
An exact algorithm for the single-machine total
weighted tardiness problem with sequence-dependent

setup times

Shunji Tanakaa,∗, Mituhiko Arakib

aDepartment of Electrical Engineering, Kyoto University
Kyotodaigaku-Katsura, Nishikyo-ku, Kyoto 615-8510, Japan

bMatsue College of Technology,
14–4 Nishiikuma-Cho, Matsue City, Shimane 690-8518, Japan

Abstract

This study proposes an exact algorithm for the single-machine total weighted tar-
diness problem with sequence-dependent setup times. The algorithm is an exten-
sion of the authors’ previous algorithm for the single-machine scheduling prob-
lem without setup times, which is based on the SSDP (Successive Sublimation
Dynamic Programming) method. In the first stage of the algorithm, the conju-
gate subgradient algorithm or the column generation algorithm is applied to a
Lagrangian relaxation of the original problem to adjust multipliers. Then, in the
second stage, constraints are successively added to the relaxation until the gap
between lower and upper bounds becomes zero. The relaxation is solved by dy-
namic programming and unnecessary dynamic programming states are eliminated
to suppress the increase of computation time and memory space. In this study a
branching scheme is integrated into the algorithm to manage to solve hard in-
stances. The proposed algorithm is applied to benchmark instances in the litera-
ture and almost all of them are optimally solved.

Keywords:
single-machine total weighted tardiness problem, sequence-dependent setup
times, exact algorithm, Lagrangian relaxation, dynamic programming

∗Tel.: +81-75-383-2204, Fax: +81-75-383-2201, E-mail: tanaka@kuee.kyoto-u.ac.jp

1

1. Introduction

This study is devoted to the single-machine total weighted tardiness problem
with sequence-dependent setup times. In practical production systems it is often
the case that setup times are incurred when a machine starts processing a job. It
is also the case that they differ in accordance with the job finished just before it.
Such setup times are called sequence-dependent [1]. Our problem is to minimize
total weighted tardiness on a single machine under the existence of sequence-
dependent setup times. According to the standard classification of scheduling
problems, this problem is denoted by 1|si j|∑wiTi.

For 1|si j|∑wiTi, or, its unweighted version 1|si j|∑Ti, there are many studies
on metaheuristics such as GA (Genetic Algorithm), SA (Simulated Annealing),
TS (Tabu Search), ACO (Ant Colony Optimization), PSO (Particle Swarm Opti-
mization), DE (Differential Evolution Algorithm), GRASP (Greedy Randomized
Adaptive Search Procedure), VNS (Variable Neighborhood Search) and so on [2–
28]. In recent studies, effectiveness of algorithms for 1|si j|∑wiTi is evaluated by
120 benchmark instances with 60 jobs, which were generated by Cicirello [8, 16].
Best solutions of the instances have been updated by several researchers and the
latest are summarized in [28]. For 1|si j|∑Ti, the benchmark instances with 15,
25, 35 and 45 jobs by Rubin and Ragatz [2] and those with 55, 65, 75 and 85 jobs
by Gagné et al. [7] play the same role.

There are also some studies on exact algorithms for 1|si j|∑Ti [29–31], for
the unweighted earliness-tardiness problem with a common duedate (1|si j,di =
d|∑(Ei + Ti)) [32], for the weighted earliness-tardiness problem with distinct
duedates (1|si j|∑(Ei + Ti)) [33], and for the maximum tardiness problem [34].
Among them, Bigras et al. [31] succeeded in solving instances of 1|si j|∑Ti with
up to 45 jobs, but it took more than 7 days for the hardest instance. Moreover,
there has been no attempts so far to solve 1|si j|∑wiTi optimally. Therefore, it is
quite a challenging theme to solve this NP-hard combinatorial optimization prob-
lem.

This study proposes an exact algorithm for 1|si j|∑wiTi. It is derived from
the authors’ previous ones [35, 36] for single-machine scheduling without setup
times. These algorithms are based on the SSDP (Successive Sublimation Dynamic
Programming) method [37, 38]. In [35, 36] it was shown that this framework is
so effective that instances with 300 jobs of the total weighted tardiness problem
(1||∑wiTi) can be solved optimally. However, the framework is not so efficient for
1|si j|∑wiTi as for the problems in [35, 36] because a tight lower bound is harder
to obtain due to the existence of sequence-dependent setup times. Therefore, a

2

branching scheme is integrated into it to suppress memory usage, which is the
bottleneck of the framework. It will be demonstrated that this algorithm can solve
all the 1|si j|∑wiTi instances by Cicirello, all the 1|si j|∑Ti instances by Rubin and
Ragatz, and almost all of the 1|si j|∑Ti instances by Gagné et al. Although it is still
time-consuming to solve some instances, the optimal objective values enable us an
absolute (and not relative) performance evaluation of the existing and developing
metaheuristic approaches.

The remainder of this paper is organized as follows. In Section 2, the problem
is formulated as a constrained shortest path problem. Next, in Section 3, an exact
algorithm is constructed based on our previous ones, and in Section 4, it is applied
to the 1|si j|∑wiTi instances. Then, in Section 5, the algorithm is improved to solve
the unsolved instances, and in Section 6, the improved algorithm is applied to the
remaining instances. Finally, Section 7 summarizes this study.

2. Problem description and formulation

Consider that a given set of n jobs N = {1, . . . ,n} are to be processed without
preemption on a machine that can process at most one job at a time. Job i (i ∈N)
has a processing time pi > 0, a duedate di ≥ 0 and a weight for tardiness wi ≥ 0.
A setup time si j ≥ 0 is given for every pair of jobs i and j, and si j is required
before processing job j if job i is an immediate predecessor of job j. A setup
time s0 j ≥ 0 is required even when job j is the first job on the machine. All the
processing times, duedates, weights and setup times are assumed to be integers.

Let us define the cost function fi(t) of job i by

fi(t) = wi max(t −di,0). (1)

Then, the objective of our problem is to find an optimal schedule that minimizes
the total cost ∑i∈N fi(Ci), where Ci denotes the completion time of job i. Since
fi(t) is a nondecreasing function of t, we only need to consider schedules without
idle time. In other words, a job should be started immediately when it can be
started, after the preceding job is finished and then the required setup is finished.
Therefore, job completion times can be assumed to be integral without loss of
optimality because all the processing times and the setup times are integral. In
addition, the optimal objective value can also be assumed to be integral.

Next, to make our problem more tractable, it is converted to a constrained
shortest path problem on an acyclic directed graph G = (V,A,W). Roughly speak-
ing, this is done by assigning one node vit to the completion of job i ∈ N at

3

t = pi, pi +1, . . . ,Tmax, where Tmax denotes the maximum makespan over all fea-
sible schedules. Let us define a node set V by

V = {v00}∪VO ∪{vn+1,Tmax}, (2)
VO = {vit | i ∈ N , pi ≤ t ≤ Tmax}. (3)

Here, v00 and vn+1,Tmax denote the source and sink nodes, respectively. We also
define an arc set A by

A = AA ∪AB ∪AC, (4)
AA = {(v00,vi,s0i+pi) |vi,s0i+pi ∈VO}, (5)
AB = {(v j,t−s ji−pi ,vit) |v j,t−s ji−pi ,vit ∈VO, i 6= j}, (6)

AC = {(v jt ,vn+1,Tmax) |v jt ∈VO, Tmin ≤ t ≤ Tmax}, (7)

where Tmin is the minimum makespan over all feasible schedules. The length
W (e) of an arc e ∈ A is given by

W (e) =
{

fi(t), if e = (v j,t−s ji−pi ,vit) ∈ AA ∪AB,
0, otherwise.

