
 

1 

Computer simulation of wetting, capillary forces, and 

particle-stabilized emulsions: from molecular-scale to 

mesoscale modeling 

Hiroyuki Shinto* 

Department of Chemical Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan 

 

 

Phone: +81-75-383-2671, Fax: +81-75-383-2651, e-mail: shinto@cheme.kyoto-u.ac.jp 



 

2 

Abstract 

The present paper gives an overview of two methodologies for the computer simulation of wetting and 

capillary forces as well as particle-stabilized emulsions, which usually appear in a two-phase fluid 

system including solid bodies. One method is the molecular simulation with a coarse-grained model. 

The other is the computational fluid dynamics with a phase-field model. The main emphasis of this 

review is concerning our idea how to model the solid surfaces with wettability for the different 

simulation methods in the same spirit of “a simple modeling with focusing on hydrophilicity and 

hydrophobicity”. 
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1. Introduction 

 

When building a strong sand castle, you should moisten the sand with water. If the sand is too wet, it 

will be like mud: In contrast, if it is too dry, it will not pack well and simply fall apart. Meanwhile, if 

you observe carefully the floating matters on the surface of a liquid (e.g., garbage and bubbles floating 

on the surface of a river), you will find that they tend to gather spontaneously. In the former case 

moistening the sand causes the capillary bridge force between the sand grains [1-3], while in the latter 

case self-assembly of the floating matters on the liquid surface is driven by the lateral capillary force [3]. 

These two types of capillary forces appear not only around us and our natural world, but in a variety of 

industrial processes. In recent years, the lateral capillary forces have attracted considerable attention in 

material science and engineering, and are utilized for the formation of two- and three-dimensional 

arrays of colloid particles. 

In the present paper, we overview two methodologies for the computer simulation of wetting and 

capillary forces as well as particle-stabilized emulsions, which usually appear in a two-phase fluid 

system including solid bodies. One method is the molecular simulation with a coarse-grained model. 

The other is the computational fluid dynamics (CFD) with a phase-field model. In Sections 2 and 3, the 

overview and the applications of the coarse-grained model for molecular simulations are given, while 

those of the phase-field model for CFD are given in Sections 4 and 5. The relationship between the 

molecular-scale model and the mesoscale model is briefly explained in Section 4.3. In Section 6, we 

describe our expected future development of these simulation methods. 

 

 

2. Molecular-scale modeling: methods 

 

2.1. Molecular simulation 
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Molecular simulation is a molecular-scale technique to reproduce in silico (computationally) the 

motion of a limited number (typically, 10
2
10

6
) of molecules of interest using the molecular dynamics 

(MD) or the Monte Carlo (MC) method and thereby to estimate the static and dynamic properties of the 

molecular systems on the basis of statistical mechanics. It is noted that MC gives the static properties 

only. For details of MD and MC, see Refs. [4-7]. 

 

2.2. Coarse-grained model for molecular systems 

Here, we introduce a coarse-grained molecular model to mimic an oil/water/surfactant system [8-10]. 

The starting point of this model is to consider two types of particles, that is, hydrophilic particles (●; 

waterlike (w) and headlike (h) particles) and hydrophobic particles (○; oillike (o) and taillike (t) 

particles). All the molecules are represented by connecting these particles arbitrarily. Several examples 

of the coarse-grained model are illustrated in Fig. 1 [11-15]: (i) a water molecule consists of one w 

particle; (ii) an oil molecule consists of one o particle; and (iii) a surfactant molecule is composed of a 

headgroup of h particles and a tail chain of t particles, whose neighboring pairs are connected together. 

By connecting different number of particles h and t in different arrangement, the coarse-grained model 

can create surfactants with various molecular architectures. This is the essential idea of the coarse-

grained model. 

The non-bonded pairs i and j of the particles interact with each other via the truncated Lennard-Jones 

(12-6) potential with energy parameter , size parameter , and cutoff distance cut

( ) ( )i jr  : 
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where rij is the interparticle distance and (i) (= w, h, o, t) denotes the type of particle i. Because the 

potential of Eq. (1b) exhibits a single well of  at rij = 2
1/6 (= 1.12), it give repulsive and attractive 

interactions for rij < 2
1/6 and rij > 2

1/6, respectively. To represent the hydrophilicity and 

hydrophobicity of the particles (w, h, o, and t), different values of cut

( ) ( )i jr  , 2.5 and 2
1/6 are chosen 

depending on the types of pairs, as in Eq. (1c): The intraspecies interaction using cut

( ) ( ) 2.5i jr    

includes repulsive and attractive forces, whereas the interspecies interaction using cut 1/6

( ) ( ) 2i jr    is 

completely repulsive. 

