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Abstract

We obtain Nekrasov-type expressions for the Seiberg–Witten prepotential for the

six-dimensional (1,0) supersymmetric E-string theory compactified on T 2 with non-

trivial Wilson lines. We consider compactification with four general Wilson line

parameters, which partially break the E8 global symmetry. In particular, we inves-

tigate in detail the cases where the Lie algebra of the unbroken global symmetry is

En⊕A8−n with n = 8, 7, 6, 5 or D8. All our Nekrasov-type expressions can be viewed

as special cases of the elliptic analogue of the Nekrasov partition function for the

SU(N) gauge theory with Nf = 2N flavors. We also present a new expression for

the Seiberg–Witten curve for the E-string theory with four Wilson line parameters,

clarifying the connection between the E-string theory and the SU(2) Seiberg–Witten

theory with Nf = 4 flavors.

July 2012



1. Introduction

The E-string theory is one of the simplest interacting quantum field theories with

(1,0) supersymmetry in six dimensions [1–5]. It is obtained as the low energy theory

of the heterotic string theory on K3 when an E8 instanton shrinks to zero size [1,2].

The theory is decoupled from gravity. It is probably a conventional local quantum

field theory, though it does not have a Lagrangian description. Another unusual

feature is that fundamental excitations are strings, called E-strings, rather than

particles. The moduli space of vacua consists of a Coulomb branch with one tensor

multiplet and a Higgs branch with 29 hypermultiplets. There are no vector multiplets

and E8 appears as a global symmetry group.

The E-string theory shows extremely rich properties when toroidally compactified

down to lower dimensions [3–12]. In the compactified theories one can break the E8

global symmetry by coupling its currents to the background E8 gauge field with

nontrivial Wilson lines. For each circle of the toroidal compactification there are

eight Wilson line parameters taking their values in the Cartan torus of E8. By

turning on these parameters, one can break E8 to its subgroups and realize models

with various global symmetries.

When the theory is toroidally compactified down to four dimensions, the low

energy dynamics in the Coulomb branch is described by Seiberg–Witten theory [13,

14]. The Seiberg–Witten curve was constructed with the most general Wilson line

parameters [4, 15]. Recently, it was found that the Seiberg–Witten prepotential

admits a Nekrasov-type expression [16]. The expression is for the case with no Wilson

line parameters. In this paper we present a Nekrasov-type expression with four

general Wilson line parameters. It is verified up to a sufficiently high order (involving

Young diagrams with 10 boxes) that the prepotential given by this expression is in

perfect agreement with that computed from the Seiberg–Witten curve.

The Seiberg–Witten curve with full eight Wilson line parameters takes a rather

complicated form. In the case of four Wilson line parameters, however, the curve

reduces to a much simpler expression. Interestingly, it is expressed in terms of the

curve for the SU(2) Seiberg–Witten theory with Nf = 4 flavors. It has been known

that the low energy theory of the E-string theory on T 2 can flow to that of the

four-dimensional SU(2) Nf = 4 theory. In particular, it was argued that the SL(2,Z)

duality of the latter theory is derived from the SL(2,Z) action on the T 2 [4]. Our

expression clarifies how it occurs, in particular how the SO(8) triality emerges from

the E-string theory.
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By adjusting four Wilson line parameters to special values, one can realize the

cases where the Lie algebra of the unbroken global symmetry is En ⊕ A8−n with

n = 8, 7, 6, 5 or D8. We present explicit forms of the Seiberg–Witten curves and the

Nekrasov-type expressions for these specific cases. In each of these cases the Seiberg–

Witten prepotential counts multiplicities of BPS E-strings wound around one of the

circles of the toroidal compactification with general winding numbers and momenta.

The multiplicities are equivalent to Gromov–Witten invariants associated with the

En del Pezzo surface or P
1 × P

1 embedded in a Calabi–Yau threefold [3, 9, 17, 18].

Our Nekrasov-type expressions provide us with the generating functions of these

invariants in very simple, closed forms. In particular, these expressions respect the

modular properties of the partition functions of wound BPS E-strings [5, 11, 12].

As in the case with no Wilson line parameters [16], our Nekrasov-type expression

can be viewed as a special case of the elliptic analogue of the Nekrasov partition

function for the SU(4) gauge theory with Nf = 8 flavors [19, 20]. Moreover, for

particular values of the Wilson line parameters our expression can be embedded in

the elliptic analogue of the Nekrasov partition functions for the SU(N) Nf = 2N

theories with N = 3, 2. In fact, for all the cases with En ⊕ A8−n with n = 8, 7, 6, 5

and D8 the Nekrasov-type expressions can be viewed as special cases of the elliptic

Nekrasov partition function for the SU(3) Nf = 6 theory. Furthermore, expressions

for the cases with E7 ⊕ A1, E5 ⊕ A3 and D8 can also be viewed as special cases of

the elliptic Nekrasov partition function for the SU(2) Nf = 4 theory.

The organization of this paper is as follows. In section 2, we present our new

expression for the Seiberg–Witten curve with four general Wilson line parameters

and discuss its properties. In section 3, we present the Nekrasov-type expression with

four Wilson line parameters. We then focus on some particular cases in which the

general formula reduces to a sum over fewer partitions. In section 4, we investigate

in detail the cases with global symmetries En ⊕ A8−n with n = 8, 7, 6, 5 and D8.

Conventions of special functions are summarized in Appendix A.

