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Abstract. A modeling for the non-inductive initiation of a closed flux surface
observed in electron cyclotron (EC) heated toroidal plasmas is presented. First, a
pressure driven equilibrium toroidal current develops under a weak external vertical
field so as to counter balance the pressure-ballooning and current-hoop forces. When
the self field from the current almost cancels out the external vertical field, a forward
energetic part of electrons in the velocity space begin to make cross field passing
(CFP) orbits. The CFP electrons are generated by the EC heating of bulk electrons
and subsequent pitch angle scattering, which is analyzed using the Fokker Planck
equation. They provide an additional current that closes the filed lines. The model
is examined for experiments in the small low aspect ratio device of LATE and in the
large conventional device of JT-60U with a search for appropriate modes of EC heating.
Simultaneous coincidence of the model with these two experiments is obtained in terms
of microwave power and driven current. The results predict that initiation of closed
flux surface requires more and more EC power as the plasma major radius increases.
Especially, careful injection of high N∥ EC waves are needed for large devices, both for
initiation of a closed flux surface and for subsequent enlargement of the flux surface
by usual EC current drive (ECCD) onto the closed flux area.
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1. Introduction

A toroidal current was generated in a number of experiments when a weak vertical field,

BV , was superposed in EC- heated toroidal plasmas [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12].

The current increased as EC power was increased, and often, a closed flux surface

was initiated via a rapid current increase (current jump) in small low aspect ratio

devices [4, 5, 7, 9, 10]. Once a closed flux surface was formed, even current ramp-up by

EC current drive (ECCD) was possible [13]. These experimental results are not only

interesting but also important since realization of compact tokamak reactors depends on

reduction or removal of a central solenoid from the reactors [14, 15]. Even in conventional

tokamak reactors with a full central solenoid such as ITER [16], non-inductive formation

of an initial closed flux surface by EC power is useful to save the flux of central solenoid

and to prolong the burning time.

Figure 1. (a) Helical field lines by the superposition of a vertical field BV on the
toroidal field Bϕ and (b) the VZ=0 characteristics in the electron velocity space

In order to understand the current generation in helical external field lines composed

of BV and the toroidal filed Bϕ (see figure 1 (a)), two mechanisms were proposed.

They can be qualitatively described using the guiding-center-drift description for the

EC-heated electrons as follows. Suppose an axisymmetric plasma is immersed in a

toroidal magnetic field in the cylindrical coordinates of (R, ϕ, Z) with Z coordinate on
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the symmetric axis. Each charged particle drifts vertically across the field lines due to

the radial gradient and curvature of Bϕ with the velocity given by

VV TF =
mγ(v2

∥ + v2
⊥/2)

qBϕR
.

Here q and m is the charge and mass ; γ is the relativistic factor and ∥ and ⊥ denotes

the parallel and perpendicular components of the velocity to the field, respectively.

Hereafter, this vertical drift is referred to as vacuum-toroidal-field (VTF) drift since the

torodal field in these EC-heated plasmas is essentially vacuum field with negligibly small

paramagnetic and diamagnetic effects. We assume Bϕ > 0 and BV > 0 throughout the

paper without loss of generality. Then, the electrons (q = −e < 0, where e is the

elementary charge) VTF-drift downward while the ions (q > 0) do upward.

The first mechanism of current generation is based on a preferential confinement

of energetic tail electrons in the collisionless energy range. In the presence of BV the

vertical drift velocity of the collisionless electron is a sum of the VTF drift velocity and

the vertical component of the parallel drift velocity along the helical field line and is,

for a uniform BV field, approximately given by

VZ = v∥
BV

Bϕ

−
meγ(v2

∥ + v2
⊥/2)

eBϕR
(1)

When VZ = 0, the electron makes a circular orbit along the toroidal field line and

is confined. These VZ = 0 orbits realize only when the parallel drift velocity is positive

and the first term exactly compensates the negative VTF drift. On the other hand

electrons with negative parallel velocity have negative VZ and are lost downward to

the bottom of the vessel, manifesting asymmetric confinement between the forward and

backward drift along the field line, which can generate a toroidal current [17]. The

VZ = 0 condition makes an ellipsis-like characteristics in the velocity space as shown

in figure 1(b). Here, the current due to this preferential confinement for collisionless

tail electrons is temporarily referred to as jTPC . The asymmetric confinement area in

the electron velocity space more or less expands from the initial narrow area of the

VZ=0 characteristics when the self poloidal field from jTPC is took into account. Then,

the expansion in confinement area would increase the current further. This chain of

improvement, that is, a positive feedback was demonstrated using a zero dimensional

Fokkar Plank code [18], which might account for the current jump. However, growth of

jTPC via this positive feedback is not the case since it requires an unrealistically huge

EC power as inferred from the results in the present paper.

While some electrons around the VZ=0 characteristic line become mirror-confined

when the BV field is not uniform and has a finite decay index, almost electrons have lost

orbits. This situation leads to the production of an ambi-polar potential in the order of

Vamb ∼ Te/e [19] to balance the electron and ion flows along the filed line to the wall.

Thermal electrons are confined by this potential.
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The second mechanism of current generation is based on the VTF drift of thermal

electrons. The VTF drift of collisional bulk electrons in the thermal energy range may

result in a vertical charge separation current, which is given by summing up the VTF-

drift current of every electron over the Maxwell velocity distribution and is written in

terms of the local bulk electron pressure pe as;

jV TF =
2pe

RBϕ

.

Here we neglect ion contribution since ion temperature is much lower than the electron

temperature in the EC-heated plasmas in the open fields. This vertical current gives

rise a charge separation. In a simple toroidal field without BV the vertical charge

separation results in a current that circulates via the conducting vacuum vessel, which

was predicted many years ago [20] and experimentally confirmed recently [21, 22]. When

a weak vertical field BV is superposed the charge separation may be compensated by

the return current along the helical field line around the center post (see figure 1(a))

[23], resulting in a toroidal current, jEQL, which is approximately given by

jEQL = −jV TF
Bϕ

BV

= − 2pe

RBV

, (2)

when the self field from jEQL itself is neglected.

In terms of fluid description this current is an open field equilibrium current to

balance the outward pressure ballooning force of bulk electrons (2pe/R) by the counter

force with the interaction with BV (jEQL × BV ) as pointed in [24], which showed for

the first time above formula for jEQL. Furthermore the authors of [24] developed a fluid

model for open field equilibrium and deduced a set of fluid equations that took the self

field into account. They considered the situation and argued that closed flux surfaces

could not be generated by equilibrium current alone. This result, therefore, suggested

that a combination of the equilibrium current and a current generated by a kinetic effect

such as jTPC might be responsible for the production of flux surfaces observed in the

experiments.

The equilibrium current, jEQL, changes its direction when BV is reversed. On closed

flux surfaces this current generation still works if we replace BV by BZ , the local vertical

field including the self field. There are, however, always a pair of points on every flux

surface; one has BZ > 0 and the other BZ < 0. Therefore, the local current directions

are opposite between the pair locations and net toroidal current is hardly generated on

closed flux surfaces. Furthermore preferential confinement for tail electrons essentially

disappears and therefore there is no jTPC on closed flux surfaces. Closed flux surfaces

may be maintained by the EC waves driven current, jECCD, and/or bootstrap current

[3]. In both cases the current carriers are directional passing electrons that circulate

around the torus along the field lines on the flux surfaces. Thus the current generation

mechanisms are quite different between in open and closed fields. Then a question arises

how the field changes from open to closed one.



Open field equilibrium current and cross field passing electrons as an initiator 5

A sketch of a scenario that combined jEQL and jTPC was proposed to explain the

initiation of a closed flux surface via a current jump observed in the LATE device as

follows [5]. First the open field equilibrium current, jEQL, increases as the bulk electron

pressure increases and the self field from this current develops at the inboard side of

the current channel, where BZ is reduced significantly from BV by the self field (See

BV and BZ profiles in figure 3). Then asymmetric confinement area in the electron

velocity space expands drastically from the initial narrow area of the VZ=0 ellipsis (the

confinement area in vacuum field (figure 1(b)) expands as that in figure 5 (a), and then

5(b)). At the same time tail orbits also change from simple VZ=0 orbits in the external

field to cross field passing (CFP) orbits. The expansion of confinement area induces the

second event. Namely, asymmetrically confined tail electrons generated by EC power,

which are referred to as CFP electrons in the present paper, increase drastically; then

a fast positive feedback of current generation begins, this time, by the assist from the

equilibrium current. This leads to the current jump observed in small devices (see

[4, 5]). Once closed flux surfaces are formed via current jump, ECCD begins to work

and maintain the closed flux surface. Thus, the CFP electrons bridge the open field

equilibrium maintained by jEQL to the closed filed one maintained by jECCD.