It is worth noting that the above parameters are a typical set of the parameters used for the coarse-

grained model and should be finely tuned depending on the systems and phenomena of interest. The 

examples are given as follows. First, nonionic and ionic surfactants are frequently modeled using cut

hhr  = 

2.5 and 2
1/6 for hh interaction, respectively. In the latter case, only the repulsion exists between 

particles of the headgroups, which are designated by H instead of h [11,16,17] (see also Fig. 1). This is 

analogous to the electrostatic repulsion between charged headgroups of real ionic surfactants. Second, a 

binary fluid mixture of water molecules and hydrophobic molecules (e.g., dissolved gaseous molecules 

and oil molecules) is sometimes modeled using cut

oor  = 2
1/6

 instead of cut

oor  = 2.5 [18]. Third, the energy 

parameter  and the size parameter  do not have to be the same for all the particles as in Eq. (1b), but 

can be tuned depending on the types of the particles (w, h, o, and t) [19-24]. 

The neighboring particles in a surfactant molecule are connected together by the harmonic potential 

with the spring length l0 and spring constant kl: 

bond 2

( ) ( ) 0( ) ( )
2

l
i j ij ij

k
u r r l     (2) 

The values of l0 and kl must be chosen such that the bonds neither break up nor pass though each other 

during the course of simulations: typically, kl = 200/2
 and l0 =  are employed [13,14]. This model 

surfactant is flexible compared with a real surfactant whose conformation is restricted by the bending 

and torsional angles. Although it is possible to incorporate the potentials of these angles into the model 
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surfactant, this additional extension spoils the advantage of the coarse-grained model, that is, the 

simplicity (e.g., less computational cost and easy coding). If necessary, one should extend this model 

with considering a trade-off. 

Although the coarse-grained model is extremely simplified compared with the real molecules as 

mentioned above, it can reproduce, at least qualitatively, the essential features of an oil/water/surfactant 

system [8-10,19,20]: 

(i) oil and water hardly mix with each other; 

(ii) surfactant molecules are dissolved into oil and water, and spontaneously assemble therein when 

the surfactant concentration is sufficiently large; 

(iii) surfactant molecules adsorb at the oil/water interface and consequently reduce the interfacial 

tension. 

 

2.3. Solid surfaces with wettability 

 

The planar walls and the spherical colloids with the fluid-wettable surface can be modeled by 

arranging waterlike and/or oillike particles of Eq. (1) into planar and spherical shapes, respectively [25-

27], though numerous particles are required for this purpose. Alternatively, the smeared-out solid model 

is highly effective, when the molecular-scale corrugation/roughness of the surface and the 

compositional heterogeneity, that is, physical and chemical heterogeneities, are not important. In the 

smeared-out solid model, the interaction between a fluid particle and the solid surface is represented by 

the (10-4-3) or the (9-3) potential [28,29]. Because the (10-4-3) and the (9-3) potentials show a single-

well profile like the LJ (12-6) potential of Eq. (1b), the hydrophilicity and hydrophobicity of the solid 

surface for the fluid particles can be represented by choosing their cutoff distance like Eq. (1a) for a 

fluidfluid interaction [11]. The direct interaction between the solid surfaces is negligibly smaller than 

the fluid-induced interaction [12] and therefore is not considered in most of our studies [12-15]. 
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3. Molecular-scale modeling: applications 

 

3.1. Hydrophobic colloids in water including a trace amount of inert gaseous molecules 

 

Let us consider the system, where two hydrophobic colloids are immersed in water including a trace 

amount of inert gaseous molecules: the hydrogen bond of waterwater interaction (~10 kJ/mol) is 

dominant over the van der Waals interactions (~1 kJ/mol) between the inert gaseous molecules and 

between the inert gaseous molecule and the water molecule. Therefore, a water molecule and an inert 

gaseous molecule were modeled by one w particle and one g particle, respectively, using Eqs. (1a) and 

(1b) with 

cut cut cut 1/6

ww gg wg2.5 , 2r r r     (3) 

instead of Eq. (1c). To represent the hydrophobic colloids of radius a = 5, the cutoff distance of the 

potential was chosen such that the fluidcolloid interactions have no attractive forces, but the short-

distance-range repulsive forces originated from the excluded-volume effect. The thermodynamic state 

of the fluid was set as the reduced density of *
 = 3

 = 0.7 and the reduced temperature of T
*
 = kBT/ = 

1.0 [13,14], where kB is the Boltzmann constant. The physical quantities of LJ fluids are frequently 

normalized by the LJ units (energy , length , and mass m) and the resultant dimensionless quantities 

are referred to as the “reduced” quantities [4,6,7]. Henceforth, Xg is defined as the volume fraction of 

the g particles in the binary fluid mixture of the w and g particles. 

In the case of the pure waterlike fluid (Xg = 0), the density profile of fluid near the colloid surface 

demonstrates that the surface of hydrophobic colloids repelled the waterlike particles toward the bulk 

fluid region such that no dense layer of the waterlike particles formed anywhere, which is characteristic 

of dewetting [14]. This should be explained by the speculation that the waterlike particles exist in the 

bulk fluid more stably than near the colloid surface, since the attractive force of waterwater interaction 
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is stronger than that of watercolloid interaction in the present system [12,14]. Figure 2a displays the 

interaction force between the colloids, Fpp, as a function of the intersurface distance, D, where the force 

exhibited a monotonic attraction. This result is interpreted as follows: when the colloids approached 

each other, the unstable waterlike particles next to the colloid surfaces were pushed out into the bulk 

fluid, by which the total free energy of the system decreased consequently [12,14]. In contrast, when the 

colloid surfaces were hydrophilic, the surface force oscillated with the periodicity of the diameter of a 

waterlike particle () due to the presence of the dense layers of waterlike particles near the hydrophilic 

surfaces (see Refs. [12,13] and references therein). 