2. Seiberg–Witten curve with four Wilson line parameters

In this section we present a new expression for the Seiberg–Witten curve for the

E-string theory compactified on T 2 with four Wilson line parameters. We clarify

how it is related to the Seiberg–Witten curve for the four-dimensional SU(2) gauge

theory with Nf = 4 flavors.

The Seiberg–Witten curve for the E-string theory compactified on T 2 with the
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most general Wilson line parameters was constructed in [4,15]. (An improved expres-

sion in terms of E8-invariant Jacobi forms is available in [21].) It takes the following

form

y2 = 4x3 − fx− g (2.1)

with

f =
4

∑

j=0

aju
4−j, g =

6
∑

j=0

bju
6−j. (2.2)

The coefficients aj, bj depend on nine complex parameters, τ and µ = (µ1, . . . , µ8).

τ is the complex modulus of the T 2 and µ are the Wilson line parameters which

specify the background E8 gauge field along the T 2 [6]. In this paper we restrict

ourselves to the cases in which Wilson line parameters take the form

µ = (m1, m2, m3, m4, m1, m2, m3, m4) (2.3)

or

µ = (0, 0, 0, 0, m1 +m2, m1 −m2, m3 +m4, m3 −m4). (2.4)

These two configurations are related to each other by a sequence of E8 Weyl reflec-

tions and thus correspond to the same curve. Keeping this embedding in mind, we

hereafter specify the Wilson line parameters by the following short notation

m = (m1, m2, m3, m4). (2.5)

The most general Seiberg–Witten curve for the E-string theory is invariant under

the automorphism group consisting of affine E8 Weyl group and SL(2,Z) [22]. From

this one can easily deduce the automorphism of the curve in the present setup as

follows. The curve with four Wilson line parameters is invariant under the following

transformations

• mi ↔ mj for any i 6= j, (2.6)

• mi ↔ −mi for any i, (2.7)

• mi → mi −
1

2

4
∑

j=1

mj for all i = 1, . . . , 4, (2.8)

• m → m+w, w ∈ Γw. (2.9)

Here Γw denotes the weight lattice of D4,

Γw :=
{

w ∈ Z
4 ∪

(

Z+ 1
2

)4}
. (2.10)
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The group generated by the above transformations is in fact the affine automorphism

group of Γw. There is also an SL(2,Z) automorphism generated by the following

transformations

• τ → τ + 1, (2.11)

• τ → −
1

τ
, m →

m

τ
with (u, x, y) → (τ−6Lu, τ−10L2x, τ−15L3y), (2.12)

where

L := e2πi|m|2/τ . (2.13)

In principle, the explicit form of the curve with four Wilson line parameters is

obtained by simply substituting (2.3) or (2.4) into the expression in [21]. However,

the expression constructed in this way is rather complicated for practical purposes.

In what follows we will express the same Seiberg–Witten curve in a more convenient

form by means of the curve for the SU(2) gauge theory with Nf = 4 fundamental

hypermultiplets. Recall that the Seiberg–Witten curve for the SU(2) Nf = 4 theory

is given by [14]

ỹ2 = W1W2W3 +A(W1T1(e2 − e3) +W2T2(e3 − e1) +W3T3(e1 − e2))−A2N (2.14)

with

Wi = x̃− eiũ− e2iR,

A = (e1 − e2)(e2 − e3)(e3 − e1),

R =
1

2

∑

i

M2
i ,

T1 =
1

12

∑

i>j

M2
i M

2
j −

1

24

∑

i

Mi
4,

T2 = −
1

2

∏

i

Mi −
1

24

∑

i>j

M2
i M

2
j +

1

48

∑

i

M4
i ,

T3 =
1

2

∏

i

Mi −
1

24

∑

i>j

M2
i M

2
j +

1

48

∑

i

M4
i ,

N =
3

16

∑

i>j>k

M2
i M

2
j M

2
k −

1

96

∑

i 6=j

M2
i M

4
j +

1

96

∑

i

M6
i ,

e1 =
ϑ4
3 + ϑ4

4

12
, e2 =

ϑ4
2 − ϑ4

4

12
, e3 =

−ϑ4
2 − ϑ4

3

12
. (2.15)

Here ϑk := ϑk(0, τ) are the Jacobi theta functions (see Appendix A). τ denotes the

complexified bare gauge coupling and M1, . . . ,M4 are the masses of the fundamental
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hypermultiplets. To obtain the Seiberg–Witten curve for the E-string theory, let us

first make the following transformation of variables,

ũ = −
η24

l2
(u+ u0)−

E6

12E4
R,

x̃ = −
η24

l2(u− u0)
x+

E4

72
R,

ỹ2 = −
η72

4l6(u− u0)3
y2. (2.16)

Here E2k := E2k(τ) and η := η(τ) are the Eisenstein functions and the Dedekind eta

function respectively. The curve (2.14)–(2.15) can then be written in the form

y2 = 4x3−
(

ã0u
2 + ã1u+ ã2

)

(u−u0)
2x−

(

b̃0u
3 + b̃1u

2 + b̃2u+ b̃3

)

(u−u0)
3. (2.17)

Here ãj, b̃j are some functions in τ , lMi and u0. l is a parameter that gives an inverse

mass scale. It can be absorbed in the definitions of ũ, x̃, ỹ and Mi, but let us keep it

for later use. Next, we identify the parameters as

u0 =
1

2η12E4

∑

σ∈S4

4
∏

j=1

ϑj(mσ(j), τ)
2 (2.18)

and

lM1 =

4
∏

j=1

ϑ1(mj , τ)−

4
∏

j=1

ϑ2(mj , τ),

lM2 =

4
∏

j=1

ϑ1(mj , τ) +

4
∏

j=1

ϑ2(mj , τ),

lM3 =
4
∏

j=1

ϑ3(mj , τ)−
4
∏

j=1

ϑ4(mj , τ),

lM4 =

4
∏

j=1

ϑ3(mj , τ) +

4
∏

j=1

ϑ4(mj , τ). (2.19)

In (2.18), σ denotes a permutation of {1, 2, 3, 4} and the sum is taken over all such

permutations. Under this identification the curve (2.17) coincides precisely with the

Seiberg–Witten curve for E-string theory [15, 21] with the Wilson line parameters

given by (2.3) or (2.4).

