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Abstract. We derive the second-order resonance condition for interac-

tion between a relativistic electron and a coherent Electromagnetic Ion Cy-

clotron (EMIC) wave with a variable frequency. We perform test particle sim-

ulations of relativistic electrons interacting with EMIC waves with a fixed

frequency and a rising-tone frequency such as EMIC triggered emissions ob-

served in the inner magnetosphere. Trapping of resonant electrons leads to

rapid and efficient pitch-angle scattering of relativistic electrons, resulting

in bursty precipitation of relativistic electrons. The efficiency of the pitch-

angle scattering depends on the gradient of the magnetic field, the frequency

sweep rate, and the wave amplitude. The effective wave trapping occurs for

a wide range of pitch angles from 10 to 60 degrees. The most effective pitch-

angle scattering takes place for the case of a rising-tone emission with an en-

hanced magnetic field gradient. Since the efficiency of pitch-angle scatter-

ing also depends on the wave amplitude, resonant electrons may not be scat-

tered into the loss cone in a single passage through the wave packet. How-

ever, repeated interactions with a series of wave packets result in scattering

of relativistic electrons into the loss cone.
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1. Introduction

A recent spacecraft observation has revealed coherent and nonlinear characteristics of

electromagnetic ion cyclotron (EMIC) waves in the magnetosphere [Pickett et al., 2010].

Coherent waves with rising-tone frequencies are triggered from a constant frequency EMIC

wave, and they are called EMIC triggered emissions. The emissions are explained by a

nonlinear wave growth theory [Omura et al., 2010] which is essentially the same as the

nonlinear mechanisms [Omura et al., 2008, 2009; Omura and Nunn, 2011; Nunn and

Omura, 2012] that generate whistler-mode chorus emissions [e.g., Tsurutani and Smith,

1974; Anderson and Kurth, 1989; Lauben et al., 1998, 2002; Santolik et al., 2003; Kasahara

et al., 2009]. EMIC triggered emissions consisting of a series of rising tones are excited

near the magnetic equator by energetic protons from several keV to tens of keV injected

into the inner magnetosphere. The frequency sweep rate of the wave plays an important

role in the nonlinear wave growth near the magnetic equator. EMIC emissions are also

reproduced by a hybrid code simulation, and it is found that a substantial amount of the

energetic protons are scattered into the loss cone [Shoji and Omura, 2011].

Ground and satellite observations show that EMIC waves cause precipitation of ions

with energies of tens of keV and precipitation of relativistic electrons into an isolated pro-

ton aurora at the same time [Miyoshi et al., 2008]. The Finnish pulsation magnetometer

chain and riometer chain also confirmed the link between the EMIC waves and intense

relativistic electron precipitation [Rodger et al., 2008].

A theoretical and numerical analysis of EMIC wave-electron interaction was performed

by Albert and Bortnik [2009]. They assumed an EMIC wave with a constant frequency
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in analyzing the nonlinear interaction. In the present study, we include effects of the

variable frequencies of the EMIC triggered emissions in deriving the second-order cyclotron

resonance condition and in performing test particle simulations.

We first derive the second-order resonance condition of a relativistic electron interacting

with an EMIC wave with a variable frequency in section 2. Theoretical analyses of the

minimum resonance energy, nonlinear wave trapping, and associated pitch-angle scattering

are also presented. In section 3, we study the nonlinear dynamics of relativistic electrons

interacting with the EMIC wave by test particle simulations with various cases of different

wave amplitudes, frequency variations, and magnetic field curvatures near the equator.

In section 4, we present the summary and discussion.

2. Nonlinear Dynamics of Relativistic Electrons

We assume a coherent electromagnetic wave propagating parallel to a static magnetic

field B0 directed along the z-axis, and z is the distance along the magnetic field line from

the magnetic equator. The wave fields are in the transverse plane containing x- and y-

axes as shown in Figure 1. We express the wave magnetic field vector in the transverse

plane by a complex form B⃗w = Bw exp (iψ). We assume an electron moving along the

z-axis with a parallel velocity v∥ and a perpendicular velocity v⃗⊥ = v⊥ exp (iϕ), where we

define the phase ϕ in the direction of the electron cyclotron motion. Assuming an L-mode