Next, we consider the waterlike fluid including a trace amount of inert gaseous particles (Xg = 0.003 

and 0.005). As shown in Fig. 3a for Xg = 0.005, the inert particles were significantly concentrated near 

the hydrophobic colloid surfaces to form their dense layers, the thickness of which was one-to-two 

diameters of the particles (2). This should result from the following behavior: the waterlike particles 

tended to push the inert particles out of the bulk fluid into the fluidcolloid interfacial region, since the 

presence of the inert particles in the bulk fluid led to the reduction of the attractive interactions among 

the waterlike particles and therefore was energetically unfavorable. The layer of inert particles near the 

colloid surface became denser and thicker with increasing the concentration of the inert particles, Xg. 

Parts b and c of Fig. 2 show that the surface forces for Xg = 0.003 and 0.005 exhibited a monotonically 

attractive profile in essence, though they had small oscillations with the distance periodicity of the fluid 

particle diameter ( ) near the contact point of D/ = 1. When the colloids were well separated from 

each other, the dense layers of inert particles existed independently of each other (see Fig. 3a), resulting 

in no attractive interaction between them (see Fig. 2c). At the onset of the attractive interaction between 

the colloids, the dense layers of inert particles fused together to bridge the gap between the colloid 

surfaces (see Fig. 3b). This is typical of capillary condensation and the accompanying capillary bridge 

force. As in Fig. 2, the onset distance of the attractive interaction became longer with increasing the 

concentration of the inert particles, where the layers of inert particles near the colloid surfaces became 

thicker to merge together at the longer separation distance between the colloids. 
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Similar results have been reported by other research groups [18,21]. Similar phenomena will be 

introduced in Section 5.1. 

 

3.2. Others 

 

The other studies of wetting and capillary force using the molecular simulation with the coarse-

grained model have been reported as follows: (i) the wettable colloid and plate in unsaturated vapor 

[15]; (ii) the hydrophilic colloids in binary fluid mixtures of alcohol and water [13,14]; (iii) the colloids 

with homeotropic anchoring surfaces in a nematic liquid crystal [30]; (iv) the colloids with polymer-

adsorbed surfaces [31]. 

 

 

4. Mesoscale modeling: methods 

 

4.1. Computational fluid dynamics 

 

Computational fluid dynamics (CFD) is a meso/macroscale technique to reproduce in silico the 

dynamic motion of fluids of interest by solving the NavierStokes equations or their derivative 

equations and thereby to estimate the physical quantities such as pressure, velocity, and density of the 

fluids. CFD has two descriptions, that is, the Eulerian and the Lagrangian descriptions. In the present 

paper, we introduce the former description, where the physical space of interest is divided into a lattice. 

The Eulerian CFD is classified into two computational techniques: the direct numerical simulation 

(DNS) and the lattice Boltzmann method (LBM). For more details of CFD, see Refs. [32-35]. 

 

4.2. Phase-field model for a two-phase fluid 

 



 

10 

Let us consider the phase separation in a binary mixture of “A” and “B” molecules, where the “A” 

rich phase coexists with the “B” rich phase, as illustrated in Fig. 4a. A phase-field model is very useful 

for simulating the motion of this two-phase flow. In this model, two phases are distinguished by the 

compositional order parameter, , which is a function of position x in the spatial lattice: the “A” rich 

and the “B” rich phases are defined as the regions of (x) = 1 and (x) = 2 (1 < 2), respectively, 

whereas the region of the intermediate values of 1 < (x) < 2 is considered as the interface between 

these two phases (see Fig. 4b). It is noted that this order parameter corresponds to the volume fraction of 

one component for a binary liquidliquid system or to the mass density of fluid for a single-component 

vaporliquid system (i.e., a mixture of “A” phantom molecules and “B” fluid molecules). 

The free energy density of the bulk phase without interface, f0(), is given by 

2 4

0 ( )
2 4

A B
f       (4) 

where A and B are positive constants. f0() exhibits a double-well profile shown in Fig. 4c and has two 

minima at  = 1 and 2, that is 

  3

0 1 2( )f A B B               (5a) 

1 2,
A A

B B
     (5b) 

The free energy functional of the system is obtained by integrating a sum of the bulk-phase free energy 

density and the interfacial energy density over the volume V composed of small elements dx (= dxdydz): 

 
1

( , ) ( )d
V

F t f 


 x x  (6a) 

2

0( ) ( )
2

K
f f      (6b) 

where K is a positive constant to determine the interfacial tension and  = 1/kBT. Equation (6) is referred 

to as the GinzburgLandau free energy [36,37]. The average composition of the system must be 

conserved, leading to 
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( , )d const
V

t  x x  (7) 

 

