BIADJOINTNESS IN CYCLOTOMIC
KHOVANOV-LAUDA-ROUQUIER ALGEBRAS

MASAKI KASHIWARA

ABSTRACT. In this paper, we prove that a pair of functors Eé\ and FZA appearing
in the categorification of irreducible highest weight modules of quantum groups via

cyclotomic Khovanov-Lauda-Rouquier algebras is a biadjoint pair.

1. INTRODUCTION

Lascoux-Leclerc-Thibon ([13]) conjectured that the irreducible representations of
Hecke algebras of type A are controlled by the upper global basis ([8, 9]) (or dual
canonical basis ([16]) of the basic representation of the affine quantum group UQQAS))
Then Ariki ([1]) proved this conjecture by generalizing it to cyclotomic affine Hecke
algebras. The crucial ingredient there was the fact that the cyclotomic affine Hecke
algebras categorify the irreducible highest weight representations of U (Aél)). Because
of the lack of grading on the cyclotomic affine Hecke algebras, these algebras do not
categorify the representation of the quantum group.

Then Khovanov-Lauda and Rouquier introduced independently a new family of
graded algebras, a generalization of affine Hecke algebras of type A, in order to cat-
egorify arbitrary quantum groups ([10, 11, 17]). These algebras are called Khovanov-
Lauda-Rouquier algebras or quiver Hecke algebras.

Let U,(g) be the quantum group associated with a symmetrizable Cartan datum
and let {R(B)}seq+ be the corresponding Khovanov-Lauda-Rouquier algebras. Then
it was shown in [10, 11] that there exists an algebra isomorphism

Ux(g) ~ €D K(Proj(R(8))),

geQ+
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where Uj (g) is the integral form of the half U (g) of U,(g) with A = Z[g,¢"'], and
K (Proj(R(ﬁ))) is the Grothendieck group of finitely generated projective graded R([3)-
modules. Moreover, when the generalized Cartan matrix is a symmetric matrix, Varag-
nolo and Vasserot proved that lower global basis introduced by the author or Lusztig’s
canonical basis corresponds to the isomorphism classes of indecomposable projective
R-modules under this isomorphism ([18]).

For each dominant integral weight A € PT, the algebra R(/3) has a special quo-
tient RA(3) which is called the cyclotomic Khovanov-Lauda-Rouquier algebra. In [10],
Khovanov and Lauda conjectured that B gcq+ K (Proj(R*(6))) has a Ua(g)-module

structure and that there exists a Ua(g)-module isomorphism

Va(A) ~ €D K (Proj(RY(3))),
peQ™
where Va(A) denotes the Ua (g)-module with highest weight A. After partial results of
Brundan and Stroppel ([4]), Brundan and Kleshchev (]2, 3]) and Lauda and Vazirani
([15]), the conjecture was proved by Seok-Jin Kang and the author for all symmetrizable
Kac-Moody algebras ([7]).
For each i € I, let us consider the restriction functor and the induction functor:
EY: Mod(R*(B + a;)) — Mod(R*(3)),
F*: Mod(RA(3) — Mod(RA(5 + 0y))
defined by
EMNN) =e(8,i)N = e(3,)R™(6 + ;) ®pa(g1a;) N,
FAM) = RYB + a;)e(8,4) ©@pa(s) M,

where M € Mod(R*(3)), N € Mod(R*(3 + ;)). Then these functors categorify the
root operators e; and f; in the quantum groups.

It is obvious that EX is a right adjoint functor of F2.

Khovanov-Lauda ([10, 11, 12, 14]) and Rouquier ([17]) conjectured that E} and F*
are biadjoint to each other. Namely E? is also a left adjoint of F2. Furthermore they
gave candidates of the unit and the counit of this adjunction explicitly from the first
adjunction. In [12], Khovanov-Lauda proved it in the case of sl,,. Rouquier proved that
the candidate of a counit (resp. unit) is the counit (resp. unit) of an adjunction in a
more general framework ([17, Theroem 5.16]). In this paper we prove that these can-
didates are indeed the unit and the counit of an adjunction for an arbitrary cyclotomic

Khovanov-Lauda-Rouquier algebra.
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In order to prove this we use a similar method employed in [7]. Namely we use the
module (3, i?) R(3+2c;)e(B+ai, 1) @r(a+an B (B+a;) in order to study e(3, i2) R (B+
2a;)e( + vy, i). We fully use the fact that this module is a free right module over the
ring k[x, ;2] (Lemma 5.3).

Webster proved similar results in [19, Theorem 1.6] by a totally different method
beyond the author’s comprehension. We also mention that [5] is related to our results.

This paper is organized as follows. In Section 2, we recall the notions of Khovanov-
Lauda-Rouquier algebras. In Section 3, we recall the definition of cyclotomic Khovanov-
Lauda-Rouquier algebras and the results in [7], and then state our main result (Theo-
rem 3.5). In Section 4, we interpret it in terms of the algebras ((4.1), (4.2) and (4.3)),

and we gave their proof in Section 5.

Acknowledgements. We would like to thank Aaron Lauda by explaining his results
with M. Khovanov, and also his recent paper [5] with S. Cautis.

2. THE KHOVANOV-LAUDA-ROUQUIER ALGEBRA

2.1. Cartan data. Let I be a finite index set. An integral square matrix A = (a;;); jer
is called a symmetrizable generalized Cartan matriz if it satisfies (i) a; = 2 (1 € I),
(i) a;; <0 (i # j), (ili) a;;j = 0if aj; = 0 (4,7 € I), (iv) there is a diagonal matrix
D = diag(d; € Z~¢ | i € I) such that DA is symmetric.

A Cartan datum (A, P,TI, PY,I1V) consists of
(1) a symmetrizable generalized Cartan matrix A,
(2) a free abelian group P of finite rank, called the weight lattice,
(3) PY:=Hom(P,Z), called the co-weight lattice,
(4) I = {a; | i € I} C P, called the set of simple roots,
(5) IV ={h; | i € I} C PV, called the set of simple coroots,
satisfying the condition: (h;, ;) = a;; for all i, j € 1.

