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Electron irradiation has been applied to the formation of a semi-insulating 4H-SiC(0001) layer. The

resistivity of the semi-insulating layer, which was irradiated with a fluence of 1.9� 1018 cm�2 at

400 keV, exceeded 1010 X cm at room temperature. From capacitance-voltage characteristics of

Schottky structure, the depth of the semi-insulating layer was estimated to be 10 lm, indicating that

the whole region of lightly-doped n-type epilayer was converted to the semi-insulating layer by

electron irradiation. The semi-insulating property can be ascribed to electron trapping at the Z1/2 and

EH6/7 centers generated by electron irradiation. The threshold energy for the generation of Z1/2

center was about 100 keV. VC 2011 American Institute of Physics. [doi:10.1063/1.3604795]

Silicon carbide (SiC) is an attractive material for realiz-

ing high-power, high-temperature, and high frequency

devices.1–4 Through recent progress in SiC technologies,

high-voltage discrete devices like Schottky barrier diodes,

junction field-effect transistors and metal-oxide-semiconduc-

tor FETs have been intensively developed. To promote

large-scale implementation of these devices into actual elec-

tronic systems, further improvement of device processing

techniques, optimization of device structure, and scale up of

the devices are in progress.

Device isolation is a key technology to integrate elec-

tronic devices and has been made mainly by using pn junc-

tions in the present-day Si, GaAs, and SiC integrated circuits

(ICs). Nowadays, for Si ultra-large-scale ICs, silicon-on-in-

sulator structures fabricated by oxygen implantation

(SIMOX) (Ref. 5) or wafer bonding6 have been developed.

For future SiC ICs, however, these methods will not be good

solutions. In fabrication of SiC SIMOX, an SiC layer above

the oxides must be very defective, due to the severe lattice

damage and oxygen incorporation caused by high-dose

(> 1017 cm�2) oxygen ion implantation. On the other hand,

the demerits of wafer bonding include the waste of expensive

SiC substrates and the poor controllability to obtain thin SiC

layers with uniform thickness.

The authors’ group reported vanadium ion implantation

as an attractive method to form semi-insulating SiC layers.7

Another study showed that proton irradiation is also an effec-

tive method.8 However, both methods have difficulty in

forming a thick semi-insulating layer with a thickness of

over tens of micrometers, which is especially crucial to fabri-

cate high-frequency SiC devices. Such a thick semi-insulat-

ing layer is also useful to fabricate high-frequency

GaN-based devices, which are recently used for RF and

microwave applications.

The electron irradiation is an attractive candidate of the

method to form tens of micrometers-thick semi-insulating

layers in SiC. Electrons extracted by commercial accelera-

tors have very large penetration power, compared with

protons and vanadium ions. For example, the penetration

depth of an electron accelerated at 400 keV is estimated to

be about 400 lm. This means that electron irradiation has

potential to form a few hundred micrometers-thick semi-

insulating layers in SiC. Regarding the electron irradiation to

4H-SiC, deep levels and carrier concentration of irradiated

samples have been extensively investigated.9–14 Further-

more, control of carrier lifetimes in n-type 4H-SiC by elec-

tron irradiation has been achieved.15 In this letter, the

authors investigated the capability of electron irradiation to

form thick semi-insulating 4H-SiC.

Samples used in this study were 10 lm-thick n-type

4H-SiC(0001) epilayers grown on n-type 4H-SiC(0001) sub-

strates. The dopant was nitrogen and the doping concentra-

tions of the epilayer and substrate were 7.2� 1015 cm�3 and

1� 1018 cm�3, respectively. The typical concentration of the

Z1/2 center9 in the as-grown samples was 9.5� 1012 cm�3, as

determined from deep level transient spectroscopy (DLTS)

measurements.

In this study, electron irradiation was performed onto

the samples by using commercial electron irradiation sys-

tems (NHVC EBC-300 and EPS-800) without intentional

heating. A part of samples were irradiated at an energy of

400 keV, while the fluence was changed from 6.0� 1015 to

1.9� 1018 cm�2, to investigate the relation between the re-

sistivity and the fluence. Other samples were irradiated at

different energies of 200–746 keV with a fixed fluence of

4� 1015 cm�2 to investigate the relation between the con-

centration of Z1/2 center generated by electron irradiation

and the energy of electrons. After the irradiation, thermal

treatment was not performed.

For electrical measurements, Ni/SiC Schottky structures

were formed on samples. The Schottky metal was thermally

evaporated onto the surface of the samples, and ohmic con-

tacts were formed with Ag paste on the back side. The diame-

ter of Schottky contacts was 300–1500 lm. The resistivity of

each sample was estimated by current–voltage (I-V) measure-

ments. Capacitance–voltage (C-V) measurements were per-

formed to estimate the doping concentration or the depth of

semi-insulating region. The concentration of the Z1/2 centera)Electronic mail: Kaneko_Hiromi@nissin.co.jp.
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in each sample was determined by DLTS measurements per-

formed in the temperature range from 100 to 350 K. In DLTS

measurements, the capacitance was measured periodically in

a period width, in which the transient is to be measured, and

then developed into Fourier series.16 The reverse bias voltage

and pulse voltage were � 3 V and 0 V, respectively, during

the measurements. Danno and Kimoto reported that the Z1/2

and EH6/7 (Ref. 10) concentrations generated by electron irra-

diation exhibit a close one-to-one relationship.12 This means

that the concentration of Z1/2 center is a good indicator of the

concentration of deep levels, which affect the resistivity of

irradiated samples.

