<table>
<thead>
<tr>
<th>Title</th>
<th>Long-term variations of the nighttime electron density enhancement during the ionospheric midlatitude summer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Chen, C. H.; Saito, A.; Lin, C. H.; Liu, J. Y.</td>
</tr>
<tr>
<td>Citation</td>
<td>Journal of Geophysical Research (2012), 117</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2012-07-19</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/160129</td>
</tr>
<tr>
<td>Rights</td>
<td>©2012. American Geophysical Union.; This is not the published version. Please cite only the published version. この論文は出版社版でありません。引用の際には出版社版をご確認ご利用ください。</td>
</tr>
<tr>
<td>Type</td>
<td>Journal Article</td>
</tr>
<tr>
<td>Textversion</td>
<td>author</td>
</tr>
</tbody>
</table>

Kyoto University
Long-term variations of the nighttime electron density enhancement
during the ionospheric mid-latitude summer

C. H. Chen\(^1\), A. Saito\(^1\), C. H. Lin\(^2\), J. Y. Liu\(^{3,4,5}\)

\(^{1}\)Department of Geophysics, Graduate School of Science, Kyoto University, Kyoto, Japan
\(^{2}\)Department of Earth Science, National Cheng Kung University, Tainan, Taiwan
\(^{3}\)Institute of Space Science, National Central University, Chung-Li, Taiwan
\(^{4}\)Center for Space and Remote Sensing Research, National Central University, Chung-Li, Taiwan
\(^{5}\)National Space Organization, Taiwan
Abstract

This study, for the first time, presented the long-term variations of Mid-latitude Summer Nighttime Anomaly (MSNA) in the two hemispheres by using 66 ground-based ionosonde observations from 1957 to 2010. MSNA is characterized by the feature of higher nighttime electron density than daytime density in the mid-latitude region during local summer months. Observations from 66 ionosonde stations were used to calculate the MSNA index which is defined by the difference between nighttime and noontime $NmF2$ values. The MSNA occurrence is determined by positive value of the MSNA index. The global distribution map of the MSNA index shows that there are three regions of intense MSNA. Three ionosonde stations in each of active MSNA regions were chosen to study the long-term variation of MSNA covering longer than one solar cycle. One station in the southern hemisphere is AIJ6N (Argentine IS; 65.2°S, 64.3°W geographic) and two stations in the northern hemisphere are LN047 (Lannion; 48.8°N, -3.4°E geographic) and MG560 (Magadan; 60.0°N, 151.0°E geographic). Results show that there is a clear solar activity negative dependence of the MSNA index, high MSNA in the low solar activity condition and low MSNA in the high solar activity condition. The seasonal and solar activity variations of the MSNA index are explained by the combined effects of the vertical plasma drift induced by the neutral wind and photoionization during the nighttime.
1. Introduction

The Weddell Sea Anomaly (WSA) of the Earth’s ionosphere is characterized by the greater electron density in the nighttime than that in the daytime near the Weddell Sea region during the summer period. This nighttime electron density enhancement feature was firstly discovered by an ionosonde located nearby the region in 1950s [Bellchambers and Piggott, 1958; Penndorf, 1965; Dudeney and Piggott, 1978]. Recently, this feature was further observed by TOPEX/Poseidon [Horvath and Essex, 2003; Horvath, 2006; Jee et al., 2009], FORMOSAT-3/COSMIC [Burns et al., 2008; He et al., 2009; Lin et al., 2009, 2010], and CHAMP [Liu et al., 2010] satellites, indicating that the WSA extends over a much larger region between the South America and Antarctica. The global distribution maps of $NmF2$ and $hmF2$ calculated by FORMOSAT-3/COSMIC radio occultation were utilized to investigate the WSA [Burns et al., 2008]. Their results showed the enhanced electron densities accompanied by the increased height of the $F2$ peak around WSA region during southern hemisphere summer. They suggested that the electron density enhancement of the WSA is associated with the $F2$ peak altitude increasing. Using the observations of FORMOSAT-3/COSMIC measurements, Lin et al. [2009] constructed monthly global three-dimensional maps of the ionospheric electron density structures of the
WSA and reported that the WSA spans in a large region and is most significantly seen at around 300 km altitude.

Regarding the occurrence of WSA during different solar activities, the total electron content (TEC) observation by the TOPEX/Poseidon altimeter was used to observe the spatial extent of the WSA over the ocean near the Antarctic Peninsula during the high solar activity period in 1998 and 1999 [Horvath and Essex, 2003] and the low solar activity period in 1996 and 1997 [Horvath, 2006]. Results showed that the WSA occurred on both solar activity conditions. Jee et al. [2009] analyzed more than 13-year global TOPEX TEC maps to further study the seasonal and solar cycle variations of the WSA in the southern hemisphere. They presented that the WSA appears only in the summer when F10.7 is low, but it appears in all seasons (except for winter) when F10.7 is high. However, Liu et al. [2010] analyzed 6-year in situ electron density measurements at 400 km from the CHAMP satellite and found that the feature of WSA is more pronounced at solar minimum than at the solar maximum. They suggested that the difference between their results and those in Jee et al. [2009] may be due to different behavior between TEC and electron density at 400 km.

