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Abstract

This note deals with Lagrangian fibrations of elliptic K3 surfaces and the associated
Hamiltonian monodromy. The fibration is constructed through the Weierstraß nor-
mal form of elliptic surfaces. There is given an example of K3 dynamical models
with the identity monodromy matrix around 12 elementary singular loci.

1 Introduction

In the sense of Liouville, the completely integrable systems on 2n-dimensional phase
space can be characterized by the existence of n functionally independent first inte-
grals in involution. From the famous Liouville-Arnol’d theorem, there exist action-
angle coordinates for such a system, if restricted to regular region. It is, however, not
so trivial whether one can take global action-angle coordinates or not. According
to the paper [5] by J.J. Duistermaat, there are several topological obstructions to
the existence of the global action-angle coordinates, the first of which is the (Hamil-
tonian) monodromy. Since the appearance of [5], the Hamiltonian monodromy has
been calculated for the momentum mapping of many classical completely integrable
systems. See, e.g., [4] for several examples.

For the last decades, a lot of interesting researches have been done on the quan-
tum version of Hamiltonian monodromy, quantum monodromy. On the level of
semi-classical approximation, one can outline the quantum monodromy as follows:
Given a completely integrable system, which is assumed to be with two degrees of
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freedom for simplicity, one can consider the momentum mapping of the symplectic
manifold induced by the first integrals. This mapping can be regarded as a special
case of Lagrangian fibrations with possible singular fibres. One can dot the points in
the image of the momentum mapping, whose corresponding fibres satisfy the Bohr-
Sommerfeld condition. These points locally form the structure of integral lattices.
Because of the existence of singular fibres of the momentum mapping, however, the
whole lattice may carry some defects in it. If one parallelly transports a fundamental
parallelogram of one of the local lattices along a contour around defects, then the
fundamental parallelogram is presumably expected to be transformed to another
parallelogram after a cycle of parallel transport, which can be described as an im-
age of the original parallelogram through a certain monodromy matrix. This is the
quantum monodromy. The interpretation of quantum monodromy as a consequence
of lattice defects is given by B. Zhilinskíı. See [13] for details.

Furthermore, Zhilinskíı proposes the inverse problem of relating lattice defects
to Hamiltonian monodromy. In the ordinary problem, starting with classical com-
pletely integrable systems, one usually has some lattice defects through the semi-
classical quantization procedure. Conversely, one can ask whether there would be
a classical completely integrable system which gives rise to a given lattice defects
or not. In fact, the correspondence between lattice defects and monodromy is not
simply one-to-one even in the case of two degrees of freedom. For example, A.V.
Bolsinov, H.R. Dullin, and A.P. Veselov considered in [3] the quantization of the
geodesic flow on three-dimensional sol-manifolds with respect to the metrics given
by the right-invariant Riemannian metrics on the three-dimensional solvable Lie
group. They calculated the Hamiltonian and the quantum monodromy for this sys-

tem, which are respectively in the form

[
A 0
0 1

]
and

[
AT 0
0 1

]
, where A ∈ SL(2,Z)

is a hyperbolic matrix defining the sol-manifold. (Although this system has three
degrees of freedom, the lattice defect is essentially two dimensional, since it is a
cone over the two dimensional lattice defect given by the matrix AT.) In the case

where A is the Arnol’d cat map

[
2 1
1 1

]
, the quantum monodromy is

[
2 1
1 1

]
and the

fundamental parallelogram is rotated by 2π when it is transported along a counter
around the defect, as is shown in Figure 5 of [13]. On the other hand, the Arnol’d cat
map can also be given by the lattice defect obtained with the aid of one positive and
one negative elementary defects, for which the fundamental parallelogram is trans-
ported along a closed curve going around the defect without any 2π-rotation, as is
explained in Figure 6 of [13]. Thus, Zhilinskíı pointed out that one should also pay
attention to the number of 2π-rotations of the fundamental parallelogram during the
transportation along a counter enclosing the defects. At the same time, it is natural
to ask whether there would be a classical completely integrable system which allows
the appearance of a certain lattice defect of the identity monodromy matrix with

2



non-zero number of 2π-rotations of the fundamental parallelogram during the trans-
portation of the fundamental parallelogram around the defects. A concrete example
of such a lattice defect can be given by the sunflower pattern which originates in
phyllotaxis morphology of botanic sciences, as is described in Section 6 of [13]. For
this lattice defect, one can read, in the same manner as the quantum monodromy,

the identity monodromy matrix

[
1 0
0 1

]
with 2π-rotation manifested by the defect.

