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ABSTRACT

Motivation: Identifying the emergence and underlying mechanisms
of drug side effects is a challenging task in the drug development
process. This underscores the importance of system–wide
approaches for linking different scales of drug actions; namely drug-
protein interactions (molecular scale) and side effects (phenotypic
scale) toward side effect prediction for uncharacterized drugs.
Results: We performed a large-scale analysis to extract correlated
sets of targeted proteins and side effects, based on the co-
occurrence of drugs in protein-binding profiles and side effect
profiles, using sparse canonical correlation analysis. The analysis
of 658 drugs with the two profiles for 1368 proteins and 1339
side effects led to the extraction of 80 correlated sets. Enrichment
analyses using KEGG and Gene Ontology showed that most
of the correlated sets were significantly enriched with proteins
that are involved in the same biological pathways, even if their
molecular functions are different. This allowed for a biologically
relevant interpretation regarding the relationship between drug–
targeted proteins and side effects. The extracted side effects can
be regarded as possible phenotypic outcomes by drugs targeting
the proteins that appear in the same correlated set. The proposed
method is expected to be useful for predicting potential side effects
of new drug candidate compounds based on their protein-binding
profiles.
Supplementary information: Datasets and all results are available
at http://web.kuicr.kyoto-u.ac.jp/supp/smizutan/target-effect/.
Availability: Software is available at the above supplementary
website.
Contact: yamanishi@bioreg.kyushu-u.ac.jp, or goto@kuicr.kyoto-u
.ac.jp

1 INTRODUCTION
Predicting and countering the side effects of a new drug during
its developmental phase remain important to the drug’s overall
commercial success. Side effects are responsible for a significant
number of cases where premarketed drugs fail during clinical
trials. Identifying the underlying mechanisms of side effects is a
challenging task, often because of the drugs’ pleiotropic effects on a
biological system. Most drugs are small compounds that target and
interact with proteins to induce perturbations in the proteins network.
This underscores the need of system-wide approaches for predicting
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drug side effects by linking different scales of drug actions; drug–
protein interactions (molecular scale) and relationships between
drugs and side effects (phenotypic scale) (Fliri et al., 2005, 2007;
Tatonetti et al., 2009).

The most widely used approach to identify possible side effects
for a drug is to use its chemical structure information, based
on the observation that drug chemical structures can direct the
ligand promiscuity toward protein targets (Bender et al., 2007).
For example, Scheiber et al. (2009) investigated correlations
between drug chemical substructures and side effects, although
they do not provide any prediction frameworks for new drug
molecules. Yamanishi et al. (2010) proposed a method to predict
the pharmacological effects of drugs using their chemical structures.
They then inferred drug-target interactions, but their method cannot
be directly applied to the prediction of high-dimensional side effect
profiles. Atias and Sharan (2011) proposed a method to predict
side effects from chemical structure data using canonical correlation
analysis (CCA). This work was pioneering in terms of simultaneous
prediction of many side effects. Pauwels et al. (2011) proposed
a method to relate drug chemical fragments with side effects
using sparse CCA (SCCA), and used the chemical fragments to
predict side effect profiles. However, these chemical structure-based
methods cannot provide any biological interpretations regarding the
underlying mechanisms at a molecular interaction level.

Chemically unrelated drugs may present similar side effects
because they happen to share common off-target proteins
(Finlaysona et al., 2004). On the basis of this observation, Campillos
et al. (2008) used side effect similarity of marketed drugs to predict
drug pairs with common protein targets. Xie et al. (2009) identified
drug off-targets by docking the drug into protein binding pockets
similar to that of its primary target, followed by mapping the proteins
with the best docking scores to known biological pathways, thus
predicting potential side effects. Using a similar docking approach,
Wallach et al. (2010) searched for correlated pairs of side effects and
biological pathways. These docking-based methods depend heavily
on the availability of protein 3D structures, which presents serious
limitations as many useful drug targets are membrane proteins, for
which very few structures are available.