Not only in the southern hemisphere, recently, the nighttime electron density enhancement was also observed in the northern hemisphere. Lin et al. [2009] presented a WSA-like anomalous nighttime electron density enhancement in the
northern summer in June 2007 by the FORMOSAT-3/COSMIC data and the global ionospheric map (GIM-TEC). Thampi et al. [2009] used tomographic observations over Japan to investigate the northern electron density anomaly around the East Asian region during July-August 2008. They found that the anomaly in the northern hemisphere are absent at lower altitudes (< 275 km) and appear at higher altitudes (~275 - 550 km). Both WSA in the southern hemisphere and the similar anomalies in the northern hemisphere appear around magnetic mid-latitude regions and local summer nighttime, these anomalies are, therefore, named as the Mid-latitude Summer Nighttime Anomaly (MSNA) [Thampi et al., 2009]. Later, Liu et al. [2010] reported that global distribution of nighttime electron enhancements at East Asian (around geographic 53°N and 150°E), Northern Atlantic (around geographic 45°N and -50°E), and South Pacific (around geographic -60°N and -110°E) regions by using CHAMP satellite data. Lin et al. [2010] presented similar electron density anomalous feature in the Northeast Asia and Europe/Africa longitudes of the northern hemisphere by using the electron density at 300 km altitude from FORMOSAT-3/COSMIC observations. Liu et al. [2010] and Lin et al. [2010] also suggested that this nighttime electron density enhancement is a general mid-latitude feature that exists at longitudes where the magnetic equator is apart from the geographic equator.
Regarding to the solar cycle variation of MSNA in the northern hemisphere, Liu et al. [2010] used 6 years of Ne data at 400 km by CHAMP satellite and found that the MSNA is more pronounced at solar minimum than at solar maximum. However, they used only 6-year data, which is hardly to discuss the solar activity dependent. Also, a quantitatively analytical method is needed for the long-term variations of MSNA in place of observation by naked eye. In this paper, we defined a MSNA strength index (MSNA index) from ratio difference between the nighttime and noontime electron densities to investigate the long-term variations of the MSNA quantitatively in the two hemispheres. According to previous studies [Horvath 2006; He et al., 2009; Thampi et al., 2009; Lin et al., 2010; Liu et al., 2010; Chen et al., 2011], the neutral wind effect may play a critical role in the nighttime electron density enhancement. The neutral wind effect along the magnetic field line and the associated seasonal and solar activity dependence of the MSNA were investigated by using the model estimations based on the Horizontal Wind Model 93 (HWM93; Hedin et al., 1996), the International Geomagnetic Reference Field (IGRF-10; Maus et al., 2005), and SAMI2 (Sami2 is Another Model of the Ionosphere; Huba et al., 2000) model.

2. Data

In order to study the occurrence and the amplitude of MSNA, a MSNA index is defined in this study. The MSNA index is defined as ratio difference between the
nighttime daily maximum value of $NmF2$ and the noontime (12:00 LT) one divided by
the daily minimum $NmF2$. The MSNA index denotes the percentage of nighttime
electron density enhancement compared with the daytime electron density.

$$\text{MSNA index (\%)} = \frac{\text{Max}(NmF2)_{night} - NmF2_{12LT}}{\text{Min}(NmF2)_{all}} \times 100$$ \hspace{1cm} (1)

The nighttime is defined by 19:00 LT - 04:00 LT during the local summer and is
defined by the time when the solar zenith angle at 300 km is greater than 90° during
other seasons. We further exclude the data when the decrease curve of NmF2 value
occurs during the nighttime. The positive MSNA index indicates occurrence of the
nighttime electron density anomaly/enhancement and the greater MSNA index
amplitude indicates a stronger MSNA feature. The MSNA index can be a proxy for
the long-term study of the MSNA quantitatively. The $NmF2$ data of 66 ionosonde
stations around mid-latitude region were used to calculate the distribution map of the
MSNA index during 1957 - 2010. Figure 1 shows the locations of 66 ionosonde
stations and their median value of MSNA index during local summer months
(May-Jul. for northern hemisphere; Nov.-Jan. for southern hemisphere). It can be seen
that the positive MSNA indexes appear between South America and Antarctica region
(a typical Weddell Sea Anomaly feature), West European and East America region
(Atlantic Ocean), and Northeast Asian regions. The occurrence regions of the MSNA
are consistent with previous studies [Liu et al., 2010; Lin et al., 2010]. In Figure 1, the
maximum value of MSNA index is about 53% in the southern hemisphere, which is larger than that in the northern hemisphere (about 36% around Northeast Asian region). The values of MSNA index around Northeast Asian region are larger than that around West European region. We choose three most representative ionosonde stations at each MSNA region to study the long-term variations of the MSNA feature. Data from three ionosonde located around geomagnetic mid-latitude region with station codes listed as AIJ6N (in the southern hemisphere), LN047 and MG560 (both are in the northern hemisphere) are analyzed. Table 1 shows the IGRF-10 geographic and geomagnetic coordinates of the three ionosondes.