By reversing the above construction, one can reproduce the Seiberg–Witten curve

for the SU(2) Nf = 4 theory from that of the E-string theory. The reader might
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think that the transformation (2.16) is artificial because x and y are rescaled by

u-dependent factors. One could use the following linear transformation

u = −
l2

η24

(

ũ+
E6

12E4
R

)

− u0,

x =
2l2u0

η24

(

x̃−
E4

72
R

)

,

y2 =
32l6u3

0

η72
ỹ2, (2.20)

instead of (2.16). The curve (2.14) is then obtained by taking the limit l → 0. In

fact, under this limit the identification (2.16) coincides with (2.20).

In the above reduction the bare gauge coupling τ of the SU(2) Nf = 4 theory is

identified with the complex modulus τ of T 2 on which the E-string theory is compact-

ified. This means that the SL(2,Z) duality of the Nf = 4 theory is identified with the

SL(2,Z) action of the T 2 [4]. Recall that the SL(2,Z) duality of the SU(2) Nf = 4

theory is mixed with SO(8) triality [14]. That is, the spectrum of the theory is not

invariant under the transformations τ → τ +1 and τ → −1/τ , but is invariant under

the combinations

• τ → τ + 1 with

M1 → M1,

M2 → M2,

M3 → M3,

M4 → −M4

(2.21)

and

• τ → −
1

τ
with

M1 →
1
2
(M1 +M2 +M3 −M4),

M2 →
1
2
(M1 +M2 −M3 +M4),

M3 →
1
2
(M1 −M2 +M3 +M4),

M4 →
1
2
(−M1 +M2 +M3 +M4).

(2.22)

In (2.19) Mi are identified with functions in τ and mj . Modular transformations

of these functions precisely reproduce the above transformations of Mi (up to an

overall factor which can be absorbed into l). This peculiar identification was first

found in [22], where a different connection between the two theories was considered.

The identification (2.19) admits the following interpretation in connection with

the automorphism group of the curve. We saw that the automorphism group of the
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present Seiberg–Witten curve is governed by the weight lattice of D4 denoted by Γw.

This lattice can be viewed as the union of four sublattices

Γw = Γb ∪ Γv ∪ Γs ∪ Γc, (2.23)

where

Γb :=
{

w = (w1, w2, w3, w4) ∈ Z
4
∣

∣

∑4
j=1wj ∈ 2Z

}

,

Γv :=
{

w = (1, 0, 0, 0) + v
∣

∣ v ∈ Γb

}

,

Γs :=
{

w =
(

1
2
, 1
2
, 1
2
, 1
2

)

+ v
∣

∣ v ∈ Γb

}

,

Γc :=
{

w =
(

−1
2
, 1
2
, 1
2
, 1
2

)

+ v
∣

∣ v ∈ Γb

}

. (2.24)

In terms of these sublattices, (2.19) can be expressed as

lM1 = −2Θc(τ,m), lM2 = 2Θs(τ,m),

lM3 = 2Θv(τ,m), lM4 = 2Θb(τ,m), (2.25)

where ΘR(τ,m) is the theta function for sublattice ΓR,

ΘR(τ,m) :=
∑

w∈ΓR

exp
(

πiw2τ + 2πiw ·m
)

. (2.26)

Note that ΘR(τ,m)/η(τ)4 with R = b, v, s, c respectively give the characters of

the basic, vector, spinor, conjugate-spinor representations of the affine D4 algebra.

Therefore (2.25) means that the masses of the hypermultiplets in SU(2) Nf = 4

theory are essentially identified with these affine D4 characters.

Note that the D4 symmetry acting on the Wilson line parameters mj should not

be confused with the D4 symmetry acting on the masses Mi. The two D4 symmetries

are related in a nontrivial manner. For instance, the exchange of M2 for M3 is an

element of the Weyl group of the latter D4. We see from (2.25) that this corresponds

to the exchange of Γs for Γv, which is an outer automorphism of the former D4.

In the rest of this section let us sketch out how to calculate the prepotential

from the Seiberg–Witten curve. Our Seiberg–Witten curve given by (2.14)–(2.19) is

expressed in the Weierstrass form. An elliptic curve in the Weierstrass form can be

parametrized as

y2 = 4x3 −
1

12

E4(τ̃)

ω4
x−

1

216

E6(τ̃ )

ω6
. (2.27)

Here τ̃ is the complex structure modulus and ω (multiplied by 2π) is one of the

fundamental periods of the elliptic curve. By comparing this expression with the
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explicit form of the Seiberg–Witten curve, one can calculate ω(u, τ,m), τ̃ (u, τ,m) as

series expansions in 1/u. They are related to the scalar vev ϕ and the prepotential

F0 by

∂uϕ =
i

2π
ω, (2.28)

∂2
ϕF0 = 8π3i(τ̃ − τ). (2.29)

These relations parametrically determine the function F0(ϕ, τ,m). The integration

constants are determined accordingly. The reader is referred for the details of these

calculations to [21].