While this scenario improved the original feedback model that depended solely on

the tail current generated by the preferential confinement, there remained important

questions and issues. First, whether or not the CFP electron current flows at the

inboard side of the equilibrium current where the BZ field is most reduced and, therefore,

the CFP electron current can most easily close the flux surface. Second, what is the

distribution of EC-heated CFP electrons on the velocity space and how much EC power

is needed to maintain such a distribution in a given poloidal field composed of BV and the

self field from the equilibrium current. Third, how much equilibrium current is needed to

trigger the positive feedback of CFP electron current to produce closed flux surfaces by

the realistic EC power. Forth, what is the best mode of ECH to generate enough CFP

electrons for closing the flux surface and to have the CFP electron distribution smoothly

transformed into the ECCD velocity distribution and then to enlarge the initial closed

flux surface. These questions are addressed and resolved in the present paper.

Section 2 analyzes the equilibrium characteristics of EC-heated toroidal plasmas

in open fields using the fluid description. Even in open fields, radial and vertical force

balances are primal to the parallel force balance along the field line [24]. Forces such as

a pressure gradient and a centrifugal force associated with a plasma flow are balanced by

the j×B force. Since the centrifugal force is neglected in EC-heated torus as explained in

this section there may be a pressure governing equation that gives the pressure profile

from the information on j and B. We develop the pressure governing equation from

the momentum balance equations. The equation turns out to be consistent with the

guiding-center-drift description. We introduce a model current profile that has 8 fitting

parameters and produce pairs of model pressure and current profiles for usage in the

following sections. It turns out that while the current peak coincides with the pe peak

when the self field can be neglected as shown by equation (2), the current peak shifts
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outward along the major radius from the pe peak as the self field increases. Thus the

first question whether or not the CFP electron current flows at the inboard side of the

equilibrium current is positively resolved since the CFP electrons may be generated

around the peak location of pe.

Once the field is specified as described above various orbits of energetic electrons can

also be specified. In section 3 we develop a Hamiltonian equation for guiding center orbit

of energetic electrons using three constants of motion. We neglect effect of electrostatic

field on the energetic electrons. For every stating point on the EC resonance (ECR)

layer along which the pe peak runs as a ridge, we can obtain a confinement mapping on

the velocity space by tracing out the orbits that start with various velocities and pitch

angles.

In section 4 we develop a simplified Fokker Plank model including the diffusion by

EC wave to deduce the velocity distribution of energetic electrons on the confinement

mapping. Once the velocity distribution is estimated, we can calculate the current

distribution carried by energetic electrons and obtain the flux surface as done in the

sections 5 and 6.

After above preparations we examine the model for the experiments in the LATE

device [4, 5, 6] as a typical case in small low aspect ratio devices, and for the JT-60U

experiment [12] as a typical case in conventional large tokamaks, in sections 5 and 6,

respectively. Here, the second and third questions are positively resolved, that is, the

CFP electron distribution and the power to generate and maintain them turn out to

be reasonable and match to the experiments in LATE and JT-60U, respectively. In

section 7 we look for appropriate injection angles and modes of EC waves for large

devices to generate enough CFP electrons for closing the flux surface and to have the

CFP electron distribution smoothly transformed into the ECCD velocity distribution

and then to enlarge the initial closed flux surface, and show that injection of high N∥

waves is the solution. The results in sections 5-7 predict that the initiation of a closed

flux surface requires more and more EC power as the plasma major radius increases.

Especially, the results also suggest that careful control of EC heating and current drive

is required in large devices to initiate and enlarge the initial closed flux surface.

After some discussions in section 8, the results are summarized in section 9.

2. Pressure driven equilibrium current in open fields

The momentum balance equations both for the electron fluid and ion fluid in a steady

state read;

mene(ue · ∇)ue = −ene(E + ue × B) −∇pe + Rei

mini(ui · ∇)ui = eni(E + ui × B) −∇pi + Rie −
miniui

τCX

where ui(e) =< vi(e) > is the ion (electron) fluid velocity (vi(e) is the proton (electron)

velocity and <> denotes the average over the velocity distribution), Rei = −Rie =
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mene < νei > (ui−ue) describes the collisional momentum transfer between the electrons

and ions. We study the case of a hydrogen plasma and include the ion momentum loss

via charge exchange since the degree of ionization of toroidal EC-heated plasmas in open

fields is not high. The protons charge-exchange mainly with hydrogen atoms since their

charge exchange cross section is quite large, σCX ∼ 10−18m2 and the charge exchange

time is given by τCX = ui/nH |< σCXvivi >| where nH is the hydrogen density. By

combining above two equations we obtain a single fluid momentum balance equation as

follow;

ρ(u · ∇)u = j × B −∇p − ρu

τCX

(3)

where ρ = mini, u = ui, p = pe + pi
∼= pe, j = ene(ui − ue) and charge neutrality

is assumed. Hereafter we take p = pe since pi is negligible compared with pe in the

EC-heated plasmas. The R, ϕ, Z components of the equation are, respectively,

ρ(u · ∇)uR −
ρu2

ϕ

R
= jϕBZ − jZBϕ − ∂pe

∂R
− ρuR

τCX

(4)

ρ(u · ∇)uϕ − ρuRuϕ

R
= jZBR − jRBZ − ρuϕ

τCX

(5)

ρ(u · ∇)uZ = jRBϕ − jϕBR − ∂pe

∂Z
− ρuZ

τCX

(6)

We look for axisymmetric solutions that fulfill the constraint for the current,

0 = ∇ · j =
1

R

∂(RjR)

∂R
+

∂jZ

∂Z
(7)

Note that while pe is axisymmetric and no pressure gradient along the toroidal direction

there arise a pressure gradient and a plasma flow u ·B/B along each open field line that

reaches the vessel wall.

In equations (3), (4) and (6), pressure gradient is the driving term since the

microwave power absorbed by electrons appears initially as a pressure. The second

term of left side of equation (4) represents the centrifugal force due to the toroidal

component of ion flow. Flow velocity can be attained up to the ion sound velocity

uϕ ≈ CS ≡
√

Te/mi and this term (∼ pe/R ) is smaller than the pressure gradient

(∼ pe/a) by the aspect ratio a/R0 where a and R0 are the minor and major radii of the

plasma loop, respectively. Actually, ion flow velocity may be much lower than the ion

sound velocity in EC-heated plasmas, in which there are plenty of neutral particles and,

therefore, momentum loss due to the charge exchange is large [25] and the flow velocity

is suppressed. Thus, the centrifugal force term may be neglected.

The other drift is due to E×B drift. The parallel component along the field line of

electron fluid equation may be simplified by neglecting the inertia term and the collision

term as observed in an experiment [22]. Then,

∂pe

∂ℓ
∼= −eneE∥.
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Here ℓ is the length along the field line. Then the ambi-polar potential in the plasma

is estimated as Vamb = −
∫

E∥dℓ ∼ Te/e [19]. Then the perpendicular electrostatic

filed is estimated as E⊥ ∼ Te/ae and the E × B drift velocity is uE×B ∼ Te/aeBϕ.

Thus, magnitude of the convective terms in equations (4) and (6) is estimated to be

miniT
2
e /a3e2B2

ϕ . The ratio of this term to the pressure gradient term ∼ (mi/me)(rLe/a)2

is quite small, where rLe is the Larmor radius of the thermal electron.

In these circumstances we approximate the radial and vertical components of

momentum balance equation (equations (4) and (6)) by retaining the leading terms.