Figure 1 shows the semilogarithmic plots of forward

current density-voltage characteristics for the samples irradi-

ated at 400 keV with various fluences. The characteristics of

an as-grown (unirradiated) sample are also shown. As the

fluence increases, the forward current density significantly

decreased. By assuming that the series resistances of irradi-

ated samples are mainly attributed to the resistance of 10

lm-thick epilayers, the resistivities of irradiated samples

were estimated from the slope of linear region in the linear

plots of current density-voltage characteristics in the range

from 1.5 to 2.0V. Figure 2 depicts the dependence of resis-

tivity for irradiated epilayers on the electron fluence. The

resistivity of epilayers irradiated with a fluence of 1.9

� 1018 cm�2 was as high as 5� 1010 X cm, indicating that

the epilayer becomes semi-insulating.

To confirm the assumption that the series resistance of

irradiated samples is mainly attributed to the resistance of

the 10 lm-thick epilayer, the thickness of the semi-insulating

region was estimated from C-V characteristics. Figure 3

shows the 1/C2-V characteristics for the as-grown sample

and the semi-insulating sample formed by irradiation at

400 keV with a fluence of 1.9� 1018 cm�2. The capacitances

were normalized by the area of Schottky contacts. The ca-

pacitance of the semi-insulating sample is very small and

exhibits very little dependency on the bias voltage. This sug-

gests that, regardless of the bias voltage, a depletion layer

with a constant thickness exists under the Schottky contact

for the semi-insulating sample. The capacitance of semi-

insulating sample is 0.89 nF/cm2, by which the thickness of

the depletion layer is estimated as 10.0 lm. This result indi-

cates that the whole region of the 10 lm-thick epilayer is

semi-insulating, keeping the substrate conductive.

The dependence of the Z1/2 concentration in irradiated

samples on the irradiation energy is shown in Fig. 4. We

have measured the EH6/7 concentration in irradiated

samples,12,17 which is also shown in Fig. 4. In this figure, the

Z1/2 and EH6/7 concentrations are normalized by the electron

fluence. From DLTS measurements, the Z1/2 and EH6/7 cen-

ters were determined as major deep levels in each as-irradi-

ated sample. This suggests that the Z1/2 and/or EH6/7 center

are responsible for the semi-insulating property by electron

irradiation. From Fig. 4, the threshold energy to generate the

Z1/2 and EH6/7 centers by electron irradiation can be esti-

mated as about 100 keV, and the generation rates of the both

FIG. 1. Current density-voltage characteristics for Ni/n-type 4H-SiC

Schottky structures electron-irradiated at 400 keV with the fluences from

6.0� 1015 to 1.9� 1018 cm�2. The characteristics of the as-grown sample

are also shown for comparison.

FIG. 2. Dependence of the resistivity for electron-irradiated n-type 4H-SiC

layers on the electron fluence.

FIG. 3. 1/C2–V characteristics for Ni/4H-SiC Schottky structure electron-

irradiated at 400 keV, with a fluence of 1.9� 1018 cm�2. The irradiated sam-

ple exhibits a semi-insulating property. The characteristics of the as-grown

sample are also shown for comparison.
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centers become significant when the electron energy exceeds

200 keV. These results are consistent with previous reports

that the both centers may be related to a carbon vacancy11,12

and that the carbon-atom displacement by electron irradia-

tion is pronounced at electron energies above 100

keV.11,12,18

From Fig. 4, the concentration of generated Z1/2 center

can be estimated as 6� 1015, 1� 1016, and 2� 1017 cm�3 for

irradiated samples with fluences of 6.0� 1016, 1.3� 1017,

and 1.9� 1018 cm�2, respectively. The resulting resistivities

of irradiated epilayers are 4� 105, 4� 106, and 5� 1010

X cm, respectively. Since the initial carrier concentration is

about 7� 1015 cm�3, all of the carriers will be captured by

the Z1/2 or EH6/7 centers, taking account of the fact that the

EH6/7 center with a similar concentration to the Z1/2 center is

generated.12 This is why the resistivities of these three sam-

ples are very high. Fig. 5 shows the calculated carrier concen-

tration and the resistivity as a function of the Fermi level

for n-type 4H-SiC, where a fixed electron mobility of

800 cm2/Vs was assumed. The generation current and carrier

injection from the n-type substrate during I-V measurements

were neglected for simplicity. If the Z1/2 center is the major

compensating defect, the Fermi level may be pinned near the

energy level of the Z1/2 center and the resistivity should be

about 107 X cm, as shown in Fig. 5. The resistivity of the

third sample (5� 1010 X cm) is much larger than 107 X cm,

which suggests that the EH6/7 center also worked as a major

compensating defect and the Fermi level will be located in

between the Z1/2 and EH6/7 centers.

In summary, the capability of electron irradiation to

form semi-insulating n-type SiC was investigated. The resis-

tivity of the as-irradiated samples increased as the electron

fluence at an energy of 400 keV. The sample irradiated with

a fluence of 1.9� 1018 cm�2 was semi-insulating, which

exhibited a high resistivity of 5� 1010 X cm. The thickness

of the semi-insulating layer estimated from C-V measure-

ments was 10.0 lm, indicating that the whole region of 10

lm-thick epilayer could be converted to semi-insulating

property. The generation of Z1/2 and EH6/7 centers by elec-

tron irradiation started at the electron energy of about

100 keV.
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FIG. 4. Semilogarithmic plot of the Z1/2 and EH6/7 concentrations in as-irra-

diated 4H-SiC samples vs the electron energy. The Z1/2 and EH6/7 concentra-

tions are normalized by the electron fluence.

FIG. 5. Calculated carrier concentration and the resistivity as a function of

the Fermi level for n-type 4H-SiC, where a fixed electron mobility of 800

cm2/Vs was assumed.
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