3. Nekrasov-type expression with four Wilson line parameters

In this section we present an explicit expression for the Seiberg–Witten prepotential

for the E-string theory with four Wilson lines and discuss its properties.

3.1. General expression

Let R(N) = (R1, . . . , RN) denote an N -tuple of partitions. Each partition Rk is a

nonincreasing sequence of nonnegative integers

Rk = {νk,1 ≥ νk,2 ≥ · · · ≥ νk,ℓ(Rk) > νk,ℓ(Rk)+1 = νk,ℓ(Rk)+2 = · · · = 0}. (3.1)

Here the number of nonzero νk,i is denoted by ℓ(Rk). Rk is represented by a Young

diagram. We let |Rk| denote the size of Rk, i.e. the number of boxes in the Young

diagram of Rk:

|Rk| :=
∞
∑

i=1

νk,i =

ℓ(Rk)
∑

i=1

νk,i. (3.2)

Similarly, the size of R(N) is denoted by

|R(N)| :=
N
∑

k=1

|Rk|. (3.3)

We let R∨
k = {ν∨

k,1 ≥ ν∨
k,2 ≥ · · · } denote the conjugate partition of Rk. We also

introduce the notation

hk,l(i, j) := νk,i + ν∨
l,j − i− j + 1, (3.4)

which represents the relative hook-length of a box at (i, j) between the Young dia-

grams of Rk and Rl.
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In our expression we consider a sum over four partitions. For our present purpose,

it is convenient to express these partitions as

R(4) = (R1, R2, R3, R4) = (R11, R10, R00, R01). (3.5)

The prepotential is then given by

F0 = (2~2 lnZ)
∣

∣

~=0
, (3.6)

where

Z =
∑

R
(4)

Q|R(4)|
∏

a,b,c,d

∏

(i,j)∈Rab

ϑab

(

1
2π
(j − i)~ +mcd, τ

)

ϑab

(

1
2π
(j − i)~−mcd, τ

)

ϑ1−|a−c|,1−|b−d|

(

1
2π
hab,cd(i, j)~, τ

)2

(3.7)

and

Q := e2πiϕ+πiτ . (3.8)

Here the sum is taken over all possible partitionsR(4) (including the empty partition).

Indices a, b, c, d take values 0, 1, while a set of indices (i, j) run over the coordinates

of all boxes in the Young diagram of Rab. ϑab(z, τ) are the Jacobi theta functions

(see Appendix A). hab,cd(i, j) is the relative hook-length defined between partitions

Rab and Rcd. mab are the Wilson line parameters, which are identified with those

appearing in the Seiberg–Witten curve by

m = (m1, m2, m3, m4) = (m11, m10, m00, m01). (3.9)

If we set m = 0, the expression reduces to the one studied in [16].

We find that the above F0 coincides with the prepotential computed from the

Seiberg–Witten curve in the last section. We verified it by computing the series

expansion of F0 in Q independently by each of the methods and comparing the

coefficients up to order Q10. In doing this, the following identities

ϑab(m+ z, τ)ϑab(m− z, τ)

= ϑ00(2m, 2τ)ϑa0(2z, 2τ) + (−1)bϑ10(2m, 2τ)ϑ1−a,0(2z, 2τ) (3.10)

=
1

2

[(

ϑ00(2m, 2τ)

ϑa0(0, 2τ)
+ (−1)b

ϑ10(2m, 2τ)

ϑ1−a,0(0, 2τ)

)

ϑ00(z, τ)
2

+ (−1)a
(

ϑ00(2m, 2τ)

ϑa0(0, 2τ)
− (−1)b

ϑ10(2m, 2τ)

ϑ1−a,0(0, 2τ)

)

ϑ01(z, τ)
2

]

(3.11)

turn out to be useful. Using these identities one can rewrite both the Seiberg–Witten

curve and the Nekrasov-type expression in such a way that all the dependence on
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mcd is expressed through ϑ00(2mcd, 2τ) and ϑ10(2mcd, 2τ). The comparison can then

be made in the same way as in the case of m = 0 by using the Taylor expansions of

the theta functions [16].

As in [16], one can express Z as a special case of the elliptic analogue of the

Nekrasov partition function for the SU(N) gauge theory with Nf = 2N fundamental

hypermultiplets [19, 20]

Z
SU(N)
Nf=2N (~;ϕ, τ ; a1, . . . , aN ;m1, . . . , m2N)

:=
∑

R
(N)

(

−e2πiϕ
)|R(N)|

N
∏

k=1

∏

(i,j)∈Rk

∏2N
n=1 ϑ1

(

ak +mn +
1
2π
(j − i)~, τ

)

∏N
l=1 ϑ1

(

ak − al +
1
2π
hkl(i, j)~, τ

)2 . (3.12)

In terms of this function, (3.7) can be expressed as

Z = Z
SU(4)
Nf=8

(

~;ϕ, τ ; 0,
1

2
,−

1 + τ

2
,
τ

2
;m1, m2, m3, m4,−m1,−m2,−m3,−m4

)

.

(3.13)

In the following sections we will see that this type of notation provides us with

an efficient, universal way of expressing various Nekrasov-type formulas for specific

cases.