(8)

Then, our problem, which is referred to as (P), is equivalent to the shortest path
problem from v00 to vn+1,Tmax on G under the constraint that vit should be visited
exactly once for any i ∈ N . Indeed, the length of a shortest path is identical to
the minimum total weighted tardiness and vit visited in the path corresponds to
the completion of job i at t in an optimal solution.

The problem to obtain the exact values of Tmin and Tmax is equivalent to the
asymmetric traveling salesman problem [1] and hence is not easy to solve opti-
mally. Therefore, we compute a lower bound of Tmin and an upper bound of Tmax
by solving the following assignment relaxation problems and regard them as Tmin

4

and Tmax, respectively.

Tmin = min
x ∑

0≤i≤n
1≤ j≤n

i6= j

si jxi j +
n

∑
i=1

pi (9)

s.t. ∑
0≤i≤n

i6= j

xi j = 1, 0 ≤ j ≤ n, (10)

∑
0≤ j≤n

j 6=i

xi j = 1, 0 ≤ i ≤ n, (11)

xi j ∈ {0,1}, 0 ≤ i, j ≤ n, i 6= j, (12)

Tmax= max
x ∑

0≤i≤n
1≤ j≤n

i6= j

si jxi j +
n

∑
i=1

pi, (13)

s.t. (10), (11), (12).

These problems can be polynomially solved by, for example, the Hungarian method
[39].

Let P denote a set of nodes visited in a path from v00 to vn+1,Tmax on the
network G. In the following, the path corresponding to P is referred to as “path
P” for simplicity. Let L(P) denote the length of a path P , which is defined by

L(P) = ∑
vit∈P
i∈N

fi(t). (14)

Then, the constraints in our problem that vit should be visited exactly once in a
path P for any i ∈ N can be written as

Vi(P) = |{vit |vit ∈ P}| = 1 (i ∈ N). (15)

If we denote by Q, the set of all feasible paths satisfying (15), our problem (P)
can be formulated as follows.

(P) : min
P

L(P) s.t. P ∈ Q. (16)

5

3. Proposed Algorithm

In our previous studies [35, 36], exact algorithms for the single-machine prob-
lem without setup times were proposed based on the SSDP method [37, 38]. In
these algorithms, we start from a Lagrangian relaxation of the original problem
and then constraints are successively added to it until the gap between lower and
upper bounds vanishes. Since the relaxation is solved by dynamic programming,
it is inevitable that the number of dynamic programming states increases as the
number of added constraints increases. To suppress it, unnecessary dynamic pro-
gramming states are eliminated in the course of the algorithm.

One of the primary differences between the problem in this study and the
problems in [35, 36] is that constraints derived from the dominance of adjacent
pairs of jobs [40, 35] cannot be imposed on the relaxations. These constraints
are to restrict the processing order of adjacent pairs of jobs i and j, by checking
their costs when sequenced as i → j and as j → i, respectively. However, it relies
on the fact that interchanging jobs i and j does not affect the other jobs, which
is not true for 1|si j|∑wiTi because of the existence of sequence-dependent setup
times. Since these constraints are very much effective for both improving the
lower bound and reducing computation time, we cannot expect that the framework
in [35, 36] works for 1|si j|∑wiTi as efficiently as for the problems without setup
times. Nonetheless, a simple extension of our algorithm can solve most of the
benchmark instances, although further improvements are necessary to solve the
remaining instances. In the following, we will first give the Lagrangian relaxation
and the constraints to be added. Next, how to reduce the size of the network,
which corresponds to the elimination of dynamic programming states, will be
stated briefly. Then, a heuristic algorithm to obtain a tight upper bound will be
constructed. Finally, we will explain our algorithm.

3.1. Lagrangian Relaxation
To obtain a lower bound of (P), the violation of the constraints (15) is penalized

by Lagrangian multipliers µi (i ∈ N). This relaxation is denoted by (LR1). In

6

(LR1), the length of a path P is given by

L(P)+ ∑
i∈N

µi(1−Vi(P)) = ∑
vit∈P
i∈N

fi(t)+ ∑
i∈N

µi − ∑
i∈N

µi |{vit |vit ∈ P}|

= ∑
vit∈P
i∈N

(fi(t)−µi)+ ∑
i∈N

µi

= LR(P; µ)+ ∑
i∈N

µi. (17)

It implies that (LR1) for a fixed set of multipliers is equivalent to find the uncon-
strained shortest path from v00 to vn+1,Tmax on G′ = (V,A,W ′) where W ′ is

W ′(e) =
{

fi(t)−µi, if e = (v j,t−s ji−pi ,vit) ∈ AA ∪AB,
0, otherwise.

(18)

(LR1) can be solved by dynamic programming. In the forward dynamic program-
ming, the length of a path from v00 to every other node vit ∈V \{v00} is computed
recursively by increasing t. This computation can be done in O(n) time for one
node because the number of incoming arcs to a node (except vn+1,Tmax) is at most
n− 1. Since there are at most O(nTmax) nodes, the time complexity of the dy-
namic programming is given by O(n2Tmax). If we note that each arc is checked
only once, the time complexity is given simply by O(|A|) (clearly, the number of
arcs is O(n2Tmax)). As a matter of fact, the backward dynamic programming can
be performed with the same time complexity.

To improve the lower bound obtained by this relaxation, the following two
types of constraints are imposed on it. The first are on successively visited nodes
on a path, which are described by

For any i ∈ N , nodes corresponding to job i, i.e. vit , should not be
visited more than once in any k+1 (k ≥ 2) successive nodes in a path.

These correspond to the k-cycle elimination constraints that often appear in rout-
ing problems (e.g. [41]). It should also be noted that this type of constraint is
also utilized in the exact algorithm for 1|si j|∑Ti by Bigras et al. [31]. The set of
P satisfying the constraints is denoted by Qk and the problem to find the shortest
path in Qk on G is denoted by (LRk). This problem can be solved by dynamic pro-
gramming in O(nkTmax) time [35]. Unlike the relaxations of the problems without
sequence-dependent setup times for which the time complexities of (LR1) and
(LR2) differ, they are the same due to the existence of sequence-dependent setup

7

times. Therefore, only (LR2), whose time complexity is O(n2Tmax) or O(|A|), is
employed in this paper.

The second are the relaxed constraints (15) and some of them are recovered to
(LR2). Let M = {φ1,φ2, . . . ,φm} ⊆N and the constraints (15) for φi (1 ≤ i ≤ m)
are imposed on (LR2). The problem (LR2) with these constraints is denoted by
(LRm

2). Clearly, (LRm
2) is equivalent to the original problem (P) when M = N .