R − component : jϕBZ − jZBϕ = ∂pe/∂R (8)

Z − component : jRBϕ − jϕBR = ∂pe/∂Z (9)

Equations (7), (8) and (9) constitute the basic set of equations to analyze various

equilibrium characteristics of the present axisymmetric plasmas in open fields. By

substituting the following relationships from equations (8) and (9),

jR =
1

Bϕ

(
jϕBR +

∂pe

∂Z

)
and jZ =

1

Bϕ

(
jϕBZ − ∂pe

∂R

)
(10)

into equation (7), we have

0 =
1

R

∂

∂R

[
R

Bϕ

(
jϕBR +

∂pe

∂Z

)]
+

∂

∂Z

[
1

Bϕ

(
jϕBZ − ∂pe

∂R

)]

=
1

Bϕ

[
1

R

(
jϕBR +

∂pe

∂Z

)
+

∂(jϕBR)

∂R
+

∂jϕ

∂Z
BZ + jϕ

∂BZ

∂Z

]

− 1

Bϕ2

[
∂Bϕ

∂R

(
jϕBR +

∂pe

∂Z

)
+

∂Bϕ

∂Z

(
jϕBZ − ∂pe

∂R

)]

=
1

Bϕ

[
2

R

(
jϕBR +

∂pe

∂Z

)
+

∂(jϕBR)

∂R
+

∂(jϕBZ)

∂Z

]
Thus the following relationship holds.

0 =
2

R

(
jϕBR +

∂pe

∂Z

)
+

∂(jϕBR)

∂R
+

∂(jϕBZ)

∂Z
(11)

Note that this equation is the same as equation (4) in [24] except that equation (11)

neglects ion flow along the field line. In the present paper we start from two fluid

momentum equations for ions and electrons to show explicitly that this ion flow as well

as the E × B drift can be neglected.

We rewritten equation (11) into the pressure governing equation as

∂pe

∂Z
= −jϕBR − R

2

[
∂(jϕBR)

∂R
+

∂(jϕBZ)

∂Z

]
. (12)

When both the external vertical field and toroidal current profile are specified,

corresponding pressure profile is obtained as the solution

pe(R, Z) = pv(R) + pa(R, Z) + pb(R, Z)
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where pv is a constant of integration along the Z-coordinate and a function of R and

pa(R, Z) = −RjϕBZ

2

pb(R,Z) = −
∫ Z

[
jϕBR +

R

2

∂(jϕBR)

∂R

]
dZ

′
(13)

Here pv drives the vertical current that circulates via the vacuum vessel [21, 22, 24], and

pa and pb drive the toroidal current. Hereafter we define pe as pe = pa + pb and do not

concern with pv since pv has nothing to do with the toroidal current.

Equations (8) and (9) indicate that the terms including jϕ or Bϕ is the same order

leading terms as the pressure gradient term, while all terms in equation (5) are secondary

since [j×B]ϕ is secondary compared with the terms in equations (8) and (9). Once we

have information on pressure profile for a given toroidal current profile we can calculate

the diamagnetic and paramagnetic currents using equation (10). Then some information

on plasma flow may be obtained using equation (5), which is, however, out of the scope

of the paper.

At this point it is useful to examine equation (7) using the guiding-center-drift

picture for the VTF drift of electrons. The currents may be composed of the vertical

VTF drift current and the force-free return current along the field lines. Then equation

(7) takes the following form,

0 = ∇ · j =
1

R

∂(RjR)

∂R
+

∂(jV TF + jZ)

∂Z
(14)

with

jV TF =
2pe

RBϕ

, jR = jϕ
BR

Bϕ

and jZ = jϕ
BZ

Bϕ

.

It is straightforward to reach equation (11) from equation (14) using low beta

approximation for Bϕ. This result shows that jϕ originates from the VTF-drift of bulk

electrons.

We employ a model profile for the toroidal current as described in appendix A.

The model can handle broadness (or peaking factor) α, triangularity δ and vertical

elongation κ of profile, and radial shift of current peak σ. Figures 2 and 3 show the

results for a vertically stretched profile in a small low aspect ratio device. Figure 2

shows the case for a very low current density and figure 3 for a high current density.

In the present paper we use a uniform vertical field BV = BV Ẑ for simplicity. In the

case of very low current BR = 0 and pe = pa = −(R/2)jϕBV as shown in figure 2. In

the high current case the pressure peak shifts inward from the current peak. In this

high current case, BR becomes significant and the field lines bulges outward. Therefore,

the pressure driven VTF current returns along the outward path of bulged field lines,

resulting in the outward shift of current profile from the pressure profile. The radial

profile of poloidal flux (Ψ ≡ RAϕ, where Aϕ is the toroidal component of the vector
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Figure 2. Presure profile in a low current case. IEQL = −0.5 kA, BV = 120 G,
Bϕ = 480 G at R = 25 cm, jpeak = 10.7 kAm−2,ppeak = 19 Pa, α = 2, κ = 4.4, δ =
0.7, σ = −0.2, and Ψext = R2BV /2 and Ψ =

∫ R

0
BZRdR with integration on mid-

plane.

potential) on mid-plane is plotted in figures 2 and 3, and also in subsequent similar

figures.

While the pressure should be positive, equation (13) does not always give positive

pressure profiles for any current profiles. Actually, when the current density is so high

that filed lines significantly bulge outward as in figure 3, we need a delicate adjustment

of the profile parameters so as to have whole area of pressure profile be positive. Even

in the case in figure 3 where the profile has a large triangularity and an inward shift

of the peak after intensive adjustment for positive pressure profile, quite weak negative

area still remains along the outward boundary and inward boundary. In the case of

no triangularity and no shift of peak in the current profile, for example, negative area

invades deep into the central part of the profile with increased negativities. These

results suggest that the profile in figure 3 have a physical reality matched to strongly

EC heated toroidal plasmas in the open fields. Note that in figures 2 and 3 negative

area where pe/ppeak < −0.004 is also colored and the zero pressure area in the sense
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Figure 3. Presure profile in a high current case. IEQL = −5.2 kA, BV = 120 G,
Bϕ = 480 G at R = 25 cm, jpeak = 112 kAm−2,ppeak = 190 Pa, α = 2, κ = 4.4, δ =
0.7, σ = −0.2, and Ψext = R2BV /2 and Ψ =

∫ R

0
BZRdR with integration on mid-

plane. Orbits denoted by 1-7 are guiding center orbits for electrons 1-7 in figure 5(b).
Blue denotes the backward drift.

that −0.004 < pe/ppeak < 0.004 remains white.

The profiles fulfill the perpendicular force balance equations (8) and (9). Then they

may fulfill the following generalized Shafranov formula with an appropriate G value that

reflects geometrical characteristics of the current profile :

BV =
µ0IP

4πR

[
G

(
R

a
, κ, ℓi, etc

)
+ βp

]
, βp =

8πS < p >

µ0I2
P

. (15)

Here, S is the cross section of plasma and < p > denotes the average of pressure over the

cross section. In the original Shafranov formula for large aspect ratio tori having circular

cross sections [26], G = ln(8R/a) + ℓi/2 − 3/2. In the present case of low aspect ratio

and strongly elongated cross section the profiles indeed fulfill the generalized formula

as shown in figure 4, where the G value is consistent with the estimation by [27]. The

figure shows that current-hoop force begins to take part in the radial force balance as

IP increases.
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Figure 4. Open field equilibrium fulfills generalized Shafranov formula. The points
at IP =| IEQL |=0.5 and 5.2 kA are those in figures 1 and 2, respectively.

