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Abstract

Electrostatic potential (ESP) derived partial charge provides a useful tool for describing inter-

molecular electrostatic (ES) interactions. One can also devise a corresponding charge “operator”

that generates partial charge upon taking the expectation value over molecular wavefunctions.

While the ESP charge operator has been utilized in various QM/MM(-type) calculations, it has

the drawback that short-range ES interactions are overestimated due to the neglect of charge pen-

etration effects. Here, we develop a screened version of the ESP charge operator that includes

penetration effects at short range and thereby improve its accuracy. Numerical tests are performed

for typical ions in aqueous solution.
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I. INTRODUCTION

The utility of molecular dynamics (MD) simulation heavily relies on an accurate descrip-

tion of intermolecular interactions. In classical MD simulation, it is common to employ a

force field expressed in terms of atom-centered interaction sites. Electrostatic (ES) interac-

tions are usually represented by a set of point charges or point dipoles, with their parameters

determined from ab initio ESP fitting calculation. The ESP derived charge or dipole thus

obtained, however, has the well-known drawback that it becomes less accurate at short range

due to the neglect of charge penetration effects (i.e., the overlap of molecular charge distri-

bution). As such, theoretical efforts have been continued to obtain more accurate models

for molecular interactions by explicitly including charge penetration effects at short range

[1–5].

The limited accuracy of ESP derived charge is also pertinent to the ESP derived partial

charge “operator” [6–9]. The latter is defined such that it generates partial charge upon

taking the expectation value over a molecular wave function, i.e. Qa = 〈Ψ|Q̂a|Ψ〉. The

benefit of using such an operator is that one can recast the quantum mechanical/molecular

mechanical (QM/MM) interactions into the form of an interaction site model. This in

turn facilitates the development of electronic structure theory combined with other classical

theories for the environment (e.g., integral equation theory for solvent). As such, the ESP

charge operator has been utilized previously in the development of reference interaction site

model self-consistent field (RISM-SCF) method [8–10], charge response kernel (CRK) for

electronic polarization [6, 7, 11], QM/MM(-type) calculations [12–17], and nonequilibrium

solvation theory for chemical reactions [18, 19]. It is also noteworthy that a more general

form of ESP derived multipole operator has been developed [20] and applied to various

systems [21–23]. A significant benefit of such an operator is that it can account for a large

number of MM point charges (say, > 106) at negligible computational costs, while allowing

a straightforward treatment of QM-MM interactions under periodic boundary condition.

Despite these benefits, the ESP derived charge operator Q̂a has the drawback that short-

range ES interactions are overestimated due to the neglect of penetration effects. Therefore,

our purpose in this paper is to explore a way to improve the accuracy of the ESP charge

operator by explicitly considering charge penetration effects at short range (Sec. II). We note

that a similar problem has been addressed previously, e.g., by the RISM-SCF spatial electron
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density distribution (SEDD) method [24]. In the latter method, the charge density of the

solute molecule is expanded in terms of Gaussian basis functions, and an effective interaction

operator is constructed based on the Gaussian density fitting. On the other hand, the

present study aims at obtaining a simple modification of the existing ESP charge operator

by considering screening effects of valence electrons and obtaining necessary parameters

from ab initio ESP calculation. Test calculations show that the screened charge operator

significantly improves upon the original ESP charge operator for typical ions in aqueous

solution (Sec. IV).

II. THEORY

In the usual QM/MM calculation, one solves the following equation for the QM molecule

[Ĥ0 +

∫

dxρ̂(x)v(x)]|Ψ〉 = E|Ψ〉, (1)

where Ĥ0 is the QM Hamiltonian in the gas phase, ρ̂(x) is the charge density operator given

by

ρ̂(x) =
nuc
∑

a

Zaδ(x − Ra) −
ele
∑

i

δ(x − ri), (2)

with Ra being the Cartesian coordinates of QM atom a, and v(x) is the ESP produced by

the MM molecules, namely

v(x) =
MM
∑

j

qj

|x − rj|
. (3)

