TITLE:
Concept Software Based on Kinect for Assessing Dual-Task Ability of Elderly People

AUTHOR(S):
Kayama, Hiroki; Okamoto, Kazuya; Nishiguchi, Shu; Nagai, Koutatsu; Yamada, Minoru; Aoyama, Tomoki

CITATION:

ISSUE DATE:
2012-10-05

URL:
http://hdl.handle.net/2433/160130

RIGHT:
©2012 Mary Ann Liebert, Inc.; "Games for Health Journal" is available online at: http://online.liebertpub.com; This is not the published version. Please cite only the published version.; この論文は出版社版ではありません。引用の際には出版社版をご確認ご利用ください。
Objective: Assessment of fall risk of elderly people is a critical issue. Dual-task (DT) ability is a criterion for risk assessment. We developed new concept software based on Microsoft (Redmond, WA) Kinect for assessing DT ability. The software is named "Dual-Task Tai Chi" (DTTC) and includes Tai Chi and number place (Sudoku) components. The purpose of this study is to validate the DTTC test for assessment of DT ability.

Subjects and Methods: Forty-five community-dwelling elderly (mean age, 74.1 ± 6.6 years) individuals participated in this study. They performed DTTC, locomotive, cognitive, and DT tests. DT ability was evaluated with a 10-m walk under a cognitive-task condition and a 10-m walk under a manual-task condition. The correlation between the time taken to complete the DTTC test and each function test was determined using Pearson correlation coefficients. Stepwise multiple regression analysis was conducted to assess the relationship between the DTTC test results and results of the other tests.

Results: The time taken to complete the DTTC test was correlated with DT ability, locomotive functioning, and cognitive functioning. Results of stepwise multiple regression analysis confirmed that DT, balance, and cognitive ability are statistically significant. No statistically significant association was found for the other variables.

Conclusions: The DTTC test quantitatively evaluates a compound function including DT, balance, and cognitive abilities.
The Kinect sensor (Microsoft, Redmond) does not require the user to hold an interface device. The sensor is a low-cost, depth-sensing camera (produced by the Israeli company PrimeSense® [Tel Aviv]) that captures the user’s full-body movements in three-dimensional space and incorporates them in the game. The user’s body, operating in threedimensional space, replaces traditional handheld controllers. The Kinect camera can be connected to a personal computer. The Kinect system is flexible and commercially available.

We developed a new concept device to assess DT ability and named it the “Dual-Task Tai Chi” (DTTC) test. To quantify DT skill, we developed this system using Kinect, a motion-capture device. We chose Tai Chi as a locomotive task and Sudoku as a cognitive task. In the input and convert module of the game system, Kinect translates positional data of the user and objects located in front of the system into an animated stick figure, which is displayed on a screen. A Sudoku is simultaneously displayed on a screen.

A reason for combining Tai Chi exercises with Sudoku is that we can change the level of difficulty and guide the subject’s movements by changing the position of empty boxes in the Sudoku puzzle. Additionally, Tai Chi is a valid locomotive task based on full-body motion, and Tai Chi training is useful for preventing falls in elderly people. Sudoku is a useful tool for assessing cognitive ability. Sudoku exercises improve cognitive performance (specifically, reaction time and number of correct and missing answers) of people with Parkinson’s disease, as measured by the Stroop test. The purpose of this study was to validate this new concept device as an assessment tool.

Subjects and Methods

Participants

Forty-five community-dwelling, elderly subjects participated in this study. They were recruited by means of an advertisement in the local press. The following selection criteria were used: age ≥60 years, community-dwelling, independent ambulation, willingness to participate in the measurement of physical fitness, and minimal hearing and vision impairments. Exclusion criteria were as follows: inability to complete the tasks because of reduced cognitive function; severe cardiac, pulmonary, or musculoskeletal disorders; pathologies associated with increased risk of falls, such as Parkinson’s disease or stroke; osteoporosis; and use of psychotropic drugs. We obtained informed consent from each participant. This study was approved (protocol approval E-880) by the Ethical Review Board of Kyoto University Graduate School of Medicine, Kyoto, Japan.

Measurement device

The DTTC test requires users to solve a number place problem (Sudoku) by controlling a stick figure with movement of their entire body. The user’s full-body motion is captured using Kinect, a motion-capture device, and is translated into movements of a stick figure on a screen. The cognitive task is to fill in three boxes chosen randomly from a 4 x 4 grid with digits ranging from 1 to 4. The user selects a digit using his or her right hand and left foot and points to a box with his or her left hand. In addition, the user must move his or her right hand to the left hand to fill the pointed box with the selected digit. As such, a full-body motion similar to Tai Chi Chuan movements is required. We recorded the time taken to fill in all three boxes; this was our evaluation index.