3. CFP orbits and confinement mapping

We are interested in the profile of toroidal current carried by CFP electrons since

this current is the most promising candidate that closes the field lines. The electrons

are energetic and almost collision-less. Therefore, their guiding-center orbits in the

magnetic fields are sufficient to obtain the current profile. Effects from the equilibrium

electrostatic electric field are neglected. By taking advantage of the merit that there are

three constants of motion in the present case, the guiding-center orbits may be obtained

as follows [29]. The constants are the angular momentum, magnitude of the velocity

and the magnetic moment as follows,

Pϕ ≡ mRvϕ − eΨ ∼= mRv∥ − eΨ (16)

W ≡ v2
∥ + v2

⊥ (17)

µ ≡ mv2
⊥

2B
∼=

mv2
⊥

2Bϕ

(18)

where m = meγ and γ is the relativistic facor. Then,

W =
2µBϕ

m
+

(
Pϕ + eΨ

mR

)2

(19)

Here, Bϕ is a function of R in the low beta plasmas and the poloidal flux Ψ = RAϕ is

a function of R and Z. Therefore W is a function of R and Z for a set of the constants

Pϕ and µ.
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W = W (Pϕ, µ; R, Z)

We calculate the trajectory of electron projected on the poloidal cross section. The

coordinates R and Z are functions of the distance ℓ along the trajectory from the starting

point. Then the following deferential equations describe the evolutions of R and Z.

dR

dℓ
= −

∂W
∂Z√(

∂W
∂R

)2

+
(

∂W
∂Z

)2
,

dZ

dℓ
=

∂W
∂R√(

∂W
∂R

)2

+
(

∂W
∂Z

)2
(20)

Azimuthal drift velocity of the guiding center at the location R and Z is given by

Vϕ ≡ R
dϕ

dt
∼= v∥ ∼=

Pϕ + eΨ

mR
(21)

Radial and vertical drift velocities of guiding center are given by usual way

VR ≡ dR

dt
= v∥

BR

Bϕ

(22)

VZ ≡ dZ

dt
= v∥

BZ

Bϕ

−
m(v2

∥ + v2
⊥/2)

eRBϕ

(23)

Then

dℓ

dt
≡

√(
dR

dt

)2

+
(

dZ

dt

)2

gives the time elapsed along the trajectory and

dϕ

dℓ
=

dt

dℓ

dϕ

dt
(24)

gives the toroidal angle of trajectory as a function of ℓ. Coincidence of the guiding

center trajectories with the full trajectories by the full set of equations of motion has

been found to be excellent. Typical guiding center orbits starting with various pitch

angles and velocities at the starting position of Ri = 27 cm and Zi = 0 cm (denoted by

1-7 in figure 5(b)) are also plotted in figure 3. The orbits 2, 3 and 4 make CFP orbits,

respectively.

Full drawing for the orbit 2 including the Larmor motion is shown in figure 6, which

most vividly represents characters of the CFP orbit. The electron initially climbs upward

since the first term of the right hand side of equation (23) is larger than the second VTF

drift term. The electron gradually shifts inward due to the radial component of velocity

given by equation (22). As the location shifts inward toroidal field increases as 1/R.

Then v∥ decreases so as to conserve magnetic moment and energy (equations (17) and

(18)). Due to these changes VZ changes its sign and the electron drifts downward. As



Open field equilibrium current and cross field passing electrons as an initiator 14

Figure 5. Confinement mapping for electrons start with various pitch angles and
velocities. (a): the case in figure 2 and (b): the case in figure 3. Most inward radial
locations for passing electron orbits are shown by colors from blue to red.

the electron descends and crosses the mid-plane, BR changes sign and its magnitude

increases as the electron further descends. Then the electron moves outward to the

lower Bϕ side and VZ becomes again positive. Then the electron goes upward, and

finally reaches the starting coordinates of Ri and Zi, closing the orbit in the poloidal

section. The outside CFP orbit 4 shown in figure 6 also makes a closed orbit. The

characters are the same as the orbit 2, although they are not so clearly seen as the case

2.

When the pressure driven equilibrium current is low as the case in figure 2, the

vertical field is essentially external one. In this case only electrons in a narrow band

around the VZ = 0 characteristics have confined orbits as shown in figure 5(a). Note

that for the range of v∥ << c the VZ = 0 characteristics is approximately given by

v∥ ∼=
mv2

⊥
2eRBV

When the equilibrium current density increases so high that BZ is significantly

lowered at the inboard area of the current channel, the confinement area expands
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Figure 6. Full orbits for 2, 4, 5 and 6 in figures 3 and 5(b). 2 is an inside passing
orbit, 4 is an outside passing orbit , 5 is a trapped orbit and 6 is a lost orbit. Red
arrows denote the directions of electron drift.

as shown in Figure 5 (b) and a wide area of electrons around the original VZ = 0

characteristics in the velocity space begin to make the CFP orbits.

4. Velocity distribution of EC-heated CFP electrons

Here we develop a method to obtain the particle distribution of energetic electrons

on the confinement mapping in velocity space such as those in figure 5(b). Then we

can estimate the additional current carried by CFP electrons on the pressure driven

equilibrium current by tracing out every orbit starting with various velocities and pitch

angles on the confinement mapping. We begin by assuming that the energetic electrons

obey the Fokker-Plank equation [28].

∂f

∂t
+ ∇ · SC + ∇ · SW = 0



Open field equilibrium current and cross field passing electrons as an initiator 16

Here SC and SW are the fluxes due to collision and wave, respectively. In spherical

coordinates with the axisymmetric axis along the direction of magnetic field and the

polar angle from the axis (θ),

∇ · SC =
1

v2

∂

∂v
v2Sv +

1

v sin θ

∂

∂θ
sin θSθ

where

Sv = − Γ

v2
f, Γ =

nee
4 log Λ

4πϵ2
0m

2
e

(25)

Sθ = −Dθθ
∂f

v∂θ
, Dθθ = Γ

1 + Zeff

2v
(26)

are assumed by retaining the leading terms in the high-velocity limit approximation [28]

and Zeff = 2 is assumed throughout the paper. Sv represents the slowing down flux by

collision with the bulk electrons and Sθ does the pitch-angle scattering with the bulk

electrons and ions. The flux by EC waves is written by

∇ · SW =
1

v2

∂

∂v

(
−v2DW

∂f

∂v

)
(27)

Here we assume purely perpendicular diffusion along the θ = π/2 line with

DW = ∆W (v)δ(v(θ − π/2)), (28)

where Δw represents the kick in electron energy in passing through the EC resonance.

Figure 7. Electron flow in velocity space. Sθ and Sv represent pitch angle diffusion
and slowing down of energetic electrons by collisions with bulk particles

The above Fokker-Planck model represents the following flow of electrons in the

velocity space (see figure 7). First, EC waves pump up electrons perpendicularly into

the high energy range from the bulk region. Then the electrons are pitch-angle scattered

into forward side as well as backward side. The electrons further diffuse in pitch-angle
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as well as slow-down in velocity and finally are lost when they have reached the lost

region.

Indeed above EC-wave-driven diffusion where the direction of diffusion is strictly

along the EC resonance line of θ = π/2 is an approximation. First, the EC resonance

line is not quite straight along the perpendicular direction as described in Section 7.

Second, only when the parallel refractive index N∥ ≡ k∥c/ω is unity such a strict

coincidence of diffusion direction and EC resonance line is realized. Actually when

N∥ ≈ 1 the resonance line is almost perpendicular and coincidence of both directions

is approximately obtained as shown in figure 19. In this case ∆W (v) hardly depend on

v and we can obtain explicit formula for ∆W using quasi-linear diffusion tensor for a

single frequency wave for the present case of the perpendicular diffusion [28] as

∆W
∼=

π

4

e2

m2
e

ErE
∗
r

k∥
, (29)

where k∥ is the parallel component of the wave number and Er is the right-handed

component of the wave electric field and the asterisk denotes the complex conjugate.

When N∥ is much smaller than unity, coincidence between the diffusion direction and the

resonance line is obtained only for the lower velocity region and the diffusion direction

quickly deviates with v from the resonance line (see the N∥ = 0.17 case in figure 19). In

such a case ∆W (v) would quickly decrease with v from above ∆W value.

First we look for steady distributions at the outside of pump-up line at θ = π/2.

Such velocity distributions obey ∇ · SC = 0, that is,

∂2f

∂θ2
+

1

tan θ

∂f

∂θ
+

2v

1 + Zeff

∂f

∂v
= 0 (30)

This form has separation of variables solutions f(v, θ) = g(v)h(θ) and the

differential equation is reduced to

1

h

(
d2h

dθ2
+

1

tan θ

dh

dθ

)
= − 2v

1 + Zeff

1

g

dg

dv
= C

Then, the solutions take the following form,

g = Av−Q, Q =
C(1 + Zeff )

2
, (31)

where A and C are constants. The pitch-angle distribution obeys

d2h

dθ2
+

1

tan θ

dh

dθ
= Ch

This equation is rewritten as the system of two deferential equations with order 1 for

two functions h(θ) and s(θ) as follows,

dh

dθ
= s

ds

dθ
= − s

tan θ
+ Ch
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The solution which meets the boundary conditions for h(θ) and s(θ) at each v is

numerically obtained and h is normalized by the value at θ = π/2. Then h decreases

monotonically from 1 at θ = π/2 towards θ = π or 0. When the electrons are confined

up to the end of θ = 0 and π, dh/dθ = 0 and h =finite at the end. When this is not the

case, the electrons are confined up to θ1 and/or θ2, the boundary of the lost area, where

0 < θ1 < π/2 < θ2 < π. In this case dh/dθ > 0 with h = 0 at θ1 and/or dh/dθ < 0 with

h = 0 at θ2.