4.3. Relationship between phase-field model and coarse-grained molecular model 

 

Here, let us briefly explain how the phase-field model is correlated with the coarse-grained molecular 

model mentioned in Section 2.2. Given that “A” and “B” molecules identical to respectively the oillike 

and the waterlike particles employed in the coarse-grained model, one can consider the order parameter 

 as the difference in number between the oillike and waterlike particles in a volume element of dx, that 

is, the difference in volume fraction between these two species of particles. A summation of the 

interaction potentials of Eq. (1) over all pairs of the particles in the system and the entropy of mixing are 

approximated by the free energy of Eq. (6) with the constraint of Eq. (7), where the mean-field 

approximation and the GinzburgLandau expansion near the critical point are employed [37]. The lower 

limit of the spatial resolution should be 0.11 nm for the coarse-grained molecular model and 10100 

nm for the phase-field model, because the former is based on the coarse-grained molecules and the latter 

is on the compositional order parameter. The phase-field model takes no account of the molecular-scale 

structures of the liquidliquid and the vaporliquid interfaces, the actual thickness of which is less than 

1 nm. 

 

4.4. Time-evolution equations for an incompressible two-phase fluid flow 

 

The order parameter at position x and at time t,  = (x,t), evolves to minimize the total free energy 

of the system given by Eq. (6), following 

 2L
t


 


   


u  (8a) 

 
2

0

1 1
( )

F f f
f K


  

    

  
            

 (8b) 
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where L is the transport coefficient, u is the velocity of fluid, and  is the local chemical potential. The 

velocity of an incompressible fluid at position x and at time t, u = u(x,t), evolves following 

0 u  (9) 

    T
p

t
    

                 

u
u u u u g  (10) 

where p is the pressure, g is the body force including the gravity, and the third term of the right-hand 

side of Eq. (10) stems from the interfacial tension. The physical properties of mass density  and 

viscosity  are given by 

 1
2 1 1

2 1

( , )
( , )

t
t

 
    

 


   



x
x  (11a) 

 1
2 1 1

2 1

( , )
( , )

t
t

 
    

 


   



x
x  (11b) 

where 1 and 2 (1 and 2) are the density (viscosity) of “A” and “B” rich phases, respectively. 

In the research field of statistical physics, a set of Eqs. (8)(10) is referred to as the model H [36], the 

original form of which has the additional term of thermal fluctuations for the order parameter and the 

fluid velocity in the right-hand side of Eqs. (8a) and (10), respectively. Once solving the above 

equations numerically, one can observe in silico the motion of a two-phase fluid flow. 

 

4.5. Interfacial profile of a two-phase fluid 

 

Imagine a system with a half-space of “A” rich phase in coexistence with a half-space of “B” rich 

phase, where the interface is planar and parallel to the yz plane (perpendicular to the x axis) [37]. Then, 

one has only to consider a one-dimensional composition variation, (x), with boundary conditions: 

d
( ) , 0 at 

d

A
x x

B x


       (12) 

The function, (x), which minimizes the total free energy, F, is determined by the equation of  = 0 
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according to Eq. (8b): 

2
3

2

d
0

d
A B K

x


      (13) 

When multiplying the both sides of Eq. (13) by d/dx, one can integrate it as 

2 2
2 4 d

2 4 2 d 4

A B K A

x B


 

 
     

 
 (14) 

where Eq. (12) is used to determined the right-hand side of Eq. (14). The solution is then 

( ) tanh
2

A A
x x

B K


 
   

 
 (15) 

The profile of Eq. (15) corresponds to the half right-hand side of Fig. 4b. A measure of the width of the 

interfacial region is given by 

2K

A
   (16) 

One inserts this solution back into the free energy per unit area and subtracts off that of the bulk 

phases to find the interfacial tension: 

 
2

0 0

1 d
d ( ) /

2 d

K
x f f A B

x


  







  
      

   
  (17) 

Equation (17) with Eqs. (14) and (15) results in 

 
3/22 1/22d

d
d 3

A KK
x

x B




 





 
  

 
  (18) 

 

4.6. Solid surfaces with wettability 

 

Let us explain briefly how to model the fluid-wettable surface of solid bodies. A common technique 

for this is based on the Cahn model [38], where the free energy of Eq. (6a) has an additional surface 

term to describe the interactions at the interface between the solid and fluid. The additional term, FS, has 

a form 
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   S S

1
( , ) d

S
F t H S 


 x  (19) 

where xS is the position of solid surface, S is the total area of solid surface, and H is a constant 

parameter to control the wettability. When H = 0, the surface exhibits a neutral wettability for both “A” 

and “B” molecules. In the case of H < 0, the surface has a strong affinity for “A” molecules, whereas it 

has a strong affinity for “B” molecules in the case of H > 0. Thus, one can model the solid surface with 

arbitrary wettability by tuning the value of H in Eq. (19). It is noted that the order parameters at the 

solid surfaces, (xS,t), are dynamic variables in the Cahn model of Eq. (19) and hence they must be 

determined every time step. 