Zhilinskíı suggests in his paper that a corresponding classical completely integrable
system could be obtained from a K3 surface with some almost toric Lagrangian
fibration. However, an explicit construction of such a K3 dynamical model with the
identity monodromy matrix representing 2π-rotation is still an open problem.

In this note, an explicit construction is made of a K3 dynamical model with
an identity monodromy matrix around 12 nontrivial singular loci by means of the
notion of the Weierstraß normal form for elliptic surfaces. After a brief review of
completely integrable systems in Section 2, it is shown that K3 surfaces can be
regarded as real four-dimensional phase spaces in Section 3. Elliptic K3 surfaces
are described as collections of locally-defined completely integrable systems. The
explicit construction of K3 dynamical models is given through the Weierstraß normal
form of elliptic surfaces in Section 4. Finally, an example of K3 dynamical models
having the identity monodromy matrix around 12 nontrivial singular loci is given
by using some rational elliptic surface with two singular points of type D4.

2 Integrable Systems and Lagrangian Fibrations

As is well known, a Hamiltonian system (M,ω,H) over a 2n-dimensional symplectic
manifold (M,ω) is called a completely integrable system, if there are n functionally
independent first integrals f1, . . . , fn−1, fn(= H), which mutually commute with
respect to the Poisson bracket induced by the symplectic form ω. These first integrals
give rise to the momentum mapping f = (f1, . . . , fn) : M → Rn onto a subset of
Rn. The famous Liouville-Arnol’d theorem states that a fibre f−1(p) for a regular
value p ∈ Rn of f is a real n-dimensional Lagrangian torus, if it is connected and
compact. Moreover, one can take a local trivialization of f around such a fibre,
which is usually understood as the existence of the action-angle variables.

From a mathematical point of view, one can generalize the notion of completely
integrable systems to that of Lagrangian fibrations as follows:

Definition 2.1. Let (M,ω) be a 2n-dimensional symplectic manifold and B an
n-dimensional manifold. A mapping f : M → B is called a Lagrangian fibra-
tion, if there is an open dense subset B0 ⊂ B over which the restriction f |f−1(B0) :
f−1(B0) → B0 is a locally trivial fibre bundle with Lagrangian fibres.
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One can say that a Lagrangian fibration is a collection of locally-defined com-
pletely integrable systems except the singular fibres. It is possible that B is a
manifold with boundary, although all the base spaces in what follows are without
boundary. Since this definition is sometimes too general, we introduce a little bit
more moderate notion, following N.C. Leung and M. Symington:

Definition 2.2 ([10]). A Lagrangian fibration f : (M,ω) → B is called an almost
toric Lagrangian fibration, if any critical point of f admits a Darboux coordinates
(p, q) = (p1, . . . , pn, q1, . . . , qn) with ω =

∑n
i=1 dpi ∧ dqi such that the projection

f = (f1, . . . , fk, fk+1, . . . , fn) is locally expressed as fi(p, q) = pi for i ≤ k and as
either fj(p, q) = p2j+q2j or (fj, fl)(p, q) = (pjqj+plql, pjql−plqj) for other components.
In addition, each fibre is assumed to be compact and connected.

Put another way, an almost toric Lagrangian fibration is a collection of local
structures of completely integrable systems with compact connected fibres admitting
only centre-centre and focus-focus equilibria (or their direct products). In Section 4,
we will give an explicit construction of K3 dynamical models through the Weierstraß
normal form. Some of the models are shown to be almost toric Lagrangian fibrations.