We denote by

Pt:={\e P|(hi\) € Zsg for all i € I}

the set of dominant integral weights. The free abelian group @ := @ Za; is called the

il
root lattice. Set Qt = >_._; Zsoay. For a =Y ki, € QF, we define the height ht(«)

el
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of a to be ht(a) = > k;. Let h = Q ®z PY. Since A is symmetrizable, there is a

symmetric bilinear form (| ) on h* satisfying
2(cvi| A
(ajlay) = diai; (1,5 € I) and (h, \) = ((a| | )) for any A € h* and 7 € .
Q|

2.2. Definition of Khovanov-Lauda-Rouquier algebra. Let (A, P,II, PY,II") be
a Cartan datum. In this section, we recall the construction of Khovanov-Lauda-
Rouquier algebra associated with (A, P,II, PY,11Y) and its properties. We take as
a base ring a graded commutative ring k = €, ., k, such that k,, = 0 for any n < 0.
Let us take a matrix (Q;;)i jer in klu, v] such that Q;;(u,v) = Qji(v,u) and Q;;(u,v)
has the form

0 if i = 4,
Z tiyj;quupUq le 7é j,

,q>0

(2.1) Qij(u,v) =

where t; ;.50 € K 9(a;]a;)— (ailai)p—(a;]a;)g a0d i j =1t j;—a;;0 € k). In particular, we have
tijipq = 0 if (cilei)p + (oaj)g > —2(au]ay). Note that ;5.4 =150,
We denote by S, = (s1,...,8,-1) the symmetric group on n letters, where s; =

(7,7 + 1) is the transposition. Then S,, acts on I™.

Definition 2.1 ([10, 17]). The Khovanov-Lauda-Rouquier algebra R(n) of degree n
associated with a Cartan datum (A, P,II, PV, IIV) and (Qij)ijer is the associative alge-
bra over k generated by e(v) (v € I™), 1, (1 <k <n), 7 (1 <1< n-—1) satisfying
the following defining relations:

e(v)e(V') = 0, e(v), Z e(v) =1,

veln

TR = mTE, Tre(v) = e(v)wy,
ne(v) = e(siv))n, mn=mnmn if [k =1 >1,
Tie(V) = Queany (T, T Je(v),
—e(v) ifl=k,vp = vgy,
(o1 — Zs,yTi)e(V) = < e(v) ifl=k+1,vp = vy,

0 otherwise,



BIADJOINTNESS IN CYCLOTOMIC KHOVANOV-LAUDA-ROUQUIER ALGEBRAS

(Tht1 Tk Th+1 — ThTh1Tk)€(V)

QVk:Vk+l (xka $k+1) - QVkaVk+1 (xk+2v $k+1) 6(1/)

Zf Vi = Vg+2,
= T — T2

0 otherwise.

Note that R(n) has an anti-involution ¢ that fixes the generators zy, 7, and e(v).

The Z-grading on R(n) is given by
(2.2) dege(v) =0, deg zre(v) = (au,|ay,), deg me(v) = —(ay,|ay,,,).
For a,b,c € {1,...,n}, we define the elements of R(n) by

Cab = Z e(v),

vel™ vo=vy

(2.3) Qap = Z QVa:Vb(xmxb)G(V),

veln

— Lo, Lp) — Tey L
Qavb,c — Z Ql/a,l/b( a b) Qlla,l/b( (3] b) 6(]/) ]f a % c.
vel™, vo=v, Lo — Te
Then we have
ab — Wbha 3 - Qa,a-‘,—lv
Q Q T,

Ta+1TaTa+1 = TaTa+1Ta + Qa,a+1,a+2'

We define the operators 0,5, on €@ k[zy,...,z,]e(v). by

(2.4)

veln
(25) aa,bf = mea,ba aa = aa,a—i—la
LTy — Tp

where s, = (a,b) is the transposition.
Thus we obtain

Ta€b,c = €s4(b),50(c)Tas
Taf - (Saf>7—a = fTa - Ta(saf) = (aaf)ea,aJrl-
For n € Z>( and 8 € Q% such that ht(5) = n, we set

(2.6)

IP={v=(n,...,un)el" o, + - +a, =F}.
We define
e(B) = 2 ers ev),
R(B) = R(n)e(8) = @ R(n)e(v).

velb

(2.7)

5
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The algebra R(() is called the Khovanov-Lauda-Rouquier algebra at 3.
For ¢ > 0, we set

e(8,i) =3, e(v) € R(B + la)
(2.8) where v ranges over the set of v € I°*% such that
vp=tforn+1<k<n+/.

We sometimes regard R(f3) as a k-subalgebra of the k-algebra e(3, i) R(8+La;)e(3, ).

Theorem 2.2 ([7]). Let 3 € Q1 with ht(3) = n and i € 1. Then there exists a natural
1somorphism

R(B)e(f — ai,1) @r(g-a;) kTn @ €(0 — i, 1) R(0) @ klzn11] ® R(5)
= e(8,9)R(8 + ai)e(B, ).

Here R(B)e(f — v, i) @p(s—a,) KTn @ (8 — i, 1) R(B) — e(B,1)R(B+ cu)e(B,14) is given
by a ® 1, b — at,b.

(2.9)

Here, 7, in k7, is a symbolical basis of a free k-module of rank one. We sometimes

use such notations in order to make morphisms more explicit.
Note that if 3 —a; & QT then R(5)e(8 — as,1) ®p(g—a,) kT ® (8 — i, 1) R(3) should

be understood to be zero.

3. THE cycLoTOoMIC KHOVANOV-LAUDA-ROUQUIER ALGEBRAS

3.1. Definition of cyclotomic Khovanov-Lauda-Rouquier algebras. Let A €
P* be a dominant integral weight. For each i € I, we shall choose a monic polynomial

of degree (h;, A)

(3.1) at(u) = Z cipultoNF

k=0
with cix € Kg(a,ja,) and cio = 1.
For k (1 <k <n)and f € Q" with ht(5) = n, we set
(3.2) = a) (w)e(v) € R(P).
velf

Hence a®(xy)e(v) is a homogeneous element of R(3) with degree 2(a, |A).
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Definition 3.1. For 3 € Q" the cyclotomic Khovanov-Lauda-Rouquier algebra R*(3)
at (8 is defined to be the quotient algebra

R(B)ar(z1)R(B)
In this paper we forget the grading, and we denote by Mod(R*(3)) the abelian

category of R*(3)-modules.