EMIC wave propagating in the positive z direction, we define the frequency ω and the

wavenumber k by

ω = −∂ψ
∂t

, k =
∂ψ

∂z
. (1)
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The relativistic equation of motion is given by

m0
d(γv)

dt
= −e[Ew + v × (B0 +Bw)] , (2)

where m0 is the electron rest mass. The γ is the Lorentz factor given by

γ =
1√

1− (v/c)2
, (3)

where c is the speed of light. Since an electron undergoes cyclotron motion with a cyclotron

radius rc = γv⊥/Ωe, where Ωe = eBz/m0, the nonuniform magnetic field B0 has a radial

component Br = −(rc/2)(∂Bz/∂z) to satisfy ∇ · B0 = 0. The equation of motion (2) is

rewritten as

d(γv∥)

dt
= v⊥Ωw sin ζ − γv2⊥

2Ωe

∂Ωe

∂z
, (4)

d(γv⃗⊥)

dt
=

[(ω
k
− v∥

)
Ωw sin ζ + i

(ω
k
− v∥

)
Ωw cos ζ +

γv∥v⊥
2Ωe

∂Ωe

∂z
+ iv⊥Ωe

]
exp (iϕ) ,

(5)

where Ωw = eBw/m0, ζ = ϕ − ψ, and we made use of Ew = (ω/k)Bw from Maxwell’s

equations. Noting that the left-hand side of (5) is expanded as

d(γv⃗⊥)

dt
=

d(γv⊥)

dt
exp (iϕ) + iγv⊥

dϕ

dt
exp (iϕ) , (6)

we separate the real and imaginary parts of (5) to obtain

d(γv⊥)

dt
=

(ω
k
− v∥

)
Ωw sin ζ +

γv∥v⊥
2Ωe

∂Ωe

∂z
, (7)

dϕ

dt
=

1

γv⊥

(ω
k
− v∥

)
Ωw cos ζ +

Ωe

γ
. (8)

Equations (4), (7), and (8) describe the dynamics of a relativistic electron interacting with

the L-mode EMIC wave.
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2.1. Second-order Resonance Condition

To study the resonant interaction of an electron with the L-mode EMIC wave, we

calculate a time derivative of the relative phase angle ζ(t) = ϕ(t)− ψ(t, z) as seen from a

frame of reference moving with the parallel velocity v∥ of the electron,

dζ

dt
=

dϕ

dt
− (−ω + v∥k) . (9)

Noting that the anomalous cyclotron resonance condition between the EMIC wave and

an electron is given by

ω − kv∥ = −Ωe

γ
, (10)

we define the resonance velocity as

VR = (ω + Ωe/γ)/k . (11)

Introducing a new variable θ = k(v∥ − VR), we obtain from (8) and (9)

dζ

dt
= − Ωw

γkv⊥

(
θ +

Ωe

γ

)
cos ζ − θ . (12)

Since ω << Ωe, we have VR ≃ Ωe/(γk). Assuming v⊥ ∼ VR, we have

dζ

dt
∼ −Ωw

Ωe

(
θ +

Ωe

γ

)
cos ζ − θ . (13)

As far as the amplitude is small enough so that Ωw ≪ Ωe, the first term on the right-hand

side of (13) is negligible, and we find

dζ

dt
= −θ . (14)

When θ ≃ 0, i.e., v∥ ≃ VR, the first-order phase variation becomes very small, and this is

the first-order cyclotron resonance condition.

Assuming θ ≃ 0, we calculate the second-order derivative of the phase ζ,

d2ζ

dt2
= −dθ

dt
= k

dVR
dt

− k
dv∥
dt

, (15)
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where we have neglected the term containing dk/dt because v∥ − VR ≃ 0. From (11), we

have

dVR
dt

=
1

k

dω

dt
+

1

k

d

dt

(
Ωe

γ

)
− 1

k2

(
ω +

Ωe

γ

)
dk

dt
. (16)

We need to evaluate the total time derivatives on the right-hand side of (15) in the frame

of reference moving with the parallel velocity v∥ of the electron.