To solve (LRm
2), we introduce a new acyclic directed graph Gm = (V m,Am,W ′).

First, let us define an m-dimensional vector qm
i by qm

i = (qi1, . . . ,qim), where

qi j =
{

1, if i = φ j,
0, otherwise. (19)

Next, the node set V m is defined by

V m = {v0m
00}∪V m

O ∪{v1m
n+1,Tmax

}, (20)

V m
O = {vb

it |vit ∈VO, qm
i ≤ b ≤ 1m}, (21)

where 0m and 1m denote m-dimensional vectors whose elements are all zero and
all one, respectively. The arc set Am is defined by

Am = Am
A ∪Am

B ∪Am
C, (22)

Am
A = {(v0m

00 ,vqm
i

i,s0i+pi
) |(v00,vi,s0i+pi) ∈ AA}, (23)

Am
B = {(vb−qm

i
j,t−s ji−pi

,vb
it) |(v j,t−s ji−pi ,vit) ∈ AB, qm

i +qm
j ≤ b ≤ 1m}, (24)

Am
C = {(v1m

jt ,v1m
n+1,Tmax

) |(v jt ,vn+1,Tmax) ∈ AC}. (25)

Then, (LRm
2) is equivalent to the shortest path problem from v0m

00 to v1m
n+1,Tmax

on Gm

under the 2-cycle elimination constraints. The time complexity of this problem is
O(n22mTmax) [35]. It can also be given by O(|Am|).

3.2. Network reduction
The primary bottleneck of the algorithm is heavy memory usage for storing the

network structure (dynamic programming states). To reduce it, unnecessary nodes
and arcs are removed from the network. Since the time complexities of (LR2) and
(LRm

2) are given by O(|A|) and O(|Am|), respectively, this network reduction also
enables us to reduce the computation time. All the techniques in [36] are exploited
except the one based on the dominance check that is inapplicable to our problem.
It is because this reduction also requires that interchanging jobs does not affect
the other jobs as the constraints on adjacent pairs of jobs described in the top of
this section.

8

3.2.1. Network reduction by an upper bound
In this network reduction [38], a lower bound of the length of paths that pass

through a node (an arc) is computed and the node (resp. the arc) is removed from
the network if it is greater than or equal to an upper bound of the path length. This
lower bound can be computed by applying dynamic programming in both forward
and backward manners when the shortest path problem on the network is solved.

3.2.2. Network reduction by constraint propagation
The constraint propagation technique is applicable to reduce the size of the

network. Several consistency tests have been proposed so far [42] and their ex-
tensions to the problem with setup times were also proposed [43, 44]. However,
we simply apply the same consistency tests exploited in [36] by assuming the
processing time of job i to be p′i = pi +min0≤ j≤n s ji.

3.2.3. Network reduction by node compression
When the network structure is stored, successive nodes are compressed into

one super-node. This contributes to improving a lower bound as well as reducing
memory usage [36]. In [36], a maximum of four successive nodes are compressed
into one super-node, while a maximum of six are in the proposed algorithm.

3.3. Upper bound computation
It is crucial to obtain a good upper bound for the algorithm because the ef-

ficiency of the network reduction in 3.2.1 highly depends on the tightness of an
upper bound. To compute such an upper bound, a solution of a Lagrangian re-
laxation is converted to a feasible one by first removing duplicated jobs and next
adding the unprocessed jobs greedily as in [36]. Then, it is improved by a local
search. As this local search, the enhanced dynasearch [45, 46] and its extension
to the problem with idle times [47] were employed in [35] and [36], respectively.
Following these, we adopt the (extended) dynasearch in the proposed algorithm.

The dynasearch is a local search algorithm that adopts the dynasearch swap
neighborhood, This neighborhood is defined by a set of solutions generated by
applying pairwise interchanges (PIs) to the original solution. The number of these
PIs is not restricted, but they should not intersect with each other. The primary ad-
vantage of this neighborhood is that the best solution in the neighborhood can be
obtained in polynomial time for the problem without setup times nor idle time, al-
though the neighborhood is composed of an exponential number of solutions. An
extension of the dynasearch to the problem with sequence-dependent setup times
is already proposed in [47]. Let us denote the current solution (job sequence) by

9

σ(1), σ(2), . . ., σ(n) and let σ(0) = 0. Then, the recurrence equations of the
dynamic programming to obtain the best solution in the dynasearch swap neigh-
borhood are given as follows.

F(k,0, t) =
{

0 k = 0, t = 0,
+∞ otherwise, (26)

F(k, i, t) =


min

0≤ j≤i−1
F(i−1, j, t − sσ(j)σ(k)−PPI(k, i))+FPI(k, i, t),

1 ≤ i ≤ k ≤ n, 1 ≤ t ≤ Tmax,
+∞, otherwise,

(27)

where the best objective value is minTmin≤t≤Tmax min1≤i≤n F(n, i, t). Here, sii = 0,

PPI(k, i) =
k−1

∑
j=i

sσ ki(j)σ ki(j+1) +
k

∑
j=i

pσ ki(j), (28)

FPI(k, i, t) =
k

∑
j=i

fσ ki(j)

(
t −

k−1

∑
l= j

sσ ki(l)σ ki(l+1)−
k

∑
l= j+1

pσ ki(l)

)
, (29)

and σ ki(j) is defined by

σ ki(j) =


σ(k), j = i,
σ(i), j = k,
σ(j), otherwise.

(30)

Since this recursion takes O(n4Tmax) time (O(n3Tmax) time even if the method
in [48] is applied), it is a little too slow. Therefore, we propose a simpler extension
where the modified dynasearch swap neighborhood is employed. On this neigh-
borhood, an additional constraint is imposed that each PI should be separated by at
least one job. For example, 4,2,3,1,7,6,5,8 belongs to the dynasearch swap neigh-
borhood of 1,2,3,4,5,6,7,8, but does not to the modified dynasearch swap neigh-
borhood. On the other hand, 4,2,3,1,5,8,7,6 belongs to both the neighborhoods
because the PIs (1 ↔ 4 and 6 ↔ 8) are separated by job 5. Let us assume that the
(n+1)-th job in the current solution is a dummy job n+1 (σ(n+1) = n+1) such
that pn+1 = 0, fn+1(t) ≡ 0, and si,n+1 = 0 for any i. Then, the best solution in the
modified dynasearch swap neighborhood is given by minTmin≤t≤Tmax F ′(n + 1, t),

10

1, 2, 3, 4, 5, 6, 7, 8 ⇒ 1, 7, 3, 4, 5, 6, 2, 8
(a) PI (Pairwise Interchange)

1, 2, 3, 4, 5, 6, 7, 8 ⇒ 1, 7, 2, 3, 4, 5, 6, 8
(b) EBSR (Extraction and Backward Shifted Reinsertion)

1, 2, 3, 4, 5, 6, 7, 8 ⇒ 1, 3, 4, 5, 6, 7, 2, 8
(c) EFSR (Extraction and Forward Shifted Reinsertion)