Figure 2 shows daily variations of the solar activity F10.7 index (top panel) and the ionospheric $NmF2$ values measured by AIJ6N (Figure 2a), LN047 (Figure 2b), and MG560 (Figure 2c) ionosonde stations. The data period, 1974-1988, was chosen because all these three stations had continuous data during that period. The solar activity dependence of the overall $NmF2$ is clearly seen in Figures 2a-2c. Figure 2a shows the feature of higher nighttime $NmF2$ value than daytime $NmF2$ value around December solstice (the local summer) in the southern hemisphere. The similar feature is also found in Figures 2b and 2c around June solstice in the northern hemisphere but less discernible than that of the southern hemisphere.
Subdividing data into various seasons during the period (listed in Table 1), the seasonal variations of $NmF2$ at the three stations in M-month (Feb.-Apr.; in blue lines), J-month (May-Jul.; in black-dot lines), S-month (Aug.-Oct.; in red dash lines), and D-month (Nov.-Jan.; in pink-dot lines) are shown in Figure 3. Results show that the MSNA appears in the southern hemisphere during D-month and lasts for couple hours after 24:00 LT (Figure 3a). In Figures 3b and 3c, the stations in the northern hemisphere, the MSNAs appear during the J-month and reach their maximum electron density around 20:00 LT and 22:00 LT, respectively. The local time dependence of MSNA in the southern hemisphere (Figure 3a) is different from those in the northern hemisphere (Figures 3b and 3c). The more detailed daily variation of $NmF2$ during the local summer months and its average value at low solar activity and high solar activity at these three stations are shown in Appendix A.

The daily variations of MSNA index at the three stations from 1971 to 1989 are shown in Figure 4. It can be found that the MSNA indices are positive during the local summer months in the both hemispheres. Comparing with the F10.7 index (top panel in Figure 2), the values of MSNA index at AIJ6N (Figure 4a) show a negative correlation to the solar activity, high/low MSNA index during low/high solar activity period. This feature is also seen in LN047 (Figure 4b) and MG560 (Figure 4c) stations.
The monthly median MSNA index values and MSNA occurrence rates are shown in Figure 5 during the high \((F10.7 \geq 120; \text{ in black bar})\) and the low \((F10.7 < 120; \text{ in gray bar})\) solar activity periods. It is noted that we excluded days when the sum of Kp index is larger than 240 per day to avoid the magnetic storm effects. The seasonal and solar activity variations of MSNA index amplitudes are shown in Figures 5a-5c. They show that the MSNAs appear during November to February at AIJ6N station (Figure 5a), during May to July at LN047 station (Figure 5b), and during May to August at MG560 station (Figure 5c). The results in Figures 5a-5c indicate that the MSNA index amplitudes and the MSNA periods in the low solar activity are larger and longer than that in the high solar activity. It also shows that the maximum MSNA indexes in the northern hemisphere are weaker/smaller than that in the southern hemisphere. The monthly MSNA occurrence day (the day of positive MSNA index) was counted during the high and low solar activity periods to study the seasonal and solar activity dependences of the MSNA occurrence rate (Figures 5d-5f). We can see that there are high MSNA occurrence rate during the local summer months at the three stations. It also shows the negative solar activity dependence of MSNA occurrence rate, high occurrence rate during the low solar activity period. The maximum occurrence rate during low solar activity period can reach around 40%, 35%, and 40% at AIJ6N, LN047, and MG560 stations, respectively. However, during high solar activity period,
the maximum occurrence rates are reduced by around 5% - 10%.