The ES interaction energy between the QM and MM molecules can be written as

Eint =

∫

dxρ(x)v(x), (4)

where ρ(x) = 〈Ψ|ρ̂(x)|Ψ〉. In the point charge approximation, the above Eint is approximated

as

Eint ≃
∑

a

QaVa, (5)

where Qa is the ESP derived partial charge, and Va is the ESP of the MM molecules acting on

the QM atom a, i.e. Va = v(Ra). We now utilize the fact that Qa can be expressed as Qa =

〈Ψ|Q̂a|Ψ〉 [6–9], where Q̂a is the ESP derived partial charge operator. The corresponding

Schrödinger equation may be written as

[Ĥ0 +
∑

a

Q̂aVa]|Ψ〉 = E|Ψ〉. (6)
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The above equation can be obtained by approximating the charge density operator ρ̂(x) as

ρ̂(x) ≃ ρ̂pc(x) ≡
∑

a

Q̂aδ(x − Ra), (7)

where “pc” stands for the point charge approximation. By separating the nuclear and

electronic contributions of Q̂a such that Q̂a = Za + Q̂
(e)
a , we have

ρ̂pc(x) =
∑

a

Zaδ(x − Ra) +
∑

a

Q̂(e)
a δ(x − Ra). (8)

The above approximation states that the electron distribution is localized at the QM nuclei,

which is, however, not the case for real molecules. To account for the finite extent of electron

distribution, we modify Eq. (8) as follows:

ρ̂sc(x) =
∑

a

Zaδ(x − Ra) +
∑

a

Q̂(e)
a Fa(x), (9)

where Fa(x) is some normalized distribution function. We refer to the above ρsc(x) as the

screened charge (sc) approximation to ρ(x). Furthermore, we decompose Fa(x) into the

contribution of core and valence electrons, such that

Fa(x) = κaδ(x − Ra) + (1 − κa)F
val
a (x), (10)

where κa is a parameter specifying the ratio of core electrons over all electrons in atom a,

and F val
a (x) is a normalized function that accounts for the finite extent of valence electrons.

Note that the distribution of core electrons is approximated by the delta function, and that

in the limit κa → 1 the screened charge operator ρ̂sc(x) reverts to the point charge operator

ρ̂pc(x). In this paper we employ a Slater-type function for F val
a (x), that is,

F val
a (x) =

ζ3
a

8π
e−ζa|x−Ra|, (11)

where the exponent ζa is determined by a least-squares fit to ab initio ESP (see Sec. III).

We also tested several different forms of F val
a such as r2n−2 exp(−ζar) and exp(−ζar)/r, and

find that they give similar numerical performance. On the other hand, the Gaussian-type

function, exp(−ζar
2), was found to be less accurate in reproducing the ESP of the QM

molecule. This is probably because the tail part of charge distribution decays too rapidly

with the single Gaussian approximation. With the ρ̂sc(x) defined above, we consider an

approximate Schrödinger equation of the form

[Ĥ0 +

∫

dxρ̂sc(x)v(x)]|Ψ〉 = E|Ψ〉. (12)
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Now utilizing the relation
∫

dxF val
a (x)

1

|x − rj|
=

1

Raj

−
(1 + ζaRaj/2)e−ζaRaj

Raj

(13)

with Raj = |Ra − rj|, and substituting Eq. (9) into Eq. (12), we obtain

[Ĥ0 +
∑

a

(ZaVa + Q̂(e)
a V (e)

a )]|Ψ〉 = E|Ψ〉. (14)

where Va and V
(e)
a are defined by

Va =
MM
∑

j

qj

Raj

, (15)

and

V (e)
a =

MM
∑

j

qj

Raj

− (1 − κa)
MM
∑

j

qj

(1 + ζaRaj/2)e−ζaRaj

Raj

. (16)

Note that the second term in Eq. (16) describes the penetration effects of valence electrons.

The above equation can be written more concisely as

V (e)
a =

MM
∑

j

qj

Raj

faj, (17)

where faj represents a damping factor given by

faj = 1 − (1 − κa)(1 + ζaRaj/2)e−ζaRaj , (18)

which satisfies 0 < faj < 1.