1, 2, 3, 4, 5, 6, 7, 8 ⇒ 1, 7, 6, 5, 4, 3, 2, 8
(d) twist

1, 2, 3, 4, 5, 6, 7, 8 ⇒ 1, 6, 7, 4, 5, 2, 3, 8
(e) PI2

1, 2, 3, 4, 5, 6, 7, 8 ⇒ 1, 6, 7, 2, 3, 4, 5, 8
(f) EBSR2

1, 2, 3, 4, 5, 6, 7, 8 ⇒ 1, 4, 5, 6, 7, 2, 3, 8
(g) EFSR2

1, 2, 3, 4, 5, 6, 7, 8 ⇒ 1, 5, 6, 7, 2, 3, 4, 8
(e) BI (Block Interchange)

Figure 1: Operators in the modified dynasearch neighborhood

where

F ′(0, t) =
{

0 t = 0,
+∞ otherwise, (31)

F ′(k, t) =



min

[
F ′(k−1, t − sσ(k−1)σ(k)− pσ(k))+ fσ(k)(t),

min
0≤i≤k−1

{
F ′(i−1, t − sσ(i−1)σ(k−1)−PMPI(k, i))+FMPI(k, i, t)

}]
,

1 ≤ k ≤ n+1, 1 ≤ t ≤ Tmax,
+∞, otherwise,

(32)

11

and

PMPI(k, i) =
k−1

∑
j=i

sσ k−1,i(j)σ k−1,i(j+1) +
k

∑
j=i

pσ k−1,i(j), (33)

FMPI(k, i, t) =
k

∑
j=i

fσ k−1,i(j)

(
t −

k−1

∑
l= j

sσ k−1,i(l)σ k−1,i(l+1)−
k

∑
l= j+1

pσ k−1,i(l)

)
. (34)

It follows that the time complexity reduces to O(n3Tmax) although the neighbor-
hood becomes smaller. To compensate the smaller neighborhood size, we intro-
duce several new operators as well as EBSR (Extraction and Backward Shifted
Reinsertion) and EFSR (Extraction and Forward Shifted Reinsertion) [49] in the
enhanced dynasearch [46], and twist in [48]. These new operators, PI2, EBSR2,
EFSR2 and BI (Block Interchange), are defined as in Figure 1. Preliminary exper-
iments showed that this extension can obtain better solutions in shorter time than
the direct extension in [47].

3.4. Outline of the Algorithm
Now, our proposed algorithm is summarized. The algorithm is composed of

two stages. In the first stage, Lagrangian multipliers µi (1 ∈ N) are adjusted for
(LR2). Next, in the second stage, (LRm

2) is solved by increasing m.

3.4.1. Stage 1
An initial upper bound UB is computed by applying the dynasearch in 3.3

to a greedily obtained job sequence. The conjugate subgradient algorithm [50,
51] is applied to adjust Lagrangian multipliers of (LR2). More specifically, the
Lagrangian multipliers at the (k +1)th iteration, µµµ(k+1), are calculated by

µµµ(k+1) = µµµ(k) + γ(k) UB−LB(k)

‖ddd(k)‖2
ddd(k), (35)

where

ddd(k) = ggg(k) +
‖ggg(k)‖

‖ddd(k−1)‖
ddd(k−1), (36)

g(k)
i = 1−Vi(P(k)), (37)

P(k) = argmin
P

LR(P; µµµ(k)), (38)

LB(k) = LR(P(k); µµµ(k))+ ∑
i∈N

µ(k)
i , (39)

12

and γ(k) is the step size parameter, which is controlled as in [36]. In the course of
the algorithm, upper bounds are computed by the method in 3.3 and the best upper
bound UB is updated if necessary. The network reduction in 3.2.1 is performed
every time when the best lower bound or UB is updated. If UB−LB(k) < 1, the
algorithm is terminated without entering Stage 2. The obtained multipliers and
best lower bound in this stage are denoted by µstage1 and LBstage1, respectively.

3.4.2. Stage 2
We repeat Subprocedure(UBtent) with UBtent increased by ∆ from LBstage1

until UBtent = UB (UBtent is rounded off to the nearest integer). Here, ∆ is a
parameter to determine the increment size of the tentative upper bound UBtent.
Subprocedure(UBtent):

(0) Let M := /0 and LB := LBstage1.

(1) Add a maximum of three jobs to M from N \M , and (LRm) for µstage1

(m = |M |) is solved by forward or backward dynamic programming in turns
to compute the lower bound LB. All the network reduction techniques in 3.2
are performed, where UBtent is used instead of UB for the network reduction
in 3.2.1.

(2) A new upper bound is searched for by the method in 3.3 if the best lower
bound is updated. Update UB and UBtent if they are dominated by it.

(3) Stop if UBtent −LB < 1. Otherwise, go to (1).

4. Numerical Experiments I

In this section, the proposed algorithm is applied to the benchmark instances
of 1|si j|∑wiTi by Cicirello [8, 16]1. In these instances with 60 jobs, processing
times pi are generated from the integer uniform distribution between 50 and 150,
and the weights wi from the integer uniform distribution between 0 and 10. The
duedates di and the setup times si j are generated from integer uniform distributions
by changing three parameters. The first is on the tightness of the duedates and
there are three settings: “loose”, “moderate” and “tight”. The second is on the
duedate range and has two settings: “loose” and “tight”. The last is on the setup

1Available from http://loki.stockton.edu/˜cicirelv/benchmarks.html.

13

times and has two settings: “mild” and “severe.” For every 12 combinations of the
settings, 10 instances were generated. Therefore, the set consists of 120 instances.

The algorithm is coded in C (gcc) and we run it on a desktop computer with
an Intel Core i7 980X Extreme Edition CPU (3.33GHz) and 24GB RAM. The
maximum memory size for storing the network structure is restricted to 512MB.
The parameter ∆ in Stage 2 of the algorithm is set to 0.01UB by some preliminary
experiments.

Before applying our proposed algorithm, the problem was formulated by a
mixed-integer programming problem as in Appendix A and a general-purpose
MIP solver, IBM ILOG CPLEX 12.1, was applied to 24 instances (Nos. 1, 6, . . .,
116) out of the 120 instances. However, no instance could be solved within one
day. This fact validates the necessity of constructing an exact algorithm for this
problem.

Tables 1 and 2 summarize the results of our algorithm for the instances Nos.
41–120 (“moderate duedates” and “tight duedates”). In these tables, the optimal
objective values and CPU times are given together with the best known objective
values summarized in [28]. From these tables, we can see that optimal solutions
are obtained for all the 80 instances in at most 320 seconds. It is also revealed that
the current best objective values are already optimal for 62 out of 80 instances, but
those for the two instances Nos. 69 and 116, which were given in [17], turned out
to be incorrect. We verified that the solutions sent to us from the corresponding
author of [17] do not yield the objective values in [17]. It seems that corrupted
instance data was used in [17].

For the instances Nos. 1–40 (“loose duedates”), the conjugate subgradient
algorithm in Stage 1 did not work well for adjusting Lagrangian multipliers and
hence failed in obtaining good lower bounds. Therefore, the algorithm was termi-
nated due to shortage of memory without finding optimal solutions except for the
17 instances. For these instances (Nos. 12, 21, 22, 23, 25, 26, 28, 29, 31, 32, 33,
34, 35, 36, 38, 39, 40) zero (and hence obviously optimal) solutions are obtained
as initial upper bounds.