3. Discussion

Although the WSA in the southern hemisphere was discovered in 1950s and the associated physical mechanisms were discussed in later literatures [c.f. Burns et al., 2008 and references therein], recent renewed observations give wider extended coverage of the anomaly and prompt us to investigate the physical mechanism based on these new observations. According to the previous studies, the possible physical mechanisms of MSNA are photoionization of solar ultraviolet radiation [Sojka et al., 1985; Horvath and Essex, 2003], equatorward neutral winds [Park, 1971; Dudeney and Piggott, 1978; Su et al., 1994; Horvath and Essex, 2003; He et al., 2009; Thampi et al., 2009; Liu et al., 2010; Lin et al., 2010; Chen et al., 2011], the magnetic field configuration and offset effect [Khol and King, 1967; Dudeney and Piggott, 1978; Horvath, 2006; Lin et al., 2009; 2010; Liu et al., 2010; Chen et al., 2011], and the downward diffusion of the plasmaspheric plasma [Park, 1971; Bailey et al., 1991; Burns et al., 2008; Liu et al., 2010; Chen et al., 2011]. Recently, Chen et al. [2011] used a theoretical model, SAMI2 model [Huba et al., 2000], to reproduce the integrated three-dimensional WSA electron density structure and examine the causal mechanisms of WSA formation. Comparing with different neutral wind conditions, their results found that the equatorward neutral wind in the nighttime is the most
important driver for the WSA formation. The equatorward neutral wind can sustain
the ionospheric layer at higher altitude to maintain a longer lifetime for the electron
density. On the other hand, the most important plasma source in the ionosphere is the
photoionization rate. Around the latitude of the WSA region, the longer time of
photoionization due to later sunset can provide the plasma source in the nighttime
ionosphere. As a result, the combined effects of the geomagnetically equatorward
neutral wind and the longer time of photoionization rate result in the intensity of the
WSA density structure in the mid-latitude nighttime. According to the parameters by
Chen et al. [2011], Figure 6 shows the global distribution of MSNA index by SAMI2
model in 2007 on Jun. 16 in the northern hemisphere and Dec. 16 in the southern
hemisphere. Similar with the ionosonde $NmF2$ observation data, three MSNA regions
are seen around South American, West European, and Northeast Asian. However,
SAMI2 model results show high MSNA index around West European then Northeast
Asian and also the feature of MSNA is not clear around Northeast Asian region, which
are different with the observation results.

3.1 Neutral wind and photoionization rate effects

The dominant feature of the mid-latitude neutral wind at 300 km altitude is
equatorward flow in the nighttime and poleward flow in the daytime [Kawamura et al.,
2000; Liu et al., 2003; Kil et al., 2006]. The nighttime equatorward neutral wind flow
can transport ionospheric plasma to higher altitudes along the geomagnetic field lines, which will preserve plasma for a long time by the lower recombination rate. The poleward neutral wind flow will transport ionospheric plasma to lower altitudes and increase the plasma loss by the high recombination rate. In order to discuss the neutral wind effect for the variations of MSNA, the configuration of the neutral wind and the geomagnetic field line, such as declination and inclination angles, should be considered. The vertical component of the neutral wind along the magnetic field line at 300 km altitude can be calculated by

\[
V_{vert} = \mp (W_{n}^{geo} \cos \theta + W_{z}^{geo} \sin \theta) \cos I \sin I
\]

(2)

Where

- \(V_{vert}\) = vertical component of the plasma drift (positive for upward);
- \(\mp\) = magnetic northern/southern hemisphere;
- \(W_{n}^{geo}\) = the geographically meridional neutral wind velocity (positive for northward);
- \(W_{z}^{geo}\) = the geographically zonal neutral wind velocity (positive for eastward);
- \(\theta\) = declination angle of the geomagnetic field (positive for eastward);
- \(I\) = inclination angle of the geomagnetic field (positive for northern hemisphere; negative for southern hemisphere).

The photoionization rate at 300 km altitude was calculated by the SAMI2 model. The positive value of photoionization rate can provide new plasma in the ionosphere.
Figure 7 shows the local time variations of vertical component of plasma drift induced by the neutral wind (HWM-93; Hedin et al., 1996) along the magnetic field line (black-dot line) as well as the photoionization rate (blue-dot line) at AIJ6N (Figures 7a and 7d), LN047 (Figures 7b and 7e), and MG560 (Figures 7c and 7f) in June (Figures 7a-7c) and December (Figures 7d-7f) in 1985. It can be seen that in Figures 7a and 7d, the vertical plasma drifts are upward after 16:00 LT in June and December and reach their maximum values around 20:00 LT before the midnight. During December month of AIJ6N station, the photoionization rate remains positive during the entire day. However, the photoionization rates in June month are positive value only during the daytime, 08:00 - 16:00 LT. The stations in the northern hemisphere show a long time of photoionization and upward plasma drift during the nighttime in June month. Combining these two effects, we suggest that MSNAs prefer to occur at the condition with the upward plasma drift and the positive photoionization rate during the nighttime period. We defined the effective period with positive vertical plasma drift and positive photoionization rate during the nighttime period to study these effects for the long-term variation of MSNA. This effective period are called as the ionization-uplift effect in this study and shown by gray color in Figure 7.

\[
\text{ionization-uplift effect} = \frac{\sum_{t=19}^{04} V_{\text{vert}} \cdot \Delta t \cdot \delta_t}{1000}
\]

(3)

Where, \(\delta_t \) is equal 0 at all the time but is equal 1 when the photoionization rate
larger than 0 at the time, \(t \). The dimension of ionization-uplift effect is distance (km).