From a system-wide viewpoint, Fliri et al. (2005) performed
a biological spectra-based approach to investigate the correlation
between drug-targeted proteins and their side effects. They clustered
drugs based on their biological spectra (i.e. their ability to inhibit
each of 92 selected proteins) and revealed a correlation between the
chemical structures of the corresponding drugs and their biological
activity in terms of protein inhibition profile. They further showed
that drugs with similar protein inhibition profiles tend to cause
similar side effects (Fliri et al., 2007). However, it remains difficult
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to experimentally determine the link between drug-targeted proteins
and side effects in a large-scale datasets in a cost-effective and
efficient manner (Whitebread et al., 2005). Therefore, there is a
strong incentive to develop computational approaches for analyzing
and predicting drug side effects.

In this article, we examine the correlation between drug–protein
interactions and their side effects on a large scale, without limiting
ourselves to proteins of known 3D structures. We identify correlated
sets of proteins and side effects based on the co-occurrence of drugs
in protein-binding profiles and in side effect profiles using SCCA.
Results demonstrate that proteins in the same correlated set tend to
be involved in only a few biological pathways even if their molecular
functions are different. We also address that the side effects in each
correlated set present possible outcomes from drug perturbations of
corresponding proteins. The originality of the proposed method lies
in the integration of drug–protein interactions at a molecular scale
and drug side effect relationships at a phenotypic scale. Performance
evaluation showed that this method works better than the case where
chemical structure profiles are used in the SCCAframework. We also
conduct a comprehensive side effect prediction for drug molecules
stored in DrugBank without side effect information and confirm
interesting predictions using independent source of information.

2 MATERIALS

2.1 Drug–protein interaction profiles and side effect
profiles

Drug–protein interactions were obtained from DrugBank (Wishart
et al., 2008) and Matador (Günther et al., 2008). Both the primary
target proteins as well as all proteins known to directly interact with
a particular drug were used for analysis. Side effect information was
obtained from SIDER, which accumulates reported side effects from
package inserts for marketed drugs (Kuhn et al., 2010). In total, 658
drugs had both targeted protein and side effect information. This
led to the construction of 5074 drug–protein interactions containing
1368 targeted proteins and 49 051 drug side effect pairs containing
1339 side effects. Each of the 658 drugs was represented by
a 1368-dimensional protein-binding profile and 1339-dimensional
side effect profile, which encodes for the presence or absence of
proteins (side effects) by 1 or 0, respectively.

2.2 Chemical structures
To encode drug chemical structures, a fingerprint was used, which
consisted of 881 chemical substructures defined in the PubChem
database (Li et al., 2010). This resulted in a binary profile referred
to as chemical substructure profile.

2.3 Annotation of drug-targeted proteins
265 pathway maps and 546 BRITE terms were obtained from
Kyoto Encyclopedia of Genes and Genomes (KEGG) (Kanehisa
et al., 2010). Note that ‘global pathways’ and ‘disease pathways’
were excluded from the pathway set. Fourteen molecular function
categories used in the protein annotations were also obtained from
KEGG. 22 043 biological process terms and 9971 molecular function
terms were obtained from Gene Ontology (GO) (Ashburner et al.,
2000).

3 METHODS

3.1 Ordinary canonical correlation analysis (OCCA)
Suppose that we have a set of n drugs with p targeted protein features and
q side effect features. Each drug is represented by a targeted protein feature
vector x= (x1,...,xp)T , and by a side effect feature vector y= (y1,...,yq)T .

We consider two linear combinations for targeted proteins and side effects
as ui=αT xi and vi=βT yi (i=1,2,...,n), where α= (α1,...,αp)T and β=
(β1,...,βq)T are weight vectors. We attempt to find weight vectors α and β

which maximize the following canonical correlation coefficient:

ρ=corr(u,v)=
∑n

i=1αT xi ·βT yi√∑n
i=1(αT xi)2

√∑n
i=1(βT yi)2

, (1)

where u (respectively, v) is centered. u (respectively, v) is called ‘canonical
component’, score.

Let X denote the n×p matrix defined as X= [x1,...,xn]T , and Y denote
the n×q matrix defined as Y= [y1,...,yn]T .

Then the maximization problem can be written as follows:

max{αT XT Yβ} subjectto ||α||22≤1, ||β||22≤1. (2)

3.2 Sparse canonical correlation analysis (SCCA)
Most elements in the weight vectors α and β in OCCA are non-zeros, which
makes it difficult to interpret the result. In practice, it is desirable to find
weight vectors that have large correlation, but that are also sparse for easier
interpretation.

