- 1 Successful erlotinib rechallenge for leptomeningeal metastases of lung
- 2 adenocarcinoma after erlotinib-induced interstitial lung disease. A case report and
- 3 review of the literature
- 4

#### 5 Authors:

- 6 Yosuke Togashi \*, Katsuhiro Masago, Yasuhiro Hamatani, Yuichi Sakamori, Hiroki
- 7 Nagai, Young Hak Kim, Michiaki Mishima
- 8 Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University,
- 9 54 Shogoin-Kawaharacho, Sakyo-ku, Kyoto 606-8507 Japan
- 10
- 11 Grant support: none
- 12

#### 13 \* Corresponding author:

- 14 Yosuke Togashi, M.D.
- 15 Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University,
- 16 54 Shogoin-Kawaharacho, Sakyo-ku, Kyoto 606-8507 Japan.
- 17 Tel: +81-75-751-3830; Fax: +81-75-751-4643

18 E-mail: <u>ytogashi@kuhp.kyoto-u.ac.jp</u>

### 20 Abstract

| 21 | The most serious adverse reaction associated with treatment with epidermal growth        |
|----|------------------------------------------------------------------------------------------|
| 22 | factor receptor-tyrosine kinase inhibitors (EGFR-TKIs) is drug-induced interstitial lung |
| 23 | disease (ILD). Because EGFR-TKIs are key drugs for patients with non-small cell lung     |
| 24 | cancer who have somatic activating mutations of the epidermal growth factor receptor     |
| 25 | gene (EGFR mutations), several cases of retreatment with EGFR-TKIs after ILD             |
| 26 | induced by these drugs have been reported. Here, we present a 68-year-old man with       |
| 27 | lung adenocarcinoma and leptomeningeal metastases having an EGFR mutation who            |
| 28 | was retreated with erlotinib after erlotinib-induced ILD. He suffered no ILD recurrence  |
| 29 | and his leptomeningeal metastases dramatically improved. In addition to the present      |
| 30 | case, reports of nine patients who were retreated with EGFR-TKIs after ILD were          |
| 31 | found in the literature. Only one patient had recurrence of ILD (although seven were     |
| 32 | retreated at a reduced dose of EGFR-TKIs, including the patient with recurrence). In     |
| 33 | contrast, three patients had no recurrence of ILD even without dose-reduction. These     |
| 34 | reports suggest that dose-reduction plays a limited role in preventing recurrence. Many  |
| 35 | patients received corticosteroids during retreatment, but not the one with recurrence of |
| 36 | ILD. This may suggest that corticosteroids can prevent recurrence due to their           |

- antiinflammatory properties.
- 38
- 39 Key words: epidermal growth factor receptor tyrosine kinase inhibitor, gefitinib,
- 40 erlotinib, interstitial lung disease, rechallenge, epidermal growth factor receptor gene
- 41 mutation, leptomeningeal metastases
- 42

## 43 **1. Introduction**

| 45 | Because patients with non-small cell lung cancer (NSCLC) who have somatic                 |
|----|-------------------------------------------------------------------------------------------|
| 46 | activating mutations of the epidermal growth factor receptor (EGFR) gene (EGFR            |
| 47 | mutations) generally respond to EGFR-tyrosine kinase inhibitors (EGFR-TKIs;               |
| 48 | gefitinib or erlotinib) and can achieve long-term progression-free survival, the presence |
| 49 | of EGFR mutations is a very useful marker for facilitating the choice of treatment for    |
| 50 | NSCLC [1-7]. Although systemic chemotherapy for leptomeningeal metastasis (LM)            |
| 51 | has been thought to play a limited role because of the belief that the brain is a         |
| 52 | pharmacologic sanctuary site, several studies have documented the effectiveness of        |
| 53 | EGFR-TKIs in the treatment of LM of NSCLC with EGFR mutations [8-10].                     |
| 54 | The most common adverse events associated with treatment with EGFR-TKIs are               |
| 55 | rash and diarrhea [11, 12]. Although not too frequent, the most serious adverse reaction  |
| 56 | is drug-induced interstitial lung disease (ILD) [13-16]. Because EGFR-TKIs are key        |
| 57 | drugs for patients with NSCLC having EGFR mutations, several cases of drug                |
| 58 | rechallenge after ILD induced by EGFR-TKIs have been reported. Here, we present a         |
| 59 | case report of a 68-year-old man with lung adenocarcinoma and LM having an EGFR           |