For each i € I, we define the functors
EA: Mod(RM(B + a;)) — Mod(R™(p)),
Fi': Mod(RY(8)) — Mod(R(5 + )
by
EMN) = e(B,i)N ~e(8,i)R* (8 + o) QRA(B4a;) IV
(3.3) ~ HomRA(ﬂ-l-ozi)(RA(ﬁ +a;)e(B,4), N),
F}(M) = RYB + ap)e(B,1) @page) M,
where M € Mod(R*(3)) and N € Mod(R*(3 + o;)).
Then the following result is proved in [7].

Theorem 3.2 ([7]). The module R*(3+ o;)e(3,14) is a projective right R*(3)-module.
Similarly, e(3,7)R*(3 + ;) is a projective left R*(3)-module.

Corollary 3.3. (i) The functor E} sends finitely generated projective modules to
finitely generated projective modules.

(ii) The functor F® is exact.
3.2. The pair (F2, E}) has a canonical adjunction : the unit n: id — E*F? and the
counit e: FAEY — id.
For 5 € Q* with ht(8) = n, the functors

Mod(RA()) — Mod(R*(3 + o))

A
Ei

are represented by the kernel bimodules R*(3 + a;)e(8,1) and e(3,i)R(3 + ;) as in
(3.3). In the sequel, we denote by 14 the identity functor of the category Mod(R*(5)),

and we denote by 13E} = E}Mg,,, the restriction functor EX: Mod(R*(3 + a;)) —
Mod(R*(83)). Similarly, F*15 = 15,,,F denotes the induction functor F*: Mod(R*(8)) —
Mod(R (8 + )).



8 MASAKI KASHIWARA

Let us denote by = the endomorphism of 13E? represented by the left multiplication
of 2,11 on e(B3,i)R*(B + a;) and by 7 the endomorphism of 1;EAEY: Mod(RA(3 +
20;;)) — Mod(R*(83)) represented by the left multiplication of 7,1 on e(3,i)RY(8 +
) QA (Ban) €(B+ay, 1) RMB420;) ~ e(B,4%) R (8+2q;). Similarly the endomorphism
x of F}14 is represented by the right multiplications of x,,; on R*(3 + «o;)e(3,4) and
the endomorphism 7 of FAFA15: Mod(R*(3)) — Mod(R* (8 + 2c;)) is represented by
the right multiplication of 7,41 on R*(6+420)e(84 i, i) @ a(gran R (B+ ai)e(B, i) ~
RMB + 2a;)e(3,4%). Then x € End(F 14) and x € End(14E}) are dual to each other
and 7 € End(FAF215) and 7 € End(15EMED) are dual to each other.

By the adjunction, 7 € End(E*E?}) induces a morphism

(3.4) o: FAEM; — ENFM.
It is represented by the morphism

RA(ﬁ)e(ﬁ -, 1) QRA (B—ay) e(f — aiai)RA(ﬁ> - e(ﬁ,i)RA(ﬁ + a;)e(B, 1)
given by r ® y — x7,y.
The following theorem was formulated as one of the axioms for the categorification
of representations of quantum groups ([6, 12, 14, 17]), and proved in [7] for an arbitrary

Khovanov-Lauda-Rouquier algebra.
Theorem 3.4 ([7]). Set A\:=A — (3 and \; := (h;, \).
(a) Assume \; = (hj;, \) > 0. The the morphism of endofunctors on Mod(R*(3))

Ai—1
p : FrEMu@ k@o kz* @15 — EMFM

is an isomorphism. Here FANEM 5 — EXFM g ds given by o, and ka* @15 — FAEM g
is given by (z"F2) on = (EraF) on: 15 — EAFAML,.
(b) Assume that \; < 0. Then the morphism

-1
p o F?E?15—>E§\Fﬁ\15@ g k(x_l)k®1g

is an isomorphisms. Here FFNEM ;3 — EMFM is given by o, and FAEM; —
k(z71)* ® 15 is given by € o (zFE}) = e o (Fra*): FAEM 5 — 15.

In the theorem, x* in kz* and (27 !)* in k(z71)* are a symbolical basis of a free
k-module.
Now let us define the morphism 7: 15 — FAEM 15 as follows.
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(i) If \;:= (hs, A) > 0, then 7 is given by the commutativity of

projection

Ai—1
k=0

s le

xi Fon

15 EAFA.

Here the top horizontal arrow is the projection. The minus sign in front of 7
should be noted.
(i) If \; <0, then 7 is defined as the composition

n

1ﬁ F?Ei\lﬂ
: le
A1
k(.%'_l)_)‘i_l & 15C—> E?Fi\lﬁ ) @ (x_l)k X 15.
k=0

Here the bottom horizontal arrow is the canonical inclusion and the left vertical
arrow is derived from k ~5 k(z ™)™ (1 (271N,

The morphism £: EMFA15 — 15 is defined as follows.

(i) If \; > 0, then € is defined as the composition

projection

Ai—1
FlAEi\lg ) @ k.’L’k X 15 k.’L’Ai_l & 15
k=0

zlp !

EMFM, 1s.

™)

Here the top horizontal arrow is the canonical projection and the right vertical

1

arrow is induced by 2%~! +— 1.

(i) If A\; <0, then € is defined as the composition

co(z™MED)

15 FAEM

z le

—Ai—1
EAFAC——EMMpe @D k(z 1) @1,
k=0
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Here the bottom horizontal arrow is the canonical inclusion.

Now our main result can be stated as follows.

Theorem 3.5. The pair (EX, FY) is an adjoint pair with (,€) as adjunction. Namely

(A (]
Ei Fi*e

E/ nFA
the compositions E} —— EMFMED SAEN EX and F} SALEN FAEAFY —— FA are equal

to the identities.

We shall prove this theorem in the rest of the paper.