5. Improvement of the Algorithm

As described in the preceding section, 23 instances with “loose duedates”
could not be solved by the proposed method due to shortage of memory. To solve
them, the algorithm is improved so that a good lower bound is obtained in Stage
1 and that memory usage is reduced as much as possible.

14

Table 1: Computational Results for Cicirello’s Benchmark Instances Nos. 41–80 (Moderate Due-
dates)

No. Best Optimal Time (s) No. Best Optimal Time (s)
41 69102 69102 86.52 61 75916 75916 97.78
42 57487 57487 100.11 62 44769 44769 82.03
43 145310 145310 155.39 63 75317 75317 75.17
44 35289 35166 126.43 64 92572 92572 93.77
45 58935 58935 155.92 65 126696 126696 97.09
46 34764 34764 144.62 66 59685 59685 40.76
47 72853 72853 149.97 67 29390 29390 58.17
48 64612 64612 205.29 68 22120 22120 56.96
49 77641 77449 134.73 69 64632* 71118 113.73
50 31292 31092 123.48 70 75102 75102 83.80
51 49761 49208 233.89 71 145007 145007 235.71
52 93106 93045 223.24 72 43286 43286 157.42
53 84841 84841 265.00 73 28785 28785 200.35
54 118809 118809 240.62 74 30136 29777 164.01
55 65400 64315 247.24 75 21602 21602 180.27
56 74940 74889 291.87 76 53555 53555 161.94
57 64552 63514 271.78 77 31817 31817 195.42
58 45322 45322 283.05 78 19462 19462 177.77
59 51649 50999 204.01 79 114999 114999 155.78
60 60765 60765 301.68 80 18157 18157 180.31

Bold: optimal solution, *: incorrect solution.

5.1. Removal of Zero Cost Jobs
In the Cicirello’s benchmark instances, some jobs has the zero tardiness weight

(wi = 0). These jobs are removed as far as the problem structure is kept un-
changed.

If job i with wi = 0 satisfies

s ji + pi + sik ≥ s jk j ∈ {0}∪N , k ∈ N , j 6= i, j 6= k, k 6= i, (40)

it can be moved to the last position in any solution without increasing the objective
value. Hence we can ignore such a job without loss of optimality and the proposed
algorithm is applied to the remaining jobs. This makes the the problem smaller
and thus easier to solve.

Please note that (40) should always be satisfied from a practical point of view.
Indeed, it is quite often the case for the problem with sequence-dependent setup

15

Table 2: Computational Results for Cicirello’s Benchmark Instances Nos. 81–120 (Tight Due-
dates)

No. Best Optimal Time (s) No. Best Optimal Time (s)
81 383485 383485 71.02 101 352990 352990 133.18
82 409479 409479 149.37 102 492572 492572 130.15
83 458752 458752 97.84 103 378602 378602 102.38
84 329670 329670 108.49 104 357963 357963 134.51
85 554766 554766 179.19 105 450806 450806 92.60
86 361417 361417 173.87 106 454379 454379 138.62
87 398551 398551 109.23 107 352766 352766 90.57
88 433186 433186 155.25 108 460793 460793 87.82
89 410092 410092 109.08 109 413004 413004 131.40
90 401653 401653 141.64 110 418769 418769 142.07
91 339933 339933 152.97 111 342752 342752 232.68
92 361152 361152 233.03 112 367110 367110 268.30
93 404548 403423 289.54 113 259649 259649 240.20
94 332949 332941 220.14 114 463474 463474 238.46
95 517011 516926 236.01 115 457189 456890 311.72
96 457631 455448 176.50 116 527459* 530601 242.62
97 407590 407590 207.59 117 502840 502840 271.33
98 520582 520582 199.14 118 349749 349749 134.14
99 363977 363518 248.33 119 573046 573046 278.86

100 431736 431736 181.39 120 396183 396183 192.17
Bold: optimal solution, *: incorrect solution.

times to assume that the triangle inequality

s ji + sik ≥ s jk j ∈ {0}∪N , k ∈ N , j 6= i, j 6= k, k 6= i (41)

holds, which yields (40). However, some jobs in the Cicirello’s benchmark in-
stances break (40) and zero weight jobs cannot always be removed.

5.2. Column Generation
To avoid the failure in adjusting Lagrangian multipliers in Stage 1, the column

generation algorithm is applied instead of the conjugate subgradient algorithm.

16

More specifically, multipliers are updated by solving the following problem.

(µ(k+1),λ (k+1))=argmax
µ,λ

∑
i∈N

µi +λ , (42)

s.t. L(P(j))− ∑
i∈N

µiVi(P(j)) ≥ λ , 0 ≤ j ≤ k, (43)

where P(0) is the path corresponding to the initial upper bound. It is terminated
if P(k) satisfies

LR(P(k); µ(k)) = L(P(k))− ∑
i∈N

µ(k)
i Vi(P(k)) ≥ λ (k). (44)

Since this solves the Lagrangian dual corresponding to (LR2) optimally, we can
obtain the best Lagrangian multipliers that maximize the lower bound.

The problem (42)–(43) is written in the form of the cutting plane algorithm,
but its dual is actually solved in the proposed algorithm. Therefore, we refer
to it as column generation here. In this column generation algorithm, the dual
stabilization technique in [52] is employed to speed up the convergence.

5.3. Iterated Dynasearch
To obtain a better upper bound, the modified dynasearch in 3.3 is employed in

the framework of the iterated local search as in [45]. In this search, a locally
optimal solution obtained by the dynasearch is perturbed by applying random
pairwise interchanges α times (this is called “kick”) and then the dynasearch is
applied again. For every β applications of the dynasearch, the current locally
optimal solution is replaced by the best solution obtained so far (this is called
“backtrack”) and it is perturbed by the kick. These iterations are terminated after
γ applications of the dynasearch. In our algorithm, α , β and γ are set to 3, 2 and
100, respectively, by some preliminary experiments.

5.4. Interval Branching
It is true that the two improvements in the preceding subsections improve the

algorithm to some extent, but the algorithm still terminates in Stage 2 due to short-
age of memory. Therefore, we integrate a branching strategy into Stage 2.

If shortage of memory occurs in Subprocedure(UBtent), branching is performed
by dividing the time window of a job into two intervals. For example, assume that
the completion time of job 1 belongs to the interval [a1,d1]. That is,

a1 = min
v1t∈VO

t, d1 = max
v1t∈VO

t, (45)

17

where VO is the node set of the network G at the start of Stage 2. Then, we
calculate c1 so that

|{v1t |v1t ∈VO, t ≤ c1}| ' |{v1t |v1t ∈VO, t > c1}| (46)

is satisfied. In other words, the numbers of the occurrences of job 1 in the intervals
[a1,c1] and [c1 +1,d1], respectively, balance with each other. Next, two networks
GL1 and GU1 are generated from G by restricting the occurrence of job 1 in [a1,c1]
and [c1 + 1,d1], respectively. Then, Subprocedure(UBtent) is performed for both
GL1 and GU1 separately, instead of Subprocedure(UBtent) for G. Although the
former requires a longer computation time, the memory usage reduces.