| 60 | mutation who received erlotinib retreatment after erlotinib-induced ILD. No evidence |
|----|--------------------------------------------------------------------------------------|
| 61 | of ILD recurrence was seen, and his LM dramatically improved. We also review the     |
| 62 | relevant published literature in this topic.                                         |
| 63 |                                                                                      |
| 64 | 2. Case presentation                                                                 |
| 65 |                                                                                      |
| 66 | A 68-year-old Japanese man with a 40 pack-year history of smoking was diagnosed      |
| 67 | with stage IV lung adenocarcinoma (bone metastases). After one cycle of carboplatin- |
| 68 | plus pemetrexed as first-line cytotoxic chemotherapy, he suffered fatigue and        |
| 69 | electrolyte abnormality (both grade 3) as complications and elected to discontinue   |
| 70 | these drugs chemotherapy. EGFR mutational analysis revealed an exon 20 point         |
| 71 | mutation (L858R), and he therefore started erlotinib at 150 mg daily. Although he    |
| 72 | achieved a partial response (Fig 1A and 1B), he had cough and dyspnea on effort 8    |
| 73 | weeks after initiation of erlotinib therapy. Chest computed tomography (CT) showed   |
| 74 | bilateral air space consolidations (Fig. 1C). Bronchoalveolar lavage (BAL) fluid     |
| 75 | contained no malignant cells and no pulmonary pathogens including bacteria, fungi,   |
| 76 | and Pneumocystis were identified. The fraction of lymphocytes in BAL fluid was       |

| 77 | increased to 60%. Therefore, erlotinib-induced ILD (organized pneumonia [OP]            |
|----|-----------------------------------------------------------------------------------------|
| 78 | pattern) was strongly suspected. Erlotinib was discontinued and 30 mg daily             |
| 79 | prednisolone (PSL) was initiated. Symptoms and bilateral consolidations in the CT       |
| 80 | improved, and PSL was gradually tapered to 5 mg (Fig. 1D).                              |
| 81 | After cessation of erlotinib, he had received no treatment for 6 months because his-    |
| 82 | lung cancer did not progress and he refused any further treatment. However; after 6     |
| 83 | months without treatment, he had headache and impaired consciousness, and his           |
| 84 | Eastern Cooperative Oncology Group performance status (ECOG PS) deteriorated to 2.      |
| 85 | Cerebrospinal fluid (CSF) testing revealed the presence of malignant cells and he was   |
| 86 | diagnosed with LM. He refused any cytotoxic chemotherapy; instead administration of     |
| 87 | 250 mg daily gefitinib and 4 mg daily betamethasone in addition to whole brain          |
| 88 | radiotherapy was initiated. His symptoms and CSF test, however, worsened, and his       |
| 89 | ECOG PS deteriorated to 4. The patient requested erlotinib retreatment despite the risk |
| 90 | of ILD, so we initiated administration of 150 mg daily erlotinib together with 4 mg     |
| 91 | betamethasone. Soon after initiation of erlotinib, his symptoms dramatically improved   |
| 92 | and ECOG PS improved to 1. Both his CSF test and brain magnetic resonance imaging       |
| 93 | also improved (Fig. 2). His LM has not worsened for 8 months of erlotinib rechallenge.  |

 $\overline{7}$ 

94 During the period, betamethasone was gradually tapered to zero and ILD recurrence

has not been observed.

96

## 97 **3.** Literature review

| 99  | In addition to the present case, a literature search identified a total of nine cases who |
|-----|-------------------------------------------------------------------------------------------|
| 100 | received EGFR-TKI retreatment after ILD induced by these drugs (Table 1) [17-24].         |
| 101 | Three received gefitinib after gefitinib-induced ILD [17, 18, 24], 5 were treated with    |
| 102 | erlotinib after gefitinib-induced ILD [19-22], and the remaining one (two including the   |
| 103 | present case) received erlotinib after erlotinib-induced ILD [23]. Two patients were      |
| 104 | Asians and the other reports were also from Asia, but the ethnicity of the patients was   |
| 105 | not stated. Six patients were never-smokers and mMany had severe ILD as revealed by       |
| 106 | bilateral diffuse ground glass opacities (GGO) on CT. ILD of all patients went into       |
| 107 | remission on cessation of EGFR-TKIs and initiation of corticosteroid therapy. Two         |
| 108 | patients (cases 2 and 10 in Table 1) could not be given any chemotherapy other than       |
| 109 | EGFR-TKIs due to their poor PS. Although the others were fit enough to receive            |
| 110 | chemotherapy, they requested EGFR-TKIs again instead. During the EGFR-TKI                 |