In calculating the first term of (16), we need the wave equation [Omura et al., 2010],

∂ω

∂t
+ Vg

∂ω

∂z
= 0 , (17)

where Vg is the group velocity given by

Vg = 2c2k

[
Πc + ω

∑
s

ω2
ps

(Ωs − ω)2

]−1

. (18)

The parameter Πc is defined by

Πc =
∑
s

ω2
ps

Ωs − ω
−
ω2
pe

Ωe

, (19)

where Ωs and ωps are a cyclotron frequency and a plasma frequency of species“s”, respec-

tively, and ωpe is the electron plasma frequency. From the charge neutrality condition, we

have

ω2
pe

Ωe

=
∑
s

ω2
ps

Ωs

. (20)

Using (20), we can rewrite the parameter Πc as

Πc = ω
∑
s

ω2
ps

Ωs(Ωs − ω)
. (21)

Substituting (21) into (18), we can eliminate the electron parameters from the expression

of the group velocity as

Vg =
2c2k

ω

[∑
s

ω2
ps(2Ωs − ω)

Ωs(Ωs − ω)2

]−1

. (22)
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Using (17), we obtain

dω

dt
=

(
1−

v∥
Vg

)
∂ω

∂t
. (23)

We consider the variation of the kinetic energy K of the particle accelerated by the

transverse electric field of the wave, which is given by

dK

dt
= eEwv⊥ sin ζ . (24)

Noting that K = m0c
2(γ − 1), we find from (24) that

dγ

dt
=
ωΩwv⊥
kc2

sin ζ . (25)

We obtain the total time derivative in the second term of (16) as

d

dt

(
Ωe

γ

)
=
v∥
γ

∂Ωe

∂z
− ΩeωΩwv⊥

γ2kc2
sin ζ . (26)

Noting that ∂k/∂t = −∂ω/∂z, we calculate the time derivative of k from (17)

∂k

∂t
=

1

Vg

∂ω

∂t
. (27)

The spatial derivative of k is calculated from the linear dispersion relation of the EMIC

wave [Omura et al., 2010]

c2k2 = ωΠc , (28)

which is plotted in Figure 2(a), where the frequency ω is normalized by the proton cy-

clotron frequency ΩH . Differentiating (28) with respect to z, we obtain

∂k

∂z
= − 1

V 2
g

∂ω

∂t
+

ω

Ωe

(
Πc

2c2k
− 1

Vg

)
∂Ωe

∂z
. (29)

Noting that dk/dt = ∂k/∂t+ v∥∂k/∂z, we obtain from (27) and (29)

dk

dt
=

1

Vg

(
1−

v∥
Vg

)
∂ω

∂t
+ v∥

ω

Ωe

(
Πc

2c2k
− 1

Vg

)
∂Ωe

∂z
. (30)
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Substituting (23), (26), and (30) into (16), we have

dVR
dt

=
1

k

(
1− VR

Vg

)2
∂ω

∂t
+

[
VR
kγ

− V 2
Rω

kΩe

(
Πc

2c2k
− 1

Vg

)]
∂Ωe

∂z
− ΩeωΩwv⊥

(γkc)2
sin ζ , (31)

where we set v∥ = VR = (ω + Ωe/γ)/k.

From (4) and (25), we obtain

dv∥
dt

=

(
1− ωVR

kc2

)
v⊥Ωw

γ
sin ζ − v2⊥

2Ωe

∂Ωe

∂z
, (32)

where we set v∥ = VR on the right-hand side. Substituting (31) and (32) into (15), we

obtain the second-order derivative of ζ as

d2ζ

dt2
= −ω2

tr(sin ζ + S) , (33)

where

ω2
tr =

(
1−

V 2
p

c2

)
kv⊥Ωw

γ
, (34)

S = − 1

ω2
tr

(
s1
∂ω

∂t
+ s2Vp

∂Ωe

∂z

)
, (35)

s1 =

(
VR
Vg

− 1

)2

, (36)

s2 =
ω

Ωe

(
v2⊥ − V 2

R

2V 2
p

+
V 2
R

VgVp

)
+

VR
γVp

, (37)

and Vp = ω/k. Since Vp ≪ c for EMIC waves, ωtr ≃
√
kv⊥Ωw/γ. The variable S in

(33) is the inhomogeneity factor controlling the dynamics of a resonant electron, and its

expression given by (35) is one of the key results of the present study.