Currently we do not have a good physical explanation why the instanton counting

of SU(4)Nf = 8 type accounts for the BPS spectrum of the E-string theory. From the

technical point of view the elliptic analogue of the Nekrasov partition function with

four colors and eight flavors is perfect for reproducing the expansion F0 =
∑∞

n=1 ZnQ
n

with Z1 =
1
2
η−12

∑4
k=1

∏8
i=1 ϑk(µi, τ) [5]. No other known elliptic Nekrasov partition

functions [20] seem to have an immediate connection with the above form of Z1. For

particular values of Wilson line parameters, however, one can express Z in terms

of the elliptic analogues of the SU(N) Nf = 2N Nekrasov partition functions with

N = 3, 2, as we will see in the next subsection. We have not examined whether the

BPS counting of the E-string theory has any connection with the instanton counting

of other types of gauge groups, for which no explicit elliptic Nekrasov partition

functions are known.

The prepotential F0 for the E-string theory represents the genus zero topological

string amplitude for a family of local 1
2
K3 [5]. However, as was observed in the case

of m = 0 [16], higher order parts of the expansion lnZ = 1
2
F0~

−2 + · · · do not give

higher genus amplitudes [12, 21, 23]. The disagreement can be clearly seen as the

difference of modular anomalies. With the help of (3.11) one immediately sees that

Z exhibits the same modular anomaly as in the case of m = 0. This deviates from
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the modular anomaly of the all-genus topological string partition function for the

local 1
2
K3 starting at genus one.

3.2. Reductions to sums over fewer partitions

For particular values of the Wilson line parameters the above Nekrasov-type sum

over partitions reduces to that over fewer partitions.

Let us first consider the case where one of the four Wilson line parameters is set

to be zero,

m = (0, m10, m00, m01). (3.14)

In this case, the product in the sum in (3.7) vanishes for any R(4) with R11 6=

{0}. This is because the Young diagram of R11 6= {0} always contains a box at

(i, j) = (1, 1), where the theta functions in the numerator become ϑ11(0, τ) = 0 for

(c, d) = (1, 1). Hence, Z is actually a sum over three partitions

R(3) = (R10, R00, R01). (3.15)

This structure has already been found in the case of no Wilson line parameters [16].

Furthermore, recall that for any function f(x) the following identity holds:

∏

(i,j)∈Rk

f (hk,l(i, j)) =
∏

(i,j)∈Rk

f (j − i) if Rl = {0}. (3.16)

This identity can be easily shown by regarding the product over j = 1, . . . , νk,i as

that over ̃ := νk,i − j + 1 = 1, . . . , νk,i on the left-hand side. Due to this identity,

one sees that the expression for Z reduces to the form

Z =
∑

R
(3)

Q|R(3)|
∏

(a,b),(c,d)

∏

(i,j)∈Rab

ϑab

(

1
2π
(j − i)~+mcd, τ

)

ϑab

(

1
2π
(j − i)~−mcd, τ

)

ϑ1−|a−c|,1−|b−d|

(

1
2π
hab,cd(i, j)~, τ

)2 .

(3.17)

This is almost identical to (3.7), except that the sum is now over R(3) and indices

(a, b), (c, d) take values (1, 0), (0, 0), (0, 1) only. In terms of the elliptic Nekrasov

partition function (3.12), the above simplification is expressed as

Z = Z
SU(4)
Nf=8

(

~;ϕ, τ ; 0,
1

2
,−

1 + τ

2
,
τ

2
; 0, m10, m00, m01, 0,−m10,−m00,−m01

)

= Z
SU(3)
Nf=6

(

~;ϕ, τ ;
1

2
,−

1 + τ

2
,
τ

2
;m10, m00, m01,−m10,−m00,−m01

)

. (3.18)

As we will see in the next section, this simplified Z encompasses all the cases of

global symmetries En ⊕ A8−n with n = 8, 7, 6, 5 and D8.
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Next, let us further restrict ourselves to the cases with

m =

(

0,
1

2
, m1, m2

)

. (3.19)

In this setting, the expression for Z reduces to the form

Z =
∑

R
(2)

Q|R(2)|
2
∏

k,l=1

∏

(i,j)∈Rk

ϑk+2

(

1
2π
(j − i)~+ml, τ

)

ϑk+2

(

1
2π
(j − i)~−ml, τ

)

ϑ|k−l|+1

(

1
2π
hkl(i, j)~, τ

)2 ,

(3.20)

where R(2) = (R1, R2). In terms of the elliptic Nekrasov partition function (3.12), Z

with (3.19) can be expressed as

Z = Z
SU(4)
Nf=8

(

~;ϕ, τ ; 0,
1

2
,−

1 + τ

2
,
τ

2
; 0,

1

2
, m1, m2, 0,−

1

2
,−m1,−m2

)

= Z
SU(3)
Nf=6

(

~;ϕ, τ ;
1

2
,−

1 + τ

2
,
τ

2
;
1

2
, m1, m2,−

1

2
,−m1,−m2

)

= Z
SU(2)
Nf=4

(

~;ϕ, τ ;−
1 + τ

2
,
τ

2
;m1, m2,−m1,−m2

)

. (3.21)

As we will see in the next section, the cases of global symmetries E7 ⊕ A1, E5 ⊕ A3

and D8 are realized as special cases of this setting.