We emphasize that in the above screened charge model the QM nuclei are still repre-

sented by point charges. The damping function affects only the ES interaction between QM

(valence) electrons and MM point charges, unlike traditional polarizable models in which a

damping function is applied to the overall atomic charge (for example, see [6]). As such, we

expect that the present approach gives a more faithful representation of molecular interac-

tions, which, in turn, facilitates ab initio determination of the damping parameter ζa (see

Sec. IV). Before proceeding, we note that the ESP of the QM molecule is given by

ϕ(r) =

∫

dx
〈Ψ|ρ̂sc(x)|Ψ〉

|r − x|
(19)

=

QM
∑

a

Qa

|r − Ri|
−

QM
∑

a

(1 − κa)Q
(e)
a

(1 + ζa|r − Ra|/2)e−ζa|r−Ra|

|r − Ra|
, (20)

where Qa is the (unscreened) ESP charge given by Qa = 〈Ψ|Q̂a|Ψ〉, and Q
(e)
a is the electronic

part of partial charge, namely Q
(e)
a = 〈Ψ|Q̂

(e)
a |Ψ〉 = Qa − Za.
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III. COMPUTATIONAL DETAILS

As a numerical test, we performed a series of QM/MM calculations of a solute molecule

dissolved in 252 water molecules. Here we described the solute molecule with the HF/6-

31+G(d,p) method (unless otherwise noted) and the solvent with the TIP3P model. During

the QM/MM calculation, the solute geometry was fixed to that obtained from the geometry

optimization at the B3LYP/6-31+G(d,p)/PCM level.

For the sake of comparison, we performed three types of QM/MM calculations: First,

as a reference, we performed a direct QM/MM MD calculation for 240 ps, in which the

Schrödinger equation in Eq. (1) was solved at each MD step. In the direct QM/MM cal-

culation, the MM point charges were inserted directly into the Fock matrix of the QM

Hamiltonian, and hence penetration effects of the QM molecule are rigorously included.

Second, we performed a mean-field (MF) QM/MM calculation [12–14] based on Eq. (6).

Specifically, we solve the following equation for the QM molecule

[Ĥ0 +
∑

a

Q̂a〈Va〉]|Ψ̃〉 = E|Ψ̃〉, (21)

where 〈Va〉 is the statistical average of the solvent potential. The latter is obtained from

a classical MD sampling of solvent for 600 ps. The QM calculation of Ψ̃ and the MD

sampling of solvent are iterated until self-consistency is achieved. The MF-QM/MM method

is analogous to traditional solvation models (e.g. the PCM and RISM-SCF methods) in that

the mean solvent potential is included in the QM Hamiltonian. The essential difference is

that we sample the solvent configurations explicitly via MD calculation. When compared

to the direct QM/MM calculation, the MF-QM/MM method has the advantage that it can

reduce the number of QM calculations significantly (typically on the order of 10–100), while

allowing an extensive sampling of the MM environment [12–14]. Third, we performed a

similar MF-QM/MM calculation based on the screened charge model. Here, we solve the

following equation

[Ĥ0 +
∑

a

(Za〈Va〉 + Q̂(e)
a 〈V (e)

a 〉)]|Ψ̃〉 = E|Ψ̃〉, (22)

where 〈Va〉 and 〈V
(e)
a 〉 are, respectively, statistical average of Va and V

(e)
a defined by Eqs. (15)

and (16). Note that V
(e)
a accounts for charge penetration effects of the QM molecule via

the damping factor in Eq. (18). Other computational details are the same as those of the