Before closing this section, we make a brief comment on the Hamiltonian mon-
odromy. Let f : M → B be a Lagrangian fibration of a 2n-dimensional symplectic
manifold. We take an open dense subset B0 ⊂ B over which f is locally trivial. For
any b ∈ B0, we have the isomorphism of the homology group: H1(f

−1(b),Z) ∼= Z⊕n.
Fix a reference point b0 ∈ B0 and consider a closed path γ : [0, 1] ∋ s 7→ γ(s) ∈ B0

starting and ending at b0. We choose a basis c1 . . . , cn ∈ H1(f
−1(b0),Z) and pur-

sue the elements c1(s), . . . , cn(s) ∈ H1(f
−1(γ(s)),Z) which continuously depend

on the parameter s and satisfy ci(0) = ci. Then, the mapping (c1, . . . , cn) 7→
(c1(1), . . . , cn(1)) is a homomorphism of H1(f

−1(b0),Z) represented by a matrix in
GL(n,Z). This homomorphism depends only on the homotopy class of γ, so that
we have a representation ρ : π1(B0, b0) → GL(n,Z) of the fundamental group of B0

which is the Hamiltonian monodromy associated to the Lagrangian fibration f .

3 K3 surfaces as real four-dimensional phase spaces

A simply connected compact complex surfaceM is called a K3 surface if its canonical
bundle is trivial, i.e. if it admits a non-vanishing holomorphic two-form Ω. It is easy
to obtain a real symplectic structure on M from Ω.

Proposition 3.1. The real part ω := Re(Ω) = Ω+Ω
2

defines a real symplectic struc-
ture on M which is regarded as a real four-dimensional manifold.

Remark. One can also take the imaginary part to get a real symplectic structure
on M , by replacing Ω by −

√
−1Ω.
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With respect to this real symplectic structure, the real Hamiltonian vector field
Xω

h for a real smooth function h on (an open subset of) M is determined through
ιXω

h
ω = −dh.
On the other hand, the holomorphic two-form Ω itself defines a holomorphic

symplectic structure on M . Thus, we also have the complex Hamiltonian vector
field XΩ

h with respect to Ω: ιXΩ
h
Ω = −dh. Note that the function h could be

complex valued in this case and that XΩ
h is a real C∞-section of TMh, where TMh

stands for the holomorphic tangent bundle over the domain Mh ⊂ M of the function
h.

We get interested in the relation between the real and the complex Hamiltonian
vector fields associated with a holomorphic function h defined over an open subset
of M . The following two propositions, which are essentially concerned with local
structure, are already realized by H. Flaschka [6] or L.M. Bates and R.H. Cushman
[2].

Proposition 3.2 (Cf. [6, 2]). If h is a holomorphic function over an open subset of
M , then the complex Hamiltonian vector field XΩ

h is related to the real Hamiltonian
vector fields Xω

Re(h) and Xω
Im(h) by

Xω
Re(h) = Re(XΩ

h ), Xω
Im(h) = Im(XΩ

h ).

Moreover, the two functions Re(h) and Im(h) to Poisson commute:

Proposition 3.3 (Cf. [6, 2]). If h is a holomorphic function on an open subset of
M , then the real part Re(h) and the imaginary part Im(h) commute with respect to
the Poisson structure defined by the real symplectic form ω.