Alternatively, one can adopt the same approach as in the coarse-grained molecular model (see 

Section 2.3). Once a constant value ranging from 1 and 2 is pre-assigned to the compositional order 

parameters at the solid surface, (xS,t), the two-phase fluid near the solid surface should autonomously 

evolve to minimize the free energy of the system given by Eq. (6a). Indeed, the solid surface of (xS,t) 

 1 and (xS,t)  2 attracts the “A” and the “B” rich phases, respectively. When a drop of the “B” 

rich phase in the “A” rich phase spreads on the physicochemically homogeneous solid surface of (xS,t) 

 S, the equilibrium contact angle B,eq of the drop is given by the following expression [39]: 

 2B
B,eq Bcos 3

2


    (20a) 

S d
B

2 d

 


 





 (20b) 

1 2
d

2

 



  (20c) 

where the parameter B represents the affinity of solid surface for “B” molecules and satisfies 1  B  

1 (i.e., 1  S  2). One can model a solid surface with arbitrary wettability by tuning the parameter 

S (or B). When(xS,t)  0, the surface has a neutral wettability for both “A” and “B” molecules: for 

examples, a liquid drop of “A” or “B” rich phase on this solid surface exhibits the contact angle of 90˚ 
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and the colloids with this surface strongly attach to the interface between two phases to reduce the 

interfacial tension, which are referred to as surface-active properties. 

In addition to the homogeneous surfaces, one can model the physically and/or chemically 

heterogeneous surfaces using these two approaches [39,40]. In our model, Eq. (20) is valid for the 

homogeneous surfaces other than for the heterogeneous surfaces in principle; nevertheless, it can be a 

measure of the contact angle of a drop on a heterogeneous surface, once the average affinity of the 

surface is estimated [39]. 

 

4.7. Colloid particles in an incompressible two-phase fluid flow 

 

Here, let us consider N spherical colloids with radius a suspended in an incompressible two-phase 

fluid. The continuous concentration field of N colloids at 1{ , , }NX X  is 

   
1

, ,
N

i

i

t t 


x x  (21a) 

   ,i it g  x x X  (21b) 

where every colloid has the diffuse interface of thickness p (~x) and is represented by 

 
 

   
p

p p

/ 2

/ 2 / 2

h a r
g r

h a r h r a



 

  
 

       
   

 (22a) 

 
 

2 2exp / , 0

0, 0

x s s
h s

s

       
 

 (22b) 

which was proposed in Ref. [41]. As an alternative to Eq. (22), one can use 

 
1

tanh 1
2

a r
g r



  
    

   p

 (23) 
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which has been frequently used [42,43]. The form of Eq. (23) is equivalent to that of Eq. (15) for 

interfacial profile of a two-phase fluid. It should be noted that 0 ( ) 1g r   for Eq. (22) and 0 ( ) 1g r   

for Eq. (23). The profile of Eq. (22) is more compact than that Eq. (23), as pointed out in Ref. [41]. 

Similar to Eq. (6), the free energy functional for the fluid domain (1  ) and colloid domain () is 

given by 

     
22 p

0 p

1
, d

2 2V

KK
F f      



 
     

 
 x  (24) 

where the additional third term in the integral describes the fluid-wettable surface of colloids:  p is a 

constant parameter to control the wettability, and Kp is a positive parameter to constrain the 

compositional order parameter inside the colloids to be p and must be chosen as a large value 

compared with A and B appeared in Eq. (4) such that the free energy density inside the colloids without 

interface, f0() + Kp(  p)
2
/2, exhibits a single-well profile with a minimum at   p. It is noted that 

Eq. (24) is apparently similar to Eq. (2) of Ref. [44] and their difference is a choice of the models for 

wettability: the former is based on our idea [39], whereas the latter adopts the Cahn model [38]. 

Following Eq. (8b), the local chemical potential is calculated as 

 2

0 p p

1
( )f K K     


     
 

 (25) 

Like a set of Eqs. (8)(10), the time evolutions of the concentration and velocity fields,  and u, for 

the incompressible two-phase fluid including wettable colloids are described by 

0 u  (26a) 

   p pL
t


 


      
 

u I n n  (26b) 

    T

pp
t

    
                  

u
u u u u g f  (26c) 

where I is the unit tensor, and np = /|| is a surface-normal-vector field of N colloids. The 

operator (I  npnp) ensures the conservation of , because the no-penetration condition of np() = 0 
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is directly assigned at the diffuse interface; this idea was originally proposed for charged colloids in 

electrolytes [45]. The force field fp stemming from colloids is given by 

   
 p pp

p p

1

,
,

N
i

i i

i i

t
t

v





  
x

f f x F F  (27a) 

  34
, d

3
i i

V
v t a


  x x  (27b) 

where vi is the volume of i-th spherical colloid, Fi
p
 is the external force (except the gravity) acting on i-

th colloid, and Fi
pp

 is the force on i-th colloid interacting with other colloids: 

pp
pp

i

i

E
 


F

X
 (28a) 

   
1
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1

1 1

,...,
N N

N ij i j

i j i

E E E


  

  X X X X  (28b) 
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 
 



 


                         


 

 (28c) 

ij i jR  X X  (28d) 

where  and  should be taken as   a
n
 (n = 1 or 2) and 2

1/6  p, respectively, such that the colloids 

with the diffuse interface, the outermost radius of which is equal to a + p/2 because of Eq. (22), never 

overlap with each other. 