The flow balance at θ = π/2 requires

2πvdv(Sθ− + Sθ+) =
1

v

∂

∂v

(
v∆W

∂f

∂v

)
2πvdv

where

Sθ± = ∓Γ
1 + Zeff

2v

∂f

∂θ

∣∣∣
θ=π

2
±

(32)

Then we obtain the relationship between Q and ∆W as follows,

Q =
C(1 + Zeff )

2
=

√√√√Γ(1 + Zeff )

2∆W h

(
dh

dθ

∣∣∣∣
θ=π

2
−
−dh

dθ

∣∣∣∣
θ=π

2
+

)
(33)

The particle and energy fluxes that are pumped-up into the energetic range are given

by

Particle flux per unit volume =
∫ vc

v0

(Sθ− + Sθ+)2πvdv, (34)

Power flux per unit volume =
∫ vc

v0

mev
2

2
(Sθ− + Sθ+)2πvdv, (35)

respectively, where v0 and vc are the lower and upper boundary of integration,

respectively.

5. Case in a small low aspect ratio torus

We examine the model described in sections 2-4 for an experiment in the LATE device

described in ref.[6] (see figure 2 in [6]). Modeled open field equilibrium is shown in figure

8. Since EC heating zone is a vertical thin belt along the ECR layer, we adopt 11 sample

heating points (Zi = −20,−16,−12,−8,−4, 0, 4, 8, 12, 16 and 20 cm at Ri = 19 cm) as

the starting points of orbits as partly shown in figure 9, and add each contribution to

obtain the CFP current profile. Here we use the term, CFP current, for simplicity since

the contribution from the precession of trapped electrons is negligible compared with

that from the CFP electrons. Detailed procedure to obtain the CFP current profile is

explained later. The result is shown in figure 10, where magnitude of BZ is lowered

almost to zero due to the additional CFP current. Next, we adopt the same sample

heating points as the starting points of orbits and calculate the second step CFP current
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Figure 8. Open field equilibrium modeled for an experiment in the LATE device.
R0 = 0.24 m, a = 0.08 m,b = 0.44 m, α = 1.8, κ = 5.5, δ = 0.8, σ = −0.3,
IEQL = −1100 A, BV = 30 G, Bϕ = 1285 G at R = 25 cm, jpeak = 27.7
kAm−2,ppeak = 8.5 Pa (nepeak = 1018 m−3,Tepeak = 53 eV)

for the first step field shown in figure 10. The result is plotted in figure 11. This time

a clear closed flux surface which extended to the center post is formed.

In figures 10 and 11 we estimate toroidal currents carried by the energetic electrons

in the trapped and passing orbits in the range of v = v0 to vc. These electrons may

be generated by EC heating in a rather narrow zone along the ECR layer. Suppose an

energetic confined electron that leaves one of above sample points in this zone. The

electron crosses field lines and makes a periodic orbit. We divide the poloidal cross

section into fine square cells numbered as k = 1, 2, 3, .... We trace out one cycle of the

orbit in the poloidal section and find the period T and each span of toroidal angle ϕk

upon the traverse through the k-th cell. The toroidal current in the k-th cell contributed

by this single electron that has v and θ at the starting point on the heating zone is given

by,

ik(v, θ) =
eϕk

2πT
This is a kind of ”Green function” since by summing-up this elemental contribution
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Figure 9. Electron orbits starting from various vertical points on the ECR layer with
a velocity v = 2.33×107ms−1 and pitch angles evenly distributed over 3 to 177 degree
by a step of 6 degree. Blue denotes backward drift part in toroidal direction.

over the velocity distribution for the electrons on the confinement mapping, we have the

additional current distribution from the confined energetic electrons.

At this point we introduce the lower boundary in velocity range, v0, over which the

electrons are essentially collision-less in the sense that they can make cross-field passing

orbits. Actually, we set v0 ≈ 2vt , where vt ≡
√

2Tepeak/me is the electron thermal

velocity at the peak position. We also introduce the upper boundary, vc, over which the

collision time is longer than 6 msec and pitch angle scattering becomes too slow to give

significant v∥ and we neglect contribution from these electrons. For simplicity, we use

same v0 and vc for each segment of 11 heating sample points.

To meet the lower and upper velocity boundary, we look for the solution that

superposes two steady solutions as

fs(v, θ) = f1(v, θ) + f2(v, θ) = g1(v)h1(θ) + g2(v)h2(θ) (36)

The lower and upper boundary conditions,

fs(v0, π/2) = g1(v0) + g2(v0) =
nepeak

(
√

πvt)
3 exp

[
−

(
v0

vt

)2
]

fs(vc, π/2) = g1(vc) + g2(vc) = 0

give g1(v) = A(vc/v)Q1 and g2(v) = −A(vc/v)Q2 with

A =
nepeak

(
√

πvt)
3 exp

[
−

(
v0

vt

)2
][(

vc

v0

)Q1

−
(

vc

v0

)Q2
]−1

.
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Figure 10. First step field in which contribution from first step CFP current is
superposed on pressure driven equilibrium field. IEQL = −1100 A and ICFP = −367
A. Area of red circle denote magnitude of CFP current on each square cell (2× 2cm2),
v0 = 7.7 × 106ms−1, vc = 4.8 × 107ms−1, Power to maintain tail ≃ 2 kW

Then,

fs(v, π/2) = A
(

vc

v

)Q1
[
1 −

(
v

vc

)Q1−Q2
]

Here, Q1(> 0) is the main parameter that roughly determines the slope of fs(v, π/2)

along the EC-wave driven diffusion line. While we set Q2 = Q1 − 1 in the calculations

other choices such as, for example Q2 = Q1 − 2, do not essentially change the results.

Upon the change from the single steady solution f(v, θ) = g(v)h(θ) to the superposed

solution (equation (36)) equation (33) may be generalized as

Qeff =

√√√√Γ(1 + Zeff )

2∆W fs

(
∂fs

∂θ

∣∣∣∣
θ= π

2
−
−∂fs

∂θ

∣∣∣∣
θ=π

2
+

)
(37)

where, fs = fs(v, π/2) and

Qeff = − v

fs

∂fs

∂v

∣∣∣∣
θ= π

2

. (38)
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Figure 11. Second step field in which contribution from second step CFP current is
superposed on pressure driven equilibrium field. IEQL = −1100 A and ICFP = −841
A. Area of red circle denote magnitude of CFP current on each square cell (2× 2cm2),
v0 = 7.7 × 106ms−1, vc = 4.8 × 107ms−1, Power to maintain tail ≃ 2.3 kW

In the following calculations we control Q1 value to simulate the experiments, which

determines the superposed solution fs(v, θ). Then information on ∆W is obtained from

equation (37) as a function of v. Thus we do not directly handle ∆W . Equation (32) is

still effective for the superposed solutions if f is replaced by fs.

The tail electron density ntail is given by

ntail =
∫ π

0
dθ

∫ vc

v0

fs(v, θ)2πv2 sin θdθdv

The tail volume is assumed to be

V oltail = 2πRECRStail

Here RECR is the radius at the ECR layer and we set Stail to be one third of the pressure

cross section by observing the spread of various orbits in figure 9. We divide the tail
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volume equally into each segment of 11 heating sample points. Total tail number is

Ntail = ntailV oltail. The toroidal current carried by energetic electrons in the k-th

square cell, Ik is given by summing up the contribution from every energetic electron

including both CFP and trapped electrons over the confinement mapping

Ik = V oltail ×
∫ π

0
dθ

∫ vc

v0

ik(v, θ)fs(v, θ)2πv2 sin θdθdv (39)

In order to obtain the results in figures 10 and 11 we calculate above procedures for

each segment of 11 starting points distributed vertically and sum up the contributions.