To impose the sparsity on α and β, we consider the following
maximization problem with additional L1 penalty terms:

max{αT XT Yβ} subjectto

||α||22≤1, ||β||22≤1, ||α||1≤c1
√

p, ||β||1≤c2
√

q, (3)

where ||·||1 is L1 norm (the sum of all absolute values of the vector elements),
and c1 and c2 are parameters to control the sparsity (0<c1≤1 and 0<c2≤1).
For simplicity, the same value is used for c1 and c2 in this study. The CCA
with L1 penalties is referred to as SCCA. The weight vectors α and β can be
optimized by solving penalized matrix decomposition of the matrix Z=XT Y
(Witten et al., 2009).

To obtain multiple canonical components, we perform a deflation
manipulation iteratively as follows: Z (k+1)←Z (k)−dkαkβ

T
k , where Z (k) is

the input of step k (Z (1)=XT Y ), αk and βk are the weight vectors, and
dk is singular value obtained in the k-th step (corresponding to the k-th
component) (k=1,2,...,m). Finally, we obtain m pairs of weight vectors
(α1,β1),...,(αm,βm). Proteins and side effects with non-zero weights in the
weight vectors are extracted as correlated sets.

3.3 Prediction of side effect profiles for new molecules
Given the profile of targeted proteins xnew for a drug of unknown side effects,
we consider predicting its potential side effect profile ynew based on the
weight vectors {αk}mk=1 and {βk}mk=1.

We use the following prediction score for a given molecule:

ynew=
m∑

k=1

βkρkα
T
k xnew=B�AT xnew, (4)

where A=[α1,...,αm], B=[β1,...,βm] and � is the diagonal matrix whose
elements are canonical correlation coefficients. If the j-th element in ynew

has a high score, the new molecule is predicted to have the j-th side effect
(j=1,2,...,q). The same prediction score was proposed in the previous work
(Pauwels et al., 2011).

3.4 Enrichment analyses of targeted proteins
Let Gc denote the set of extracted proteins in component c and G denote
the set of proteins in a functional unit (e.g. KEGG pathway map). Let
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Fig. 1. An illustration of the network of drug-targeted proteins and side effects in the extracted 80 CCs. Proteins (pink rectangles) and side effects (green
diamonds) are connected if they appear in the same canonical component (CC). The highlighted CCs, 1 (red), 2 (light blue), 5 (orange) and 15 (purple) are
discussed in Section 5. CC1: DRD2 (Dopamine D2 receptor), SC6A2 (Sodium-dependent noradrenaline transporter), SC6A4 (Sodium-dependent serotonin
transporter), SCNs (Sodium channel protein subunits); CC2: GBRs (Gamma-aminobutyric acid receptor subunits); CC5: PGH1/2 (Prostaglandin G/H synthase
1/2), TOP2A (DNA topoisomerase 2-alpha), TTHY (Transthyretin), LOX5 (Arachidonate 5-lipoxygenase) and CC15: PA24A (Cytosolic phospholipase A2),
ANXA1 (Annexin A1), GCR (Glucocorticoid receptor), CBG (Corticosteroid-binding globulin)

r=|Gc|,k=|G|,z=|Gc∩G| and l the total number of proteins in the whole
dataset. We assume that z follows a hypergeometric distribution. The
probability to observe an intersection of size z between G and Gc is computed
as follows:

p(G,Gc)=
min(k,r)∑

i=z

(
k
i

)(
l−k
r−i

)
(

l
r

) . (5)

We then define the enrichment score s(c) of a component c by

s(c)=−log10 pFDR(G,Gc)

where pFDR(G,Gc) is the corrected value of p(G,Gc) by the false discovery
rate (FDR) (Benjamini and Hochberg, 1995).

4 RESULTS

4.1 Extraction of canonical component sets of
drug-targeted proteins and side effects

We applied the proposed SCCA method to the protein-binding
profiles and side effect profiles (see ‘Materials’ section), which
provided us with 80 canonical components. The correlated sets of
proteins and side effects were extracted from each component. A
list of drugs that contributed to the correlation was also obtained
for each component. We refer to these correlated sets as canonical
components (CCs) hereafter. All components present a limited
number of proteins and side effects, which is a consequence of the
sparsity of SCCA. This allows meaningful biological interpretation,
indicating an advantage over OCCA.