| 111 | rechallenge, only case 3 suffered recurrence of ILD. Seven patients were retreated with |
|-----|-----------------------------------------------------------------------------------------|
| 112 | a lower dose of EGFR-TKIs including case 3 who nonetheless recurred. In contrast,       |
| 113 | cases 5, 6, and 10 had no recurrence in spite of receiving 150 mg daily erlotinib. Many |
| 114 | patients were given corticosteroids during EGFR-TKI rechallenge, but not case 3.        |
| 115 | However; case 2 also received no corticosteroids but did not recur.                     |
| 116 |                                                                                         |
| 117 | 4. Discussion                                                                           |
| 118 |                                                                                         |
| 119 | In this article, we presented a case of successful erlotinib rechallenge for LM after   |
| 120 | erlotinib-induced ILD and have summarized previous similar reports (Table 1).           |
| 121 | Although nine of these ten cases successfully rechallenged with EGFR-TKIs without       |
| 122 | the recurrence of ILD, most of the cases that do suffer recurrence might simply not be  |
| 123 | reported. Therefore, the risk of ILD should be considered whenever reinitiating         |
| 124 | EGFR-TKI treatment after ILD induced by these drugs. Eight of these ten cases could     |
| 125 | have received other chemotherapies, but the patients requested EGFR-TKI therapy         |
| 126 | again despite their awareness of the risk of ILD. This was permissible because the      |
| 127 | efficacy of EGFR-TKIs was predicted from EGFR mutations or previous tumor               |

| 128 | response. Our case (case 10 in Table 1) was not eligible for other chemotherapy due to   |
|-----|------------------------------------------------------------------------------------------|
| 129 | his poor PS, and the treatment of choice remained erlotinib or best supportive care.     |
| 130 | Several cases in which LM resistant to gefitinib were improved by erlotinib due to its   |
| 131 | higher CSF concentration have been reported [25-27] and ILD with an OP pattern on        |
| 132 | CT seems to be associated with good prognosis [28]. Therefore, we used 150 mg daily      |
| 133 | erlotinib because of its expected clinical benefit and efficacy despite the risk of ILD. |
| 134 | Seven patients were retreated with lower doses of EGFR-TKIs. Three received a            |
| 135 | lower dose of erlotinib after gefitinib-induced ILD. However, the area under the curve   |
| 136 | (AUC) of serum concentration of erlotinib at the approved dose (150 mg daily) is 7       |
| 137 | times larger than gefitiinib at the approved dose (250 mg daily) [29]. Therefore, in     |
| 138 | spite of dose-reduction, higher AUC could be achieved by erlotinib than gefitinib in     |
| 139 | these patients. In addition, case 3 had recurrence of ILD despite dose-reduction, and    |
| 140 | three cases (cases 4, 5, and 10) had no recurrence of ILD although they received 150     |
| 141 | mg daily erlotinib. From these findings, we speculate that blockade of the EGFR          |
| 142 | signaling pathway by EGFR-TKIs is not necessarily associated with the occurence of       |
| 143 | ILD and that EGFR-TKI dose-reduction plays only a limited role in preventing             |
| 144 | recurrence.                                                                              |

| 145 | Dallas et al. have reported a similar case of successful erlotinib rechallenge after      |
|-----|-------------------------------------------------------------------------------------------|
| 146 | erlotinib-induced ILD (case 9). As with the case reported here, that patient had also     |
| 147 | received erlotinib retreatment together with corticosteroid after erlotinib-induced ILD.  |
| 148 | Many cases were also given corticosteroids together with the EGFR-TKIs, resulting in      |
| 149 | clinical benefit. In contrast, case 3 had recurrence of ILD without administration of     |
| 150 | corticosteroid. This is consistent with the general use of corticosteroids for treating   |
| 151 | drug-induced ILD [30, 31]. Thus, corticosteroid can prevent the recurrence of ILD,        |
| 152 | probably because of its antiinflammatory action.                                          |
| 153 | Six patients were never-smokers and CT finding of many patients revealed bilateral        |
| 154 | diffuse GGO. We can predict the recurrence of ILD from these factors. In fact, a          |
| 155 | previous report has shown that smoking status is one of the risk factors for ILD [14]. In |
| 156 | contrast, another report has shown that the incidence of the bilateral GGO pattern on     |
| 157 | CT was relatively high and that such patients have high mortality rate [28]. Therefore,   |
| 158 | great caution is required when undertaking rechallenge in these patients.                 |
| 159 | The mechanism responsible for ILD induced by EGFR-TKIs remains unclear and                |
| 160 | several instances of successful EGFR-TKI rechallenge after ILD have been reported, as     |
| 161 | described above. EGFR-TKIs are key drugs for patients with NSCLC having EGFR              |