MF-QM/MM calculation based on Eq. (21).
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The screened charge operator in Eq. (9) has two adjustable parameters. One is the

ratio of core electrons over all electrons κa, and the other is the exponent of the Slater-

type function ζa. In this paper we determine the former as κa = Qcore
a /Qref

a , where Qcore
a

and Qref
a denote the charge of core and all electrons of atom a, respectively. The Qcore

a is

chosen as 0 for a hydrogen atom, −2e for carbon and oxygen atoms, and −10e for phosphate

and chloride atoms. The Qref
a is determined as Qref

a = 〈Ψref |Q̂
(e)
a |Ψref〉, where Ψref is some

reference wavefunction. In this paper, we choose the latter as Ψref ≡ Ψ̃, where Ψ̃ is obtained

from the MF-QM/MM calculation. Next, we determine the exponent of the Slater-type

function ζa as follows: First, we calculate the usual ESP charge as Qa = 〈Ψ̃|Q̂a|Ψ̃〉 by using

the Spackman scheme [25]. In the latter calculation, the grid points are placed on fused

vdW spheres with a scaling factor of 1.4, 1.5, . . . , 2.6. Next, we determine the parameter ζa

by fitting ϕ(x) in Eq. (20) to ab initio ESP of the QM molecule. Specifically, we minimize

the following objective function

χ2({ζa}) =
1

Ngrid

Ngrid
∑

k=1

(

ϕai(xk) − ϕ(xk)
)2

, (23)

where ϕai(xk) is the value of ab initio ESP derived from Ψ̃, i.e.

ϕai(xk) =

∫

dx
〈Ψ̃|ρ̂(x)|Ψ̃〉

|xk − x|
, (24)

and {xk} are grid points placed on fused vdW spheres with a scaling factor of

1.00, 1.05, . . . , 2.5. Note that the grid points are placed in both the inner and outer regions

of the QM molecule (separated by a scaling factor of 1.4). This is essential for including

penetration effects at short range while retaining the accuracy of ESP at long range. The

minimization of χ2 in Eq. (23) was performed as a function of {ζa} with the downhill sim-

plex method. It should be noted that the above optimization may yield unphysical values

of ζa if the QM molecule has buried atoms. If that case, it may be a good idea to add

some penalty term to the objective function, e.g. λ
∑

a (ζa − ζ0
a)

2
, where λ is a restraint

parameter and {ζ0
a} are some reference values. For simple molecules studied below, we find

that the optimization proceeds successfully without such a penalty term. The vdW radii

used in this paper are taken from Gavezzotti [26] and Spackman [27] and are listed Table I.

Before proceeding, we emphasize that the procedure described above does not aim at

obtaining a common (or universal) set of exponential parameters {ξa} for use in general MM
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force fields. Rather, we calculate the exponent specifically for each QM molecule, on the

same footing as the ESP charge itself. We expect that this procedure is reasonable because

the exponent should in principle depend on the polarization of the QM wave function in a

specific environment as well as the net charge of the QM molecule.

IV. RESULTS AND DISCUSSION

We first display in Fig. 1 the radial distribution functions (RDFs) calculated for a QM

water molecule in TIP3P water. This figure shows the results obtained from (i) the di-

rect QM/MM calculation, (ii) MF-QM/MM calculation based on the point charge approx-

imation (labeled as “MF-QM/MM(pc)”), and (iii) MF-QM/MM calculation based on the

screened charge approximation (labeled as “MF-QM/MM(sc)”). Fig. 1 shows that the MF-

QM/MM(pc) method slightly overestimates the height of the first peak as compared to the

direct QM/MM calculation, while the screened MF-QM/MM method gives more accurate

peak heights. This indicates that charge penetration effects are present even for this neutral

molecule and they are appropriately taken into account by the screened charge model. We

also note that the present calculation somewhat overestimates the height of the first peak as

compared to experiment (2.8 for O-OW RDF and 1.2 for O-HW RDF [28]). This is partly

because of the present use of HF method for the QM molecule, which tends to overpolarize

the QM wave function, and partly because of the use of TIP3P model for water molecules

(see Sec. V).