2.2. Resonance Velocity and Minimum Resonance Energy

Setting v2 = V 2
R + v2⊥ in (3) and substituting it into (11), we obtain the quadratic

equation of VR, and its positive solution is given by

VR =
c2k2Vp + Ωe

√
(Ω2

e + c2k2 − ω2)c2 − (Ω2
e + c2k2)v2⊥

Ω2
e + c2k2

. (38)
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Noting that ω ≪ Ωe and Vp ≪ c, we find that

VR =
Ωe√

Ω2
e + c2k2

√
c2 − v2⊥ . (39)

From (11), we also find the approximate resonance velocity as

VR =
Ωe

γk
. (40)

Since the variation of the kinetic energy is negligible, we set

v2∥ + v2⊥ ≃ v20 , (41)

where v0 is the initial velocity before the interaction. Using (41), we eliminating v⊥ from

(39) to obtain

VR ≃ v∥

√
1 + [(c2 − v20)/v

2
∥]

1 + (ck/Ωe)2
. (42)

Noting that c2 − v20 = c2/γ2 and using (40), we rewrite (42) as

VR ≃ v∥

√
1 + γ−2(c/v∥)2

1 + γ−2(c/VR)2
. (43)

For highly relativistic electrons with γ ≫ 1, the resonance velocity varies according to the

variation of v∥, namely,

VR ∼ v∥ . (44)

We can evaluate the minimum kinetic energy of electrons that can interact with EMIC

waves from the condition that
√
V 2
R + v2⊥ < c. From (40), we obtain

γ >
Ωe

k
√
c2 − v2⊥

. (45)

Substituting (21) and (28) into (45), we can obtain the minimum kinetic energy Kmin for

electrons to interact with the EMIC wave as

Kmin = m0c
2

Ωe

ω

[
(1− v2⊥

c2
)
∑
s

ω2
ps

(Ωs − ω)Ωs

]−1/2

− 1

 . (46)
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The minimum resonance energy is expressed as a function of the frequency ω. We assume

the loss cone angle ∼ 6 degrees, which gives the minimum perpendicular velocity of

trapped electrons as v⊥ ∼ 0.1c. Assuming v⊥ = 0.1c, we plot the minimum resonance

energy in Figure 2(b). As the frequency ω approaches to the cyclotron frequencies of ions,

the energy becomes substantially lower than 1 MeV. The EMIC triggered emissions with

rising-tone frequencies are capable to scatter electrons of 100 keV ∼ a few MeV.

2.3. Nonlinear Resonant Trapping

Noting that dθ/dt = −d2ζ/dt2, we eliminate the time variable t from (14) and (33) to

obtain

θdθ = −ω2
tr(sin ζ + S)dζ . (47)

Integrating (47), we obtain the equation for the trajectories of electrons in (θ, ζ) phase

space as

θ2 − 2ω2
tr(cos ζ − Sζ) = C , (48)

where C is a constant for a specific trajectory. We have plotted the trajectories with

S = 0 and S = −0.4 in Figures 3(a) and 3(b), respectively. The first-order and second-

order resonance conditions dζ/dt = 0 and d2ζ/dt2 = 0 are satisfied at phases ζ0 and ζ1,

respectively. The phase ζ0, which becomes 0 for S = 0, is the stable equilibrium point

around which trapped resonant electrons rotate in time. The phase ζ1, which is π for

S = 0, represents an unstable saddle point. Substituting the saddle point values ( θ = 0,

ζ = π) into (48), we obtain the equation for the separatrix ,

θs(ζ) = ±ωtr

√
2[cos ζ − cos ζ1 − S(ζ − ζ1)] . (49)
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For S = 0, the maximum value of θs(ζ) gives the trapping velocity Vtr = 2ωtr/k. If parallel

velocities of relativistic electrons satisfy the condition

VR − Vtr < v∥ < VR + Vtr (50)

at the time of encounter with the tail of the EMIC wave packet, the electrons can be

trapped by the wave potential.

Once the electron gets into resonance, the resonance velocity itself varies according

to the variation of v∥ as implied by (44). Because of the nonlinear trapping oscillation,

both parallel and perpendicular velocities of trapped resonant electrons oscillate with the

trapping frequency.

The efficiency of entrapping resonant electrons depends on the S value. When S ≃ 0,

the majority of the resonant electrons are trapped. If |S| > 1, no trapping takes place. A

trapped resonant electron goes through the wave packet with much faster velocity than

the group velocity of the wave packet, experiencing the variation of the inhomogeneity

factor S due to both ∂ω/∂t and ∂Ωe/∂z. When the EMIC wave propagates away from

the equator with a rising-tone frequency, we find −1 < S < 0. From the second-order

resonance condition sin ζ0 + S = 0, we find 0 < ζ0 < π.

2.4. Pitch-angle Scattering

Since the phase velocity Vp is much smaller than the resonance velocity VR, the diffusion

curve nearly overlaps with the iso-energy curve [Gendrin, 1981], and we can assume that

v is nearly constant. Therefore, a resonant electron only changes its pitch angle α in time.