| 162 | mutations. Therefore, rechallenge after ILD should be undertaken considering the        |
|-----|-----------------------------------------------------------------------------------------|
| 163 | balance between risk and benefit. This present case had an EGFR mutation and was not    |
| 164 | eligible for other chemotherapy due to his poor PS. Therefore, the treatment of choice  |
| 165 | remained erlotinib or best supportive care. Although he recognized the risk of ILD, he  |
| 166 | requested erlotinib retreatment, and this was successful. From these findings, we       |
| 167 | suggest 3 criteria before deciding on EGFR-TKI rechallenge after ILD; a) The patient    |
| 168 | has an EGFR mutation. b) Few other treatment options except EGFR-TKI remain. c)         |
| 169 | The patient recognizes the risk of ILD and makes an informed decision to go ahead       |
| 170 | with the rechallenge. In order to assess the safety and the risk of this approach, more |
| 171 | similar cases including other ethnicities need to be accumulated and, if ethically      |
| 172 | possible, prospective studies in patients who meet these criteria should be             |
| 173 | performedare required.                                                                  |
| 174 |                                                                                         |

# **Conflict of interest statement**

### 177 None declared.

# **References**

| 180 | 1. | Paez JG, Janne PA, Lee JC, Tracy S, Greulich H, Gabriel S, Herman P, Kaye      |
|-----|----|--------------------------------------------------------------------------------|
| 181 |    | FJ, Lindeman N, Boggon TJ, Naoki K, Sasaki H, Fujii Y, Eck MJ, Sellers WR,     |
| 182 |    | Johnson BE, Meyerson M. EGFR mutations in lung cancer: correlation with        |
| 183 |    | clinical response to gefitinib therapy. Science 2004; 304: 1497-1500.          |
| 184 | 2. | Lynch TJ, Bell DW, Sordella R, Gurubhagavatula S, Okimoto RA, Brannigan        |
| 185 |    | BW, Harris PL, Haserlat SM, Supko JG, Haluska FG, Louis DN, Christiani DC,     |
| 186 |    | Settleman J, Haber DA. Activating mutations in the epidermal growth factor     |
| 187 |    | receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. |
| 188 |    | N Engl J Med 2004; 350: 2129-2139.                                             |
| 189 | 3. | Mok TS, Wu YL, Thongprasert S, Yang CH, Chu DT, Saijo N, Sunpaweravong         |
| 190 |    | P, Han B, Margono B, Ichinose Y, Nishiwaki Y, Ohe Y, Yang JJ,                  |
| 191 |    | Chewaskulyong B, Jiang H, Duffield EL, Watkins CL, Armour AA, Fukuoka          |
| 192 |    | M. Gefitinib or carboplatin-paclitaxel in pulmonary adenocarcinoma. N Engl J   |
| 193 |    | Med 2009; 361: 947-957.                                                        |
| 194 | 4. | Fukuoka M, Wu YL, Thongprasert S, Sunpaweravong P, Leong SS,                   |

| 195 |    | Sriuranpong V, Chao TY, Nakagawa K, Chu DT, Saijo N, Duffield EL,           |
|-----|----|-----------------------------------------------------------------------------|
| 196 |    | Rukazenkov Y, Speake G, Jiang H, Armour AA, To KF, Yang JC, Mok TS.         |
| 197 |    | Biomarker analyses and final overall survival results from a phase III,     |
| 198 |    | randomized, open-label, first-line study of gefitinib versus                |
| 199 |    | carboplatin/paclitaxel in clinically selected patients with advanced        |
| 200 |    | non-small-cell lung cancer in Asia (IPASS). J Clin Oncol 2011; 29:          |
| 201 |    | 2866-2874.                                                                  |
| 202 | 5. | Mitsudomi T, Morita S, Yatabe Y, Negoro S, Okamoto I, Tsurutani J, Seto T,  |
| 203 |    | Satouchi M, Tada H, Hirashima T, Asami K, Katakami N, Takada M, Yoshioka    |
| 204 |    | H, Shibata K, Kudoh S, Shimizu E, Saito H, Toyooka S, Nakagawa K,           |
| 205 |    | Fukuoka M, West Japan Oncology G. Gefitinib versus cisplatin plus docetaxel |
| 206 |    | in patients with non-small-cell lung cancer harbouring mutations of the     |
| 207 |    | epidermal growth factor receptor (WJTOG3405): an open label, randomised     |
| 208 |    | phase 3 trial. Lancet Oncol 2010; 11: 121-128.                              |
| 209 | 6. | Maemondo M, Inoue A, Kobayashi K, Sugawara S, Oizumi S, Isobe H,            |
| 210 |    | Gemma A, Harada M, Yoshizawa H, Kinoshita I, Fujita Y, Okinaga S, Hirano    |
| 211 |    | H, Yoshimori K, Harada T, Ogura T, Ando M, Miyazawa H, Tanaka T, Saijo Y,   |