Penetration effects become stronger for negatively charged ions. Fig. 2 displays the RDF

obtained for the chloride ion (Cl−) in water. As seen, there is a clear discrepancy between the

direct QM/MM and MF-QM/MM(pc) results, while the discrepancy is almost eliminated in

the screened MF-QM/MM calculation. To obtain more insight, we depict in Fig. 2 (c) the

ESP generated by the chloride ion. This figure shows that the ESP calculated with a point

charge (labeled as “pc”) deviates considerably from the ab initio ESP (labeled as “QM”) at

short distances (r < 2.4 Å). Note that the latter distance is within 1.4 times the vdW radius

of the chloride atom (which equals 2.5 Å, see Table I), and that the standard ESP fitting

protocol [27] spans the ESP grid for r ≥ 2.5 Å. Since the first peak of Cl-HW RDF appears

at r ∼ 2.4 Å, it is affected by the insufficient accuracy of the (raw) ESP charge operator

at short range. On the other hand, the screened ESP function ϕ(x) in Eq. (20) (labeled
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as “sc”) almost coincides with the ab initio ESP in the entire region, and as a result the

obtained RDF is in much better agreement with the direct QM/MM calculation.

The discrepancy between the direct and MF-QM/MM(pc) results becomes more signif-

icant for different anions. Fig. 3 displays the RDF obtained for a hydroxide ion (OH−) in

water. A previous study suggests that the point charge approximation is not sufficiently

accurate for modeling the hydroxide ion in water [29]. Indeed, Fig. 3 reveals that the dis-

crepancy between the direct and MF-QM/MM(pc) results is substantial. Nevertheless, we

see that the discrepancy is almost eliminated by the screened charge model, which demon-

strates the importance of charge penetration effects for the hydroxide ion. Fig. 4 illustrates

the ESP contour map of the OH− ion. As seen, the ESP obtained from the screened charges

agrees very well with that obtained from continuous charge density, while the ESP obtained

from point charge approximation exhibits noticeable difference at short distances. It is also

interesting that the ESP obtained from the charge density shows local anisotropy in the

vicinity of the O atom by reflecting the lone electron pairs. On the other hand, the local

anisotropy is not observed for the screened charge model, because the latter approximates

the charge density as the sum of atom-centered spherical ones.

The situation becomes quite different for a positively charged ion. Fig. 5 depicts the

RDF obtained for a sodium ion (Na+) in water. Note that with the present computational

protocol, all the electrons of Na+ are counted as core electrons, hence Qcore
a = −10e and

κa = 1. This means that the screened charge model becomes identical to the point charge

model for the sodium ion. Therefore, to account for the penetration effects of outer electrons,

we counted only the two 1s electrons as “core” electrons and the remaining as “valence”

electrons. Fig. 5 (a) depicts the RDF thus obtained, which reveals that all the three QM/MM

methods give essentially the same results. This observation is also consistent with the ESP

of the sodium ion shown in Fig. 5 (b). The above result suggests that charge penetration

effects of the sodium ion are much smaller than those for the other ions because of a more

localized charge distribution.

Finally, we consider the phosphate ion (PO4
3−) as an example of highly charged solute.

Fig. 6 displays the RDF calculated at the HF/6-31+G(d) level. As expected, the MF-

QM/MM(pc) method gives more structured RDFs than the direct QM/MM calculation due

to the overestimated ES interactions at short range. On the other hand, the screened MF-

QM/MM method gives better agreement with the direct one. A closer inspection of Fig. 6
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reveals that the agreement of the direct and MF-QM/MM(sc) results is slightly worse than

for the other ions (e.g., Cl−), which may be because the solute-solvent interactions are much

stronger for the PO4
3− ion. Table II compares the calculated results with experimental ones

[30]. Here, we re-calculated all the MF-QM/MM results at the B3LYP/aug-cc-pVTZ level

to obtain more reliable data. Table II shows that the screened MF-QM/MM method gives

better agreement with experiment than the MF-QM/MM(pc) method, particularly for the

first peak of RDFs. In addition, we list in Table II the results of the RISM-SCF-SEDD

method [24] calculated for the same system at the B3LYP level. Comparison with the latter

method shows that the screened MF-QM/MM calculation gives similar results for this ion.

Based on the above observations, we expect that the screened charge model in Eq. (9) gives

a reasonably accurate description of solvated ions in aqueous solution.

V. CONCLUDING REMARKS

In this paper we have explored a way to improve the ESP derived partial charge operator

for including penetration effects at short range. To do so, we modeled the charge distribution

of valence electrons with a Slater-type function, F val(x), and determined the necessary

parameters from ab initio ESP calculation. We applied the obtained model to several ions in

solution and demonstrated its accuracy by comparison with a direct QM/MM calculation.