The larger ionization-uplift effect indicates the variation of plasma density affected by both stronger plasma drift and photoionization rate.

3.2 Seasonal variation

The ionosonde results in the southern hemisphere in Figures 3a, 5a, and 5d reveal that the nighttime electron density enhancements prefer to appear during summer months than winter months, which are consistent with the previous studies [Bellchambers and Piggott, 1958; Penndorf, 1965; Dudeney and Piggott, 1978; Burns et al., 2008; Lin et al., 2009; Liu et al., 2010]. Liu et al. [2010] and Chen et al. [2011] reported that the neutral wind is an important driver for the MSNA formation. In December month, the large upward plasma drift induced by the neutral wind and positive photoionization rate (large ionization-uplift effect) during the nighttime (Figure 7d) resulted in the formation of MSNA (Figures 3a and 5a). In June month, although there is a large upward plasma drift appearing during the nighttime (Figure 7a) but there is no photoionization. As a result, no MSNA appeared during this month (Figures 3a and 5a). It seems that the longer time of the photoionization rate, which can prove electron density source around 300 km altitude in the nighttime, is another important factor for the MSNA formation.

Not only in the southern hemisphere, but also in the northern hemisphere the
features of nighttime electron density enhancement were seen around West European and Northeast Asian regions. Lin et al. [2009] used FORMOSAT-3/COSMIC data to construct the electron density slices at various altitudes and longitudes at 22:00 LT in June 2007. They also compared with global ionospheric maps (GIM) data and found that the feature of the anomalous electron density enhancement appear around Northeast part of the Asian region. It is worth to note that in the Figure 4 of Lin et al. [2009], there is a clearly but weak MSNA phenomenon around West European area, although it was not mentioned by the authors. Liu et al. [2010] calculated the density differences between the daytime (12:00 LT) and the nighttime (22:00 LT) at 400 km altitude by CHAMP satellite data in the December and June solstices. They found that there are two anomalous regions appearing in the northern hemisphere in East Asia (EA) sector and North Atlantic (NA). In this study, we calculated the distribution of the MSNA index and found two high value regions of the MSNA index in the northern hemisphere around West European and Northeast Asian regions as shown in Figure 1. The seasonal variation of $NmF2$ in Figure 3, the seasonal variation of the MSNA index in Figures 5a-5c, and the occurrence rate of MSNA in Figures 5d-5f are consistent with the MSNA distributions revealed in the previous studies. The value of ionization-uplift effect at LN047 (Figures 7b and 7e) and MG560 (Figures 7c and 7f) are high in June month (Figures 7b and 7c) and zero in December month (Figures 7e
and 7f), similar seasonal variation with AIJ6N station. The monthly variation of the MSNA index (Figures 5b and 5c) and the MSNA occurrence (Figure 5e and 5f) also show seasonal variation, high values during summer months and low values during winter months. This implies that the evolution of combined effect by the vertical plasma drift induced by the neutral wind and the solar photoionization rate can potentially explain the seasonal variation of MSNA.

3.3 Solar activity variation

The solar cycle variation of WSA in the southern hemisphere had been studied by Jee et al. [2009] with TOPEX TEC observation data. Their results showed that WSA occurs more frequently during high solar activity period than low solar activity period. However, using electron density data at 400 km by CHAMP satellite, Liu et al. [2010] found that WSA in the southern hemisphere occurred around August-March during high and low solar activity conditions, nearly independent of solar activity. Their results further showed that the occurrence period of MSNA in the northern hemisphere was longer in the low solar activity condition than in the high solar activity condition. In this study, the occurrence rate of MSNA at the two hemisphere stations (Figures 5d-5f) show a clear solar activity dependence, high occurrence rate during the low solar activity period and low occurrence rate during the high solar activity period. Also, the strength of MSNA shows the solar activity dependence
(Figures 5a-5c), high value during the low solar activity period than that during the high solar activity period, except for MG560 station (Figure 5c).

In order to discuss the solar activity dependence of MSNA, the MSNA index at each ionosonde station during several years (listed in Table 1) were used to examine their relationship to the solar activity F10.7 index. Figure 8 presents the linear regressions of the F10.7 index versus the MSNA index and the ionization-uplift effect in the two hemispheres. Figures 8a, 8d, and 8g show the relationships between the F10.7 index and the MSNA index. Results show that the correlation coefficients are negatively high values at AIJ6N and LN047 stations but negatively moderate value at MG560 station. This solar activity dependence also can be seen in Figure 5 and generally has a good agreement with previous study [Liu et al., 2010].

Figures 8b, 8e, and 8h present the relationships between the F10.7 index and the ionization-uplift effect. It is shown that the negatively high correlation coefficients at AIJ6N and LN047 stations and negatively moderate correlation coefficient at MG560 station. Similar with the MSNA index, the ionization-uplift effect has the negative solar activity dependence. This is due to that the neutral wind velocity in the mid-latitude nighttime is high during the low solar activity period and low during the high solar activity period [Kawamura et al., 2000]. Faster neutral wind could induce
faster vertical plasma drift and then result in higher electron density in the mid-latitude ionosphere.