Furthermore, if we set

m =

(

0,
1

2
,−

1 + τ

2
,
τ

2

)

, (3.22)

Z vanishes. This is consistent with the fact that the corresponding unbroken global

symmetry is D4⊕D4 and the Seiberg–Witten curve in this case describes a constant

elliptic fibration over the moduli space [22].

4. Two-parameter families

In this section we consider the cases in which the Lie algebra of the unbroken global

symmetry is E9−N ⊕ AN−1 with N = 1, 2, 3, 4 or D8. These cases are of particular

interest because the prepotential in each case generates Gromov–Witten invariants

associated with the E9−N del Pezzo surface or P
1 × P

1 embedded in a Calabi–Yau

threefold. In particular, we consider two-parameter families of Calabi–Yau, whose

prepotentials depend not only on Kähler modulus ϕ but also on another Kähler

modulus τ . These two-parameter families have been studied by means of mirror

symmetry [3, 12].
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All of the above global symmetries are maximal regular subalgebras of E8 and

one can easily find the corresponding values of Wilson line parameters [22]. As

we saw in section 2, different values of Wilson line parameters m related by the

transformations (2.6)–(2.9) correspond to the same Seiberg–Witten curve. We will

present a representative of m for each of these cases.

Substituting each of these m into our general expression given by (2.14)–(2.19)

one obtains the Seiberg–Witten curve for each of the cases. The result can be simpli-

fied by making use of theta function identities. We will present the final form of the

curve after making a shift of variables x and u. The shift leads to a further simplifi-

cation. The curve without the shift can easily be recovered by first eliminating the

quadratic term in x by a shift of x and then eliminating the cubic part in u of the

linear term in x by a shift of u. The Seiberg–Witten curve for the E-string theory

describes an elliptic fibration over P
1 with singular fibers. Using the Weierstrass

form of the curve one can easily check that the types of singular fibers correspond

precisely to the simple Lie algebras constituting the unbroken global symmetry [22].

We will also present explicit Nekrasov-type expressions for each of the cases.

The prepotential is obtained from Z through (3.6). Following [5] we introduce the

winding number expansion of the prepotential by

F0(ϕ, τ) =
∞
∑

n=1

QnZn(τ). (4.1)

Zn for E9−N ⊕ AN−1 with N = 1, 2, 3, 4 can be expressed in terms of E2(τ) and

modular forms of Γ1(N) =
{( a b

c d

)

∈ SL(2,Z)
∣

∣

∣
a ≡ d ≡ 1, c ≡ 0 mod N

}

. We

will introduce generators αN , βN of modular forms of Γ1(N) as well as a function λN

and present explicit forms of Zn for small n. In the D8 case, Zn are expressed in

terms of E2(τ) and modular forms of Γ1(2).

In each of the above cases, the prepotential can be expressed as

F0(ϕ, τ) =

∞
∑

n=1

∞
∑

k=0

Nn,k

∞
∑

m=1

1

m3
e2πim(nϕ+kτ). (4.2)

Integer Nn,k represents the multiplicity of BPS E-strings wound around one of the

circles of the toroidal compactification with winding number n and momentum k. Up

to an overall normalization the values of Nn,n turn out to be equal to the genus zero

Gromov–Witten invariants associated with the E9−N del Pezzo surface or P
1 × P

1

embedded in a Calabi–Yau threefold [3,9,17,18]. Our formulas also generate invari-

ants Nn,k with k 6= n, where k is the degree associated with the homology class of the

13



elliptic fiber. It would be very interesting to see how our combinatorial expressions

are related to the geometric computation of these invariants [18].

4.1. E8

Let us first consider the case with an E8 global symmetry. This is the case originally

discussed in [16] and is realized by the trivial Wilson line parameters

m = (0, 0, 0, 0) . (4.3)

The corresponding Seiberg–Witten curve is given by

y2 = 4x3 −
1

12
E4u

4x−
1

216
E6u

6 + 4u5. (4.4)

The Nekrasov-type expression can be written as

Z = Z
SU(3)
Nf=6

(

~;ϕ, τ ;
1

2
,−

1 + τ

2
,
τ

2
; 0, 0, 0, 0, 0, 0

)

(4.5)

=
∑

R
(3)

Q|R(3)|
∏

(a,b),(c,d)

∏

(i,j)∈Rab

ϑab

(

1
2π
(j − i)~, τ

)2

ϑ1−|a−c|,1−|b−d|

(

1
2π
hab,cd(i, j)~, τ

)2 . (4.6)

Here the set of indices (a, b), (c, d) take values (1, 0), (0, 0), (0, 1) and we let the three

partitions be denoted by R(3) = (R10, R00, R01). The first three coefficients of the

expansion (4.1) are

Z1 = λ1α1,

Z2 = λ2
1α1

(

α1E2 + 2β1

24

)

,

Z3 = λ3
1α1

(

54α2
1E

2
2 + 216α1β1E2 + 109α3

1 + 197β2
1

15552

)

, (4.7)

where

α1 := E4, β1 := E6 (4.8)

and

λ1 :=
1

η12
. (4.9)

These Zn agree with the original results [11]. Table 1 shows the values of Nn,k for

low n and k. These numbers were originally computed by using mirror symmetry [3].
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k 0 1 2 3 4 5 · · ·
n
1 1 252 5130 54760 419895 2587788
2 0 0 −9252 −673760 −20534040 −389320128
3 0 0 0 848628 115243155 6499779552
4 0 0 0 0 −114265008 −23064530112
5 0 0 0 0 0 18958064400
...