To begin with, the user stands 3 m in front of the Kinect sensor with his or her right foot in front of the sensor (Fig. 1). The following instructions were provided (Fig. 2):

1. Reach a digit you need to answer with your right hand.
2. Step 50 cm laterally with your left leg to grip a number in your right hand.
3. Select a blank you want to answer with your left hand, and move your right hand to your left one.

A pilot experiment indicated that the test–retest reliability for completion time was considerably high (inter-trial correlation coefficient, 0.94; 95% confidence interval, 0.86–0.97; P < 0.001). A pilot experiment indicated that the test–retest reliability for completion time was considerably high (inter-trial correlation coefficient, 0.94; 95% confidence interval, 0.86–0.97; P < 0.001).

Cognitive status measures

Cognitive function was evaluated with the Rapid Dementia Screening Test (RDST), trail-making test (TMT), and verbal fluency test (VFT). The TMT is a well-established psychomotor test originally developed as part of the Army Individual Test Battery and has been widely used in clinical evaluations to assess deficits in executive cognitive function. The VFT has a letter fluency component and a category fluency component. Participants were asked to think of as many animal names as possible in 1 minute (category fluency). Verbal fluency is an evaluation of expressive language ability and executive function. The score was the number of successful words (except for some proper nouns).

Physical performance measures

Locomotive function was evaluated as 10-m walking time under standard conditions (ST walking), 21 10-m maximum walking time (10-m MAX) (see DT performance measures), functional reach (FR), timed up-and-go test (TUG), one-leg standing (OLS) test, and five-chair stand (5-CS) test. In the ST walking test, participants were asked to walk 15 m at a speed that was comfortable to them, and the time taken to
walk 10 m during this walk was measured using a stopwatch. The ST walking score was the average time recorded for two trials. In the FR test, each participant was positioned next to a wall, with one arm raised at 90° and fingers extended. A yardstick was mounted on the wall at shoulder height. The distance the participant could reach while extending forward from an initial upright posture to the maximal anterior leaning posture without moving or lifting the feet was visually measured in centimeters as the third fingertip position against the mounted yardstick. The distances measured in two trials were averaged to obtain the FR score. In the TUG test, participants were asked to stand up from a standard chair with a seat height of 40 cm, walk a distance of 3 m at a normal pace, turn, walk back to the chair, and sit down. The time recorded in two trials was averaged to obtain the TUG score. In the OLS test, participants were instructed to start from a position with a comfortable base as support, with eyes open and arms along the side of the trunk. They were then instructed to stand unassisted on either leg. The OLS time was the number of seconds from when one foot was lifted from the floor to when it touched the floor again or the standing leg. In the 5-CS test, participants were asked to stand up and sit down five times as quickly as possible. They were timed from the initial sitting position to the final standing position, at the end of the fifth stand.

DT performance measures

A 10-m walk under a cognitive-task condition (CT walking) and a 10-m walk under a manual-task condition (MT walking) were used to evaluate DT function. The method for measuring 10-m MAX, CT walking, and MT walking is roughly the same as the method for the ST walking test. For 10-m MAX, we asked participants to walk as fast as possible. For CT walking, we asked them to walk at the most comfortable speed while counting down from 100. For MT walking, we asked them to carry a ball (7 cm in diameter, 150 g) on a tray (17 cm in diameter, 50 g) while walking at the most comfortable speed.

Statistical analysis

The correlation between the time taken to complete the DTTC and functional tests was determined using Pearson correlation coefficient. Additionally, we evaluated the association between DTTC time and other test results using stepwise multiple regression analysis. We included DTTC time as the dependent variable and age, ST walking, MT walking, TUG, FR, OLS, 5-CS, TMT-B, RDST, and VFT as independent variables. We considered multicollinearity among tests when we chose these variables. A value of \(P < 0.05 \) was considered statistically significant for all analyses.

Results

Subject characteristics

The 45 subjects were 60–91 years old, with a mean age of 74.1 ± 6.6 years; many subjects were in their 70s. The male-to-female ratio was 1:4. All the participants completed the DTTC program. The mean time taken to complete the DTTC test was 50.2 ± 27.1 seconds.

Correlation analysis

Table 1 shows the Pearson correlation coefficients for time to complete the DTTC program and other functional tests for
Table 1. Pearson Correlation Coefficients of the Time Taken to Complete the “Dual-Task Tai Chi”