| 212 |     | Hagiwara K, Morita S, Nukiwa T, North-East Japan Study G. Gefitinib or        |
|-----|-----|-------------------------------------------------------------------------------|
| 213 |     | chemotherapy for non-small-cell lung cancer with mutated EGFR. N Engl J       |
| 214 |     | Med 2010; 362: 2380-2388.                                                     |
| 215 | 7.  | Zhou C, Wu YL, Chen G, Feng J, Liu XQ, Wang C, Zhang S, Wang J, Zhou S,       |
| 216 |     | Ren S, Lu S, Zhang L, Hu C, Luo Y, Chen L, Ye M, Huang J, Zhi X, Zhang Y,     |
| 217 |     | Xiu Q, Ma J, You C. Erlotinib versus chemotherapy as first-line treatment for |
| 218 |     | patients with advanced EGFR mutation-positive non-small-cell lung cancer      |
| 219 |     | (OPTIMAL, CTONG-0802): a multicentre, open-label, randomised, phase 3         |
| 220 |     | study. Lancet Oncol 2011; 12: 735-742.                                        |
| 221 | 8.  | Gleissner B, Chamberlain MC. Neoplastic meningitis. Lancet Neurol 2006; 5:    |
| 222 |     | 443-452.                                                                      |
| 223 | 9.  | Lombardi G, Zustovich F, Farina P, Della Puppa A, Manara R, Cecchin D,        |
| 224 |     | Brunello A, Cappetta A, Zagonel V. Neoplastic meningitis from solid tumors:   |
| 225 |     | new diagnostic and therapeutic approaches. Oncologist 2011; 16: 1175-1188.    |
| 226 | 10. | Yi HG, Kim HJ, Kim YJ, Han SW, Oh DY, Lee SH, Kim DW, Im SA, Kim TY,          |
| 227 |     | Kim CS, Heo DS, Bang YJ. Epidermal growth factor receptor (EGFR)              |
| 228 |     | tyrosine kinase inhibitors (TKIs) are effective for leptomeningeal metastasis |

| 229 |     | from non-small cell lung cancer patients with sensitive EGFR mutation or       |
|-----|-----|--------------------------------------------------------------------------------|
| 230 |     | other predictive factors of good response for EGFR TKI. Lung Cancer 2009;      |
| 231 |     | 65: 80-84.                                                                     |
| 232 | 11. | Cohen MH, Williams GA, Sridhara R, Chen G, Pazdur R. FDA drug approval         |
| 233 |     | summary: gefitinib (ZD1839) (Iressa) tablets. Oncologist 2003; 8: 303-306.     |
| 234 | 12. | Cohen MH, Johnson JR, Chen YF, Sridhara R, Pazdur R. FDA drug approval         |
| 235 |     | summary: erlotinib (Tarceva) tablets. Oncologist 2005; 10: 461-466.            |
| 236 | 13. | Inoue A, Saijo Y, Maemondo M, Gomi K, Tokue Y, Kimura Y, Ebina M,              |
| 237 |     | Kikuchi T, Moriya T, Nukiwa T. Severe acute interstitial pneumonia and         |
| 238 |     | gefitinib. Lancet 2003; 361: 137-139.                                          |
| 239 | 14. | Kudoh S, Kato H, Nishiwaki Y, Fukuoka M, Nakata K, Ichinose Y, Tsuboi M,       |
| 240 |     | Yokota S, Nakagawa K, Suga M, Japan Thoracic Radiology G, Jiang H, Itoh Y,     |
| 241 |     | Armour A, Watkins C, Higenbottam T, Nyberg F. Interstitial lung disease in     |
| 242 |     | Japanese patients with lung cancer: a cohort and nested case-control study. Am |
| 243 |     | J Respir Crit Care Med 2008; 177: 1348-1357.                                   |
| 244 | 15. | Hotta K, Kiura K, Takigawa N, Yoshioka H, Harita S, Kuyama S, Yonei T,         |
| 245 |     | Fujiwara K, Maeda T, Aoe K, Ueoka H, Kamei H, Umemura S, Moritaka T,           |