As mentioned in Introduction, we note that Rouquier ([17]) proved that there ex-

: : 1. EAEA A BT capapa B A R
ists a morphism ¢': E;*F;* — 14 such that E} — E;F}E}' —— E* and F}' ——

Fiel
FAEAFA —, FA are equal to the identities. Of cource, such an €’ is uniquely deter-

mined. However, the identity ¢’ = £ is non trivial.

4. PROOF OF THEOREM 3.5

A= ~FEA
=] i

4.1. We shall first prove that the composition 15E} —— 15EMFAED SR, 15EN is
equal to the identity. Here 5 € QT with ht(3) = n and we set \:=A—f and \;:=(h;, \).
4.1.1. N\; > 2 Case.  We shall first assume that \; > 2. Then the composition
A gEA
15EL g SEAFAED B 5E2 can be described by the kernel bimodules as follows.
A/\
The morphism 1zE} B, 15EM(FAEM g1y,) is given by the (RA(B), RA(B + a))-
bilinear homomorphism:
e(ﬁv Z)RA(B + ai)
_ Ai2l
mn+2
6(57 ZQ)RA(ﬁ + QO[Z)e(ﬁ + ay, Z)
pTZ
(B, DR +a)e(8,1) @ Knis @ e(B,)RNG + )
RA(B
k=X;i—3

® @ kap,®e(B)RYNB+ )
k=0

lprojection
e(B, 1) RN(B + ai)e(B, ) e k71 @e(B, 1) RNB + ai).
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gEM
The morphism (15EXFA)ED 8, 15E2 is given by the (R*(3), R*(8 + ;))-bilinear

homomorphism:

e(ﬁa Z>RA(B + a’i)e(ﬁa Z) R/(\X()ﬂ) kTTL+1 X e(ﬁa Z>RA(B + a’z’)
pTZ
(RMB)e(B — i) @ K@ e( - ai, )RN)

RA(B—ai)
Ai—1
® P ket @ RA(B)> @pa(s) K71 @ e(3,1) RMB + o)
k=0

lprojection
kxﬁiﬁl k71 ®e(B,9)RMNB + o)

K

e(3,1)RMB + ai).

Hence in order to see that the composition is the identity, it is enough to show the

inclusion

Do, 2) + 2 (8, 2)
€ RANB)rutnsre(8 = i, RN + )

Nk Taae(3,i2) RMB 4 )

+ 30 2k e(B, ) RMB + o)

(4.1)

as an element of e(3, %) RM(B + 2ay)e(8 + ay, 1).
This inclusion is proved in § 5.

4.1.2. Now let us treat the case \; = 1.
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EAR
The morphism 14EX —11 SEMFAEM 4y, ) is given by

e(B, ) RMB + )
lindusion
e(B,i2) RN + 2a;)e(B + ai, i) @ e(B,1) RMNB + ;)
=
e(B,1) RM(B + ci)e(B, 1) @pag) e(8, 1) RNB + i) 2 u.
(See below for ¥ and E.)

FEMN
The morphism (1zEMFM)ER B sE2 is given by

e(B, i) R (B + ai)e(B, 1) @pag) (B, ) RYB + ai) S u

ik

<RA(5)6(5 — i) ® e(B— ;) RMB) @ RA(ﬁ))

RA(B-ai)
Qra(s) (B, 1) RMNB + o)
lprojection

e(ﬁa Z>RA(B + O‘i)'

Hence in order to see that the composition is the identity, it is enough to show the

following existence :

There exists u € e(83,7)R*(8+ a;)e(B, 1) @pa(g) e(3, 1) R*(B+ ;) such that
(a) S(w) =0,
(4.2) (b) E(u) = e(8,9),
(c) u—e(B,i) ®e(B,i) € (RMB)e(B — oy, i%)e(B — oy, i) RM(B))
QRA() e(3,1) R B + ai).

Here
2o 6(ﬁ,Z)RA(ﬁ—}-al)6(ﬁ,2) R/(éﬁ) e(ﬁvl)RA(ﬁ—'—az)

— e(B,*)RNB + 2a;)e(B + oy, 0)
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is given by ¥(a ® b) = a7,41b, and

E : e(B,9)RNB+ ap)e(B, i) e(B,1)RM(B + ;) — e(B,1)R™(B + o)

®
RA(B)
is given by E(a ® b) = ab.
The proof of (4.2) will be given in §5.
. A BN ApApA EED
4.1.3. Now we assume that A\; < 0. Then the composition 15E;* —— 13EF;*E;

15EL can be described by the kernel bimodules as follows.
ErR

The morphism 1;E} —— 1;E}(FAEM,,,) is given by
e(ﬁv Z)RA(B + ai)
K

k(z, 1) "N ®@e(B,i)RMNB + ai)

)

inclusion

(3. 12) RN (5200 )el Bt s, 1) DD k(27 F@e(B, i) RN B+a)

=0

k
p=fO®rHj, TZ
e(B, )RS + as)e(B, §) @pag (B, R (B + as).
gEMX
The morphism (1zE}FM)ER B sE2 is given by

e(B,1)RM(B + ow)e(3,1) @pa(g) e(B, 1) R + o)

linclusion
e(8, ) RMB + ai)e(B, i) o5, el i) RM(B + o)
p=g®%Tk TZ

RA(B)e(B — i, i) @pag-ay) (B — i, ) RMNB + o) D v

e(3,1)RMNB + ai).
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Hence in order to see that the composition is the identity, it is enough to show the

following;:
( There exists v € RMB)e(8 — o) Qra(g—as) (B, 1)) RY(3 + o) such that
we have
(a) Tp(v) =0for 0 <k < -\ —1
(4.3) () Tor(0) = (3.0
(c) ( )=
(d) H (U)—Ofor()<k< )\
L (e) Hi—y,(v) =e(B,1).

