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ABSTRACT. We prove the existence of the log-canonical model over a log pair (X, Ll.). As 
an application, together with Kollar's gluing theory, we remove the assumption in the 
first named author's work [Odakall], which shows that K-semistable polarized varieties 
can only have semi-log-canonical singularities. 
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1. Introduction 

Throughout this paper, the ground field is assumed to be an algebraically closed field 
of characteristic 0. It is well known that a normal surface singularity has the minimal 
resolution, while for a singular variety of higher dimension, usually it does not have 
any such "canonically determined" smooth modification. But if we allow the partial 
resolution having mild singularities, a type of singularities coming from the minimal 
model program (MMP) which is natural for many questions, then it is possible. More 
precisely, for an arbitrary normal variety X, we can consider a unique ("canonically 
determined") partial resolution Y --; X with only canonical singularities and satisfies 
the property that K y is relative ample over X. The existence of such model Y, i.e., the 
canonical model over X\ is implied by [BCHMlO, Main theorem (1.2) ]. In the case 
of surfaces, Y is obtained by contracting all exceptional curves with self-intersection 
( ~2) from the minimal resolution. 

Similarly, for a normal pair (X, .6.) i.e., attached with a boundary Q-divisor, we 
can define a "canonically determined" partial resolution (Y, l:.y) --; (X, .6.) associated 
to it, which is called its log-canonical model (see (2.1)). It coincides with the relative 
log-canonical model of a log resolution with a reduced boundary, in the sense of the 
usual relative log MMP, as we will show in Lemma 2.1. 

In this note, we study the question of the existence of log-canonical model of a 
normal pair (X, .6.). It is well known that the full log MMP (including the abundance 
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conjecture) gives an affirmative answer to the question. As the full log MMP is still 
not established, our main observation in this note is that if we assume Kx + ~ is Q. 
Cartier, then the existence of log-canonical model follows from the established results 
on MMP, especially the recent ones in [Birkar 11] and [HX11]. 

Theorem 1.1. Let (X,~) be a normal pair, i.e., X is a normal variety and ~ = 

L ai~i is a Q-divisor with distinct prime divisors ~i and rational numbers ai. As­
sume 0 -s: ai -s: 1 and Kx + ~ is Q-Cartier. Then there exists a log-canonical model 
(Y, ~Y) over (X,~) (see (2.1) for the definition). 

As a consequence, we give a proof of the inversion of adjunction for log canonicity, 
which is a slight simplification of Bacon's argument in [Hacon11] (also see [Kollax12, 
4.11.2]). We note that the inversion of adjunction for log canonicity was first proved 
by Kawakita (see [Kawakita07]) without using the minimal model program. 

Corollary 1.1 (Inversion of Adjunction). Let (X, D + ~) be a normal pair and 
D a reduced divisor. Assume Kx + D + ~ is Q-Cartier. Let n: Dn ___, D be the 
normalization, and write n* (Kx + D + ~)ID = KDn + ~Dn . 

Then (X, D + ~) is log-canonical along D if and only if (Dn, ~Dn) is log-canonical. 

We can also extend our results into non-normal setting. In fact, Kollar recently has 
developed a rather complete theory of semi-log-canonical pairs by studying their nor­
malizations. Thanks to his fundamental theory (see [Kollar12]), including his recent 
result [Kollarll], we have the following as a consequence, which generalizes Theorem 
1.1. 

Corollary 1.2. Let (X,~) be a demi-normal pair where ~ = L ai~i is a Q-divisor, 
none of prime divisor ~i are in the singular locus Sing(X). Assume 0 -s: ai -s: 1 and 
Kx + ~ is Q-Cartier. Then the semi-log-canonical model (Y, ~Y) over (X,~) exists. 

Recall that demi-normality of X means that it is normal crossing in codimension 1 
and satisfies Serre's S2 condition [Kollar12, 5.1]. For the precise definition of semi­
log-canonical model, see Definition 3.2. 

One of our main applications for this note is the following. In [Odaka11], the first 
named author proved K-semi-stability implies semi-log canonicity, assuming the exis­
tence of semi-log-canonical models. Since (1.2) verifies this assumption, the following 
theorem now becomes unconditional. 