The job with the largest number of occurrences in G is selected first and two
jobs are selected at once. Hence four networks are generated at the first level of the
search tree. This branching is performed recursively when Subprocedure(UBtent)
is terminated due to shortage of memory. For one value of UBtent, the maximum
depth of the search tree is recorded and it is used for the next value of UBtent.
If, for example, the maximum depth is two for one value of UBtent, 16 networks
(corresponding to four selected jobs) are generated from the start for the next value
of UBtent.

6. Numerical Experiments II

The improved algorithm is applied to the Cicirello’s instances Nos. 1–40
(“loose duedates”). To solve the dual of (42)–(43) in the column generation al-
gorithm, lpsolve [53] is used. Since shortage of memory occurs in Stage 2, three
settings of the maximum memory size are considered: 512MB, 2GB and 20GB.
For the instances with LBstage1 = 0, ∆ in Stage 2 is set to 1 to concentrate on
finding a solution with the zero objective value.

The results are summarized in Table 3. For instances Nos. 18 and 24, we gave
up applying the algorithm with 512MB or 2GB memory size because the search
tree became too deep in Stage 2. Although it took too long CPU times for the
two (2 weeks and 1 month, respectively, even with 20GB memory size), all the
instances were solved optimally. Again, the best objective value for the instance
No. 6 given in [17] turned out to be incorrect. It seems that the instances with
loose duedates are hard also for the existing metaheuristic approaches because
no optimal solutions are obtained by them except for those with the zero optimal
objective value. The CPU time can decrease by increasing the memory size for
those instances where shortage of memory occurs and hence branching should

18

be performed in Stage 2 (eg. No. 11). However, it is observed that the CPU
time rather increased for some instances (eg. No. 17). This is because the CPU
time also depends on when a good upper bound is obtained in the course of the
algorithm. For the instances, the algorithm with a smaller memory size happened
to find a good upper bound earlier.

Next, the improved algorithm is applied to the instances of 1|si j|∑Ti. Two
sets of instances are used here: the set of instances with 15, 25, 35 and 45 jobs in
[2]2 and that with 55, 65, 75 and 85 jobs in [7]3. Hereafter, these are referred to
as Rubin’s instances and Gagné’s instances, respectively.

The results are summarized in Tables 4 and 5. In Table 4, the shorter CPU
times of the two branch-and-bound algorithms by Bigras et al. [31] are also pre-
sented for comparison. For prob603, the CPU time of a general MILP solver
(CPLEX) reported in [31] is given because those of the branch-and-bound algo-
rithms were not reported in [31]. Please note that the computer in this study is 2
or 2.5 times as fast as a 3.4GHz Pentium4 computer in [31]. Nevertheless, from
Table 4 we can verify that our algorithm is much faster for the instances with 25
jobs or more, except prob705, even if the difference of the CPU speed is taken into
account. Larger instances with n ≥ 55 can be solved by the proposed algorithm
as in Table 5 except prob851 and prob855. The instance prob751 could be solved
optimally by the algorithm with 20GB memory size, but the two instances could
not be. However, the best objective values of these instances would be almost
optimal because the algorithm ensured that optimal objective values of prob851
and prob855 are not better than 357 and 254, respectively.

7. Conclusion

In this study we proposed an exact algorithm for the single-machine total
weighted tardiness problem with sequence-dependent setup times based on our
previous algorithms for the problem without setup times. Then, the proposed al-
gorithm was applied to well-known benchmark instances and almost all of them
were optimally solved. To the best of the authors’ knowledge, this is the first
attempt to solve the Cicirello’s instances and the Gagné’s instances optimally.
However, it still takes a very long computation time. To reduce it, we should im-
prove the lower bound by, for example, introducing effective cuts such as those
proposed in [52]. It is left for future research.

2Available from https://www.msu.edu/˜rubin/files/research.html.
3Available from http://depcom.uqac.ca/˜c3gagne/home fichiers/ProbOrdo.htm.

19

[1] Allahverdi A, Gupta JND, Aldowaisan T. A review of scheduling research
involving setup considerations. OMEGA 1999;27:219–239.

[2] Rubin PA, Ragatz GL. Scheduling in a sequence dependent setup environ-
ment with genetic search, Computers & Operations Research 1995;22:85–
99.

[3] Lee YH, Bhaskaran K, Pinedo M. A heuristic to minimize the total weighted
tardiness with sequence-dependent setups, IIE Transactions 1997;29:45–52.

[4] Tan KC, Narasimhan R. Minimizing tardiness on a single processor with
sequence-dependent setup times: a simulated annealing approach, Omega
1997;25:619–634.

[5] Tan KC, Narasimhan R, Rubin PA, Ragatz GL. Comparison of four methods
for minimizing total tardiness on a single processor with sequence dependent
setup times, Omega 2000;28:313–326.

[6] França PM, Mendes A, Moscato P. A memetic algorithm for the total tardi-
ness single machine scheduling problem. European Journal of Operational
Research 2001;132:224–242.

[7] Gagné C, Price WL, Gravel M. Comparing an ACO algorithm with
other heuristics for the single machine scheduling problem with sequence-
dependent setup times. Journal of the Operational Research Society
2002;53:895–906.

[8] Cicirello VA. Weighted tardiness scheduling with sequence-dependent se-
tups: A benchmark library. Technical Report of Intelligent Coordination and
Logistics Laboratory, The Robotics Institute, Carnegie Mellon University,
USA. 2003.

[9] Cicirello VA, Smith SF. Enhancing stochastic search performance by value-
biased randomization of heuristics. Journal of Heuristics 2005;11:5–34.

[10] Gagné C, Gravel M, Price WL. Using metaheuristic compromise program-
ming for the solution of multi-objective scheduling problems, Journal of the
Operational Research Society 2005;56:687–698.

[11] Cicirello VA. Non-wrapping order crossover: An order preserving crossover
operator that respects absolute position. Proceedings of GECCO’06
2006:1125–1131.

20

[12] Gupta SR, Smith JS. Algorithms for single machine total tardiness schedul-
ing with sequence dependent setups, European Journal of Operational Re-
search 2006;175:722–739.

[13] Anghinolfi D, Paolucci M. A new ant colony optimization approach for the
single machine total weighted tardiness scheduling problem. International
Journal of Operations Research 2008;5:44–60.

[14] Anghinolfi D, Paolucci M. A new discrete particle swarm optimization
approach for the single-machine total tardiness scheduling problem with
sequence-dependent setup times. European Journal of Operational Research
2009;193:73–85.

[15] Bożejko W, Wodecki M. A parallel metaheuristics for the single machine
total weighted tardiness problem with sequence-dependent setup times.
Proceedings of 3rd Multidisciplinary International Scheduling Conference:
Theory and Applications (MISTA 2007) 2007:96–103.

[16] Cicirello VA. The challenge of sequence-dependent setups: Proposal for a
scheduling competition track on one machine sequencing problems. Interna-
tional Workshop on Scheduling a Scheduling Competition 2007.

[17] Liao C-J, Juan H-C. An ant colony optimization for single-machine tardi-
ness scheduling with sequence-dependent setups. Computers & Operations
Research 2007;34:1899–1909.