Here the homomorphism
fe(B, 1) RMNB + ap)e(B, 1) s e(B, i) RN (B + ;) — e(8,%) RM(8 + 2a5)e(B + i, 1)
is given by f(a®b) = ary b,
Hy: e(8, )R8 + ai)e(B, 1) o5, b )R8 + )
— k(a,1)" @ e(8,0) MG + i) = (B8, 4) R (B + )

is given by Hj(a ®b) = azk b,

g: R (B)e(B—0q) ® e(B,))RMNB+ai) — e(8, ) RNB+ai)e(B,i) ® e(B, ) RMB+a)

RM(B—av) RA(B)

is given by g(a®b) = a1, ®b,

Tio: RM(B)e(B — ai) S e(B,1)RMB + ;) — e(B, )R (5 + o)

is given by Tj.(a ®b) = ax™b,

G=fog: RNBle(B~a) @ e(B,)RNB+ai) — e(B,i*)RY(B+ 2as)e(f + s, 1)

RA(B—av)

is given by G(a ® b) = a7, 7,11b, and

He=Hiog: RABe(f—ai) @  e(BDRYG+ai) = e(B,)RYG + )

is given by Hy(a ® b) = ar,zk b
The statement (4.3) is proved in §5.
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AFA FAA

4.2. Let us show that the composition FA - FAEAFA 5, FA is equal to the
EA G EEM

identity by reducing it to the corresponding statement for EX =1 EAFAED SAEN EX

Let us recall that 1 is the anti-involution of R*(3) sending the generators e(v), xy,
7 to themselves. For an R*(3)-module M, we denote by MY the R*(3)°PP-module
induced by v from M, where R*(3)°P is the opposite ring of R*(3). We define the
bifunctor

g Mod(R(f3)) x Mod(R*(3)) — Mod(k)
by

Ws(M,N):=M%Y @ N.
RA(B)

We have a functorial isomorphism
Ws(M,N) ~Ws(N,M) in M,N € Mod(R*(3)).

For two k-linear categories € and %”, let us denote by Fcty (€', €”) be the category
of k-linear functors from % to ¢’. Then Vg induces a functor

Hs: Mod(R™(3)) — Feti(Mod(R(83)), Mod(k))
by assigning to M € Mod(R*(3)) the functor N +— Wg(M, N). The following lemma

similar to Yoneda lemma is easily proved, and its proof is omitted.
Lemma 4.1. The functor Hg is fully faithful.

For 3,3 € QF and a pair of k-linear functors F': Mod(R*(8)) — Mod(R*(3))
and G: Mod(RA(8')) — Mod(R*()), we say that F' and G are W-adjoint or G is a

W-adjoint of F' if there exists a functorial isomorphism
Uy (F(M),N) ~ Ws(M,G(N)) in M € Mod(R*(3)) and N € Mod(R"(3)).

For a given F, a W-adjoint of F' is unique up to a unique isomorphism if it exists. We
shall denote by F the W-adjoint of F (if it exists).
If Mod(R*(3)) £, Mod(R*(3")) £, Mod(R*(3")) are functors which admit -
adjoint, then FY o F"Y is a W-adjoint of F’ o F.
Now let Fy: Mod(RA(3)) — Mod(R*(3)) (k = 1,2) be two functors. Then
Lemma 4.1 implies
Hom(Fy, Fy) ~ Hom(F), F)).
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For f € Hom(F, Fy), the corresponding morphism in Hom(F}', ') is called the W-
adjoint of f and we denote it by fV. By the definition we have a commutative diagram

~

\Ilﬁ/(Fl(M)vN) \Ijﬁ(MaFlv(N»

g |-

\Ijﬁ'(F2(M)7N) . \Ijﬁ(MvFQ/(N))

Then (fog)Y = fYog" for i, L F, ERN Fs.
The following lemma is elementary and its proof is omitted.

Lemma 4.2. (i) Let K be a (R*(3'), R*(83))-bimodule and the functor F': Mod(R*(3)) —
Mod(RA(3")) is given by K ®@pagy ». Then F admits a V-adjoint.
(ii) Conversely if a k-linear functor F: Mod(R*(3)) — Mod(R*(3")) admits a V-
adjoint, then F is isomorphic to F(R*(3)) @ga(g) », and FY(RY(3')) ~ F(R(5))¥
as (RM(3), RM(B'))-bimodules.

We can easily see that EX and FA are W-adjoint. Moreover, x € End(E}) and
r € End(F}), 7 € End(E® 0 E}) and 7 € End(F} o F2) are U-adjoint, respectively.
We can also see that € Hom(1s, EAF2p) is a W-adjoint of itself. Similarly ¢ €
Hom(FAEM5,15) 0 € Hom(FAED, EAF2) are W-adjoint of themselves. Note that FAED

and EXFA are a W-adjoint of themselves. Hence 7 and £ are also a W-adjoint of them-

selves.
FFA FAg , .. EAR eE}
Therefore FA¥ —— FAEAFY —— F2 is a W-adjoint of E} —— EMFMEN ——

EA G gEM
EA. Hence if the composition of EA& ——» EAFAEA Z=, EA is the identity, then the

nFEA Ag
composition of FA AN FAEAFA BE, F2 is also the identity.
Thus we have reduced Theorem 3.5 to the three statements (4.1), (4.2) and (4.3),
which will be proved in the next section.

5. PROOF OF THE THREE STATEMENTS
5.1. Intertwiner. Let us set ¢, € R(n) as follows:
vae(V) = (2,74 — Tawa)e(V) = (TaZay1 — Tay17a)e(V)
= ((xa — Ta41)Ta + 1)€(V) = (Ta(anrl —T,) — 1)6(1/)

if v, = 1 and pee(v) = T.e(v) if v, # Vayr. It is called the intertwiner.
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The following lemma is well-known (for example, it easily follows from by the polyno-
mial representation of Khovanov-Lauda-Rouquier algebras ([10, Proposition 2.3], [17,
Proposition 3.12]).

Lemma 5.1. (i) For1l < a <n, we have
Tsa(v)Pa = Patp(l b <n+1).

(ii

(iii

Qa a+1 + €a ,a+1-
{gpk}1<k<n satisfies the braid relation.