Theorem 1.2 ([Odakall]). Let X be an equidimensional reduced projective variety, 
satisfies S2 condition and whose codimension 1 points are Gorenstein. Thus we can 
define the Weil divisor class Kx which we assume to be Q-Cartier. 

Then, if (X, L) is K -semistable, X has only semi-log-canonical singularities. 

Roughly speaking, assuming the non-semi-log-canonicity of X, Odaka [Odaka11] 
proved that we can construct "destabilizing test configuration" by using the semi-log­
canonical model of X. We refer to [Odaka11] for more details. 

2. Log-canonical models 

Definition 2.1. Let (X,~) be a normal pair, i.e., X is a normal variety and ~ = 
L ai~i is a Q.divisor with distinct prime divisors ~and rational numbers ai. Assume 



0 <::: ai <::: 1. We call that a birational projective morphism f : Y ----> (X, .6.) give a log­
canonical model over (X,l:.) ifwith the divisor l:.y = f*- 1 (.6.x)+E}c on Y, where E}c 
denotes the sum of !-exceptional prime divisors with coefficients 1, the pair (Y, l:.y) 
satisfies 

(1) (Y, l:.y ) is log-canonical, 
(2) Ky + l:.y is ample over X. 

From the negativity lemma (see [KM98, 3.38]), we know that f : Y ----> X is 
isomorphic over the maximal open locus XIc on which (X, .6.) is log-canonical (see 
the proof of (2.2)). For more background of log-canonical models over a pair (X, .6.), 
see [Kollaretal92, Section 2]. 

First, we discuss the uniqueness of the log-canonical model. 

Lemma 2.1. Let j: Y ----> X be a log resolution of (X, .6.). Assume that (Y, .6.-y := 

j*-l .6. + ~ Ei) has a relative log-canonical model (Y, l:.y) over X, where Ei run over 

all }-exceptional prime divisors. Then Y ----> (X, .6.) is a log-canonical model over 
(X, .6.). 

Proof. By the definition of the relative log-canonical model, (Y, l:.y) obviously satisfies 
conditions (1) and (2). 0 

Proposition 2.1. If log-canonical model Y exists, then it is unique. 

Proof. Let g: Y----. Y be a log resolution of (Y, J;1 (.6.) +Ex(!) ). And we write 

g* (K y + l:.y) + E ~Q K-y + F, 

such that E, F ~ 0, have no common components. It is easy to see that g* (F) = .6.. 
Since (Y, l:,.y) is log-canonical 

- -
where f = f og and Ei run over all !-exceptional prime divisors. The difference is 
g-exceptional. We conclude that 

as K y + l:.y is ample over X. So it suffices to show that the different log resolutions 
as in (2.1) will yield the same log-canonical model Y. 

We assume that there are two difference choices 9i: (J?i, l:.y.) ----> (X, .6.) (i = 1, 2) 

with a morphism f1, : Y1 ----> Y2. Since f.J,* (K-y
2 

+ l:.y) + E' = K-y
1 

+ l:.y
1 

for some 
effective exceptional divisor E'. The uniqueness immediately follows from the fact 
that (Y£, l:.yJ have the same relative log-canonical ring (sheaf) 

EB (gi)*OYi (m(Kyi + l:.y)) 
=EZ;:-o 

over X. 0 



Lemma 2.2. Let (X, .0..) be a pair as in (2.1). We assume that Kx +.0.. is Q-Cartier. 
Let f : Y----> (X, .0..) be the log-canonical model. Write 

f*(Kx + .0..) ""Q Ky + B, 

and B = '£ biBi as the sum of distinct prime divisors such that f* (B) = .0.., we 
let B >1 be the nonzero divisor Lbi>1 biBi and B9 be the divisor Lbi<1 biBi, then 
Supp(B>1 ) =Ex(!). In particular, Ex(!) C Y is of pure codimension 1~ 

Proof. It is obvious that Supp(B>1 ) C Ex(!). 
If we write B = f; 1(.0..) + EB, then EB is supported on the exceptional locus and 

the divisor Ejc - EB is an exceptional divisor which is relatively ample. It follows 

from the negativity lemma (see [KM98, 3.38]) that E}c- EB :::; 0. Therefore, we have 
the equality 

f; 1 (.0..) + E}c = B9 + Supp(B>1 
). 