Figure 1 illustrates the network of extracted targeted proteins
and side effects within the 80 CCs, where proteins (rectangles) and
side effects (diamonds) are connected if they appear in the same
component. The top five proteins and three side effects with highest
weights are shown for easier visibility. The highlighted components
CC1, CC2, CC5 and CC15 are further discussed in Section 5. The
contents of all 80 CCs are listed in Supplementary Table S1.

4.2 Evaluation for canonical component sets based on
targeted proteins

To evaluate the biological relevance of targeted proteins within
the extracted 80 canonical components, we examine the functional
units of proteins in two levels, biological pathways and molecular
functions. Accordingly, we performed two kinds of enrichment
analyses: (1) pathway enrichment analyses and (2) molecular
function enrichment analyses. We used the KEGG database
(Kanehisa et al., 2010) and the GO database (Ashburner et al., 2000)
as gold standards for pathway and molecular function information.
KEGG pathway maps and GO biological process terms were used
in (1), whereas KEGG BRITE terms and GO molecular function
terms were used in (2).

As summarized in Table 1, all 298 proteins extracted as
members in the 80 canonical components were given molecular
function annotations. 215 and 281 proteins were given pathway
annotations by KEGG and GO, respectively. For each component,
we computed an enrichment score for each of the functional units.
A component was determined to be significantly enriched with a
particular functional unit if the enrichment score, FDR-corrected
P-value ≤0.05.

Figure 2 shows the distributions of canonical components
against the number of enriched functional units associated with
the component(s). The results of pathway enrichment analyses
(Fig. 2a and b) displayed skewed distributions, i.e. the number
of components decreased as the number of enriched pathways
increased. Pathway enrichment analysis with KEGG pathway maps
showed that 33 components were enriched with one or two
pathway(s), and the additional 23 components were enriched with
<10 pathways. This trend suggests that the majority of components
were characterized by only a small number of KEGG pathways.
Pathway enrichment analysis with GO biological process terms also
displayed this trend. In contrast, the component distributions for
molecular functions in Figure 2c and d showed much less skewness,
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Table 1. Statistics in pathway and molecular function enrichment analyses

(a) (b) (c) (d)

Number of annotated proteins 215 281 298 298
Number of pathways/terms used in annotation 112 751 105 318
Number of components with enrichment 57 72 75 74
Number of enriched pathways/terms 33 93 50 75

Four types of functional units were tested; (a) KEGG pathway maps; (b) GO biological
process; (c) KEGG BRITE terms and (d) GO molecular function.

and components were distributed across varying numbers of terms.
This suggests that components are likely to represent a few distinct
biological pathways for proteins from different molecular functions.

However, there remains a possibility that molecular functions of
similar categories appear in a component. Thus, we also examined
molecular functions of proteins in more general categories, such as
‘Ion channels’, ‘G Protein-coupled receptors’, and ‘Enzymes’. For
the majority of components, as a result, proteins were annotated
with more than one molecular function category, which confirms
that proteins of very different molecular functions were grouped
into the same component (Supplementary Fig. S1).

Table 2 shows the 10 most frequently appearing enriched
KEGG pathway maps that showed enrichment. Component-based
enriched pathways and associated enrichment scores are shown
in Supplementary Table S2. Pathways co-appearing in the same
component are biologically relevant. Among the 40 components that
are enriched with more than one pathway, 14 contained two or three
of the following pathways: ‘Calcium signaling pathway’, ‘Cardiac
muscle contraction’, and ‘MAPK signaling pathway’. Interestingly,
calcium is a signaling molecule that is well known to play an
important role in muscle contraction, and there exists a direct cause-
and-effect relationship between MAP kinase activation and smooth
muscle contraction (Dessy et al., 1998). Therefore, in many cases
where components contain more than one pathway, these pathways
seem to take part in the same global biological function.

We are aware that the KEGG pathways do not always describe
signal transductions of proteins. For example, ‘Neuroactive ligand–
receptor interaction pathway’ lists ligand–receptor interactions
for G protein-coupled receptors (GPCRs) and ion channels. It
describes protein families, rather than signal transductions occurring
downstream of the ligand–receptor interactions. However, 18 out of
19 components were enriched with additional pathways.