) ¢
)
) Forwe S, and1 <k <n, ifwk+1)=w(k)+1, then puTk = Twk)Puw-
(v) In particular

(iv

TaPa+1Pa = Pat+1PaTa+1, and Ta+1PaPa+1 = PaPa+1Ta,

TePa Pl = QYo" Pn1Te—1 fora<k<n-—1.

5.2. Let us take 8 € Q" with ht(3) =n and i € I. Let p be the number of times that
a; appears in 3. The following lemma is proved by repeated use of Theorem 2.2.

Lemma 5.2. We have
e(3,7)R(B + 2a;)e(B + 4, 1) p(gran R (B + o)
~ R(B)e(B — a;,i) ® kT Tyi1 @p(a—as) €(f — o, ) RMB 4 o)
D 7 1k[rnro] @ e(B, ) R (B + ai)
B K[zn12] ® (3, ) RN + ).
Proof. We have
e(B, %) R(B + 20:)e( + i, 1) @r(aran BB+ )
= o(8, ) (R(5 + 00)e(B,1)7sr @ngey o(8, RS + ) @ Klrro] @ RS + 1)
RR(g+an R (B + ;)
= e(8,) (R(De(B — i, )7 Ono-a) o(8 = 0 DR(D) © Klaaia] © R(D) )i
Dr@e(B, ) RYNB + )
B k(4] @k R} (B + )
=e(8,7*)R(B)e(B — o, 1)TnTnt1 ®R(5—ar €(8 — o, *) RM(B + )
D k[zn]mni1 @ e(B,*)RYN(5 + ;) @ k[wn 2] @ e(6,1) R (B + ).



18 MASAKI KASHIWARA
Then the lemma follows from K[z, 1]711 ® K[zp 0] = Tnrik[Tnio] ® K[z 0] O
We set

K = ¢(8,i")R(B +20:)e(B + i, i) Orpran) B (B + )

)
~ e(B,7*)R(6 + 2ai)e(B + i, i)
B Jar (1) R(B + ag)e(B + oy, i)
)

e(8,?)R(B + 2q;
Then K is an (e(8,i*)R(8 + 2a;)e(3,i%), R*(8 + a;) ® k[ 42])-bimodule.

The preceding lemma says
K = R(B)TaTn16(8 — i, i3)RA(ﬁ + ;) + Tnpik[Tnp2)e(8, i2)RA(5 + )
+k[zna]e(B, ) RN B + ai).

We define the filtration {I'y }rez of K by

0 if k< —1,
Ly = 4 R(B)TaTnr1e(8 — i, P)RNB + i) + e(B,3) 1 RMB + i) if k= —1,
Ti1 + e(B,i%)ak LRAMB + ;) + e(B, )T ab I RM B + o) if k> 0.
Note that I'y = T'y_1 + e(3,32) 2k L RYN(B + oy) + e(B, i?)xf 17,1 RA(B + a;) for k > 0.

Recall that Grl,; K :=T}/Tk_1. Then we have the following lemma that will be used
frequently.

Lemma 5.3. We have
(i) the Ty ’s are (R(B), RM(B + a;))-bimodules,
(ii) Trxpyo C Tryy for any k,
11) the right multiplication of x,+o tnduces an 1somorphism Gr — Gr or
iii) the right multiplicati nd j hism Grj, K =5 Grjq K f
any k > 0,
(iv) Ker(zpi2: Ty — Grj K) = R(B)Tmnr1e(B — ay, i) RMNB + ).

Proof. (i) is obvious.
(ii) follows from
(5.1) TnTnt1Tnte = To(Tni1 a1 + 1) = (ZnT0 + 1)Tnir + 7o

(iii) follows from Lemma 5.2.

Let us prove (iv). Set S := R(3)TuTni1e(8 — i, i3) R (8 + ;). Then Sz, C Ty +
e(B,i*)RM(B+a;) by (5.1). The homomorphism I'_; /S — (Gry K)/(e(8, %) R*(B+a;))
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is an isomorphism since it is isomorphic to k7,11 ®e(3,1) RMB+ a;) = KTy 1Zp 42 @
Tn+2

e(B,i)RMB + ay). O
As a corollary of the lemma above, we obtain the following

Lemma 5.4. Let m € Z and let f(x,.2) € R*(B+ ;) @k[x,12] be a monic polynomial
of degree v > 0 in Ty and u € K. Assume that uf(x,.2) € I'yy. Then we have
(i) ifm>r—1, thenuel,,_,,
(11) uw§+2 S 11maux(fl,mf1"+k) fOT any k> 0,
(ili) wf(2nte) = uxl s mod Iyax(—1,m—1),
(iv) if m <r—1, then u € R(B)TuTns1e(8 — a;, i®) RA(B + o).

Proof. (i) It is enough to show that if u € T'y and &k > m—r, then u € I'y,_;. For such au
we have wf(2,42) € Ty C Tigr_1, and the injectivity of Gry K Fnt2)=ohia Gr£+k K
implies u € 'y _4.

(i) We have uzf ,f(zp12) € Ttk € Drimax(—1,m—rtk). Hence (i) implies that
U37f§+2 € Dnax(=1,m—r+k)-

(iii) follows from (ii).

(iv) By (ii), w, uz, 1o € I'_1. Then the assertion follows from Lemma 5.3 (iv). O]

Our goal of this subsection is to prove Proposition 5.7 below, and the following

lemma is its starting point.
Lemma 5.5. For v € I? we have, as an element of K

Tn+l 'TlaA(xl)% o '90n+1€(1/a iz) H (xa - $n+2)

asn, vg=1

= 710 (Tnio) H Qive(Tni2, To)e(v,i,i) mod I'_y.
Va1
Proof. We have 7,11 - 71a™(21)@1 - Ong1 = Tug1 - T101L " - Pngp10™ (Tny2). We shall
show for a <n
Tn+1 " TaPa* " 90n+1aA(xn+2)€(V7 22) H (Z'k - xn+2) H Qi,ua (xn+27 xk)
a<k<n,vi=i k<a,vp#i
(5'2) =Ton+1 " Ta+1Pa+1 - '90n+1aA(xn+2>e(V7 22)

H (Tk — Tnt2) H Qi (Tnt2, Tr)-

a+1<k<n,vp=t k<a+1,vp#i
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If v, # 1, it is obvious. Assume that v, = i. Then

Tn+1" " TaPa '90n+1aA(95n+2)€(Va ) (€0 = Tny2)

= Tu1 - Ta(Tat1 = Ta)Pa P10 (Tnra)e(v, 1)

= Tt Tar1(Pa + 1) @aPast -+ P10 (Tnia)e(v, i)
= Tu1 - Tar1 (Pa + 1)Par1 - @pi1a” (Tns2)e(v, i)

= Tn+1 """ Tat+1PaPa+1 " '80n+1aA(37n+2)€(Va i?)