Figures 8c, 8f, and 8i show relationship between the MSNA index and the ionization-uplift effect. It shows that the MSNA index is proportional to the ionization-uplift effect, except for MG560 station. The high correlation coefficients show that a larger ionization-uplift effect results in a larger MSNA index, suggesting that the combined effect by the plasma drift and the photoionization rate play an important role for the generation of MSNA in different solar activity conditions. On the other hand, the correlation coefficient is high at LN047 station but low at MG560 station. This different feature between LN047 and MG560 implies that the mechanism of ionization-uplift effect cannot fully explain the solar activity variation of MSNA in the northern hemisphere. It is possibly due to the accuracy of the neutral wind model or the effect of the plasma downward diffusion from the plasmasphere during the nighttime in the mid-latitude ionosphere. The recombination rate in the nighttime may also affect the variation of MSNA in the ionosphere. However, it needs a further study by using a theoretical model together with the plasmaspheric data by satellite observations.

The feature of MSNA seen in Figures 1, 4, and 5 show a hemispheric difference, large MSNA index in southern hemisphere summer than that in northern hemisphere
summer. Results presented by Lin et al. [2009; 2010], He et al. [2009], and Liu et al. [2010] also showed this hemispheric asymmetry. The occurrence rates of MSNA (Figures 5d-5f) in the southern hemisphere are larger than that in the northern hemisphere. The amplitudes of the MSNA index (Figure 5a-5c) also show the high value in the southern hemisphere, except for MG560 at the high solar activity condition. The similar feature can be seen in Figure 7. It is shown that the value of ionization-uplift effect during the southern hemisphere December month is larger than that during the northern hemisphere June month. This implies that there is more upward plasma induced by the neutral wind and more photoionization in the WSA region than the regions in the northern hemisphere resulting in the more distinct anomaly seen in the WSA region. The hemispheric difference of the MSNA index seems can be directly explained by the strength of the combined effect by the plasma drift and the photoionization rate.

Regarding to the longitudinal variations of MSNA in the northern hemisphere, the MSNA index shown in Figures 1, 4, and 5 reveal that the MSNA index around Northeast Asia region (MG560) is larger than that around West European region (LN047) during May and August in high and low solar activity conditions. The occurrence rate of MSNA at MG560 (Figure 5f) is also larger than that at LN047 (Figure 5e) during May and August. These results reveal the longitudinal variation of
MSNA in the northern hemisphere. Since the meridional neutral wind is the most important factor to control the occurrence of MSNA [Chen et al., 2011], the longitudinal variation of MSNA may be caused by the declination and inclination of the magnetic field [He et al., 2009; Liu et al., 2010]. On the other hand, the longitudinal feature (differences value in the MSNA index and the occurrence of MSNA between West European and Northeast Asian) is more distinct during the high solar activity period than during the low solar activity period (Figure 5). Burns et al. [2008] suggested that the evening downward flux of plasma from the plasmasphere may also affect the formation of WSA. According to the results in Figure 5, the solar activity dependence of the MSNA longitudinal structure may result from the plasmaspheric downward diffusion in the mid-latitude ionosphere. Figure 6 shows the quickly results of MSNA global distribution by SAMI2 model. Comparing with the ionosonde \textit{NmF2} results (Figure 1), the model result shows similar longitudinal structure of MSNA but the MSNA amplitude around the Northeast Asian region is smaller than the West European region. Figure 9 further shows the correlated plasma diffusion velocities at the West European (50°N, -5°E, black-dot line) and the Northeast Asian (60°N, 150°E, gray-dot line) locations. It is clearly shown that there is a large downward velocity at the West European location during the nighttime, which can provide the plasma source in the nighttime to maintain the longer time of
plasma. The feature of downward plasma diffusion is not clearly at the Northeast Asian location, which is the possible reason to cause the weak MSNA feature here. However, it needs further theoretical studies using by plasmasphere-ionosphere models.

4. Summary

This paper utilized the long-term ionosonde $NmF2$ data to study the features of ionospheric mid-latitude summer nighttime anomalies (MSNAs) in the two hemispheres and their seasonal and solar activity dependences. MSNA index was defined to study the long-term variations of MSNA quantitatively. Results show clearly seasonal and solar cycle variations of MSNA in the two hemispheres. The quasi-linear relationships between the MSNA index and the F10.7 index present the clear solar activity dependence of MSNA, negatively high correlation at AIJ6N and LN047 station but negatively moderate correlation at MG560 station. These long-term variations of MSNA can be explained by the combined effect of the plasma drift induced by the neutral wind and the photoionization rate. However, the different correlation coefficients between West European region and Northeast Asian region indicate that the formation of MSNA in the northern hemisphere cannot fully be explained by the combined effect. The solar activity and season dependences of downward diffusion of plasma from the plasmasphere during the nighttime may affect
the variation of MSNA and caused the longitudinal structure of MSNA in the northern
ionosphere. The nighttime recombination rate around F-region may also cause the
variation of MSNA in different solar activity conditions. Thus, it may be the possible
mechanisms responsible to the smaller correlation coefficient around the Northeast
Asian region. A comprehensive study taking into account of these possible effects by
the observation and/or model simulation is needed in the future work.