. . .

Table 1: BPS multiplicities Nn,k for the E8 case.

4.2. E7 ⊕ A1

The E7 ⊕A1 symmetry is realized by the following Wilson line parameters

m =

(

0, 0, 0,
1

2

)

. (4.10)

The Seiberg–Witten curve is given by

y2 = 4x3 +
(

ϑ4
3 + ϑ4

4

)

u2x2 +

(

ϑ4
3ϑ

4
4

4
u−

16

ϑ2
3ϑ

2
4

)

u3x. (4.11)

The Nekrasov-type expression in this case takes a remarkably simple form

Z = Z
SU(2)
Nf=4

(

~;ϕ, τ ;−
1 + τ

2
,
τ

2
; 0, 0, 0, 0

)

(4.12)

=
∑

R
(2)

Q|R(2)|
2
∏

k,l=1

∏

(i,j)∈Rk

ϑk+2

(

1
2π
(j − i)~, τ

)2

ϑ|k−l|+1

(

1
2π
hkl(i, j)~, τ

)2 . (4.13)

The first three coefficients of the expansion (4.1) are

Z1 = λ2α2,

Z2 = λ2
2α2

(

α2E2 − α2
2 + 3β2

24

)

,

Z3 = λ3
2α2

(

6α2
2E

2
2 − 12α3

2E2 + 36α2β2E2 + 16α4
2 − 33α2

2β2 + 51β2
2

1728

)

, (4.14)

where

α2 :=
1

2

(

ϑ4
3 + ϑ4

4

)

, β2 := ϑ4
3ϑ

4
4 =

η(τ)16

η(2τ)8
(4.15)

and

λ2 :=
ϑ2
3ϑ

2
4

η12
=

1

η(τ)4η(2τ)4
. (4.16)

As expected, these Zn are in agreement with the results obtained in [12]. Table 2

shows the values of Nn,k for low n and k. The values of Nn,k multiplied by two agree

with the rational instanton numbers of the E7 model in [12].
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k 0 1 2 3 4 5 · · ·
n
1 1 28 138 680 2359 7980
2 0 0 −136 −2272 −23208 −167872
3 0 0 0 1620 50067 824544
4 0 0 0 0 −29216 −1316544
5 0 0 0 0 0 651920
...

. . .

Table 2: BPS multiplicities Nn,k for the E7 ⊕ A1 case.

4.3. E6 ⊕ A2

The E6 ⊕A2 symmetry is realized by the following Wilson line parameters

m =

(

0,
1

3
,
1

3
,
1

3

)

. (4.17)

The Seiberg–Witten curve is given by

y2 = 4x3 + 3α2
3u

2x2 +
2

3
α3

(

β3u−
27

β3

)

u3x+
1

27

(

β3u−
27

β3

)2

u4, (4.18)

where

α3 := ϑ3(0, 2τ)ϑ3(0, 6τ) + ϑ2(0, 2τ)ϑ2(0, 6τ), β3 :=
η(τ)9

η(3τ)3
. (4.19)

The Nekrasov-type expression is given by

Z = Z
SU(3)
Nf=6

(

~;ϕ, τ ;
1

2
,−

1 + τ

2
,
τ

2
;
1

3
,
1

3
,
1

3
,−

1

3
,−

1

3
,−

1

3

)

(4.20)

=
∑

R
(3)

Q|R(3)|
∏

(a,b),(c,d)

∏

(i,j)∈Rab

ϑab

(

1
2π
(j − i)~+ 1

3
, τ
)

ϑab

(

1
2π
(j − i)~− 1

3
, τ
)

ϑ1−|a−c|,1−|b−d|

(

1
2π
hab,cd(i, j)~, τ

)2 , (4.21)

where (a, b), (c, d) = (1, 0), (0, 0), (0, 1) and R(3) = (R10, R00, R01). The first three

coefficients of the expansion (4.1) are

Z1 = λ3α3,

Z2 = λ2
3α3

(

α3E2 + 2β3

24

)

,

Z3 = λ3
3α3

(

27α2
3E

2
2 + 108α3β3E2 + 45α6

3 − 4α3
3β3 + 112β2

3

7776

)

, (4.22)

where

λ3 :=
β3

η12
=

1

η(τ)3η(3τ)3
. (4.23)
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k 0 1 2 3 4 5 · · ·
n
1 1 9 27 85 234 567
2 0 0 −18 −164 −1026 −4968
3 0 0 0 81 1377 13365
4 0 0 0 0 −576 −14040
5 0 0 0 0 0 5085
...

. . .

Table 3: BPS multiplicities Nn,k for the E6 ⊕ A2 case.

Table 3 shows the values of Nn,k for low n and k. The values of Nn,k multiplied by

three agree with the rational instanton numbers of the E6 model in [12].