Using v∥ = v cosα and v⊥ = v sinα, we have

dv∥
dt

= −v⊥
dα

dt
. (51)
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From (32) and (51), we obtain

dα

dt
= −Ωw

γ
sin ζ +

v⊥
2Ωe

∂Ωe

∂z
, (52)

where we used Vp ≪ c. Assuming the second-order resonance condition d2ζ/dt2 = 0 in

(33), we have

sin ζ0 + S = 0 . (53)

Substituting (53) into (52) assuming trapped resonant electrons satisfy ζ ∼ ζ0 on average,

we have

dα

dt
=

Ωw

γ
S +

v⊥
2Ωe

∂Ωe

∂z
. (54)

Since S < 0, the electrons trapped by the wave are carried to lower pitch angles as they

go through the wave packet, which was also found in a test particle simulation by Albert

and Bortnik [2009]. The second term on the right-hand side of (54) is the effect of the

adiabatic variation, while the first term is due to the wave trapping which is rewritten

from (35) as (
dα

dt

)
wave

= − 1

kv⊥

(
s1
∂ω

∂t
+ 2s2VpΩe0az

)
, (55)

where we assumed a parabolic magnetic field Bz = BEQ(1 + az2), and Ωe0(= eBEQ/m0)

is the electron cyclotron frequency at the magnetic equator.

3. Test Particle Simulations

We performed test particle simulations of relativistic electrons interacting with the

EMIC wave. We solve the relativistic equations of motion for electrons assuming a mirror

magnetic field geometry and an EMIC wave with a constant amplitude Bw and a rising-

tone frequency. Since the numerical model and scheme have already been described in

detail by Omura and Summers [2006] and Furuya et al. [2008], we only describe how to
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implement the mirror magnetic field. We calculate the radial component Br of the mirror

magnetic field as seen by an electron with a velocity (vx, vy, vz), where vz is a component

parallel to the magnetic field. From ∇ ·B0 = 0, we have

Br = −rc
2

∂Bz

∂z
er , (56)

where er is a radial unit vector orthogonal to the perpendicular velocity v⊥, and it is

expressed for an electron as

er =
1

v⊥
(vy,−vx, 0) . (57)

Substituting the cyclotron radius rc = γv⊥/Ωe and (57) into (56), we obtain the mirror

magnetic field as

B0 = (Bx, By, Bz) = (− γ

2Ωe

∂Bz

∂z
vy,

γ

2Ωe

∂Bz

∂z
vx, Bz) . (58)

The EMIC triggered emission with frequencies typically increasing in time is generated

in the equatorial region and propagates in the positive z direction along the magnetic

field line. We assume the initial profile of the EMIC wave packet with its wave front and

tail at zf and zt, respectively, as schematically illustrated in Figure 4. The frequencies

of the wave front and tail are fixed, and they are respectively defined as ωf and ωt. The

frequencies between the wave front and tail are interpolated linearly. When ωf < ωt, the

wave frequency observed at a fixed position increases similar to a rising-tone emission.

For simplicity, we assume the amplitude of the wave packet is constant in space and time.

The wave front and tail propagate along the magnetic field with group velocities Vgf and

Vgt, respectively. A resonant electron starts to interact with the wave packet from the tail

and exits from the wave front, passing through the wave packet quickly with a parallel

velocity v∥ much greater than the group velocities.
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3.1. Effect of Nonuniform Magnetic Field

We set up the simulation model and parameters to model the observation of an EMIC

triggered emission [Omura et al., 2010]. For simplicity, we first assume a wave packet of a

fixed frequency 2.8 Hz (4.25×10−4Ωe0) with a finite length of 1000c/Ωe0, which correspond

to the duration time about 40 seconds as observed at a fixed point. We injected 0.98 MeV

electrons at z = −10c/Ωe0 with positive parallel velocities. The initial values of electrons

varies in their pitch angles 30 ∼ 60 degrees and phase angles of the perpendicular velocities