Acknowledgments
C. H. Chen is supported by Interchange Association, Japan (IAJ). The authors are
grateful to Dr. T. Maruyama and Dr. T. Tsugawa of National Institute of Information
and Communications Technology (NICT), Japan, for the helpful comments for this
paper. The F10.7 data are downloaded from the Space Physics Interactive Data
Resource (SPIDR) web: http://spidr.ngdc.noaa.gov/. The ionosonde data are provided
by SPIDR and NICT.

Reference
Bailey, G. J., R. Sellek, N. Balan (1991), The effects of interhemispheric coupling on
night-time enhancements in ionospheric total electron content during winter at
Bellchambers, W. H., and W. R. Piggott (1958), Ionospheric measurements made at
Burns, A. G., Z. Zeng, W. Wang, J. Lei, S. C. Solomon, A. D. Richmond, T. L. Killen,
and Y.-H. Kuo (2008), The behavior of the F2 peak ionosphere over the South
Pacific at dusk during quiet summer condition from COSMIC data, J. Geophys.
of the ionospheric Weddell Sea Anomaly using SAMI2, J. Geophys. Res., 116,
Dudeney, J. R., and W. R. Piggott (1978), Antarctic ionospheric research, in Upper
Atmosphere Research in Antarctica, Ant. Res. Ser., edited by L. J. Lanzerotti

Caption

Figure 1. Location of 66 ionosondes and their median value of MSNA index during local summer months.

Figure 2. The daily variations of the 10.7 cm solar radio flux, F10.7 index (in unit of $10^{-22}\text{Wm}^{-2}\text{Hz}^{-1}$), and the NmF2 at (a)AIJ6N, (b)LN047, and (c)MG560 stations during 1971 to 1989.

Figure 3. Monthly variation of diurnal NmF2 at (a) AIJ6N, (b) LN047, and (c) MG560 stations in M-month (blue line), J-month (black-dot line), S-month (red dash line), and D-month (pink-dot line).
Figure 4. Daily variations of the positive MSNA index at (a) AIJ6N, (b) LN047, and (c) MG560 stations during 1971 to 1989.

Figure 5. Monthly variation of MSNA index values and MSNA occurrence rates. The monthly variation of MSNA indexes are shown at (a) AIJ6N, (b) LN047, and (c) MG560 stations in different solar activity conditions. Black bars indicate the high solar activity (F10.7 \geq 120) data and gray bars indicate the low solar activity (F10.7 < 120) data. The monthly occurrence rates of MSNA are shown at (d) AIJ6N, (e) LN047, and (f) MG560 stations in different solar activity conditions. Black bars indicate the high solar activity (F10.7 \geq 120) data and gray bars indicate the low solar activity (F10.7 < 120) data.

Figure 6. Global MSNA index during local summer days (Jun. 16 for the northern hemisphere and Dec. 16 for the southern hemisphere) simulated by SAMI2 model. The black line indicates the geomagnetic equator.

Figure 7. Hourly variation of vertical neutral wind and photoionization rate. Top panels show the results at (a) AIJ6N, (b) LN047, and (c) MG560 stations in June month. Bottom panels show the results at (d) AIJ6N, (e) LN047, and (f) MG560 stations in December month. Black-dot lines and associated left-side y-axis indicate the vertical neutral wind. Blue-dot lines and associated right-side y-axis indicate the photoionization rate. Gray region indicate the ionization-uplift effect with upward neutral wind and positive photoionization rate.

Figure 8. Solar activity variations of the MSNA index and the ionization-uplift effect. The top three panels indicate the results at AIJ6N station (a-c). The middle three panels indicate the results at LN047 station (d-f). The bottom three panels indicate the results at MG560 station (g-i). The solar activity dependences of the MSNA index and the ionization-uplift effect are shown in the left three panels and the middle three panels, respectively. The relationship between the MSNA index and the ionization-uplift effect are shown in the right three panels. Red dash-lines indicate the linear regression lines and CC indicates the correlation coefficient.