FTn+1 " Tat1Pat1 " ° '90n+1aA(xn+2>e(V7 ZQ)'

We shall show that for any f(x,,2) and g = g(x1,...,z,), we have

(5'3) Tnt+1 " Tat1PaPat1 - 'QDn-l-le(Va iz)f(xn+2)g el

We have

Tn+1 - Tat1¥PaPat+1 " 90n+16(7/7 iQ)f(:En+2)
= Tn+1 " 'Ta+1f(ma)90a¢a+1 T QDn-l-le(Vv i2)
= f(xa)TnJrl o Ta+1PaPa+l 0 SOnJrle(l/; Z2)

= f(Ta)PaPat1 - Pni1Ta - - Tae(v, %)

We have

PnPn+1 = @n(xn—i—lTn-‘rl - Tn—l—lxn—l—l)
- xn(ann - Tnl‘n)Tn—i—l - (ann - Tnxn)Tn—l—lxn-‘rl
2
=Ty TnTn+1 — InTnTn+1Tn — TnTpTn+1Tn+1 + TnTn+1TnTn+1

and it belongs to I'_;. Hence we obtain (5.3). Then the repeated use of (5.2) implies
that

Tpt+1 - T1P1 " - cpn+1aA(:vn+2)e(y, 22) H (:L‘k - £L‘n+2)
k<n,vp=i

= Tn+190n+1aA (xn+2>€(y7 22) H Qi,lla (xn+27 xk)
I/k;éi

Finally Tn+190n+1€(y? ZQ) = Tn+1 (TnJrl(anrl - xa) - 1>6(V7 ZQ) = _Tn+1€(y? ZQ)'
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Lemma 5.6. The following equality holds as an element of K.

Tpp1 - 110 (21) @1 - - Onpre(v, %)

= Tpi1-- -TlaA(l'l)Tl e Toare(v, i2) H (Tpao — To)-
k=n+1orv, =1

Proof. 1t is enough to show that

T+l " '7'1CLA(CU1)T1 o Ta—1%Pa " 'S0n+1€(V, iz)

= Tp41 " 'TlaA(xl)Tl o TaPat1 "t "Pn—l—le(’% 2.2)(5En+2 — Tk

(5.4)

)5(a:n+10rva:i).
If v, # i it is trivial. If v, =i or a = n + 1 then we have

Vo Pnp1e, ) = (Ta(Tap1 — Ta) — Dpast -+ Pnpre(v,i2)

TaPat1 " Pni1(Tny2 — Ta)e(V, ZQ) — Pat1 " Pnyre(V, iQ)'

Since
Tnt1 - ’TlaA(xl)Tl S Ta1Pat1 Prrre(Vs iz)
= Tpg1 TiPat1 * Prgr@ (1) Ty - - Taere(v, 1%)
vanishes as an element of K for a < n+ 1, we obtain (5.4). O

Thus we have

(=1)PTpg - 'TlaA(xl)Tl o Te(v,i?) H (Tpio — T4)?

a=n+1lorv, =1

= _Tn+1aA(xn+2> H Qi,ua (xn+27 xa)e(lla iz)(anrQ - anrl) mOd Ffl-
Va1

We have 7,41(p42 — Tpy1) € To, and hence Lemma 5.4 implies

Tn+1aA(xn+2) H Qi,ua (xn+27 xa)e(lla iz)(anrQ - anrl)

VaFi
_ hi,A—3)+2p+1 .
= Tn+1$§L+2 B+2p 6(1/, Z2) H tiua mod F(hi,/\—ﬁ>+2p—1'
Va1
In particular
g1+ 1a™ (@)1 - T e(v, 1%) H (Tnyo — 24)° € U thi a—)+2p-

a=n+1lorvg, =1

. . o 2p42
Hence it is equivalent to 7,1 - - - a™(21) 71 - - Tpre(v, 4, z)xn’:; modulo I, A—g)12p—1-

Thus we obtain the following proposition.



22 MASAKI KASHIWARA

Proposition 5.7. For 3 € Q%, let p be the number of times that a; appears in (3, and
set A\:= N — 3, N\;:=(h;, \). Then there exists ¢ € kg * X such that

Ai+2p+1 o\ 9\ 2p+2
Tn+1xn$ P e(B,4%) = ety - - - ma™ (@)1 - - Tagae(, 22)37”[:5 mod I'y,42p-1.

Note that \; 4+ 2p > 0.

5.3. Let us define two homomorphisms

P: R(B)e(B — i, i) R(ﬁ@ia') e(B — oy, i )RMNB + ;) — K and

E: R(B)e(f — a, i) R(ﬁ@ )e(ﬁ — 0y, i) RMNB + ;) — e(B, 1) RN B + o)
by P(a ®b) = a1, Tpy1 @ b and E(a ® b) = ab. Then P is injective and Lemma 5.4
implies

(5.5) Im(P) = Ker(zp12: 'y — Gry K).

We can see that R(8)e(8 — ai, 1) ®p(g—as) €(8 — o, i*) R*(8 + o) has a structure of
(R(8) @ k(zn, Tnt1, o), K[zs] @ RM(B + ;))-bimodule by

(a®b)(x, ®1)=azx, D,
(1®7,)(a®b) =a® T,b,
(I1®zp)(a®b) =a®axpb for k=n,n+ 1.

Here k(z,,, Zp11, Tn) is the k-subalgebra of (3 — a;,i2) RM (8 +a;)e(3 — oy, i?) generated
by %y, Tpi1, Tn, and it is isomorphic to the nil affine Hecke algebra R(2¢;).