0 ∼ 360 degrees with an interval of 1 degree. A total of 11160(= 360 × 31) particles are

solved for checking the efficiency of pitch-angle scattering through nonlinear wave trapping

by the wave packet. Figure 5 shows trajectories of trapped and untrapped electrons in red

and blue, respectively, for five different cases (A - E). The left panels show time histories of

pitch angles, and the middle panels show trajectories in the (ζ−θ) phase space. The right

panels show the distribution F of the resonant electrons as a function of an equatorial

pitch angle αEQ which is calculated by assuming adiabatic variation along the magnetic

field line as

sinαEQ =

√
BEQ

Bz(z)
sinα , (59)

where z is a position of an electron. The initial distribution of electrons is plotted in a

dashed line, and the distribution F (αEQ) after the interaction with the wave packet is

plotted in a solid line in each case. In Case A shown in Figure 5(a) , we assumed a wave

packet with a constant amplitude 2.2 nT (Bw = 0.009BEQ) and a constant frequency 2.8

Hz (ω = 0.76ΩH), and injected 0.98 MeV electrons. Some particles are trapped by the

wave packet as shown in red. We have identified the trapped electrons by checking the

equatorial pitch angles αEQ, whose variation is approximately described by (54) without
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the adiabatic acceleration term. For each group of electrons with the same initial pitch

angle, we checked the variation of the equatorial pitch angle ∆αEQ. If the maximum

decrease in pitch angle is 5 degrees or more, that trajectory is plotted in red. If the

maximum increase in pitch angle is 1 degree or more, that trajectory is plotted in blue.

The trajectories in red clearly show resonant trapping of electrons, as we can confirm in

the middle panel of the (ζ, θ) phase plot, which is similar to the simplified theoretical

trajectories in Figure 3(a). The trapped electrons are located initially near the equator,

and the inhomogeneity factors S of them are close to 0. From (54), we can understand

that the pitch-angle scattering of electrons is not significant, and this is confirmed by the

electron distribution F (αEQ) in the right panel.

We next inject 3.1 MeV electrons into a wave packet with a constant frequency 1.7 Hz

(ω = 0.46ΩH) in Case B. It is noted from (46) that we need to lower the frequency of

the wave to have effective resonance with the higher energy electrons. As the frequency

decreases, the wavenumber also decreases because of the dispersion relation plotted in

Figure 2(a). The absolute value of S increases because of the decrease of the wavenumber

along with the increasing gradient of the magnetic field as the trapped electrons move away

from the equator. The deviation of S from 0 causes an asymmetry of the trajectories of

trapped electrons in phase ζ as shown in the middle panel of Figure 5(b). The pitch

angles decrease efficiently for the higher energy electrons. With the smaller wavenumber

and the smaller perpendicular velocity, the pitch angle variation of the trapped resonant

electrons increases as understood from (55).

As Case C, we now try another way to increase the pitch-angle scattering by increasing

the curvature of the magnetic field, namely, increasing the parabolic coefficient a in (55)
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from 0.8 × 10−7Ω2
e0/c

2 to 3.0 × 10−7Ω2
e0/c

2. As shown in Figure 5(c), we find that the

trapped resonant electrons are guided to lower pitch angles because of the enhanced

gradient of the magnetic field.

3.2. Effect of Rising-tone Frequency

We set the frequency increasing from 1.7 Hz (ω = 2.51×10−4Ωe0) to 2.8 Hz (ω = 4.25×

10−4Ωe0) corresponding to the EMIC triggered emissions observed by Cluster spacecraft

[Pickett et al., 2010]. While the frequency of the wave packet increases, we assume a

constant wave amplitude Bw = 0.009BEQ (Case D). As we find in Figure 5(d), the time

variation of the frequency has the same effect as the gradient of the magnetic field in

scattering the trapped electrons into the lower pitch angles. The first term on the right-

hand side of (55) plays an equal or larger role in changing the pitch angle of trapped

electrons compared with the second term corresponding to the gradient of the magnetic

field.

When we have both enhanced magnetic field gradient and increasing frequency (Case

E), the time scale of the electron precipitation becomes shortest as we find in the left

panel of Figure 5(e).

As we find in the left panels of all cases in Figure 5, relativistic electrons with the same

kinetic energy are trapped at a wide range of pitch angles when they start to interact

with the wave packet. This is because the resonance velocity varies in accordance with

variation of the parallel velocities of relativistic electrons as expressed by (43).

To check the effect of the wave amplitude on the pitch-angle scattering, we performed

simulation runs with a smaller wave amplitude 1.1 nT (Bw = 0.0045BEQ) for Cases A,

B, C, D, and E compared with the amplitude 2.2 nT (Bw = 0.009BEQ) in Figure 5, and
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plotted the results in Figure 6. The trapped electrons are scattered in pitch angle down to

∼ 10 degrees, and get out of the wave front. After some adiabatic bounce motion between

the mirror points, the electrons may interact with another wave packet near the equator.