These results indicate that component-based grouping of targeted
proteins provides biologically relevant information in two ways.
First, a significant number of proteins co-extracted in the same
component are involved in the same biological pathway(s). Second,
in many components, such proteins belong to different protein
families. The component-based protein grouping cannot be inferred
only from drug-targeted protein interactions, because they are often
targeted by drugs of different chemical families. Accordingly, the
side effects extracted in a component can be viewed as possible
outcomes of biological pathway perturbations by drugs targeting
the proteins that appear in the component.

4.3 Performance evaluation
It is difficult to evaluate the performance of the feature extraction
method, because there is little knowledge about true association

KEGG pathway maps

KEGG BRITE terms

GO Biological process

GO Molecular function

A B

C D

Fig. 2. Canonical component distribution of the number of enriched
pathways and molecular functions. For each of the 80 canonical components,
enrichment score was computed in terms of the number of proteins associated
with the component. The score was calculated for each of the functional
units in two levels; biological pathways and molecular functions. Each
histogram shows the frequency of canonical components against the number
of enriched functional units associated with the components. (a and b)
Pathway enrichment analysis using KEGG pathway maps showed that
33 components were enriched with one or two maps, and the other 23
components were enriched with <10 maps. For GO biological process
terms, the frequency of components decreased as the number of enriched
terms increased. (c and d) Molecular function enrichment analysis with
KEGG BRITE terms showed much less skewed distribution compared to
the distribution for KEGG pathway maps. GO molecular function terms
showed a bell-shaped distribution with a mean at 3.95 terms. Comparison
between the two enrichment analyses suggests that proteins extracted in a
component are likely to be characterized by a limited number of biological
pathways, even if their molecular functions are different

between targeted proteins and side effects. However, if the
extracted components are biologically meaningful, they should
contain some general properties which could be exploited for side
effect prediction. We evaluate the performance of the method by
recovering known drug side effect profiles from drug protein-
binding profiles, using the extracted canonical components.

In previous literature, chemical structure fingerprints were used
for predicting side effect profiles in the framework of OCCA (Atias
and Sharan, 2011) and SCCA (Pauwels et al., 2011). Therefore, we
made a comparison between chemical structure-based approach and
targeted protein-based approach in the framework of both OCCA
and SCCA by performing the following 5-fold cross-validation.
First, drugs in the gold standard set were split into five subsets of
roughly equal sizes, and each subset was used in turn as a test set.
Second, the CCA model was trained on the remaining four sets.
Third, the prediction score was computed from the test set, based on
the components extracted from the training set. Finally, the model
was evaluated for prediction accuracy over the 5-folds.

We evaluated the performance of the methods by the receiver-
operating characteristic curve (ROC curve) and the Precision–Recall
curve (Supplementary Fig. S2). The ROC curve is a plot of true
positives as a function of false positives based on various prediction
score thresholds, where true positives are correctly predicted side
effects and false positives are incorrectly predicted side effects.
The Precision–Recall curve is the plot of ‘precision’ (positive
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Table 2. Most frequently appearing enriched pathways

ID KEGG pathway maps

map04080 Neuroactive ligand–receptor interaction
map04020 Calcium signaling pathway
map04728 Dopaminergic synapse
map04010 MAPK signaling pathway
map04260 Cardiac muscle contraction
map04727 GABAergic synapse
map04970 Salivary secretion
map04725 Cholinergic synapse
map00590 Arachidonic acid metabolism
map04270 Vascular smooth muscle contraction

All component-based enriched pathways and associated enrichment scores are shown
in Supplementary Table S2.

predictive value) as a function of ‘recall’ (sensitivity) based on
various thresholds.

We summarized the performance by the area under the ROC curve
(AUC) score and the area under the Precision–Recall curve (AUPR)
score. To obtain robust results, we repeated the cross-validation
experiment five times, and computed the mean and the standard
deviation (SD) of the AUC scores over the five repetitions. Sparsity
parameters c1, c2 ranged from 0 to 1 by 0.1 increments, and m
ranged from 10 to 200 by 10 increments. The best results were
obtained with c1=0.1, c2=0.1 and with m=80 components in the
case of SCCA. The same cross-validation experiments were repeated
for OCCA (with no sparsity constraint), and the best results were
obtained for m=20 components.