Mass density  and viscosity  of the simulation domain are given by 

     f p, 1 , ,t t t          x x x  (29a) 

     f p, 1 , ,t t t          x x x  (29b) 

respectively, where f and f for the fluid domain are given by Eqs. (11a) and (11b), respectively. In 

contrast, the setting of p and p for the colloid domain depends on the techniques for tracking the 
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motion of the colloids, which include the fluid particle dynamics (FPD) method [42], the smoothed 

profile (SP) method [41], and the others [43]. 

Hereafter, we employ the FPD method [42], where a colloidal suspension is treated as the 

undeformable but viscous fluid particles with the viscosity p suspended in a fluid domain with the 

viscosity f. In the limit of p/f  , the fluid particles can be regarded as solid ones. This viscosity 

ratio is a measure of the accuracy of this FPD approximation [42]. Practically, one should set as 

 p 1 250 max ,     (30) 

The translational and angular velocities of i-th colloid, Vi and i, are then calculated as 

   
d 1

d , ,
d

i
i i

V
i

t t
t v

    
X

V x u x x  (31a) 

      pd
d , ,

d

i
i i i i

V
i

t t
t I


      

Θ
Ω x x X u x V x  (31b) 

The mass and the principal moment of inertia for i-th spherical colloid, Mi and Ii, are respectively given 

by 

  3

p p p

4
, d

3
i i i

V
M t v a


      x x  (32a) 

 
2 5

p p

8
d ,

15
i i i

V
I t a


     

  x x X x  (32b) 

The position and orientation of i-th colloid, Xi and i, are obtained by integrating Eq. (31) numerically. 

 

 

5. Mesoscale modeling: applications 

 

5.1. Capillary bridge forces between wetting colloids in vapor 

 

Let us consider the mechanically equilibrated system with no gravity, where two wetting cylinders of 

radius a = 64.0x covered with liquid films of thickness 5x were placed in vapor. Here, x is the 
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lattice spacing and the density ratio of the liquid and vapor phases, L/V, was set at 5. Following Eq. 

(20), the wettability of the cylinders was chosen as L = 1 so that the equilibrium contact angle of a 

liquid drop thereon was equal to 0˚. The results were obtained from our LBM simulations [46]. 

Typical snapshots of the fluid densities are displayed in Fig. 5. The interaction force per unit length 

between these two cylinders is shown in Fig. 6 as a function of the intersurface distance D, where LV is 

the interfacial tension between the liquid and vapor. When the cylinders were well separated from each 

other, the liquid films adsorbed on the cylinder surfaces existed independently of each other (see Fig. 

5a), resulting in the zero interaction forces at the distances of D  15x (see Fig. 6). When the two 

cylinders came closer, the force suddenly became attractive at D = 14x. At the onset of this attraction, 

the liquid films fused together to bridge the gap between the cylinders (see Fig. 5b). This attraction is 

referred to as the capillary bridge force. The phenomena mentioned here (Figs. 5 and 6) are essentially 

the same as those in Section 3.1 (Figs. 2 and 3), although there are the differences in bulk/bridge phases 

between the former and the latter. These capillary-induced phase transition and accompanying capillary 

bridge force have been frequently found in the experiments as well as our daily life [2]. 

 

5.2. Lateral capillary forces between colloids at liquidvapor interface 

 

Let us consider the mechanically equilibrated system with gravity, where two horizontal wetting 

cylinders of radius a = 7.9x were placed at a liquidvapor interface. The density ratio of the liquid and 

vapor phases, L/V, was set at 5. The results were obtained from our LBM simulations [46]. The 

snapshots of the fluid densities shown in Fig. 7 illustrate that the liquid surface near the cylinders was 

deformed, depending on the wettablities of the cylinder surfaces: the wetting cylinders pulled up the 

liquid surface, while the nonwetting cylinders pushed it down. Here, the wetting and nonwetting 

cylinders had L = 0.5 and 0.5 (i.e., L,eq = 47˚ and 133˚), respectively [see Eq. (20)]. 
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The interaction forces per unit length between these two cylinders are shown in Fig. 8 as a function of 

the intersurface distance D. The forces between a pair of the wetting or the nonwetting cylinders were 

attractive, while those between the wetting and nonwetting cylinders were repulsive. These forces are 

referred to as lateral capillary force, which is clearly distinguished from capillary bride force mentioned 

in Sections 3.1 and 5.1. As in Fig. 8, the lateral capillary forces between these two cylinders became 

stronger with decreasing the intersurface distance. The forcedistance profiles obtained from our 

simulation reasonably agreed with those from the theoretical prediction. It should be noted that an 

interface between two phases represented by the phase-field model is diffuse rather than sharp, as 

expected from Eq. (15). Indeed, the liquid/vapor interface shown in Fig. 7 had a width of about 8x, 

where  = 1.8x was obtained according to Eqs. (15) and (16) [39]. This explains the reason why the 

interaction forces of our simulation shown in Fig. 8 deviated from those of the theoretical prediction at 

D < 20x, although our LBM enabled us to estimate them at the distances down to D = 2.6x [46]. 