To find whether such electrons with smaller pitch angles are effectively scattered into loss

cone or not, we performed another sets of simulations starting from the initial distribution

of electrons with pitch angles 10 ∼ 30 degrees, and the results are shown in Figure 7. We

assumed the same wave amplitude Bw = 0.0045BEQ as assumed in the cases of Figure

6. For the electrons with low pitch angles, they may not be called trapped or untrapped,

because we do not find oscillations around the stable equilibrium point. However, we can

identify from the different phases of electrons as shown in the middle panels of Figure

7. The electrons plotted in red cross the resonance velocity near the same phase of the

trapped electrons, and they are scattered to lower pitch angles, while the electrons plotted

in blue cross the resonance velocity with the phase of the untrapped resonant electrons

being scattered to higher pitch angles. The effective pitch-angle scattering to both lower

and higher angles through resonance imply a coherent nonlinear process that electrons

with low pitch angles (< 30 degrees) are effectively scattered in pitch angles to lower

or higher angles depending on their phases with respect to the transverse wave fields.

Some of the resonant electrons in the lower pitch angles are scattered into the loss cone.

Therefore, in the presence of continuous EMIC wave emissions at a fixed frequency or a

series of triggered rising-tone emissions, MeV electrons are scattered into the loss cone

through repeated interactions with the waves. The efficiency is higher for a larger magnetic

field curvature near the magnetic equator. Rising-tone emissions are more effective than

a constant-frequency wave in scattering resonant electrons into the loss cone.
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4. Summary and Discussion

We have derived the second-order resonance condition for a relativistic electrons in-

teracting with an EMIC wave. We find that efficient pitch-angle scattering takes place

because of trapping of resonant electrons by an EMIC wave. Trapped electrons are trans-

ferred to the lower pitch angles because of the acceleration by the electric field due to the

inhomogeneity of the magnetic field and variation of the wave frequency. At the time of

triggered rising-tone emissions, we expect that precipitation of MeV electrons with lower

energies near 1 MeV is much enhanced. Since the efficiency of pitch-angle scattering

depends on the wave amplitude, resonant electrons interacting with a smaller amplitude

wave may not be scattered into the loss cone in a single passage through the wave packet.

However, repeated interactions with a series of wave packets result in scattering of rela-

tivistic electrons into the loss cone, because the efficiency of the pitch-angle scattering is

also high near the loss cone as shown in Figure 7.

The wave-particle interaction between EMIC waves and relativistic electrons has been

studied numerically in the frame work of the quasilinear theory [e.g., Summers et al.,

2007ab; Jordanova et al., 2008; Liu et al., 2010]. For a coherent waves such as EMIC

triggered emissions, the effects of the magnetic field gradient ∂Ωe/∂z and the frequency

sweep rate ∂ω/∂t as expressed by the inhomogeneity factor S in (35) play an critical role

in scattering the pitch angles.

We traced trajectories of resonant electrons with initial pitch angles 10, 20, 30, 40, 50,

60, 70 degrees for Case E with the wave amplitude Bw = 0.009BEQ, which shows the max-

imum variation of pitch angles. We plot the time histories of pitch angles α and variation

of the kinetic energies ∆K in Figures 8(a) and 8(b), respectively. Trapped electrons in
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red as defined in Figure 5 gain energy being scattered to lower pitch angles. Untrapped

electrons in blue lose energy as indicated by (24). However, the energy variations are

almost negligible compared with the kinetic energy of electrons. It is interesting to note

that resonant electrons trapped by a whistler-mode chorus emission are scattered to higher

pitch angles with a significant increase of the kinetic energy [Omura et al., 2007].

In this paper, we assumed a wave packet with a constant amplitude. However, in obser-

vation [Omura et al., 2010] and the simulation [Shoji and Omura, 2011], the wave packets

show modulation of the amplitudes. The amplitude modulation may cause detrapping of

the trapped resonant electrons, making the pitch-angle scattering less effective. On the

other hand the untrapped electrons can be trapped by the increasing amplitude in space.

Quantitative evaluation including the amplitude modulation is left as a future study.