The results for the segment on the mid-plane (Zi=0) are shown in figures 12 and 13.

Initial confinement mapping have a lost area in forward direction. The lost area is much

smaller than the case in figure 5(b) where both the radial coordinate RECR and the

magnitude of BZ at the ECR layer is larger than the present case. This dependence on

RECR and BZ will be discussed later.

Figure 12. Confinement mappings and weighted velocity distributions for the mid-
plane segment of Zi=0. The results for initial (figure 8) and the first step (figure 10)
fields are plotted.

With the first-step CFP current, the lost area disappears and all forward area

becomes passing domain. At the same time, population of the CFP and trapped

electrons as well as the CFP current of this segment increases more than twice in the

second step calculations. This result indicates improvement of confinement of CFP
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Figure 13. Particle and energy fluxes of EC heated electrons via pitch-angle scattering
toward both sides around θ = π/2 ECH line and EC-wave diffusion coefficient ∆W

along the ECH line (see figure 7) for the mid-plane segment of Zi=0 are shown as
functions of velocity. Here ∆W was calculated using equation (37). The results for
initial (figure 8) and the first step (figure 10) fields are plotted.

electrons due to the fact that particle loss via pitch angle diffusion to the loss area in

the forward direction disappears in the second step. Increase of the current is mainly

due to increase of total CFP electrons on whole forward confinement area in the velocity

space by the improvement of confinement. Contribution from the current carried by the

portion of CFP electrons that fill up initially lost area is not significant. Here we adjusted

Q1 value so that the particle flux in each segment both in initial and second steps became

almost the same (≈ 2 × 1018s−1 in the present case). The Q1 was adjusted to be 2 and

1.4 for the mid-plane segment in initial and second step calculations, respectively and

the Q1 value was adjusted larger as the segment was away from the mid-plane. On the

other hand the ∆W spectra are found to be nearly the same for every segment both in

initial and the second steps. The ∆W spectra decrease with v in figure 13, which may

correspond to the experimental situation where EC-waves having a wide N∥ spectrum
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from zero to unity generate CFP electrons, as inferred from the discussion for ∆W in

section 4 and the discussion for EC diffusion in section 7.

Above results presented in figures 8-13 may explain the LATE experiment where

an initial closed flux surface is generated via current jump from ≈ 1kA to ≈ 2kA by 24

kW microwave power injected under BV =30 G [6]. The present model predicts 2.4 kW

to maintain the current carrying energetic electrons. This is 10% of the injection power

in the experiment. Two facts may explain this discrepancy. First of all much of the

power is still required to support the relative large current outside the closed flux surface

region as well as to support the pressure driven plasma itself. Second, as shown in figure

9, EC heating at Z >18 cm and Z <-18 cm hardly contributes the current. Therefore

we do not include contribution from Z > 20 cm and Z <-20 cm. The absorption power

in these zones is not took account into in the model. When we take into account these

points, the 10% result looks fairly reasonable.

Let us discuss this comparison between the model and the experiment from another

point. First note that the power and the additional current by CFP electrons increases

when particle flux is increased by decreasing Q1 value for steady solutions (equation

(36)). While the particle flux value is a free parameter in the model, the used value

(≈ 2 × 1018s−1 in the present case) has a reality if the 10 % result is reasonable as

described above. Since it is difficult to estimate the EC wave diffusion coefficient in

experiments, present approach in which a comparison in terms of microwave power and

driven current is made between the experiment and the model using appropriate steady

solutions is useful.

Here, it is noted that as far as Bϕ >> BV , magnitude of Bϕ does not affect all

results presented in figures 8-13, where Bϕ = 1285 Gauss is nominally employed. This is

because characteristics of drift motion described by equations (16)-(24) and equilibrium

equation (12) essentially do not depend on the magnitude of Bϕ as far as Bϕ >> BV .

Especially, we employ Bϕ = 480 Gauss in figure 6 in order to see explicitly electron

Larmor motions.

6. Case in a large tokamak

We examine the model described in sections 2-4 for experiments in large tokamaks

of DIII-D and JT-60U [11, 12]. Modeled open field equilibrium is shown in

figure 14. We adopt 9 sample heating points along the ECR layer (Zi =

−0.2,−0.15,−0.1,−0.05, 0, 0.05, 0.1, 0.15 and 0.2 m at Ri=2.61 m) as the starting points

of orbits as partly shown in figure 15 and add each contribution to obtain the CFP

current profile. Detailed procedure to obtain the CFP current profile is the same as the

case in section 5. This time, however, we set Stail to be one fourth of the pressure cross

section by observing the spread of various orbits in figure 15 and we also adjust Q1 value

so that the particle flux in each segment in initial and second steps becomes almost the

same for all segments (≈ 3.8 × 1020s−1 this time). The result is shown in figure 16,

where BZ is lowered beyond zero and a quite small negative BZ area appears. Next, we
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adopt the same sample heating points as the starting points of orbits and calculate the

second step CFP current for the first step field shown in figure 16. The result is plotted

in figure 17, where a small but clear closed flux surface is formed.

Figure 14. Open field equilibrium modeled for experiments in large tokamaks.
R0=2.8 m, a=0.3 m, b=0.9 m, α=1.8, κ=3, δ=0.5, σ = −0.2, IEQL = −5000 A, BV =30
G, Bϕ=34200 G at R=3 m, jpeak=16.3 kAm−2,ppeak=82.6 Pa (nepeak = 8 × 1018

m−3,Tepeak=65 eV)

Figure 18(a) shows the confinement mapping for the starting point of Ri=2.61 m

and Zi=0 m in the initial equilibrium field shown in figure 14. A quite large difference is

seen compared with the cases in the small device shown in figures 5(b) and 12, that is,

although inside BZ is suppressed by the equilibrium current almost to the limit of open

to closed field in figure 14, there remains a large hole of lost area in the forward direction

in the confinement mapping in velocity space. The CFP orbits quickly disappear as the

starting point shifts vertically apart from the mid-plane as seen in figure 15. Therefore

there appears only a small CFP current in a limited area around the mid-plane in figure

16. We need quite a large power ≈ 140 kW to keep this small CFP current in the

present case since the loss via the pitch angle diffusion is very fast due to the large hole

of lost area even in the mid-plane segment, much larger loss in off mid-plane segments.

This power is ≈ 10% of the power injected in the experiments [11, 12] and seems to be

rather reasonable when we take into account the same reasons as those mentioned in

the previous section.

While this first step CFP current is small, it is rather localized and produce a quite
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Figure 15. Electron orbits starting from various vertical points on ECR layer with a
velocity v = 6.67 × 107ms−1 and pitch angles evenly distributed over 3 to 177 degree
by a step of 6 degree. Blue denotes backward drift in toroidal direction.

Figure 16. First step field in which contribution from first step CFP current is
superposed on pressure driven equilibrium field. IEQL = −5000 A and ICFP = −229
A. Area of circles denotes magnitude of CFP current on each square cell (5 × 5cm2).
Red (Blue) circle denotes forward (backward) current. v0 = 1.15 × 107ms−1, vc =
9.67 × 107ms−1. Power to maintain tail ≃ 140 kW
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Figure 17. Second step field in which contribution from second step CFP current is
superposed on pressure driven equilibrium field. IEQL = −5000 A and ICFP = −822
A. Area of circles denotes magnitude of CFP current on each square cell (5 × 5cm2).
Red (Blue) circle denotes forward (backward) current. v0 = 1.15 × 107 ms−1, vc =
9.67 × 107ms−1. Power to maintain tail ≃ 150 kW

small negative BZ area. With this small negative area whole forward area becomes CFP

domain for the starting point in the mid-plane segment as shown in figure 18(b).