From the definition of the log-canonical model (2.1 ), we know that 

(2.1) K y + Supp(B>1
) + B9 ""Q,X Supp(B>1

) - B >1 = ~ (1- bi)Bi 
b,> 1 

is relatively ample over X. Thus for any curve C which is contracted by f, we have 

C · (~(bi -1)Bi) < 0, 
bi>1 

which implies that C c Supp(B>1 ). This shows Ex(!) C Supp(B>1) which completes 
the proof. 0 

Proof of (1.1). We take a (Q-factorial) dlt modification g : Z ----> X of (X, .0..) (see 
[KK10, Section 3] or [Fujino10, 4.1]) such that 

(i) if we write g* (Kx + .0..) ""'Q Kz + g;1 (.0..) + '£ biEi, then bi ::;:, 1; 
(ii) (Z, .0..z = g;1 (.0..) + '£ Ei) is dlt. 

We remark Z can be achieved by running a sequence of (Ky + .0..y )-MMP over X 
for a log resolution of j : Y ----> (X, .0..) (see [Fujino10, 4.1]) where .0..y is defined as 
in (2.1). Furthermore, we require that j - 1(X \ Xlc) is a divisor. We want to show 
(Z, .0._z = g; 1 (.0..) + '£Ei) has a good minimal model over X. Since then we can take 
Y to be the relative log-canonical model, which is easy to see it is the log-canonical 
model of (X, .0..). 

Lemma 2.3. Let V be a log-canonical center of (Z, g;1 (.0..)+ '£ Ei), such that g(V) C 
X \ xlc I then v c Ei for some i. 

Proof. As Z is obtained by running a sequence of MMP for a log smooth resolution 
j : Y ----. (X, .0..), then V is an lc center of (Z, g;1 (.0..) + '£ Ei) if an_? only if Y - - + Z is 
isomorphic over the generic point V and the preimage W of V in Y is a component of 
n Fi, where F/s are prime divisors contained in l.0..y J. As by our assumption j-1 (X \ 
XIc) is a union of divisors, if }(W) c X \ XIc, then W is contained in one of the 
!-exceptional divisors Ei whose image is in X \ xlc. Therefore. v is contained the 



- -
birational transform of Ei on Z as Y ---t Z is an isomorphism on the generic point 
of Ei. 0 

Now consider all exceptional divisors E of g with the centers contained in X\ XIc. 
Fixing a general relatively ample effective divisor H on Z over X, we run (Kz + l:.z )­
MMP with scaling of H over X (see [BCHM10, Subsection 3.10]). As we treat dlt 
pairs, which are not klt, we explain what follows from [BCHM10] in the following 
lemma for the readers' convenience. 

Lemma 2.4. We can run the MMP with scaling of H for (Z, l:.z) over X to get a 
sequence of numbers 0 :S; · · · :S; s2 :S; s 1 :S; s0 and a sequence of birational models 

Z = Zo - --t Zt ---t Z2 - - -t · · · , 

such that the following holds. Here, l:.j and Hj are push-forwards of .6. and H on 
each Zj. 

(i) KzJ + l:.j + tHj is semi-ample over X for any Sj ::;> t ::;> sj+l· 
(ii) This sequence {si} (is either finite with ::JsN = 0 or) satisfies the property 

that limj Sj = 0. 

Proof. For each Zj, we set 

Sj+l := inf{ t > 0 I KzJ + l:.j + tHj is relatively nef over X}, 

and consider the extremal contraction of an extremal ray Rj with (KzJ +l:.j+Sj+lHj)· 
Rj = 0. In each step the existence of flip holds since as Kzj + l:.j is dlt and Zj is 
Q-factorial, (K z J + l:.j )-flip is the same as a step of (K z J + (1 - b)l:.j )-MMP for 
0 < 6 <S: 1 and (Zj, (1- b)t.j) is klt (see [BCHM10, Corollary 1.4.1]). 