Figure 9. Plasma velocities at 500 km altitude at West European and Northeast Asian locations on Jun. 16 in 2007 by SAMI2 model. The black-dot and gray-dot lines indicate the data at (50°N, -5°E) and (60°N, 150°E), respectively. Positive/negative value means the up/downward velocity.
Figure A1. The daily variation of $NmF2$ (in gray lines) during the local summer months and its average value (black-dot lines) at low solar activity (F10.7 index smaller than 120, top three panels) and high solar activity (F10.7 index larger than 120, bottom three panels) at AIJ6N, LN047, and MG560 stations.
Table 1. The locations of ionosonde stations used in this paper and those magnetic file line parameters at 300 km altitude by IGRF-10 model in 1980.

<table>
<thead>
<tr>
<th>Code</th>
<th>Name</th>
<th>GLat</th>
<th>GLong</th>
<th>MLat. inc.</th>
<th>dec.*</th>
<th>Data period</th>
</tr>
</thead>
<tbody>
<tr>
<td>LN047</td>
<td>Lannion</td>
<td>48.8°N</td>
<td>-3.4°E</td>
<td>45.30°N</td>
<td>63.98°</td>
<td>-7.28°</td>
</tr>
<tr>
<td>MG560</td>
<td>Magadan</td>
<td>60.0°N</td>
<td>151.0°E</td>
<td>52.96°N</td>
<td>70.94°</td>
<td>-8.37°</td>
</tr>
</tbody>
</table>

* Positive value for east ward and negative value for west ward.

Appendix A

In this appendix, we analyze the daily variation of $NmF2$ during the local summer months as well as its average value and the solar activity variation of $NmF2$ at AIJ6N, LN047, and MG560 stations. It is clearly show that the averages $NmF2$ have similar variation during high and low solar activity conditions and the MSNA features occur during the both solar activity conditions.
Figure 1. Location of 66 ionosondes and their median value of MSNA index during local summer months.
Figure 2. The daily variations of the 10.7 cm solar radio flux, F10.7 index (in unit of $10^{-22} \text{Wm}^{-2}\text{Hz}^{-1}$), and the NmF2 at (a) AIJ6N, (b) LN047, and (c) MG560 stations during 1971 to 1989.
Figure 3. Monthly variation of diurnal NmF2 at (a) AIJ6N, (b) LN047, and (c) MG560 stations in M-month (blue line), J-month (black-dot line), S-month (red dash line), and D-month (pink-dot line).
Figure 4. Daily variations of the positive MSNA index at (a) AIJ6N, (b) LN047, and (c) MG560 stations during 1971 to 1989.
Figure 5. Monthly variation of MSNA index values and MSNA occurrence rates. The monthly variation of MSNA indexes are shown at (a) AIJ6N, (b) LN047, and (c) MG560 stations in different solar activity conditions. Black bars indicate the high solar activity (F10.7 \geq 120) data and gray bars indicate the low solar activity (F10.7 < 120) data. The monthly occurrence rates of MSNA are shown at (d) AIJ6N, (e) LN047, and (f) MG560 stations in different solar activity conditions. Black bars indicate the high solar activity (F10.7 \geq 120) data and gray bars indicate the low solar activity (F10.7 < 120) data.
Figure 6. Global MSNA index during local summer days (Jun.16 for the northern hemisphere and Dec. 16 for the southern hemisphere) simulated by SAMI2 model. The black line indicates the geomagnetic equator.
Figure 7. Hourly variation of vertical neutral wind and photoionization rate. Top panels show the results at (a) AIJ6N, (b) LN047, and (c) MG560 stations in June month. Bottom panels show the results at (d) AIJ6N, (e) LN047, and (f) MG560 stations in December month. Black-dot lines and associated left-side y-axis indicate the vertical neutral wind. Blue-dot lines and associated right-side y-axis indicate the photoionization rate. Gray region indicate the ionization-uplift effect with upward neutral wind and positive photoionization rate.
Figure 8. Solar activity variations of the MSNA index and the ionization-uplift effect. The top three panels indicate the results at AIJ6N station (a-c). The middle three panels indicate the results at LN047 station (d-f). The bottom three panels indicate the results at MG560 station (g-i). The solar activity dependences of the MSNA index and the ionization-uplift effect are shown in the left three panels and the middle three panels, respectively. The relationship between the MSNA index and the ionization-uplift effect are shown in the right three panels. Red dash-lines indicate the linear regression lines and CC indicates the correlation coefficient.
Figure 9. Plasma velocities at 500 km altitude at European and Northeast Asian locations on Jun. 16 in 2007 by SAMI2 model. The black-dot and gray-dot lines indicate the data at (50°N, -5°E) and (60°N, 150°E), respectively. Positive/negative value means the up/downward velocity.
Figure A1. The daily variation of $NmF2$ (in gray lines) during the local summer months and its average value (black-dot lines) at low solar activity ($F10.7$ index smaller than 120, top three panels) and high solar activity ($F10.7$ index larger than 120, bottom three panels) at AIJ6N, LN047, and MG560 stations.