[18] Lin S-W, Ying K-C. A hybrid approach for single-machine tardiness prob-
lems with sequence-dependent setup times. Journal of the Operational Re-
search Society 2007;58:1–11.

[19] Lin S-W, Ying K-C. Solving single-machine total weighted tardiness prob-
lems with sequence-dependent setup times by meta-heuristics. International
Journal of Advanced Manufacturing and Technology 2007;34:1183–1190.

[20] Valente JMS, Alves RAFS. Beam search algorithms for the single machine
total weighted tardiness scheduling problem with sequence-dependent se-
tups. Computers & Operations Research 2008;35:2388–2405.

[21] Tasgetiren MF, Pan Q-K, Liang Y-C. A discrete differential evolution algo-
rithm for the single machine total weighted tardiness problem with sequence

21

dependent setup times. Computers & Operations Research 2009;36:1900–
1915.

[22] Ying K-C, Lin S-W, Huang C-Y. Sequencing single-machine tardiness prob-
lems with sequence dependent setup times using an iterated greedy heuristic.
Expert Systems with Applications 2009;36:7087–7092.

[23] Arroyo JEC, Nunes GVP, Kamke EH. Iterative local search heuristic for the
single machine scheduling problem with sequence dependent setup times
and due dates. Proceedings of 9th International Conference on Hybrid Intel-
ligent Systems (HIS’09) 2009:505–510.

[24] Luo J-X, Liu H-M, Yuan P. A new filter and fan algorithm with kick strat-
egy for single-machine tardiness scheduling with sequence-dependent se-
tups. Proceedings of IEEE International Conference on Intelligent Comput-
ing and Intelligent Systems (ICIS 2009) 2009;1:438–442.

[25] Bożejko W. Parallel path relinking method for the single machine total
weighted tardiness problem with sequence-dependent setups. Journal of In-
telligent Manufacturing 2010;21:777–785.

[26] Akrout H, Jarboui B, Siarry P, Rebaı̈ A. A GRASP based on DE to solve sin-
gle machine scheduling problem with SDST. Computational Optimization
and Applications, available online.

[27] Armadizar F, Hosseini L. A novel ant colony algorithm for the single-
machine total weighted tardiness problem with sequence dependent
setup times, International Journal of Computational Intelligent Systems
2011;4:456–466.

[28] Kirlik G, Oguz C. A variable neighborhood search for minimizing
total weighted tardiness with sequence dependent setup times on a
single machine, Computers & Operations Research, available online.
DOI:10.1016/j.cor.2011.08.022

[29] Ragatz GL. A branch-and-bound method for minimum tardiness sequenc-
ing on a single processor with sequence dependent setup times. Proceed-
ings of the Twenty-Fourth Annual Meeting of the Decision Sciences Institute
1993:1375–1377.

22

[30] Luo X, Chu F. A branch and bound algorithm of the single machine schedule
with sequence dependent setup times for minimizing total tardiness. Applied
Mathematics and Computation 2006;183:575–588.

[31] Bigras L-P, Gamache M, Savard G. The time-dependent traveling salesman
problem and single machine scheduling problems with sequence dependent
setup times. Discrete Optimization 2008;5:685–699.

[32] Rabadi G, Mollaghasemi M, Anagnostopoulos GC. A branch-and-bound al-
gorithm for the early/tardy machine scheduling problem with a common due-
date and sequence-dependent setup time. Computers & Operations Research
2004;31:1727–1751.

[33] Sourd F. Earliness-tardiness scheduling with setup considerations. Comput-
ers & Operations Research 2005;32:1849–1865.

[34] Luo X, Chu C. A branch-and-bound algorithm of the single machine sched-
ule with sequence-dependent setup times for minimizing maximum tardi-
ness. European Journal of Operational Research 2007;180:68–81.

[35] Tanaka S, Fujikuma S, Araki M. An exact algorithm for single-machine
scheduling without machine idle time, Journal of Scheduling 2009;12:575–
593.

[36] Tanaka S, Fujikuma S. A dynamic-programming-based exact algorithm for
single-machine scheduling with machine idle time. Journal of Scheduling,
available online. DOI:10.1007/s10951-011-0242-0.

[37] Ibaraki T. Enumerative approaches to combinatorial optimization. Annals of
Operations Research 1987;10 and 11.

[38] Ibaraki T, Nakamura Y. A dynamic programming method for single machine
scheduling. European Journal of Operational Research 1994;76:72–82.

[39] Kuhn HW. The Hungarian method for the assignment problem. Naval Re-
search Logistics Quarterly 1955;2:83–97.

[40] Sourd F. New exact algorithms for one-machine earliness-tardiness schedul-
ing. INFORMS Journal on Computing 2009;21:167–175.

23

[41] Christofides N, Mingozzi A, Toth P. Exact algorithms for the vehicle routing
problem, based on spanning tree and shortest path relaxations, Mathematical
Programming 1981;20:255–282.

[42] Baptiste P, Le Pape C, Nuijten W. Constraint-Based Scheduling: Applying
Constraint Programming to Scheduling Problems. Dordrecht, Netherlands:
Kluwer Academic Publishers; 2001:21–29.

[43] Brucker P, Thiele O. A branch & bound method for the general-shop problem
with sequence dependent setup-times. OR Spektrum 1996;18:145–161.

[44] Artigues C, Feillet D. A branch and bound method for job-shop prob-
lem with sequence-dependent setup times. Annals of Operations Research
2008;159:135–159.

[45] Congram RK, Potts CN, van de Velde SL. An iterated dynasearch algo-
rithm for the single machine total weighted tardiness scheduling problem.
INFORMS Journal on Computing 2002;14:52–67.

[46] Grosso A, Della Croce F, Tadei R. An enhanced dynasearch neighborhood
for the single machine total weighted tardiness scheduling problem. Opera-
tions Research Letters 2004;32:68–72.

[47] Sourd F. Dynasearch for the earliness-tardiness scheduling problem with re-
lease dates and setup constraints. Operations Research Letters 2006;34:591–
598.

[48] Ergun Ö, Orlin JB. Fast neighborhood search for the single machine total
weighted tardiness problem, Operations Research Letters 2006;34:41–45.

[49] Della Croce F. Generalized pairwise interchanges and machine scheduling.
European Journal of Operational Research 1995;83:310–319.

[50] Sherali HD, Ulular O. A primal-dual conjugate subgradient algorithm for
specially structured linear and convex programming problems, Applied
Mathematics and Optimization 1989;20:193–221.

[51] Sherali HD, Lim C. Enhancing Lagrangian dual optimization for linear pro-
grams by obviating nondifferentiability, INFORMS Journal on Computing
2007;19:3–13.

24

[52] Pessoa A, Uchoa E, Poggi de Aragǎo M, Rodrigues R. Exact algorithm over
an arc-time-indexed formulation for parallel machine scheduling problems,
Mathematical Programming Computation 2010;2:259–290.

[53] lpsolve: http://sourceforge.net/projects/lpsolve.