From our construction, we know that giving a sequence of j steps 

z = Z0 --+ Z1 --+ Z2 --+ zj 

of (Kz + .6.)-MMP with scaling of H as above is the same as giving a sequence of 
steps of (Kz + .6. + tH)-MMP with scaling of H for any 0 :S; t < sj. 

For arbitrary t > 0, there exists an effective divisor 8t '"'"'Q l:.z + tH, such that 
(Z, 8t) is klt (with 8t is relatively big, which is trivial in this case since Z is birational 
over X). It follows from [BCHM10, Corollary 1.4.2, see also Theorem 1.2] that any 
sequence of (Kz + 8t)-MMP with scaling of Hover X will terminate after finite steps 
with a relative good minimal model Zj, i.e., K z J + Pj * ( 8t) is semi-ample over X where 
Pj : Z - --t Zj is the birational contraction. (Recall that good minimal model means a 
minimal model which satisfies the abundance conjecture.) Thus, (i) is proved. 

Moreover, from the arguments above, there are only finitely many sj such that 
Sj > t. Since we can choose t to be an arbitrarily small positive number, we also have 
the conclusion (ii). 0 

The diminished stable base locus2 of (Z, l:,.z) over Z is defined by 

B_(Kz + l:.z / X) = U B(Kz + l:.z + EH/ X), 
6> 0 

2 Also called restricted stable base locus. 



where B(-) denotes the usual stable base locus. If there is a divisor E C B_ (Kz + 
1::.2 / X), then E C B(Kz + 1::.2 + tH/ X) for some t > 0, therefore there exists an j, 
such that Sj ~ t ~ Sj+ 1 . Since 

Kzj + l::.j + tHj '"'"'Qj Kzj + Pj* 8t 

is semi-ample over X we know that Pj contracts E. 

Lemma 2.5. There exists Zj such that if we denote by Z' = Zj 1 p1 = Pj 1 the mor­
phism g1 

: Z' __., X and write 

g'*(Kx + !::.) = K 2 , + g'~ 1 (!::.) + ~biE;, 

then bi > 1 for all Ef which centers in X \ Xlc. 

Proof. From the above discussion, we can assume that there is Zj = Z 1 such that 

B_ (Kz, + g':;-
1 (1::.) +=ED has codimension at least 2. By (2.1), we have 

Kz' + p:(/::.z) = Kz' + g'~ 1 (!::.) + ~Ef '"'"'Q,x ~(1- bi)Ef, 

if the statement is not true, it follows from the Kollax-Shokurov's connectedness 
theorem (see [Kollaretal92, 17.4]) that there is a divisor Eb, with b0 = 1 such that 
=b•>1 E~ ]Eb is not trivial. Therefore, 

is not effective for small 0 < E ~ 1, where H' := p*H. This implies that Eb C 
B_ (K z + /::.z /X), which yields a contradiction. Then we conclude that bi > 1 for all 
E~ whose center is in X \ Xlc. 0 

Now consider the dlt pair (Z', g':;-
1 (!::.) + ~), where ~ = = E~ - E =(bi - 1 )E~ for 

some positive E ~ 1. 

Lemma 2.6. (Z',g':;-
1 (1::.) +~)has a good minimal model Y' over X. 

Proof. Over the open set xtc, we have 

(Kz' + g1 ~1 (!::.) + ~)j9 , - t(Xlc) = g'* (Kx + !::.)j91-t(Xlc) ' 

whose ring of pluri-log-canonical sections is finitely generated over xlc' because it is 
isomorphic to the algebra 

Therefore, the restriction of (Z',g':;- 1 (!::..) +~))over Xlc has a relative good minimal 
model over X 1c by [HXll, 2.11]. Any lc center of (Z',g':;-1 (!::.) +=ED which is 
contained in on of E; cannot be an lc center of (Z',g':;- 1 (1::.) + ~) , however, these 
lc centers are precisely those centers of (Z' ,g':;- 1 (!::..) +=ED which is mapped into 
X \Xlc by (2.3). Thus we conclude that if Vis an lc center of (Z', g':;- 1 (!::.) +~),then 
its image under g' intersects X 1c. Therefore, it follows from [Birkarll, Theorem 1.9] 
or [HXll, 1.1] that (Z',g':;- 1 (1::.) +~)has a good minimal model f': Y'---. X. 0 