The effects of the interfacial tension and the gravitational acceleration on the lateral capillary forces 

were also investigated in our study [47]. 

One can utilize the lateral capillary force as a driving force in order to form two-dimensional arrays 

of colloid particles at air/liquid interfaces, liquid/liquid interfaces, and solid surfaces. 

 

5.3. Oil drop covered with surface-active colloids in water under shear 

 

As far as the two-phase fluids including the immobile colloids are concerned, one has only to solve 

numerically the equations of motion for the fluids other than for the colloids, the effects of which are 

considered via the boundary conditions (e.g., no-slip condition) as well as the wettability of the colloid 

surfaces (see Section 4.6). This is the case for Sections 5.1 and 5.2, in which LBM was employed. 

Hereafter, we consider the mobile colloids in a liquidliquid mixture, modeled by the techniques 

explained in Section 4.7, where we employed DNS other than LBM. 

A set of the parameters was chosen as A = B = Kp = 2, K = 0.5, L = 2, f (= 1 = 2) = p = 1, f (= 1 
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= 2) = 1, p = 50, a = 3, p = 2,  = 0.173, and  = 2, where  = 0.7x was obtained from Eq. (16). The 

equations of motion for the fluid and the colloid particles in a two-dimensional space were solved by the 

finite-difference schemes with the staggered grids, where the lattice space of x = 1 and the time 

increment of t = 0.01 were used. A hybrid scheme of the MAC (Marker-and-Cell) [48,49] and the 

SMAC (Simplified MAC) methods [50,51] was employed for the time-evolution of Eq. (26c), where the 

Poisson’s equations for the pressurevelocity coupling of Eqs. (26a) and (26c) were solved by the Bi-

CGSTAB (Bi-Conjugate Gradient STABilized) method [52]. The type-B CIP (Cubic-Interpolated 

Propagation or Constrained Interpolation Profile) scheme [53] and the explicit Euler scheme were used 

for the time-evolution of Eq. (26b) and Eq. (31), respectively. More details of our DNS technique will 

be given elsewhere. 

As shown in Fig. 9a, a single oil drop (1 = 1) of radius adrop = 20 was covered with N = 10 surface-

active colloids of a = 3 and p = 0, and was placed in water (2 = 1), which filled in the simulation 

region of 250x  100x. The upper and lower walls horizontally moved at the velocity of 0.5 and 0.5, 

respectively, and the periodic boundary conditions were applied to the horizontal directions. This 

Pickering emulsion deformed more significantly with time, as shown in Fig. 9 (see also Video Data). 

The degree of this deformation was influenced not only by the number of the surface-active colloids but 

also by their initial position: the former determines the reduction of interfacial tension of the emulsion, 

whereas the latter influences the drag force acting on the colloids by shear. 

Similar CFD studies have been reported by other research groups [44,54-57]. 

 

 

6. Concluding remarks 

 

In the present paper, we overview two methodologies for the computer simulation of wetting and 

capillary forces as well as particle-stabilized emulsions. As for molecular simulations based on the 

coarse-grained model overviewed in Section 2, the main focus has been on the interactions between 



 

22 

physicochemically homogeneous, undeformable solid surfaces immersed in simple fluids rather than 

complex fluids. In the immediate future, the vigorous efforts should be focused on complex fluids 

containing amphiphiles [13,14,23] and polymers [31], interfaces between different phases (e.g., 

liquidliquid and liquidvapor interfaces containing amphiphilic molecules), colloid particles with the 

physicochemically heterogeneous surfaces [22,23,27], and soft deformable particles, where one should 

explore not only the interaction forces between the particles in the complex fluids but also the static and 

dynamics behaviors of these particle suspensions from a molecular point of view. These simulation 

studies become increasingly important for the handling and processing of advanced, functionalized 

particulate materials with high accuracy. 

Because of the computational cost, however, the molecular dynamics technique using individual 

molecules is limited to the short-time simulations of small systems, which hardly address the 

industrially fundamental issues such as the collective behavior of the colloids suspended in complex 

fluids and the effects of flows on it. For this reason, the CFD with the phase-field model overviewed in 

Section 4 is very effective and useful as one of the mesoscale techniques to address the issues as well as 

those mentioned in Section 5. A better understanding of the nonequilibrium phenomena of complex 

fluids containing colloid particles, in which “interfaces” and “flows” play a crucial role, will give the 

guidelines of fundamental importance for highly precise and efficient manufacturing processes of 

industrial products, such as composite materials, composite particles, cosmetics, food, and 

pharmaceutical products. 
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Nomenclature 

 

A parameter for free energy of bulk phase (m
3

) 

a radius of colloid or droplet (m) 

B parameter for free energy of bulk phase (m
3

) 

D intersurface distance between colloids (m) 

E interaction potential between colloids (J) 