Appendix A. Naive Mixed-Integer Programming Formulation

Our problem is formulated as the following mixed-integer programming prob-
lem to apply a general-purpose MIP solver:

(MIP) : min
y,C,T

∑
1≤i≤n

wiTi, (A.1)

s.t. ∑
1≤ j≤n

y0 j = 1, (A.2)

∑
1≤i≤n

yi,n+1 = 1, (A.3)

∑
0≤i≤n

i6= j

yi j = 1, 1 ≤ j ≤ n, (A.4)

∑
1≤ j≤n+1

j 6=i

yi j = 1, 1 ≤ i ≤ n, (A.5)

C j ≥ (p j + s0 j)y0 j −M(1− y0 j), 1 ≤ i ≤ n, (A.6)
C j ≥Ci +(p j + si j)yi j −M(1− yi j), 1 ≤ i, j ≤ n, i 6= j, (A.7)
Ti ≥Ci −di, 1 ≤ i ≤ n, (A.8)
y0 j,yi,n+1,yi j ∈ {0,1}, Ci ≥ 0, Ti ≥ 0, (A.9)

where yi j is a binary decision variable such that yi j = 1 if and only if job j is the
immediate successor of job i. In addition, M is a sufficiently large integer and is
chosen as M = Tmax.

25

Table 3: Computational Results for Cicirello’s Benchmark Instances Nos. 1–40 (Loose Duedates)

No Best Optimal
Time (s)

512MB 2GB 20GB
1 471 453 221.79 220.63 192.82
2 4878 4794 3073.00 1781.17 2895.27
3 1430 1390 1812.49 1060.62 1126.00
4 5946 5866 467.23 333.16 270.83
5 4084 4054 7259.98 4198.60 3292.41
6 5788* 6592 293.22 322.82 252.42
7 3330 3267 7699.39 4815.34 7600.50
8 108 100 220.54 218.62 187.78
9 5751 5660 281.37 274.78 255.59

10 1789 1740 15454.09 9475.19 9185.96
11 2998 2785 123538.53 51443.47 23359.73
12 0 0 0.93 0.93 0.91
13 4068 3904 19599.13 10677.42 8212.44
14 2260 2075 15645.10 5049.56 5906.87
15 935 724 4404.47 1632.86 841.15
16 3381 3285 830.73 585.89 688.30
17 0 0 181.28 181.12 7268.65
18 845 767 — — 2 weeks
19 0 0 7.08 7.08 6.41
20 2053 1757 1094.24 713.03 477.46
21 0 0 0.66 0.66 0.63
22 0 0 0.75 0.75 0.71
23 0 0 0.58 0.58 0.56
24 920 761 — — 30 days
25 0 0 0.70 0.70 0.67
26 0 0 0.70 0.70 0.67
27 0 0 1.10 1.10 1.05
28 0 0 1.05 1.05 1.00
29 0 0 0.70 0.70 0.67
30 0 0 17.86 17.86 16.30
31 0 0 0.92 0.92 0.90
32 0 0 1.02 1.02 0.99
33 0 0 1.01 1.01 0.97
34 0 0 0.99 0.99 0.96
35 0 0 0.94 0.94 0.91
36 0 0 0.89 0.89 0.87
37 46 0 1209.84 1196.33 3707.70
38 0 0 0.90 0.90 0.88
39 0 0 0.98 0.98 0.96
40 0 0 0.96 0.96 0.93
Bold: optimal solution, *: incorrect solution.

26

Table 4: Computational Results for Rubin’s Benchmark Instances

Name n Optimal
Time (s)

Bigras et al. [31] 512MB 2GB 20GB
prob401 15 90 4 0.56 0.56 0.49
prob402 15 0 1 0.01 0.01 0.01
prob403 15 3418 2 1.00 1.00 0.86
prob404 15 1067 1 0.82 0.82 0.74
prob405 15 0 1 0.01 0.01 0.01
prob406 15 0 1 0.01 0.01 0.01
prob407 15 1861 4 0.90 0.90 0.78
prob408 15 5660 5 1.55 1.55 1.37
prob501 25 261 56 4.29 4.29 3.64
prob502 25 0 13 0.03 0.03 0.03
prob503 25 3497 55 6.14 6.14 5.24
prob504 25 0 12 0.05 0.05 0.05
prob505 25 0 7 0.04 0.04 0.04
prob506 25 0 9 0.04 0.04 0.04
prob507 25 7225 220 8.85 8.85 7.65
prob508 25 1915 243 7.69 7.69 7.06
prob601 35 12 473 14.53 14.53 13.68
prob602 35 0 40 0.09 0.09 0.09
prob603 35 17587 (749) 39.95 39.93 34.16
prob604 35 19092 7613 53.67 53.68 46.69
prob605 35 228 828 30.57 30.57 27.41
prob606 35 0 71 0.10 0.10 0.10
prob607 35 12969 78768 38.96 38.96 34.31
prob608 35 4732 47787 66.89 66.86 61.85
prob701 45 97 3400 108.89 135.35 96.51
prob702 45 0 374 0.19 0.19 0.18
prob703 45 26506 109730 117.27 117.47 100.86
prob704 45 15206 18922 152.58 152.45 133.20
prob705 45 200 2636 3000.67 1814.05 3536.64
prob706 45 0 234 0.22 0.22 0.21
prob707 45 23789 630085 118.96 118.91 105.56
prob708 45 22807 170879 214.46 214.46 196.18
Bold: optimal solution.

27

Table 5: Computational Results for Gagné’s Benchmark Instances

Name n Optimal
Time (s)

512MB 2GB 20GB
prob551 55 183 354.67 389.65 285.92
prob552 55 0 0.35 0.35 0.32
prob553 55 40498 255.42 252.59 216.96
prob554 55 14653 587.09 586.88 529.32
prob555 55 0 0.60 0.60 0.56
prob556 55 0 0.37 0.37 0.35
prob557 55 35813 310.07 311.56 280.85
prob558 55 19871 493.17 492.76 446.43
prob651 65 247 12045.00 3441.09 2872.06
prob652 65 0 0.50 0.50 0.47
prob653 65 57500 542.40 536.89 467.16
prob654 65 34301 838.96 838.10 759.70
prob655 65 0 679.37 1032.64 2596.73
prob656 65 0 0.60 0.60 0.58
prob657 65 54895 569.81 570.36 515.91
prob658 65 27114 959.32 960.00 880.03
prob751 75 225 — — 34 days
prob752 75 0 0.88 0.88 0.84
prob753 75 77544 972.78 971.74 883.43
prob754 75 35200 1861.19 1861.12 1685.31
prob755 75 0 0.89 0.89 0.86
prob756 75 0 1.05 1.05 1.01
prob757 75 59635 2777.17 2908.40 3800.11
prob758 75 38339 2022.47 2022.26 1865.16
prob851 85 360 — — > 30 days
prob852 85 0 1.23 1.23 1.16
prob853 85 97497 15833.01 5023.96 1651.31
prob854 85 79042 2499.42 2451.33 2198.15
prob855 85 258 — — > 30 days
prob856 85 0 1.30 1.30 1.26
prob857 85 87011 6117.44 8156.66 6629.99
prob858 85 74739 3983.78 3951.11 3561.79
Bold: optimal solution, italic: best solution

28