From this proposition, we can conclude that any open subset Mh of a K3 surface
M equipped with a holomorphic function h on it determines a locally-defined com-
pletely integrable system. The real and the imaginary parts of h might be regarded
as action-variables of this system from the viewpoint of Liouville-Arnol’d theorem.
However, a holomorphic function defined everywhere over M must be constant by
the Liouville theorem in function theory. Thus, if we restrict ourselves to holo-
morphic functions, the action-variables are defined only locally, and the momentum
mapping is not defined globally. We are consequently led to consider Lagrangian
fibrations of M instead of momentum mappings. In order to get a globally defined
Lagrangian fibration of M , we should take meromorphic functions of M into ac-
count. If there is given a collection of holomorphic functions over each element of
an open covering of M in a compatible manner, which gives rise to a meromorphic
function f : M → P1(C), then f defines a Lagrangian fibration of (M,ω) onto the
projective line P1(C). In fact, the mapping f : M → P1(C) can be shown to be
an elliptic fibration by Zariski’s lemma (cf. [1]) and by Theorem 1 in §3 of [12],
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provided that each regular fibre of f is irreducible. In the next section, we explain
an explicit construction of K3 dynamical models through the elliptic K3 surfaces in
Weierstraß normal form.
Remark. As to the integrable symplectic structures on K3 surfaces, D.G. Marku-
shevich studies in [11] the integrability problem for K3 surfaces only from the view-
point of complex geometry. However, we consider the elliptic K3 surfaces as a real
symplectic manifold admitting Lagrangian fibrations together with an explicit con-
struction of K3 dynamical models.

4 Elliptic K3 surfaces as Lagrangian fibrations

So far we have explained how one can obtain, as an extension of completely integrable
systems, Lagrangian fibrations of K3 surfaces in an abstract manner. In this section,
we give an explicit construction of K3 dynamical models. To this end, we start with
the notion of the Weierstraß normal form of elliptic surfaces.

Let B be a compact Riemann surface and L → B a holomorphic line bundle over
it. We take two holomorphic sections g2 ∈ H0(B,L⊗4) and g3 ∈ H0(B,L⊗6). Let (x :
y : z) be the homogeneous fibre coordinates of the P2(C)-bundle P (L⊗2⊕L⊗3⊕OB)
over B, where OB denotes the structure sheaf of B which we identify with the trivial
line bundle over B. Now, we consider the hypersurface W of the total space P of
the P2(C)-bundle P (L⊗2 ⊕ L⊗3 ⊕OB) defined through

y2z = 4x3 − g2xz
2 − g3z

3.

Restricting the natural projection P → B to W , we obtain an elliptic surface
πW : W → B, which is called an elliptic surface in Weierstraß normal form. The dis-

criminant ∆ and the functional invariant J are given by ∆ = g32 − 27g23 and J =
g32
∆
,

respectively. Since the elliptic surface W has singularities in general, we have to
give the desingularization Ŵ of W in order to get a smooth elliptic surface. Note
that these singular points are simple singularities. See, e.g., [8] for more details on
Weierstraß normal form for elliptic surfaces.

In what follows, we consider the case where B = P1(C) and L = OP1(C)(2). Here,
OP1(C)(m) stands for the holomorphic line bundle over P1(C) of the first Chern class
m in H2(P1(C),Z) ∼= Z, i.e. the tensor product of hyperplane section bundles over
P1(C) to the power m. Denote the homogeneous coordinates of B = P1(C) by
(t0 : t1). On the open subset of W given by t1 ̸= 0, y ̸= 0, z ̸= 0, we have a
non-vanishing holomorphic two-form

Ω =
dx

y
∧ dt, (4.1)
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where x = x
z
, y = y

z
are the affine fibre coordinates and t = t0

t1
is the affine coordinate

of B. As to this holomorphic two-form, we have the following proposition.

Proposition 4.1. The holomorphic two-form Ω given in (4.1) can be extended over
the open subset W reg of the Weierstraß normal form W consisting of smooth points.
Moreover, it gives rise to a non-vanishing holomorphic two-form over the minimal
desingularization Ŵ .

The proof for the first part is done through a straightforward calculation. The
second part can be shown by the simpleness of the singularities of W . By means of
the homotopy exact sequence of fibre spaces, we can show that the elliptic surface
Ŵ is simply connected. Thus, we see that Ŵ is an elliptic K3 surface. For the
monodromy of the Lagrangian fibration πŴ : Ŵ → B = P1(C), we can use the
classification of the singular fibres for elliptic surfaces together with the conjugacy
classes of monodromy matrices by Kodaira [9].