Table 3 shows the resulting AUC and AUPR scores for the four
different approaches, where the prediction scores for all side effects
were merged, and a global ROC curve and a global PR curve were
evaluated for each approach. This indicates that both SCCA and
OCCA produce fairly good results and SCCA is slightly better than
OCCA. It also seems that the targeted protein-based approach works
better than the chemical structure-based approach. Results suggest
that the targeted protein information is indeed useful for side effect
prediction.

4.4 Prediction of side effects for uncharacterized drugs
In the DrugBank database, there are still 730 drugs whose target
protein information is available, but side effects are not stored in the
SIDER database. On the basis of their protein-binding profiles, we
predicted the potential side effects for these uncharacterized drugs
using the SCCA model, all of the 658 reference drugs being used as
a training set. All prediction results can be found in Supplementary
Table S3A. Complete analysis of all predictions is of course out of
reach, so we focused on the side effect predictions of highest scores.

Some of the top-ranked predicted side effects involve Cinnarizine
(DB00568), an anti-histaminic drug used against motion sickness.
This drug binds to the histaminic H1 receptor, which is believed to
explain its effectiveness in preventing vomiting in motion sickness.
Its predicted ‘tremor’ (cyclical movement of a body part) side
effect was confirmed by literature (Gimenez-Roldan and Mateo,
1991). Interestingly, Cinnarizine also binds to the voltage-dependent
calcium channel involved in muscle contraction, which might

Table 3. Performance evaluation based on 5-fold cross-validation

Method AUC ± S.D. AUPR ± S.D.

Chemical structure-based approach
Random 0.5000 ± 0.0000 0.0556 ± 0.0000
OCCA 0.8355 ± 0.0010 0.3753 ± 0.0016
SCCA 0.8708 ± 0.0007 0.3766 ± 0.0030
Targeted protein-based approach
Random 0.5000 ± 0.0000 0.0556 ± 0.0000
OCCA 0.8850 ± 0.0007 0.4067 ± 0.0006
SCCA 0.8895 ± 0.0002 0.4103 ± 0.0018

Scores of the proposed method are highlighted in bold.

explain the ‘tremor’ side effect. ‘Constipation’ is also predicted
for Cinnarizine, as found in the adverse effect report 6127929-0
of the Food and Drug Administration (FDA). The predicted ‘dry
mouth’side effect for Cinnazarine was also confirmed from literature
(Gordon et al., 2001).

The second ranked predicted side effect is ‘diplopia’ (double
vision) for Benzocaine (DB01086), a surface anesthetic that acts by
preventing transmission of impulse along nerve fibers. Consistent
with this activity, Benzocaine is an inhibitor of voltage-dependent
sodium channel. The predicted side effect was confirmed from the
literature (Horowitz et al., 2005). ‘Syncope’ was another side effect
predicted for Benzocaine with a high score (Walker et al., 2003).
The fourth ranked predicted side effect is ‘tremor’ for Bepridil
(DB01244), an antihypertensive drug. Tremor is indeed one of the
most common side effects for this drug, reported for 5% of all
patients (Williams et al., 2002). ‘Tachycardia’ was also confirmed
for Promazine (DB00420), an antipsychotic agent (Aronson, 2007).
The side effect ‘diplopia’ for Nisoldipine (DB00401), a calcium
channel blocker used for the management of hypertension, was also
confirmed (O’Keefe and Creamer, 1987).

5 DISCUSSION
We provide biological interpretations of proteins and side effects
extracted in each canonical component CC. Although CCs
highlighted in Figure 1 are discussed here, the distinct characteristics
were also observed in many other components.