The main benefit of the present approach (rather than using the exact charge density in

Eq. (2)) is that one can recast the QM-MM interactions into the form of an interaction site

model. This should facilitate the combined use of the screened charge operator with other

classical theories for the environment (e.g., 1D- and 3D-RISM methods [10]).

There are three additional points to be mentioned. First, as observed in Sec. IV, the

(raw) ESP charge operator overestimates short-range ES interactions, the degree of which

depends on the type of solute and solvent. We expect that the degree of overestimation

is greater for systems with solute-solvent hydrogen bonds (e.g., ionic systems in aqueous

solution), while it is smaller for systems in polar aprotic solvents (e.g., acetonitrile). Second,

although we have based our discussion on the distributed monopole model, one may utilize

a distributed multipole model for enhanced accuracy [20]. For this purpose, a screening

procedure similar to Eq. (9) may be useful in properly attenuating the ES interactions at

short range. Third, since the TIP3P model is based on a point charge model, the solute-
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solvent ES interactions may also be overestimated by the TIP3P model. In that case, it

may be advantageous to employ some Gaussian or Slater charge model for water [1–5] rather

using the TIP3P model. An interesting problem here is to combine the screened charge

operator for the solute with a Gaussian or Slater charge model for water. The benefit of this

approach is that QM/MM interactions can be written in a pairwise analytical form, which

may facilitate the implementation of MD simulation. Exploring those problems remains the

subject of future study.
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TABLE I: Van der Waals (vdW) radii (in Å) taken from Gavezzotti and Spackman [26, 27].

H C N O Na P Cl

1.20 1.50 1.50 1.40 1.80 1.96 1.80
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TABLE II: Position of the first peak of solute-solvent RDF for the phosphate ion (PO3−
4 ) in aqueous

solution. MF-QM/MM(pc) and MF-QM/MM(sc) refer to the mean-field QM/MM calculation with

point charge and screened charge approximations, respectively. The QM calculation is performed

at the B3LYP/aug-cc-pVTZ level. For comparison, the results of the RISM-SCF-SEDD method

[24] and the experiment results obtained by Mason et al. [30] are shown. C.N. stands for the

coordination number.

MF-QM/MM(pc) MF-QM/MM(sc) RISM-SCF-SEDD Expt.

r(P-OW) (Å) 3.53 3.78 3.67 3.7

r(O-HW) (Å) 1.58 1.83 1.69 1.8

C.N.(P-OW) 16.2 16.5 18.4 15±3

C.N.(O-HW) 4.0 4.1 5.2 3
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FIG. 1: Radial distribution functions (RDFs) of solvent water molecules around a QM water

molecule obtained from QM/MM calculations. The direct QM/MM result is compared with the

mean-field (MF) QM/MM results obtained with the point charge (pc) or screened charge (sc)

approximation. The QM molecule is described with the HF/6-31+G(d,p) method while the solvent

with the TIP3P model.
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FIG. 2: RDFs of solvent water molecules around the chloride ion (Cl−) obtained from QM/MM

calculations. Panel (c) depicts the electrostatic potential (ESP) of the chloride ion calculated with

several different methods (see the main text). The vertical line in panel (c) indicates 1.4 times the

vdW radius of the chloride atom (see Table I).
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FIG. 3: RDFs of solvent water molecules around a hydroxide ion (OH−).
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FIG. 4: ESP contour map of the hydroxide ion (OH−). The QM molecule is represented by (a)

continuous charge density, (b) screened charges placed on the O and H atoms, and (c) ESP point

charges placed on the O and H atoms.
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FIG. 5: RDF of solvent water molecules around a sodium ion (Na+). Panel (b) displays the

electrostatic potential (ESP) produced by the sodium ion. The vertical line in panel (b) indicates

1.4 times the vdW radius of the sodium atom (see Table I).
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FIG. 6: RDFs of solvent water molecules around a phosphate ion (PO3−
4 ).
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