These characteristics in the large device are quite different from those in small

device. To explain this difference we trace out how v∥ changes in a CFP orbit to

conserve three constants of motion (equations (16)-(18)) by supposing that an electron

moves from R = Ri + ∆ and Z = 0 to R = Ri and Z = 0 by a short step ∆ via a CFP

orbit above or below the mid-plane. Both Bϕ and v2
⊥ increases by ∆/R to conserve

magnetic moment µ. Then v∥ decreases by ∆/2R to conserve energy. Finally, the v∥
condition for conservation of angular momentum is written as

v∥ ∼=
eR

[
2BZ + ∆(dBZ/dR)

]
3m

≈ 2eRBZ

3m
(40)

This result indicates that v∥ is approximately proportional to RBZ and that when

R is large v∥ should be increased to make a CFP orbit of the same step ∆. When R

becomes twice, the electron that has the same v∥ can make a CFP orbit of the same

step ∆ if BZ is decreased to half. In order to realize CFP orbits at appropriate energy
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Figure 18. Confinement mapping for starting point Ri=2.61 m and Zi=0 m for (a)
initial equilibrium field (figure 14), (b) first step CFP field (figure 16) and (c) second
step CFP field (figure 17). EC resonance ellipses for with quasi-linear diffusion arrows
for N∥=0.64 case at various locations near ECR layer are also plotted. The labeling
of the resonance ellipses is explained in Section 7.

range in large devices BZ should be quite lowered. This RBZ scaling was shown in a

different way in a previous paper [29].

This scaling predicts that in large devices the equilibrium current should be

increased up to the limit of open to closed field equilibrium in order to have effective

CFP orbits. We need increase bulk electron pressure to increase the equilibrium current.

Fortunately this is relatively straightforward if we can inject sufficient EC power since

EC frequency is high and the plasma cutoff density is high in large devices. For example,

the peak density is only 6% of the cut off density in figure 14.

Suppose that BV is increased twice, for example, in figure 14. Local equilibrium

equation (12) as well as the generalized Shafranov formula (15) predicts that when the
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pressure is increased four times, the current density increases twice and the same field

lines are obtained.

7. Appropriate ECH/ECCD for Large Tokamaks

The results for the large tokamak case shown in figures 14-18 reveal multi roles of EC

waves for the generation of a takamak plasma from open field equilibriums.

First is the role of driving sufficient equilibrium current in open fields. EC waves

must produce sufficiently high pressure plasma to generate a large equilibrium toroidal

current to reduce BZ to almost zero. Second is the pumping-up role. EC waves must

pump up electrons perpendicularly in velocity space from bulk to energetic region. Third

is the ECCD role. Once an initial small closed flux surface is formed, EC waves must

increase the current inside the flux surface by usual ECCD. Here we need careful steering

of the beam of EC waves for ECCD onto the small closed flux area as well as appropriate

steering of other beams for heating the open field area to keep the equilibrium current.

As the area of closed flux surface expands, open field equilibrium current may be replaced

one after another by the EC driven current. The wave injections must be adjustable to

this expansion of the closed flux surface.

To examine above roles of EC waves, let us start by reviewing basic characteristics

of the ECR. The resonance electrons gain the energy dϵ and the parallel momentum dp∥
at the ratio,

dp∥
dϵ

=
k∥

ω
=

N∥

c
, (41)

at the ECR condition,

1 − N∥
v∥
c

=
ℓωce

γω
(ℓ = 1, 2, ..). (42)

Here, ωce = eB/me is the EC frequency, N∥ is the refractive index parallel to the

magnetic field and c is the speed of light.

Equation (41) gives the direction of step of the resonance electrons in velocity space

upon ECR, which is written using x = v∥/c and y = v⊥/c as follow

dy

dx
=

1 − N∥x − y2

(N∥ − x)y
∼=

1 − N∥x

N∥y
(x, y << 1). (43)

The resonance relation (42) makes an ellipsis in electron velocity space, being referred to

as ECR ellipsis. Note that when ℓωce/ω = 1 the ellipsis is approximated by v∥ ∼= v2
⊥/2cN∥

for the region v∥ << c.

Figure 19 shows two examples of ECR ellipses on the confinement mapping for the

initial equilibrium field in figure 14. In the case of N∥ = 0.87 the ellipses near the ECR

layer approximately realize the perpendicular EC diffusion in figure 7. The arrows on
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Figure 19. Confinement mapping for starting point Ri=2.61 m and Zi=0 m for initial
equilibrium field (figure 13), EC resonance ellipses for with quasi-linear diffusion arrows
at various locations near ECR layer for N∥=0.17 and o.87 cases are also plotted.

the ellipses show directions of diffusion given by equation (43). In this high N∥ case

the arrows are approximately tangential to ellipses, which provides an efficient diffusion

along the ellipses. Furthermore over a wide range from ωce/ω = 0.98 to 1.02 the ellipses

fulfilled the EC diffusion condition in figure 7, where bulk electrons can be pump up

along the lines of resonance ellipses. Note that when N∥ = 1, complete cyclotron auto

resonance occurs, where the arrows are exactly tangential to resonance ellipses. On the

other hand, the situation is quite different when N∥ is low (see the N∥ = 0.17 case in

figure 19). Thus the pumping-up role is realized only when we use sufficiently high N∥

waves.

The equilibrium current drive role and the ECCD role require sufficient absorption

of the waves by bulk and tail electrons, respectively. To see how much high N∥ waves

are EC-absorbed, we examine trajectories and optical depths of the waves in the case

of oblique O-mode injection at a fundamental resonance frequency and in the case of

oblique X-mode injection at a second harmonic resonance frequency, in figures (20) and

(22), respectively.

In figure 20 an O-wave is injected on the mid-plane from the outboard with an

angle θinj = 25 degree to the perpendicular direction at the injection point Rinj = 4
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Figure 20. (a) Wave trajectory, (b) optical depth, (c) refractive index and (d) electron
density profile for the case of fundamental O-mode injection on the mid plane. Electron
temperature (65 eV) is uniform. frequency=110 GHz

m. While the initial refractive index is N∥inj = sin θinj
∼= 0.42, it increases inversely

proportional to R as the wave propagates inboard so as to conserve the toroidal mode

number mϕ = Rkϕ with N∥ = ckϕ/ω

N∥ =
RinjN∥inj

R

When the wave propagates towards inboard and attains a relatively high value

of N∥ = 0.64 on the ECR layer at R = RECR = 2.61 m. Almost all injected power

penetrates through the ECR layer since the optical depth of oblique O-wave is quite

thin (τO
∼= 0.03) and reaches the inboard wall and is mirror-reflected on the surface. As

shown in figure 21, upon the mirror-reflection with N∥ = 0.85 on the inboard wall over

90% of the O-mode power is mode-converted into an X-mode power and the X-wave

propagates back to the ECR layer and is quite strongly absorbed before reaching the

ECR layer since this oblique X mode is essentially right-handed to the toroidal field.

We used the method in [30] to calculate the trajectories and absorption of these waves

at the fundamental resonance. To obtain the mode conversion rate in figure 21, we use

the formula for the polarizations of oblique O and X waves at the plasma boundary [31].

In figure 22 an X-wave at the second harmonic frequency is injected as the same way

as the O-wave case in figure 20. About 20% of injected power is absorbed even in this low

density and low temperature plasma since this oblique X-wave is also essentially right-

handed to the toroidal field. We used the method in ref [32] to calculate the trajectories
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Figure 21. Mode conversion rate from O- to X-wave upon the reflection on a flat
mirror. The toroidal field is along the line of intersection of the plane of incidence and
the mirror plane.

and absorption of X-waves at the second harmonic resonance, where the absorption is

estimated by calculating the quasi-linear diffusion of electrons over the ECR ellipsis in

velocity space using the polarization of the cold plasma wave approximation.