In CC1, the top-ranked proteins were serotonin and noradrenaline
transporters. They belong to the family of neurotransmitter
transporters and are responsible for the release and re-uptake of the
serotonin and noradrenaline neurotransmitter molecules by neurons,
at the level of synapses. The uptake of the neurotransmitters is
coupled to the co-transport of sodium ion by sodium channels to
derive the required energy to pump the neurotransmitter against
its gradient. Therefore, neurotransmitter transporters and sodium
channels can be viewed as proteins playing part in the same
biological process. This indicates that drugs-targeting sodium
channels or neurotransmitter transporters share some side effects,
indeed, drugs such as Venlafaxine or Bupropion that target
neurotransmitter transporters gained high score in CC1, together
with drugs such as Flecainide or Lamotrigine that target sodium
channels. As shown in Figure 3a and b, channel blockers and
drugs targeting serotonin and noradrenaline transporters display
very diverse chemical structures, because they probably target

i526

 at L
ibrary of R

esearch R
eactor Institute, K

yoto U
niversity on O

ctober 22, 2012
http://bioinform

atics.oxfordjournals.org/
D

ow
nloaded from

 

http://bioinformatics.oxfordjournals.org/cgi/content/full/bts383/DC1
http://bioinformatics.oxfordjournals.org/cgi/content/full/bts383/DC1
http://bioinformatics.oxfordjournals.org/


Copyedited by: MANUSCRIPT CATEGORY: ECCB

[15:52 7/8/2012 Bioinformatics-bts383.tex] Page: i527 i522–i528

Relating drug–protein interaction with side effects

very different binding sites. The fact that they lead to similar
side effects could not have been foreseen based on analysis of
chemical structures. Dopamine receptor was also found in CC1.
This receptor belongs to the GPCR family and is implicated in
many neurological processes such as motivation, cognition or fine
motor control. Dopamine is a neurotransmitter that is structurally
similar to noradrenaline, and in fact, it is a precursor of noradrenaline
(Figure 3c). Consequently, a drug targeting one of these two proteins
might also bind to the other, which might explain why these
two proteins share some side effects and are found in the same
component. Venlafaxine has a high score in CC1 and is an example
of such a case.

In CC2, the top-ranked proteins were gamma-aminobutyric acid
(GABA) receptors (GABA-A receptors). These receptors function
as chloride channels gated by GABA. They mediate neuronal
inhibition in the central nervous system. Consistent with this
role, most of the high scoring drugs in CC2 were molecules
that target GABA receptors and modulate their function. They
are used as anti-anxiety agents, muscle relaxants or anesthesia
adjuvants. Midazolam and Baclofen are examples of drugs targeting
GABA receptors (Figure 3d), although these molecules belong to
very different chemical families. Midazolam is a benzodiazepine
molecule that binds to GABA-A receptors and acts as an agonist
that increases GABA activity. Baclofen is a GABA derivative that
targets GABA type B receptors (which are GPCRs) in addition to
the GABA-A receptors. Interestingly, Gabapentin was one of the
high scoring drugs in CC2 (Figure 3e), although it does not bind
to GABA receptors. This molecule binds to and inhibits voltage-
sensitive calcium channels. However, this drug is known to increase
GABA concentration in the synapse, although the corresponding
mechanism is not understood (Petroff et al., 2000). Consequently,
it indirectly increases the activity of GABA receptors, which is
consistent with its use (among others) as anti-anxiety agent.

Proteins extracted in CC5 and CC15 are mainly involved in
pathways related to inflammation. In CC5, most proteins with high
weights are enzymes belonging to the arachidonic acid metabolism
pathway, such as prostaglandin G/H synthases, arachidonate 5-
lipoxygenase and leukotriene A-4 hydrolase. Indeed, CC5 was
enriched with the KEGG ‘Arachidonic acid metabolism’ pathway,
in which proinflammation molecules such as leukotrienes or
prostaglandins are synthesized. High scoring drugs in CC5 were
mainly non-steroidal anti-inflammatory drugs (NSAIDs), that inhibit
enzymes of this pathway. Some of these drugs are structurally
unrelated, such as Diclofenac and Indomethacin, but they both
inhibit prostaglandin G/H synthases (Figure 3f). Others also have
very different chemical structures, such as Leflunomide that binds
arachidonate 5-lipoxygenase (Figure 3g). However, all these drugs
exert their anti-inflammatory action by inhibiting the same overall
biological pathway, which explains why they lead to common side
effects and contributed to the same component.