<table>
<thead>
<tr>
<th></th>
<th>Mean ± SD</th>
<th>Correlation coefficient</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>74.1 ± 6.6</td>
<td>0.581</td>
<td><0.01**</td>
</tr>
<tr>
<td>Locomotive task</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST walking</td>
<td>7.3 ± 1.3</td>
<td>0.433</td>
<td><0.01**</td>
</tr>
<tr>
<td>TUG</td>
<td>6.9 ± 1.5</td>
<td>0.447</td>
<td><0.01**</td>
</tr>
<tr>
<td>FR</td>
<td>28.2 ± 6.1</td>
<td>–0.531</td>
<td><0.01**</td>
</tr>
<tr>
<td>OLS</td>
<td>34.8 ± 22.7</td>
<td>–0.568</td>
<td><0.01**</td>
</tr>
<tr>
<td>5-CS</td>
<td>8.8 ± 3.1</td>
<td>0.256</td>
<td>0.075</td>
</tr>
<tr>
<td>Cognitive task</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RDST</td>
<td>9.6 ± 2.2</td>
<td>–0.347</td>
<td>0.018*</td>
</tr>
<tr>
<td>TMT-A</td>
<td>72.9 ± 24.8</td>
<td>0.616</td>
<td><0.01**</td>
</tr>
<tr>
<td>TMT-B</td>
<td>115.4 ± 49.7</td>
<td>0.537</td>
<td><0.01**</td>
</tr>
<tr>
<td>VFT</td>
<td>13.7 ± 4.7</td>
<td>–0.244</td>
<td>0.098</td>
</tr>
<tr>
<td>Dual-task</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DT(MT) walking</td>
<td>7.9 ± 2.1</td>
<td>0.534</td>
<td><0.01**</td>
</tr>
<tr>
<td>DT(CT) walking</td>
<td>8.9 ± 3.1</td>
<td>0.420</td>
<td><0.01**</td>
</tr>
</tbody>
</table>

*P < 0.05, significant difference; **P < 0.01, highly significant difference.

5-CS, five-chair stand test; 10-m MAX = 10-m maximal walking time; DT(CT) walking, 10-m walk under a cognitive-task condition; DT(MT) walking, 10-m walk under a manual-task condition; FR, functional reach; OLS, one-leg standings; RDST, Rapid Dementia Screening Test; ST walking, 10-m walking time under standard conditions; TMT, trail-making test; TUG, timed up-and-go test; VFT, verbal fluency test.

Discussion

This study has two main components. First, the purpose of the new device is to evaluate DT ability, comprising a cognitive task and a locomotive task. It is difficult to quantify locomotive skill. In general, locomotive function is evaluated using devices to capture motion and measure ground reaction forces and triaxial acceleration. The next task was to combine quantifications of locomotive and cognitive skills. We required a motion-capture device capable of accurately capturing full-body motions. Kinect is an innovative motion-capture device, and its software development kit enabled us to capture a user’s motions while the user performed a cognitive task in real time. We designed the DTTC to mimic Tai Chi Chuan movements (a motor task) and to include Sudoku number place problems (a cognitive task). It is difficult to fill the boxes by full-body motions while balancing, let alone while solving Sudoku. Because the degree of difficulty of the locomotive, cognitive, and dual tasks was moderate, we were able to obtain results. The strong correlation between DTTC time and the practical assessment of DT suggests that the DTTC is a useful device for assessing DT ability. A great advantage of Kinect is that there is no need to use controllers or markers. Therefore, movement is not restricted, and the exercise is quite exciting. Kinect holds promise not only for promoting health but also for rehabilitation of older adults.

Second, Kinect is a promising augmented-reality game system. This technology opens up new possibilities. For instance, it has been used to train surgeons by providing three-dimensional information, and now it is being used for rehabilitation. Commercial augmented-reality game “Wii Fit” (Nintendo) software has already been used for rehabilitation. Adaptability to acute environmental change is a major health issue for elderly Japanese individuals, as it involves locomotive and cognitive function. Some individuals may isolate themselves, withdrawing from social activity, because they cannot adapt to environmental changes. They confuse real and virtual space. Augmented-reality technology will continue to develop and mix real and virtual space for our amusement or to make our daily life easier, but this could be chaotic for some elderly people. We hope that new augmented-reality devices like the DTTC will be used to help elderly people improve physical function and adaptability and will motivate them to remain socially active.

The current study has several limitations. First, the number of participants was small, and physical ability varied greatly according to age and according to the individual. Second, this...
study showed the accuracy of the DTTC test as an assessment of DT ability. The main purpose of this system is to assess fall risk. A large cross-sectional or longitudinal study is required to evaluate the reliability and effectiveness of the DTTC test. Moreover, an intervention study is required to determine the usefulness of DTTC for preventing falls. DTTC may be a promising game system for promoting health.

Acknowledgments

The authors thank the participants and thank our department for helpful advice.

Author Disclosure Statement

No competing financial interests exist.

References

Address correspondence to:
Hiroki Kayama, PT
Department of Physical Therapy
Human Health Sciences
Graduate School of Medicine
Kyoto University
53, Kawahara-cho, Shogoin, Sakyo-ku
Kyoto 606-8507, Japan

E-mail: kayama.hiroki.37r@st.kyoto-u.ac.jp
AUTHOR QUERY FOR G4H-2012-0019-VER9-KAYAMA 1P

AU1: Provide academic degree for this co-author.
AU2: Addition ok for 10-m MAX definition? All other terms are defined below.
AU3: Update with volume and pages, or give doi assigned by publisher.
AU4: Differences as meant?
AU5: Differences as meant?