Since 

,-1( ) 2.= 1 1 ( ,-1( ) ) E '*( ) Kz' + g * 6. + Ei = -- Kz' + g * 6. + ~ + --g Kx + 6. , 1+E 1+E 

we conclude that Y' is also a relative good minimal model for Kz' + g'~ 1 (6.) + L E; 
over X. 0 

Proof of (1.1). One direction is easy (see [Kollaretal92, 17 .2]). To prove the converse, 
let us assume that (X, D + 6.) is not log-canonical along D. Let f: Y---> (X, D + 6.) 
be the log-canonical model as in the proof of (1.1 ). Write 

f* (K x + D + 6.) = K y + Dy + B, 

where Dy is the birational transform of D. Since f is not an isomorphism over D, it 
follows from (2.2) that 

Dy n Ex(!) = Dy n Supp(B>1
) f. 0. 

Therefore, if we denote by D¥ the normalization of Dy and write 

n*(Ky + Dy + B)[Dy = KD¥ + BD'Y, 

then (Dy, BD'Y ) has coefficient strictly larger than 1 along some components of Dy n 
Ex(!) by (2.2), which implies that (Dn, 6.Dn) is not log-canonical. 0 

Corollary 2.1. Notation as above proof. Let f: Y ---> (X, D + 6.) be the log-canonical 
model. Let Dy be the birational transformation of D and n: Dy ---> Dy its normal­
ization. Then fDn: Dy ---> (Dn, 6.Dn) is also the log-canonical model. 

Proof. From the proof of (1.1), we know that 

n-1 (Ex(f)) = Ex(!Dn ), 

which implies that if we denote f[), * (6.D n) + E}~n by t:.D'Y , then 

Km; + t:.D'Y = n*((Ky + 6.y)[Dy)· 

Then obviously (Dyn ' t:.Dn ) is log-canonical and KDn +6.Dn is ample over nn. 0 
y y y 

3. Semi-log-canonical models 

In this section, we study the existence of semi-log-canonical model of a demi-normal 
pair (X, 6.). A pair (X, 6.) is called demi-norrnal if X is 82, whose codimension 1 
points are regular or ordinary nodes and 6. is an effective Q-divisor whose support 
does not contain any codimensional 1 singular points. For such a demi-normal scheme 
X, let n : X ---> X be its normalization, we can define the conductor ideal 

condx := Homx(n*O_x, Ox) C Ox. 

and the conductor schemeD:= Specx(Ox / condx). Let n: X---> X be the normal­
ization, and !J the pre-image of D in X. Then there is an involution CT : JJn ---> JJn 
on the normalization of !J. We can write 

n*(Kx + 6.) ""'Q K_x + !J + .6., 
where 2S. is the preimage of 6.. In fact, we only need to check this formula at all 
codimension 1 points, which is straightforward. 



Definition 3.1. We call a demi-normal pair (X, .6.) is semi-log-canonical if Kx + .6. 
is Q-Cartier and in the above notations, the pair (X, D + l.) is log-canonical. 

Definition 3.2. Let (X, .6.) be a demi-normal pair where .6. = L ail:.i is a sum of 
distinct prime divisors, none of which is contained in the singular locus Sing(X) of 
X, and assume 0 <::; ai <::; 1 for every i. 

We call a birational projective morphism f : Y ----> (X, .6.) a semi-log-canonical 
model if f is isomorphic over open locus of X with complement's codimension greater 
than 1, and (Y, l:.y) is semi-log-canonical for l:.y = J;1 £:,. + E}c where E}c is the sum 
of all the exceptional prime divisors, and K y + l:.y is f-ample. 

We note that from the definition, the induced map on the conductor schemes 
Dy ----> D is an isomorphism outside some lower-dimensional subsets of Dy and D, 
i.e., the codimension 1 points of the f-exceptionallocus are all regular. 