Figure 18 shows how these N∥ = 0.64 waves drive electrons on the confinement

mapping in velocity space in the successive stages of the initial equilibrium field, the

first step CFP field and the second CFP field. In the initial equilibrium field and

the first CFP field (figure 18 (a) and (b)), the waves pump up electrons to form a

unidirectional tail via pitch-angle scattering to the preferential confinement wing of

the CFP orbits. In the second CFP field (figure 18(c)) the preferential confinement

disappears and, therefore, the waves should work as an ECCD driver. When the waves

approach to the ECR layer from outboard, the ECR ellipsis first appears on the forward

wing at relatively high v∥ region in velocity space as shown in figure 18 (c), which is

advantageous for efficient ECCD. When, on the other hand, the waves approach to the
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Figure 22. (a) Wave trajectory, (b) optical depth, (c) refractive index and (d) electron
density profile for the case of second harmonic X-mode injection on the mid-plane.
Electron temperature (65 eV) is uniform. frequency=110GHz

Table 1. Optical depths of fundamental O-wave and reflected X wave (* denotes the
values in figure 20)

ne(1019m−3) 0.8 1.6 1.6 1.6 4.0 N∥

Te(eV ) 65 65 300 600 120 on inboard wall

θinj=25 degree 0.034∗ 0.065 0.27 0.50 0.26 0.85

Reflected X 39∗ 22 95 190 17 0.85

θinj=20 degree 0.048 0.09 0.40 0.73 0.37 0.68

Reflected X 25 13 60 120 11 0.68

θinj=15 degree 0.057 0.12 0.49 0.94 0.26 0.52

Reflected X 13 6.5 31 61 6 0.52

ECR layer from inboard, the ECR ellipsis appears on the backward wing in velocity

space, where the waves might drive a backward current and are completely consumed

before reaching the favorable wing for ECCD. Thus the wave access to the ECR layer

from outboard is more advantageous than from inboard.

Tables 1 and 2 show optical depths for various conditions in the injection angle and

plasma density and temperature for the fundamental O-wave injection and the second

harmonic X-wave injection in figures 20 and 22, respectively. In large devices with

strong toroidal fields, once a small closed flux surface is formed such as one in figure 17,
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Table 2. Optical depths of 2nd harmonic X-wave (* denotes the value in figure 22)

ne(1019m−3) 0.8 1.6 1.6 1.6 4.0

Te(eV ) 65 65 300 600 120

θinj=28 degree 0.17 0.30 1.2 2.3 waves not reach

θinj=25 degree 0.20∗ 0.37 1.6 3.0 0.4

θinj=20 degree 0.24 0.47 2.0 3.8 1.5

θinj=15 degree 0.26 0.52 2.3 4.4 2.2

both the electron density and temperature inside the flux surface may easily increases

beyond the radiation barrier. Then the absorption of the second harmonic X wave

improves drastically and the wave may well play the final role, that is, replacement

of the equilibrium current to the ECCD current. On the other hand, in the case of

fundamental O mode injection at an oblique angle, the reflected X wave is quite suitable

to the first and second roles but is not quite useful to the final ECCD since the X wave

approaches to the ECR layer from higher field side and absorption of primal O wave is

not good.

In the experiments in the LATE device [4, 5, 6] initial closed flux surfaces always

appear near the fundamental ECR layer, after which the closed flux surface expands

beyond the second harmonic resonance layer, generating a low aspect ratio configuration.

This result seems to reflect the fact that in small devices absorption at second harmonic

EC resonance is too weak to sustain bulk as well as CFP electrons. The situation may

change in large devices.

8. Discussions

While the model can handle the case with non uniform BV field, we assumed uniform

BV for simplicity. Actually it may be advantage in large devices to use BV field with

an appropriate decay index to have a mirror vacuum field [12]. Figure 17 suggests

that initial closed flux surface is so small that it is vital to steer and focus the EC

waves onto this sweet spot to enlarge the flux surface. This requires good stability of

vertical position of plasma cross section, which may be realized with a large decay index.

Furthermore, initiation of discharge by EC waves may be more easy in a mirror field.

While present model can not handle the case in which BV field is temporally

changed during development of flux surface from open to close, it may be useful to

employ appropriate change of BV field, slow ramp-up of BV for example. When initial

BV is lowered below 30 Gauss the energy range of initial CFP electrons is also lowered

compared with the case in figure 18(a).

Finally note that present Fokker-Planck treatment of CFP electrons is a rough

approximation. First, the CFP electrons rather continuously collide with bulk particles

when they go trough the plasma while they receive a kick from the waves only when
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they traverse the thin ECR layer as appeared in figures 9 and 15. Second, the process

of initiation of closed flux surface involves change of current generation mechanism. For

accurate analyses more delicate treatment for time evolution of CFP electron velocity

distribution may be needed. Nevertheless, simultaneous coincidence of the present model

with two experiments in most small and large devices of LATE and JT-60U in terms

of microwave power and driven current is remarkable, suggesting that the model takes

into account the essence of initiation mechanism of closed flux surface by ECH.

9. Summary

A modeling for the non-inductive initiation of a closed flux surface observed in EC heated

toroidal plasmas is presented. The model has been developed from an idea proposed in

[5] that combined the previous works on two mechanisms of current generation, that is,

preferential confinement of energetic electrons [17, 18] and bulk electron pressure driven

equilibrium current [23, 24].

First, a pressure driven equilibrium toroidal current develops in open fields under a

weak external vertical field so as to counter balance the pressure-ballooning and current-

hoop forces of the plasma torus. The current is originated from the vertical charge

separation drift of bulk thermal electrons in the toroidal filed. Both the fluid and

the guiding-center-drift descriptions lead to the same pressure governing equation that

calculates the equilibrium pressure profile for a given set of profiles of the current and

external vertical field. A model function for the current is introduced and the pressure

governing equation produces reasonable model sets of current and pressure profiles for

the subsequent numerical analyses.

When the self field from the current develops and almost cancels out the external

vertical field inside the current channel, a forward energetic part of electrons in the

velocity space begin to make the CFP orbits. The CFP electrons are assumed to

be generated by the EC heating of bulk electrons to the perpendicular direction and

subsequent pitch angle scattering. They provide an additional current that closes the

filed lines. Its current profile is obtained by summing up the contribution from every

CFP electron orbit over the velocity distribution estimated using the Fokker Planck

equation.

The model is examined for experiments both in the small low aspect ratio device

of LATE and in the large conventional device of JT-60U with a search for appropriate

modes of EC heating. Simultaneous coincidence of the model with these two experiments

is obtained in terms of microwave power and driven current. The results predict that

initiation of closed flux surface requires more and more EC power to generate the CFP

electrons as the plasma major radius increases. Especially, careful injection of high N∥

EC waves are required for large devices, both for initiation of a closed flux surface and

for subsequent enlargement of the flux surface by usual ECCD onto the closed flux area.
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Appendix A. Toroidal current profile

The current profiles used in the profile are generated based on the following analytic

form,

jϕ = j0[1 − ρ2(x, y)]α 0 ≤ ρ(x, y) ≤ 0.7

= j0

[
C1(1 − ρ(x, y)) + C2(1 − ρ(x, y))2

]
0.7 ≤ ρ(x, y) ≤ 1

= 0 1 ≤ ρ(x, y)

(A.1)

where j0 is the peak value and

ρ(x, y) =

√(
x + δ

κ2 y2

)2

+ 1−σ2

κ2 y2 + σ
(
x + δ

κ2 y
2

)
1 − σ2

(A.2)

and

x =
R − RP

a
, y =

Z

a
, κ =

b

a
, σ =

RP − R0

a
< 0

with the minor radius a. Other parameters, α, δ, κ and σ are the peaking factor,

triangularity, vertical elongation and radial shift of current peak, respectively, as shown

in figure A1.

The multiply factors C1 and C2 in equation (A1) are adjusted so as that two

different functions are continuously connected at ρ(x, y) = 0.7. Equation (A2) suggests

that ρ represents ”radius” and equation (A2) is rewritten as

(
x +

δ

κ2
y2 + ρσ

)2

+
y2

κ2
= ρ2

Substitution of ρ = 0 into this equation gives the peak point of current density,

R = RP and Z = 0, and substitution of ρ = 1 gives the current boundary.

In order to generate the self field numerically from the analytical current profile

(equation(A1)) we first divide the poloidal cross section into fine square cells to make a

grid mesh and distribute a large number of filament currents on every edge of square or

cross point of mesh lines so that they match to the analytical profile. Second, the self filed

from these filament currents is calculated using Biot-Savart law on every central point
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a

a

Figure A1. Current Profile Model

of the squares, making a dataset of the self-field on another grid mesh that shifts both

vertically and horizontally from the current mesh by a half side of the square. Finally

we numerically obtain the self field at any location using the spline interpolation for this

dataset. Current profiles depicted in figures in the present paper are those reproduced

from this numerical field profiles using Ampere’s law.
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