bound
of ρ achieved by a stable controller,0.272.

The controller we construct forP is distributed. To obtain an
implementable finite dimensional controller, we have to approximate
the controller; see, e.g., [29] and references therein.

VII. C ONCLUSION

In this study, the sensitivity reduction problem with stable con-
trollers has been studied for a linear time-invariant multi-input multi-
output distributed parameter system. It is still open to obtain a
necessary and sufficient condition for the solvability of the problem.
However, we have shown that a necessary condition and a sufficient
condition can be reduced to the matrix Nevanlinna-Pick interpolation
with boundary conditions, if the system has finitely many unstable
zeros and if all of them are simple and blocking. The interpolation
problem is solvable if and only if the Pick matrix consisting of the in-
terior conditions is positive definite. We can obtain the solutions of the
interpolation problem, extending the well-known Schur-Nevanlinna
algorithm.
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