EMIC triggered emissions in the hydrogen band can also excite another EMIC wave in

the helium band as reported by Shoji et al. [2011]. Near the geosynchronous orbit, EMIC

waves in the helium band are often observed in association with large solar wind density

[Clausen et al., 2011]. Although the characteristics of the helium band interaction should

be the same as the hydrogen band, quantitative studies on coherent pitch-angle scattering

by the helium band waves are also left as a future study.

The length of the wave packet as the L-mode EMIC wave is limited in space, because

the cyclotron frequency increases as the wave packet propagates from the equator to a

higher latitude. The wave frequency approaches to the cut-off frequency of the EMIC wave

dispersion relation, and the wave is either to be reflected or converted to the R-mode in

the oblique propagation. Therefore, the effect of the spatial gradient of the magnetic
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field, as it appears in (35), may not be effective enough for pitch-angle scattering. A wave

packet with increasing frequency will be more efficient in causing pitch-angle scattering.

Although we have assumed parallel propagation in the present study, the observation

by the Cluster spacecraft shows that the wave normal angles fall in the range of 25 to

70 degrees [Pickett et al., 2010]. Effects of the oblique propagation on the pitch-angle

scattering are also left as future studies.

Recently, Wang et al., [2012] conducted an interesting experiment of precipitation of

relativistic electrons trapped in a mirror magnetic field by a shear Alfvén wave in a

laboratory device. It would be interesting to see how the efficiency of the pitch-angle

scattering changes by injecting a coherent wave with a varying frequency.
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Figure 1. Configuration of wave magnetic and electric field vectors Bw, Ew, static

magnetic field B0, wavenumber vector k, and parallel and perpendicular velocities v∥, v⊥

in the spatial coordinates (x, y, z).

Figure 2. (a) Dispersion relation of EMIC waves, and (b) minimum kinetic energy of

resonant electrons.

Figure 3. Trajectories of resonant electrons in (ζ, θ) plane as a solution of the simplified

equations of motion with inhomogeneity factors (a) S = 0 and (b) S = −0.4.

Figure 4. Schematic illustration of frequency variation of the EMIC wave packet at the

initial time t0 and a later time t1 (> t0) in red and blue, respectively. A resonant electron

passes through the wave packet with v∥ (≫ Vgt, Vgf ).
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Figure 5. Time histories of pitch angles α, trajectories of resonant electrons interacting

with an EMIC wave packet with Bw = 0.009BEQ in (θ, ζ) phase space, and distributions

F of the resonant electrons in equatorial pitch angles αEQ after the interaction with the

wave. The dashed lines indicate the initial distributions. (a) Case A: 0.98 MeV and

constant ω. (b) Case B: 3.1 MeV and constant ω. (c) Case C: 0.98 MeV, constant ω, and

larger a. (d) Case D: 0.98 MeV and increasing ω. (e) Case E: 0.98 MeV, increasing ω,

and larger a.

Figure 6. The similar plots of Cases A-E in Figure 5 with a smaller wave amplitude

Bw = 0.0045BEQ.

Figure 7. The similar plots of Cases A-E in Figure 6 for electrons with lower initial

pitch angles α = 10 ∼ 30 degrees.

Figure 8. Time histories of (a) pitch angles and (b) variations of kinetic energies of

trapped electrons in red and untrapped resonant electrons in blue with different initial

pitch angles α = 10, 20, 30, 40, 50, 60, 70 degrees for Case E with Bw = 0.009BEQ.
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Table 1. Input Parameters

Parameter Normalized Value Real Value

time step ∆t 0.2/ Ωe0 4.7× 10−6 s

grid spacing ∆z 1.0c/Ωe0 7.0 km

electron cyclotron frequency at equator fce 6.8 kHz

proton cyclotron frequency at equator fcH 3.7 Hz

electron plasma frequency at equator fpe 18fce 120 kHz

electron density at equator ne 178 /cc

proton density at equator nH 0.81 ne 144 /cc

helium density at equator nHe 0.095 ne 17 /cc

oxygen density at equator nO 0.095 ne 17 /cc

angular electron plasma frequency at equator ωpe 18Ωe0 7.5× 105 rad/s

coefficient of parabolic magnetic field a (0.8, 3.0)× 10−7Ω2
e0/c

2

wave frequency f 0.46− 0.76fcH 1.7 - 2.8 Hz

wave amplitude Bw 0.009, 0.0045BEQ 2.2, 1.1 nT

initial wave packet length 1000 c/Ωe0 7000 km
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