4.4. E5 ⊕ A3

The E5 ⊕A3 symmetry is realized by the following Wilson line parameters

m =

(

0,
1

4
,
1

4
,
1

2

)

. (4.24)

The Seiberg–Witten curve and the Nekrasov-type expression in this case are given

respectively by

y2 = 4x3 +

(

(

ϑ4
3 + ϑ4

4

)

u+
64

(ϑ2
3 + ϑ2

4)ϑ
3
3ϑ

3
4

)

ux2 +

(

ϑ2
3ϑ

2
4

2
u−

16

(ϑ2
3 + ϑ2

4)ϑ
3
3ϑ

3
4

)2

u2x

(4.25)

and

Z = Z
SU(2)
Nf=4

(

~;ϕ, τ ;−
1 + τ

2
,
τ

2
;
1

4
,
1

4
,−

1

4
,−

1

4

)

(4.26)

=
∑

R
(2)

Q|R(2)|

2
∏

k,l=1

∏

(i,j)∈Rk

ϑk+2

(

1
2π
(j − i)~ + 1

4
, τ
)

ϑk+2

(

1
2π
(j − i)~− 1

4
, τ
)

ϑ|k−l|+1

(

1
2π
hkl(i, j)~, τ

)2 . (4.27)

The first three coefficients of the expansion (4.1) are

Z1 = λ4,

Z2 = λ2
4

(

E2 + α4 + β4

24

)

,

Z3 = λ3
4

(

3E2
2 + 6α4E2 + 6β4E2 + 8α2

4 + 4α4β4 + 5β2
4

864

)

, (4.28)

where

α4 := ϑ3(0, 2τ)
4 =

η(2τ)20

η(τ)8η(4τ)8
, β4 := ϑ4(0, 2τ)

4 =
η(τ)8

η(2τ)4
(4.29)
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k 0 1 2 3 4 5 · · ·
n
1 1 4 10 24 55 116
2 0 0 −5 −32 −152 −576
3 0 0 0 12 147 1056
4 0 0 0 0 −48 −832
5 0 0 0 0 0 240
...

. . .

Table 4: BPS multiplicities Nn,k for the E5 ⊕ A3 case.

and

λ4 :=
ϑ3(0, 2τ)

2ϑ4(0, 2τ)
6

η12
=

(ϑ2
3 + ϑ2

4)ϑ
3
3ϑ

3
4

2η12
=

η(2τ)4

η(τ)4η(4τ)4
. (4.30)

Table 4 shows the values of Nn,k for low n and k. The values of Nn,k multiplied by

four agree with the rational instanton numbers of the E5 model in [12].

4.5. D8

The D8 symmetry is realized by the following Wilson line parameters

m =

(

0, 0,
1

2
,
1

2

)

. (4.31)

The Seiberg–Witten curve and the Nekrasov-type expression in this case are given

respectively by

y2 = 4x3 +

(

(

ϑ4
3 + ϑ4

4

)

u+
64

ϑ4
3ϑ

4
4

)

ux2 +
ϑ4
3ϑ

4
4

4
u4x (4.32)

and

Z = Z
SU(2)
Nf=4

(

~;ϕ, τ ;−
1 + τ

2
,
τ

2
; 0, 0,

1

2
,−

1

2

)

(4.33)

=
∑

R
(2)

Q|R(2)|

2
∏

k,l=1

∏

(i,j)∈Rk

ϑ3

(

1
2π
(j − i)~, τ

)

ϑ4

(

1
2π
(j − i)~, τ

)

ϑ|k−l|+1

(

1
2π
hkl(i, j)~, τ

)2 . (4.34)

The first three coefficients of the expansion (4.1) are

Z1 = λ̃2,

Z2 = λ̃2
2

(

E2 + 2α2

24

)

,

Z3 = λ̃3
2

(

6E2
2 + 24α2E2 + 25α2

2 + 9β2

1728

)

, (4.35)
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k 0 1 2 3 4 5 · · ·
n
1 1 −4 10 −24 55 −116
2 0 0 −4 32 −152 576
3 0 0 0 −12 147 −1056
4 0 0 0 0 −48 832
5 0 0 0 0 0 −240
...

. . .

Table 5: BPS multiplicities Nn,k for the D8 case.

where α2, β2 are defined in (4.15) and

λ̃2 :=
ϑ4
3ϑ

4
4

η12
=

η(τ)4

η(2τ)8
=

24

ϑ4
2

. (4.36)

Table 5 shows the values of Nn,k for low n and k. We observe that the values of Nn,n

are related to the genus zero Gromov–Witten invariants of the local P1 × P
1 as

Nn,n =
∑

n1+n2=n

NP
1×P

1

n1,n2
. (4.37)

Note that the values of Nn,k for the D8 case are very similar to those for the E5⊕A3

case. This has been explained by the similarity between the Picard–Fuchs operators

for P1×P
1 (which is equal to the quadric surface in P

3) and those for the E5 del Pezzo

surface [9]. From the point of view of the E-string theory this may be explained by

the similarity between the Weyl orbits of D8 and those of E5 ⊕A3
∼= D5 ⊕D3.
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A. Conventions of special functions

The Jacobi theta functions are defined as

ϑab(z, τ) :=
∑

n∈Z

exp

[

πi
(

n+
a

2

)2

τ + 2πi
(

n +
a

2

)

(

z +
b

2

)]

, (A.1)

where a, b take values 0, 1. We also use the notation

ϑ1(z, τ) := −ϑ11(z, τ), ϑ2(z, τ) := ϑ10(z, τ),

ϑ3(z, τ) := ϑ00(z, τ), ϑ4(z, τ) := ϑ01(z, τ). (A.2)

The Dedekind eta function is defined as

η(τ) := q1/24
∞
∏

n=1

(1− qn), (A.3)

where q := e2πiτ . The Eisenstein series are given by

E2n(τ) = 1 +
2

ζ(1− 2n)

∞
∑

k=1

k2n−1qk

1− qk
. (A.4)

We often abbreviate ϑk(0, τ), η(τ), E2n(τ) as ϑk, η, E2n respectively.
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