Lemma 5.8. For any z € R(B)e(B — a;,1) @pr(g—a,) (B — i, i2) RMN(B + ), we have
P(2)tpio = P(z(x, ® 1)) + 11 E(2) + E(1®7,)2).
Proof. For z = a ® b, we have
Pla®b)Tpio = aTyTni1Tnia @b = aTp(Tpi1Tne +1)®@0
= a(z,m + DTy @b+ 1 ®@ar,b.
0
Corollary 5.9. Ifz € R(8)e(f—ay, 1) Rw@iai) e(B—ay,i?) RMN(B+ay) satisfies P(2)Tni0 €
I'_y, then E((1®7,)z) = 0.
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Indeed, P(2)Zni2 = E((1®7,)2) mod I'_;.
Set KA = e(83,i%)RM312;)e(B + ay, ). Hence we have

o BPRE+20)e(B+ 0
e(3,12)R(B+2a;)a (v1) R(B + cw)e(B + ai, i)’
e(3, %) R(B + 2ai)e(B + ai, i)
e(B,12) R(B+2a;)a’(x1) R(B + 2ci)e(B + v, i)

Then there exists a surjective homomorphism

KN ~

p: K — KM,
Note that

(5.6) p(Tosr - ma (@)1 Toie(B, %)) = 0.

Let us denote by {T'2}rez the filtration of K* induced by the filtration T' of K.

5.4. Proof of (4.1). Assume that A\; > 2. The statement (4.1) can be read as
ap2e(B,0%) + api s o e(3,4%) € '\ _; asan element of K.
By Proposition 5.7 and Lemma 5.3, we have

Tn+195n+2 e(B,i ) = CTpt1 'TlaA(xl)Tl o Topre(B, iz) mod I'y,_3

as an element of K. Then the desired result holds since

Tan1Trs €(B,7%) = (35 T + 235))e(8,4%)  mod Ty, 3.
5.5. Proof of (4.2). Assume that \; = 1. Set

w = 7'n+1€(57 i2) — CTpy1 ‘TlaA(xl)Tl o 'Tn+1€(57i2) € K.

23

Then Proposition 5.7 together with Lemma 5.4 (iv) implies that w, wz,o € T4

and w belongs to Im(P). Hence we can write w = P(z) for some z € R(f3)e(f —

@, 1) Qr(g-ar) €(3 — ai, 1) R* (B + ;). Then Corollary 5.9 implies that
E(l®T,)z) =0.

Let us define the morphism

R(B)e(B—aii) @ e(f—aii P)RY(B+ai) = e(B, )R (Btas) @ e(B,)) R (B+a)

R(B—ai) RM(B)
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by T(a ® b) = (a1,) ® b. Then we have

X(T(z)) = p(P(2)),
E(T(z)) = E(1®T,)z)=0.

Let us show that u:=e(8,7) ®e(8,7) — T(2) satisfies the condition (4.2).

(a)  X(T(2)) =p(P(2)) = Tni1e(3,4%) as an element of R*(8 + 2a;).

(b)  E(u) =e(8.4) — E(T(2)) = e(B,4).

(c) is obvious.

5.6. Proof of (4.3). Assume that \; < 0. Note that £:= —\; < 2p. Then Propo-
sition 5.7 says that, by setting w := c7y1 - ma®(21)7 - - Thy1e(B,4%), the element
(wa2ts — To1Tnr2e(B, iQ))x;ffp of K belongs to I'_pyo,_1.
Hence we have
Wt — 1T 0e(B,47) € Ty
Since 7,112,12¢(3,i%) € Ty, we have wa:f;fz € I's. Hence Lemma 5.4 implies that
wfoH el _jfor0<k</+1 Weset

wxﬁﬁ = P(z) + Tnpaye for 0 <k <l+1

with 2, € R(8)e(8 — @, i) @p(s—ay) (8 — @i, i*) R* (B + a;) and yy € e(3, i) RMB + ).
Then we have for 1 < k < ¢+ 2

wxfwrg = (P(Zk—1)+7n+1yk—1)$n+2

= Pzr_1(xp,®1) + 11 E(zk—1) + E(1®70)26-1) + Tna1TnroYk—1-
Hence Lemma 5.2 implies

2k =2zp-1(z, ®1) for 1 <k <l+1,
yp = E(zk—1) for 1 <k </l+1,
E((1®Tn)zk_1):0 for 1 <k</+1,
Y1 =0 for1 < k< /l+1.
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Since wr’'% = 7, 1170126(8,42) mod T'_y, we have y,q; = e(8,7) and E(1®Ty)2ze41) =

0. Thus we obtain z, = zy(z*¥ ®1) for 0 < k < 1+ ¢, and

0 for0<k</-1
5.7 E Fol)) = -
(5.1 (ZO(%® )) e(B,1) for k=~¢.
(5.8) E(1®T,)2(zf®1) =0 0<k<1+4L

Let us denote by
q: R(B)e(B — i, 1) R(ﬂ@ )e(ﬁ — a;, ) RMB + )

— RMBe(B—aii)  ®  e(B—a;, i )RNB+ )
RA(B—ay)

the canonical homomorphism, and set v = ¢(2¢). Then (a) and (b) in (4.3) follow from
Ty.(v) = E(20(zk ®1)). The equality G(v) = 0 follows from G(v) = p(P(z20)) = p(w) =
0.

Finally let us prove (d) and (e). We have

E(1®2kir,)2) = E(1®7,)2%(®1)) =0 for0<k<(+1

by (5.8). On the other hand we have Hy(v) = E((l ®Tnxﬁ+1)zo). Since T2k, =

k a b .
T 4+ Y b1 Loy Th, We obtain

Hi(v) = B((1®akn,)z) + Z 28 E((1®ah)z)
a+b=k—1

— Z 201 B(20(xh ®1)).

a+b=k—1

Hence (5.7) implies that Hy(v) = 0 for 0 < k < ¢ and Hy1(v) = e(8,1).

Thus the proof of (4.1), (4.2) and (4.1) is complete.
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