Lemma 3.1. Given a demi-normal pair (X, .6.), its semi-log-canonical model, if 
exists, is unique. 

Proof. Let Y be a semi-log-canonical model of (X, .6.) and ny : Y ----> Y its normal­
ization and f: Y ----> X the induced morphism. We write 

ny(Ky + l:.y) = Ky +Dy + l,.y. 

Then Dy+l:.y = f; 1 (D+l-)+EJ. Therefore, f: Y----> (X, D+l-) is the log-canonical 

model, which is unique by (2.1 ). On a dense open subset of Dy, the involution O"y : 
Dy ----> Dy is the same as the restriction of O" : D ----> D to an isomorphic open subset, 
so O"y is uniquely determined, hence the quotient Y uniquely exists by [Kolllir12, 
5.3]. 0 

On the other hand, with the results in [Kollarll] (also see [Kollar12, Section 4]), 
we can glue the log-canonical model of each component of the normalization X ----> X 
to get the semi-log-canonical model of (X, .6.). 

Proof of (1.2). Let f: Y----> (X,D + l.) be the log-canonical model and write 

f* ( K X + f) + t.) = K y + Dy + t. y' 

where Dy is the birational transform of D on Y. Then it follows from (2.1) that the 
normalization Dy of Dy is the log-canonical model of (Dn, l:.Dn ), where KDn +l:.Dn = 
n*(K.x + D + l.)ID if we denote the normalization as n: nn----. D. 

Furthermore, because of the uniqueness of the log-canonical model by (2.1 ), this 
involution 0": nn ____. nn can be lifted to an involution on the log-canonical model 
as O"y: Dy ----> Dy. Since K y + Dy + l,.y is ample over X, by [Kollarll, 26], 
(Y, Dy, l., O"y) has a quotient Y which is easy to see to be the semi-log-canonical 
model of (X, .6.). 0 

While the log-canonical models (1.1) are expected to exist even without the 
assumption that Kx + .6. is Q-Cartier (see (2.1) ), the next example constructed by 
Professor Kollar shows that in (1.2) the Q.Cartier assumption on Kx + .6. is necessary. 
We are grateful to him for providing this example to us. 



Example 3.1 (Kollar's example on non-existence of semi-log-canonical models). We 
construct a demi-normal three-fold X with two irreducible components (Xi, Di) such 
that X does not have an semi-log-canonical model. Take 

(X1, D1) is lc (even plt), hence its log-canonical model is trivial, i.e., 1r1 : (Y1, Dy1 ) ~ 

(X1, D1). 
Note that A~v / t(l, 1) embeds in A !yzt as the cone over the twisted cubic by CT: 

(u, v) 1---t (u3 ,u2 v,uv2 ,v3 ); let D 2 C A !yzt be its image. Then set 

(X2, D2) := ( (xt- yz = 0), D2) c A!yzt· 

Use CT : D1 ~ D 2 to glue (X1, Dl) and (X2, D 2) to obtain X. 
To compute the log-canonical model over (X2, D 2), note that D 2 satisfies the 

equation xz = y2 and X 2 n (xz = y2) is the union of D2 and a residual plane 
P := (x =y =0). 

Let 1r2 : Y2 -t X2 be the blow up of the plane P and C C Y2 the exceptional curve. 
Let Dy

2 
(resp., P) denote the birational transforms D 2 (resp., P). Then Ir2 (D2 + P) = 

Dy
2 
+P and (C·P) = 0(-1) [p 1 = -1. Thus (C·Dy2 ) = 1 hence Ky

2 
+Dy

2 
is 1r2-ample. 

By explicit computation, Y2 and Dy
2 

are both smooth, thus 1r2 : (Y2, Dy2 ) -t (X2, D 2) 
is the log-canonical model. Furthermore, 1r2 : Dy2 -t D2 is the blow up of the origin, 
hence it is not an isomorphism. (We note that Kx

2 
+ D2 is not Q-Cartier.) 

Thus the isomorphism CT : D1 ~ D2 gives a birational map CT
1 

: Dy1 - -+ Dy2 that 
is not an isomorphism. Therefore (Y1, DyJ and (12, Dy2 ) can not be glued together. 
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