| 246 |     | Segawa Y, Kawai H, Bessho A, Kato K, Tabata M, Tanimoto M. Comparison          |
|-----|-----|--------------------------------------------------------------------------------|
| 247 |     | of the incidence and pattern of interstitial lung disease during erlotinib and |
| 248 |     | gefitinib treatment in Japanese Patients with non-small cell lung cancer: the  |
| 249 |     | Okayama Lung Cancer Study Group experience. In: J Thorac Oncol. United         |
| 250 |     | States, 2010: 179-184.                                                         |
| 251 | 16. | Ter Heine R, van den Bosch RT, Schaefer-Prokop CM, Lankheet NA, Beijnen        |
| 252 |     | JH, Staaks GH, van der Westerlaken MM, Malingre MM, van den Brand JJ.          |
| 253 |     | Fatal interstitial lung disease associated with high erlotinib and metabolite  |
| 254 |     | levels. A case report and a review of the literature. In: Lung Cancer: 2011    |
| 255 |     | Elsevier Ireland Ltd, 2011.                                                    |
| 256 | 17. | Takamochi K, Suzuki K, Bashar AH, Yajima K, Mochizuki T, Itaya T, Funai K.     |
| 257 |     | Readministration of gefitinib in a responder after treatment discontinuation   |
| 258 |     | due to gefinitib-related interstitial lung disease: a case report. J Med Case  |
| 259 |     | Reports 2007; 1: 138.                                                          |
| 260 | 18. | Suzuki M, Asahina H, Konishi J, Yamazaki K, Nishimura M. Recurrent             |
| 261 |     | gefitinib-induced interstitial lung disease. In: Intern Med. Japan, 2008:      |
| 262 |     | 533-536.                                                                       |

| 263 | 19. | Fukui T, Otani S, Hataishi R, Jiang SX, Nishii Y, Igawa S, Mitsufuji H, Kubota     |
|-----|-----|------------------------------------------------------------------------------------|
| 264 |     | M, Katagiri M, Masuda N. Successful rechallenge with erlotinib in a patient        |
| 265 |     | with EGFR-mutant lung adenocarcinoma who developed gefitinib-related               |
| 266 |     | interstitial lung disease. Cancer Chemother Pharmacol 2010; 65: 803-806.           |
| 267 | 20. | Chang SC, Chang CY, Chen CY, Yu CJ. Successful erlotinib rechallenge after         |
| 268 |     | gefitinib-induced acute interstitial pneumonia. In: J Thorac Oncol. United         |
| 269 |     | States, 2010: 1105-1106.                                                           |
| 270 | 21. | Takeda M, Okamoto I, Makimura C, Fukuoka M, Nakagawa K. Successful                 |
| 271 |     | treatment with erlotinib after gefitinib-induced severe interstitial lung disease. |
| 272 |     | In: J Thorac Oncol. United States, 2010: 1103-1104.                                |
| 273 | 22. | Tian Q, Chen LA. Erlotinib achieved partial response in a non-small cell lung      |
| 274 |     | cancer patient with gefitinib-induced interstitial lung disease. Case Rep Oncol    |
| 275 |     | 2011; 4: 464-466.                                                                  |
| 276 | 23. | Dallas JL, Jantz MA, Lightsey JL, Sonntag C, Kaye FJ. Successful erlotinib         |
| 277 |     | rechallenge after erlotinib-induced interstitial lung disease. In: J Thorac Oncol. |
| 278 |     | United States, 2011: 1142-1143.                                                    |
| 279 | 24. | Yano S, Nakataki E, Ohtsuka S, Inayama M, Tomimoto H, Edakuni N,                   |

| 280 |     | Kakiuchi S, Nishikubo N, Muguruma H, Sone S. Retreatment of lung                  |
|-----|-----|-----------------------------------------------------------------------------------|
| 281 |     | adenocarcinoma patients with gefitinib who had experienced favorable results      |
| 282 |     | from their initial treatment with this selective epidermal growth factor receptor |
| 283 |     | inhibitor: a report of three cases. Oncol Res 2005; 15: 107-111.                  |
| 284 | 25. | Katayama T, Shimizu J, Suda K, Onozato R, Fukui T, Ito S, Hatooka S, Sueda        |
| 285 |     | T, Hida T, Yatabe Y, Mitsudomi T. Efficacy of erlotinib for brain and             |
| 286 |     | leptomeningeal metastases in patients with lung adenocarcinoma who showed         |
| 287 |     | initial good response to gefitinib. J Thorac Oncol 2009; 4: 1415-1419.            |
| 288 | 26. | Masuda T, Hattori N, Hamada A, Iwamoto H, Ohshimo S, Kanehara M,                  |
| 289 |     | Ishikawa N, Fujitaka K, Haruta Y, Murai H, Kohno N. Erlotinib efficacy and        |
| 290 |     | cerebrospinal fluid concentration in patients with lung adenocarcinoma            |
| 291 |     | developing leptomeningeal metastases during gefitinib therapy. Cancer             |
| 292 |     | Chemother Pharmacol 2011; 67: 1465-1469.                                          |
| 293 | 27. | Tetsumoto S, Osa A, Kijima T, Minami T, Hirata H, Takahashi R, Kuhara H,          |
| 294 |     | Nagatomo I, Takeda Y, Kida H, Goya S, Tachibana I, Kawase I. Two cases of         |
| 295 |     | leptomeningeal metastases from lung adenocarcinoma which progressed               |
| 296 |     | during gefitinib therapy but responded to erlotinib. Int J Clin Oncol 2011.       |