Here, we explain the relation of an elliptic K3 surface to almost toric Lagrangian
fibrations, which we mentioned in Section 2. From the classification result of four-
dimensional almost toric Lagrangian fibrations by Leung-Symington [10], such a
fibration is given by a K3 surface admitting a Lagrangian fibration with 24 nodal
(i.e. focus-focus) singularities. Taking into account the classification of the singular
fibres for elliptic surfaces by Kodaira [9], we can see that an elliptic K3 surface can
be regarded as an almost toric Lagrangian fibration over the Riemann sphere if and
only if it merely has singular fibres of type Ib (b ≥ 1) in Kodaira’s notation.

In closing this section, we give the local expression of the complex Hamilton’s
equation for the Lagrangian fibration πŴ : Ŵ → P1(C). On the open subset of

Ŵ where t1 ̸= 0 and z ̸= 0, the complex Hamilton’s equations for the Hamiltonian
t = t0

t1
can be expressed as {

ẋ = −y,

ẏ = −12x2−g2
2

.
(4.2)

Now, we recall the famous formula for the Weierstraß ℘-function:

℘̈ =
12℘2 − g2

2
.

See [7] for the theory of elliptic functions. From this formula, we can conclude that
the complex Hamilton’s equations (4.2) can be solved by setting x = ℘ and y = −℘̇.
Since the real Hamiltonian vector fields Xω

Re(t) and Xω
Im(t) are exactly the real and

the imaginary parts of the complex Hamiltonian vector field XΩ
t by Proposition 3.2,

the dynamical system can be solved essentially by the Weierstraß ℘-function.

7



5 Example

In this section, we give an example of the explicit construction of K3 dynamical
models through the Weierstraß normal form, which possesses an identity monodromy
matrix corresponding to a hoop around 12 nontrivial singular loci. Note that the
construction problem for such a K3 dynamical model has been proposed by B.
Zhilinskíı in relation to the lattice defects associated with the sunflower pattern, as
was mentioned in Section 1. See [13] and the references therein for details.

We first consider the following rational elliptic surface in Weierstraß normal
form. Let B = P1(C) : (t0 : t1) be the projective line and choose the sections
g2 ∈ H0(B,OB(4)) and g3 ∈ H0(B,OB(6)) as the collections {t2, τ 2} and {t3, τ 3}
of holomorphic functions over the open subsets t1 ̸= 0 and t0 ̸= 0, respectively.
Here, t = t0

t1
and τ = t1

t0
are the affine coordinates of B = P1(C) defined on the

open subsets t1 ̸= 0 and t0 ̸= 0, respectively. We denote the associated rational
elliptic surface in Weierstraß normal form by πW : W → P1(C). The discriminant
∆ = g32 − 27g23 of this fibration is the section of OB(12) given by {−26t6,−26τ 6}, so
that the singular fibres of W lie on t = 0 (i.e. τ = ∞) and t = ∞ (i.e. τ = 0). In
fact, we can see that the elliptic surface W has two singular points of type D4 along
these singular fibres. (See [1, III. 7.] for the types of simple singularities of complex
surfaces.) After taking the minimal desingularization of the singular points, we have

a smooth rational elliptic surface πŴ : Ŵ → P1(C) whose singular fibres are of type
I∗0 in Kodaira’s notation and sitting over t = 0 and t = ∞. The singular fibres are
described in Figure 1. Note that the monodromy matrices of these singular fibres

are both

[
−1 0
0 −1

]
.

Figure 1.
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πŴ
?