F total free energy of system (J) 

Fpp interaction force between colloids (N, N m
1

) 

F force on colloid (N) 

f free energy density (m
3

) 

f0 free energy density of bulk phase (m
3

) 

f force field (N m
3

) 

g profile of colloid with diffuse interface () 

g body force acting on fluid (m s
2

) 

H parameter for wetting energy (m
2

) 

I principal moment of inertia for colloid (kg m
2
) 

I unit tensor () 

K parameter for interfacial energy (m
1

) 

Kp parameter for fluid-wettable surface of colloid (m
3

) 

kB Boltzmann constant (J K
1

) 

kl spring constant for harmonic potential (J m


) 

L transport coefficient (m
5
 s
1

) 

l0 spring length for harmonic potential (m) 

M mass of colloid (kg) 

m mass of LJ particle (kg) 

N number of colloids () 

n surface-normal-vector field of colloids () 

p pressure of fluid (Pa) 
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R center-to-center distance between colloids (m) 

r distance between fluid particles (m) 

S total area of solid surface (m
2
) 

T temperature (K) 

t time (s) 

u interaction potential between fluid particles (J) 

u velocity of fluid (m s
1

) 

V total volume of system (m
3
) 

V velocity of colloid (m s
1

) 

v volume of colloid (m
3
) 

X volume fraction of fluid component () 

X position of colloid (m) 

x position of lattice node (m) 

x,y,z Cartesian coordinates (m) 

 1/kBT (J
1

) 

 affinity of solid surface for fluid molecules ()

 interfacial tension (J m
2

) 

  shear rate (s
1

) 

x lattice spacing (m) 

 energy parameter for LJ potential (J) 

 concentration field of colloid(s) () 

 viscosity (Pa s) 

 local chemical potential (J m
3

) 

 orientation of colloid (rad) 

 number density or mass density (m
3

, kg m
3

) 

 size parameter for LJ potential (m) 

 angular velocity of colloid (rad s
1

) 

 interfacial thickness (m) 

 compositional order parameter () 
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Super-scripts and sub-scripts 

f fluid 

g inert gaseous particle 

h headlike hydrophilic particle of amphiphile 

i,j index of fluid particle or colloid  

o oillike particle 

p colloid particle 

S surface of solid body 

T transverse 

t taillike hydrophobic particle of amphiphile 

w waterlike particle 

(i) species of fluid particle i 

* reduced quantity for LJ fluid 
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Fig. 1.  Coarse-grained model for the molecular simulation of an oil/water/surfactant system including 

spherical colloids. 

Fig. 2.  Interaction forces between two hydrophobic colloids of radius a = 5 as a function of the 

intersurface distance D in a waterlike fluid containing trace amounts of inert gaseous particles at the 

volume fraction of Xg = 0 (a), 0.003 (b), and 0.005 (c).  

Fig. 3.  Contour maps of the density of inert particles near the hydrophobic colloids for the intersurface 

distance of D/ = 8.0 (a) and 5.8 (b) in a waterlike fluid containing inert particles at Xg = 0.005. Six 

colors from white to black indicate a region of densities 010, 1020, 2030, 3040, 4050, and more 

than 50, respectively, which are normalized such that the value of 1 indicates the density in the bulk. 

The dashed lines depict the surface of the hydrophobic colloids. See also Fig. 2c. 

Fig. 4.  (a) Illustration of a two-phase fluid system, (b) the cross section of the compositional order 

parameter profile of panel a, and (c) the free energy density of the bulk phase as a function of the 

compositional order parameter. 

Fig. 5.  Snapshots of two wetting cylinders of radius a = 64.0x covered with liquid films of thickness 

5x in vapor at the intersurface distance of D = 15x (a) and 14x (b). Redrawn from Ref. [46]. 

Fig. 6.  Interaction force between two wetting cylinders covered with liquid films in vapor as a function 

of the intersurface distance D. See also Fig. 5. The line is a guide for the eyes. Redrawn from Ref. [46]. 

Fig. 7.  Snapshots of two horizontal cylinders of radius a = 7.9x and different surface wettabilities, 

which are separated by the intersurface distance D = 32.2x and trapped at a liquidvapor interface in a 

gravitational field: (A) two wetting cylinders; (B) two nonwetting cylinders; (C) wetting and nonwetting 

cylinders. Redrawn from Ref. [46]. 

Fig. 8.  Interaction forces between two horizontal cylinders trapped at a liquidvapor interface in a 

gravitational field as a function of the intersurface distance D: (A) two wetting cylinders; (B) two 



 

28 

nonwetting cylinders; (C) wetting and nonwetting cylinders. See also Fig. 7. The lines indicate the 

theoretical predictions. Redrawn from Ref. [46]. 

Fig. 9.  Snapshots of a single oil drop (blue color) covered with 10 surface-active colloids (red color) in 

water (green color) under shear at normalized time of t  = 0 (a), 3.0 (b), 4.5 (c), and 6.0 (d). See also 

Video Data. (For interpretation of the references to color in figure legend, the reader is referred to the 

web version of the article.) 
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