| 297 | 28. | Endo M, Johkoh T, Kimura K, Yamamoto N. Imaging of gefitinib-related            |
|-----|-----|---------------------------------------------------------------------------------|
| 298 |     | interstitial lung disease: multi-institutional analysis by the West Japan       |
| 299 |     | Thoracic Oncology Group. Lung Cancer 2006; 52: 135-140.                         |
| 300 | 29. | Mitsudomi T. Erlotinib, gefitinib, or chemotherapy for EGFR                     |
| 301 |     | mutation-positive lung cancer? Lancet Oncol 2011; 12: 710-711.                  |
| 302 | 30. | Tsuboi M, Le Chevalier T. Interstitial lung disease in patients with            |
| 303 |     | non-small-cell lung cancer treated with epidermal growth factor receptor        |
| 304 |     | inhibitors. Med Oncol 2006; 23: 161-170.                                        |
| 305 | 31. | Kuo LC, Lin PC, Wang KF, Yuan MK, Chang SC. Successful treatment of             |
| 306 |     | gefitinib-induced acute interstitial pneumonitis with high-dose corticosteroid: |
| 307 |     | a case report and literature review. Med Oncol 2011; 28: 79-82.                 |
| 308 |     |                                                                                 |
| 309 |     |                                                                                 |

# 310 Figure Legends

| 312 | Figure 1. Chest computed tomography (CT) in a 68-year-old man. A: CT scan before           |
|-----|--------------------------------------------------------------------------------------------|
| 313 | erlotinib treatment showing a mass in the left upper lobe. B, C: CT scan 10 weeks after    |
| 314 | initiation of erlotinib treatment showing a decreased mass (B), but visible bilateral air  |
| 315 | space consolidations (C). D: Eight weeks after cessation of erlotinib and initiation of    |
| 316 | corticosteroid, showing improvement of the bilateral air space consolidations.             |
| 317 |                                                                                            |
| 318 | Figure 2. Brain magnetic resonance imaging (MRI). A: Contrast                              |
| 319 | (gadolinium)-enhanced T1-weighted MRI during gefitinib treatment before erlotinib          |
| 320 | rechallenge, revealing leptomeningeal metastases (arrowheads). Patient performance         |
| 321 | status (PS) had deteriorated to 4. B: Two weeks after the initiation of erlotinib, showing |
| 322 | improvement of the leptomeningeal metastases. PS also improved to 1.                       |

| Case | Age<br>(yr) | Sex | Ethnicity <sup>4</sup> | <sup>1</sup> Histology | EGFR<br>status    | Smoking<br>status | Onset of<br>ILD | Cause of ILD<br>(dose)                  | CT of ILD                      | Respiratory condition <sup>d</sup> | Treatment for<br>ILD         |
|------|-------------|-----|------------------------|------------------------|-------------------|-------------------|-----------------|-----------------------------------------|--------------------------------|------------------------------------|------------------------------|
| 1    | 62          | F   | NA                     | Ad                     | NA                | Never             | 13 months       | Gefitinib<br>(125 mg/day <sup>b</sup> ) | NA <sup>c</sup>                | NA                                 | Cessation and corticosteroid |
| 2    | 56          | Μ   | NA                     | Ad                     | Exon 21;<br>L858R | 15 pack-year      | 45 days         | Gefitinib<br>(250 mg/day)               | Diffuse GGO                    | Severe                             | Cessation and corticosteroid |
| 3    | 59          | Μ   | NA                     | Ad                     | Wild type         | 60 pack-year      | 23 days         | Gefitinib<br>(250 mg/day)               | Diffuse GGO                    | PaO <sub>2</sub> , 46.9<br>mmHg    | Cessation and corticosteroid |
| 4    | 28          | F   | NA                     | Ad                     | Exon 19 deletion  | Never             | 28 days         | Gefitinib<br>(250 mg/day)               | Diffuse GGO                    | Need nasal<br>oxygen               | Cessation and corticosteroid |
| 5    | 62          | М   | NA                     | Ad                     | Exon 19 deletion  | 18 pack-year      | 24 days         | Gefitinib<br>(250 mg/day)               | Diffuse GGO                    | Severe                             | Cessation and corticosteroid |
| 6    | 62          | М   | NA                     | Ad                     | NA                | Never             | 6 weeks         | Gefitinib<br>(250 mg/day)               | Diffuse GGO                    | Oxygen saturation, 84%             | Cessation and corticosteroid |
| 7    | 77          | F   | NA                     | Ad                     | NA                | Never             | 7 weeks         | Gefitinib<br>(250 mg/day)               | Diffuse GGO                    | Oxygen saturation, 93%             | Cessation and corticosteroid |
| 8    | 41          | F   | NA                     | Ad                     | NE                | Never             | 20 days         | Gefitinib<br>(250 mg/day)               | Patchy air space consolidation | PaO <sub>2</sub> <45<br>mmHg       | Cessation and corticosteroid |
| 9    | 77          | F   | Asian                  | Ad                     | Exon 19 deletion  | Never             | 5 weeks         | Erlotinib<br>(150 mg/day)               | Diffuse GGO                    | Oxygen<br>saturation, 92%          | Cessation and corticosteroid |
| 10   | 68          | М   | Asian                  | Ad                     | Exon 21;<br>L858R | 40 pack-year      | 8 weeks         | Erlotinib<br>(150 mg/day)               | OP pattern                     | PaO <sub>2</sub> , 78.6<br>mmHg    | Cessation and corticosteroid |