In CC15, most of the extracted proteins belong to the
glucocorticoid signaling pathway, such as glucocorticoid
receptor (a nuclear receptor) or corticosteroid-binding globulin.
Glucocorticoids are a class of steroid hormones that are part
of the feedback mechanism in the immune system that turns
inflammation down. In this pathway, cytosolic glucocorticoid
receptors are activated by glucocorticoid binding. The receptor–
ligand complex translocates to the nucleus where it up-regulates
anti-inflammatory proteins such as annexin 1, or down-regulates
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Fig. 3. Examples of molecules responsible for extraction of CCs. (a and
c; CC1) Venlafaxine and Bupropion bind to neurotransmitter transporters.
Flecainide and Lamotrigine bind to sodium channels. Noradrenaline and
dopamine are the two natural ligands of noradrenaline transporter and
dopamine receptor, respectively. Venlafaxine also binds to noradrenaline and
dopamine receptor. (d and e; CC2) Midazolam and Baclofen interact directly
with GABA receptors. Gabapentin indirectly modulates GABA receptors
activity by increasing GABA concentration in the synapse. (f and g; CC5)
Examples of non steroidal anti-inflammatory drugs (NSAIDs) responsible
for extraction of CC 5. They bind to prostaglandin G/H synthase (f) or
arachidonate 5-lipoxygenase (g). (h; CC15) Example of steroidal anti-
inflammatory drugs that bind proteins involved in the glucocorticoid
signaling pathway. DrugBank IDs are provided in parentheses

proinflammatory proteins such as interleukins or cytokines. High
scoring drugs in CC15 were molecules from the steroid family such
as Triamcinolone that binds glucocorticoid receptor or Amcinonide
that binds glucocorticoid receptor and annexin 1 (Figure 3h).
Therefore, although high scoring drugs in CC5 or CC15 present an
anti-inflammation activity, they do not act on the same biological
pathways. Consequently, they do not present the same side effects.

Interestingly, CC5 contained a human DNA topoisomerase. This
protein controls the topological states of DNA, and therefore, one
could wonder why this protein was extracted in CC5. In fact, various
drugs from the fluoroquinolone family, namely, Ciprofloxacin,
Ofloxacin and Doxorubicin, which target DNA topoisomerase were
found among high scoring drugs in CC5. These fluoroquinolones
and NSAIDs, or example Diclofenac and Indomethacin, share
some of the extracted side effects of CC5, namely, ‘Stevens
Johnson syndrome’, ‘stomatitis’ and ‘agranulocytosis’. NSAIDs
and fluoroquinolone are structurally unrelated molecules, have
completely different modes of action and target functionally
unrelated proteins. The fact that they share the common side effects
may not be explained by our current pathway data. Additional
information such as relationships between pathways will be required
to fully explain such cases.

Another case is a possibility that certain side effects can be caused
by an alteration of the immune system introduced by drugs. It is
known that synthetic glucocorticoids down-regulate the functions
of immune cells (Flammer and Rogatsky, 2011), and certain anti-
cancer drugs show immunosuppressive activities (Law, 2005). To
discuss whether the occurrence of common side effects between
these drugs is due to the direct inhibitions of the targeted proteins
or indirect alterations of the immune system, an investigation of
cross talks between signaling pathways and immune pathways is
necessary.
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6 CONCLUSION
In this article, we proposed a novel SCCA-based approach to
relate drug targeted proteins with drug side effects. Using a cross-
validation scheme, we found that the proposed approach displays
better performance than chemical-structure-based methods for the
prediction of drug side effects. Results suggest that side effect of
drugs are more correlated to their mechanism of action, rather than
to their chemical structure, which presents an interesting result. In
most drug discovery projects, a therapeutic target playing a role in a
given disease is searched for, and once identified, the corresponding
pathways can be identified. The components that are enriched in
these pathways provide a list of potential side effects that one can
expect for future drugs acting on the target of interest.

We constructed a statistical model for the prediction of side
effect profiles from protein-binding profiles, primarily because the
number of drugs with side effect information is much less than
those with targeted protein information. Indeed, it is unlikely in a
practical situation that detailed side effect profiles are known for
newly arriving drug candidate molecules. One limitation of our
proposed method is that targeted protein information is not always
obtainable; however, increasing information regarding protein-
ligand interactions is becoming available from various biological
assays. Thus, we envisage scenarios where a drug candidate
molecules'f targeted protein information is available, but not side
effect information. In this context, we believe that our proposed
method presents itself as a powerful and informative tool for use
within the drug discovery process.
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