Ŵ
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s···�
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�
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Figure 2.
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W ′
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·�
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�
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We proceed to perturb the above rational elliptic surface by changing the sections
g2 ∈ H0(B,OB(4)) and g3 ∈ H0(B,OB(6)) into g′2 ∈ H0(B,OB(4)) and g′3 ∈
H0(B,OB(6)) which are given by the collections of local holomorphic functions as

{(t− a1)(t− a2)(t− a3)(t− a4), (1− a1τ)(1− a2τ)(1− a3τ)(1− a4τ)} ,
{(t− b1)(t− b2)(t− b3)(t− b4)(t− b5)(t− b6) ,

(1− b1τ)(1− b2τ)(1− b3τ)(1− b4τ)(1− b5τ)(1− b6τ)} ,

respectively. Here, the complex numbers ai (i = 1, . . . , 4) and bj (j = 1, . . . , 6) are
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chosen generically so as to satisfy

0 < |a1|, |a2|, |b1|, |b2|, |b3| ≪ 1 ≪ |a3|, |a4|, |b4|, |b5|, |b6| < ∞. (5.1)

We denote the perturbed elliptic surface by πW ′ : W ′ → P1(C), which is defined
by g′2 and g′3. Since the discriminant g′2

3 − 27g′3
2 has only simple roots for generic

parameters, the perturbed fibration πW ′ has 12 singular fibres of type I1 in Kodaira’s
notation, six of which are sitting near t = 0 and the other six near t = ∞, as is
described in Figure 2. The singular fibre of type I1 is a rational curve with one
node. From the viewpoint of real torus fibrations, the singular fibre of type I1 is
that obtained from the real two-dimensional torus by pinching one of the cycles as
in Figure 3. It is to be noted that the total space W ′ is a smooth rational surface.

s
Figure 3. Figure 4.

B

Φ
?

B̃

t = 0

qqqq q q
t = ∞

qqqq q q�
�

�
�s

t = 1
s

t = α

qqqq q q qqqq q q

qqqq q q qqqq q q
s s

T = −1√
α

T = 1√
α

Now, we take a complex number α with 1 < |α| ≪ |a3|, |a4|, |b4|, |b5|, |b6|. Then,
we consider the double covering Φ : B̃ → B of the base curve branched at t = 1
and t = α. The resulting Riemann surface B̃ is again a projective line. Pulling
back the perturbed fibration π

W̃ ′ : W̃ ′ → B through Φ, we obtain an elliptic K3

surface πW ′ : W ′ → B̃ over the projective line. In fact, this elliptic surface is
in Weierstraß normal form induced by the two sections g̃′2 ∈ H0(B̃,OB̃(8)) and

g̃′3 ∈ H0(B̃,OB̃(12)) described as

g̃′2(T ) =
4∏

i=1

((1− ai)− (α− ai)T
2), (5.2)

g̃′3(T ) =
6∏

j=1

((1− bj)− (α− bj)T
2), (5.3)

where T is the local coordinate of B̃ satisfying T 2 = 1−t
α−t

. It is obvious that the

elliptic K3 surface π
W̃ ′ : W̃ ′ → B̃ has 24 singular fibres of type I1. The singular

loci of this elliptic fibration are described as in Figure 4. The monodromy matrix
corresponding to a closed path going around the six singular loci near T = 1√

α
and
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the six near T = − 1√
α
can be calculated as

[
−1 0
0 −1

]2
=

[
1 0
0 1

]
. Note that the

monodromy is a topological invariant. Thus, we have constructed a K3 dynamical
model with the identity monodromy matrix around 12 singular loci. Since elliptic
K3 surfaces with 24 singular fibres of type I1 are almost toric Lagrangian fibrations,
as was mentioned in Section 4, we have the following theorem.

Theorem 5.1. The elliptic K3 surface π
W̃ ′ : W̃ ′ → B̃ associated with g̃′2 in (5.2)

and g̃′3 in (5.3) is an almost toric Lagrangian fibration over the projective line, whose
equilibria are all focus-focus, for the generically chosen parameters ai (i = 1, . . . , 4)

in (5.2) and bj (j = 1, . . . , 6) in (5.3) with the condition (5.1). Let B̃0 denote the

open subset of B̃ consisting of all regular loci of π
W̃ ′. Then, there is a nontrivial

element σ ∈ π1(B̃0, ∗) which gives rise to the identity monodromy matrix, where σ
can be represented by a closed path enclosing 12 singular loci.
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