F, female; M, male; *EGFR*, epidermal growth factor receptor gene; ILD, interstitial lung disease; CT, computed tomography; GGO, ground glass opacity; OP, organized pneumonia; PaO<sub>2</sub>, arterial oxygen pressure; NA, not available; NE, not evaluated.

<sup>a</sup> The ethnicity of eight cases was not available, but all reports were from Asia.

<sup>b</sup> Gefitinib was administered every other day due to blepharitis.

<sup>c</sup> Case 1 had alveolar hemorrhage.

<sup>d</sup> There was no description of actual PaO<sub>2</sub> or oxygen saturation in Cases 2, 4 and 5. But Cases 2 and 5 had severe ILD and Case 4 needed nasal oxygen supplementation (1 L/minute). Case 9 was supported by mechanical ventilation.

Table 1. Continued

| Case | ECOG PS<br>(symptoms)                   | Period between<br>EGFR-TKIs | Rechallenge<br>(dose)                     | Corticosteroid during<br>rechallenge | Recurrence<br>of ILD | Response of initial/rechallenge | References   |
|------|-----------------------------------------|-----------------------------|-------------------------------------------|--------------------------------------|----------------------|---------------------------------|--------------|
| 1    | 1                                       | 12 months                   | Gefitinib<br>(125 mg/day <sup>e</sup> )   | NA                                   | No                   | SD/SD                           | [17]         |
| 2    | NA (Severe dyspnea and confined to bed) | 5 months                    | Gefitinib<br>(125 mg/day)                 | No                                   | No                   | PR/PR                           | [18]         |
| 3    | NA<br>(General fatigue)                 | 3 months                    | Gefitinib<br>(Intermittent <sup>f</sup> ) | No                                   | Yes                  | NA                              | [19]         |
| 4    | NA<br>(Dyspnea)                         | 4 months                    | Erlotinib<br>(50 mg/day)                  | $Yes \rightarrow tapered$            | No                   | PR/PR                           | [20]         |
| 5    | NA<br>(Neurological symptoms)           | 3 months                    | Erlotinib<br>(150 mg/day)                 | NA                                   | No                   | NA/PR                           | [21]         |
| 6    | NA                                      | 6 days                      | Erlotinib<br>(150 mg/day)                 | Yes                                  | No                   | PR/PR                           | [22]         |
| 7    | NA                                      | 6 weeks                     | Erlotinib<br>(100 mg/day)                 | Yes                                  | No                   | PR/PR                           | [22]         |
| 8    | NA                                      | NA<br>(about 6 months)      | Erlotinib<br>(75 mg/day)                  | $Yes \rightarrow off$                | No                   | PR/PR                           | [23]         |
| 9    | NA                                      | 10 days                     | Erlotinib<br>(100 mg/day)                 | $Yes \rightarrow off$                | No                   | PR/NA                           | [24]         |
| 10   | 4<br>(Impaired conscious)               | 7 months                    | Erlotinib<br>(150 mg/day)                 | $Yes \rightarrow off$                | No                   | PR/PR                           | Present case |

ECOG PS, Eastern Cooperative Oncology Group Performance Status; EGFR-TKI, epidermal growth factor receptor-tyrosine kinase inhibitor; SD; stable disease; PR, partial response.

<sup>e</sup> Gefitinib was administered every other day.

<sup>f</sup>Gefitinib (250 mg daily) was administered for 7 days followed by 2 weeks rest.



