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Threading dislocations (TDs) in 4H-SiC epilayers have been investigated by means of micro-

photoluminescence (l-PL) mapping at room temperature. Enhanced nonradiative recombination at TDs

was confirmed experimentally, resulting in a reduced local PL emission intensity in the l-PL intensity

map performed at 390 nm (near band-edge emission). The behavior of nonradiative recombination at

TDs depends on the dislocation type: the screw type of TDs shows stronger effect on the nonradiative

recombination activity than the edge type, evidencing a larger local reduction of PL emission intensity.

Furthermore, the contrast of TDs in the l-PL intensity map greatly depends on the carrier lifetimes of

the 4H-SiC epilayers. Lifetimes longer than 0.5 ls are essential to obtain a discernible contrast for the

individual TDs. VC 2011 American Institute of Physics. [doi:10.1063/1.3622336]

I. INTRODUCTION

Although the predominance of silicon carbide (SiC)

high-power devices is becoming realistic, devices made from

SiC are still facing various issues related to defects nucleated

in the substrates or epilayers. Dislocations are a common

type of electrically active defects existing in SiC crystals

with a typical density of up to �104 cm�2. They introduce a

large number of carrier recombination centers into SiC mate-

rials, which effectively reduce the local density of free car-

riers upon external excitation. Dislocations can also act as

carrier generation centers, leading to the increase of leakage

current.1–3 Furthermore, dislocations are more likely to have

impurity atoms aggregated or segregated around them.4 The

influence of dislocations on the performance of bipolar and

Schottky devices in SiC has been documented.1–3,5,6

Direct evidence for enhanced non-radiative recombina-

tion occurring at dislocations in SiC was obtained by record-

ing micrographs using photoluminescence (PL) signals to

give images.7–10 In such micrographs, the individual thread-

ing dislocations (TDs), including screw and edge types,

appear as dark spots, while basal plane dislocations (BPDs)

show a large discernable contrast shape under the strong ex-

citation. Similar micrographs were also obtained from

4H-SiC by using the electron beam induced current (EBIC)

signals.11–13 For all of these characterization techniques, the

dark spots were correlated with TDs rigorously by compar-

ing the dark spots with etch pits of TDs in micrographs

obtained from the same specimen areas.10–13 Although pre-

liminary investigations have also pointed out that the screw

type TDs (TSDs) are more effective in acting as non-radia-

tive recombination centers than the edge type TDs (TEDs),

there is still a lack of further experimental evidences and of a

comprehensive physical model to reveal the carrier recombi-

nation behaviors at TSDs and TEDs.

One of the reasons for this limited amount of experimen-

tal works on this topic is the relatively short carrier lifetimes

in the as-grown 4H-SiC epilayers, typically� 1 ls or less.

The short carrier lifetimes indicate the high density of point

defects, deep level traps, in 4H-SiC. These deep levels com-

pete with dislocations as the carrier recombination centers and

are predominant over the influence of TDs. The Z1/2 center14

and EH6/7 center15 are dominant deep levels in as-grown n-

type 4H-SiC epilayers, and the Z1/2 center has been identified

as a major lifetime killer.16,17 Since the Z1/2 concentration can

be modified by post-growth processes, the lifetime of n-type

4H-SiC epilayers can be intentionally controlled.17–21

In this work, we intended to improve the carrier life-

times of thick n-type 4H-SiC epilayers by using the two-step

thermal treatment, namely thermal oxidation and subsequent

inert gas (Ar) annealing at high temperature.21 Furthermore,

low-energy electron irradiation was carried out to selectively

reduce the carrier lifetimes within the sample.17 The non-

radiative recombination behaviors near TSDs and TEDs and

their dependence on the carrier lifetimes were investigated

by using a micro-photoluminescence (l-PL) mapping

method, which has been demonstrated to be a powerful tech-

nique for non-destructive studying of crystalline defects in

4H-SiC epilayers.7,22–25 The mechanism of carrier recombi-

nation near TDs is also discussed.

II. EXPERIMENTAL

4H-SiC epilayers with the thickness of 50-80 lm were

grown on 8o off-axis 4H-SiC(0001) nþ-substrates with a

doping concentration of (5-6)� 1018 cm–3 by horizontal hot-

wall chemical vapor deposition in a SiH4-C3H8-H2 system.26

Epitaxial growth was performed at 1650 �C with a reactor

pressure of 30 Torr and the C/Si ratio of 1.2. The growth rate

was 50-80 lm/h. The epilayers were intentionally doped with
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nitrogen donors to 1� 1015 cm–3. The carrier lifetime of as-

grown epilayers was modulated by post-growth processes. To

improve the carrier lifetime, thermal oxidation was firstly

carried out in dry O2 ambience at 1300 �C for 5 h. After the

oxidation, the formed oxide was removed by hydrofluoric

acid etching, and the subsequent annealing in Ar was per-

formed at 1550 �C for 30 min.21 Low-energy electron irradia-

tion with different fluences was carried out to reduce the

carrier lifetimes of the samples.17 Electron irradiation was

performed at an energy of 160 keV without intentional sam-

ple heating to introduce deep levels. The electron-irradiated

sample was then annealed in Ar at 950 �C for 30 min. The

carrier lifetimes of as-grown and post-treated 4H-SiC epi-

layers were measured by differential microwave photocon-

ductance decay (l-PCD) at room temperature. An yttrium

lithium fluoride-third harmonic generation laser (k¼ 349 nm)

was used as an excitation source. The photon density irradi-

ated onto the sample surface was 1� 1014 cm–2, which leads

to a high injection level of mid 1015–1016 cm�3.

l-PL intensity mapping was performed at room temper-

ature on the samples.27 PL was excited by the 25 mW, 325

nm line of a He-Cd laser, dispersed with a grating monochro-

mator, and detected by a photomultiplier. The penetration

depth of the 325 nm laser is only �8 lm in 4H-SiC,28 much

shorter than the thickness of the epilayers. The set-up can ac-

quire data in a single wavelength mode (l-PL intensity map-

ping mode) or in a full spectral scanning mode (PL

spectroscopy mode) with the spectral resolution of 1 nm.

The high lateral spacial resolution in our l-PL mapping sys-

tem, 0.5 lm, allows us to reveal individual TDs in the 4H-

SiC epilayers and to study their characteristics. The sche-

matic configuration of l-PL intensity contrast measurements

near a TD is presented in Fig. 1 (the detail is described in the

discussion part.). The sample surface is scanned by a laser

beam probe, of which diameter is focused to about 0.8 lm

by using a lens, and the PL signals are also collected through

the lens. Molten potassium hydroxide (KOH) etching was

performed at 480 �C for 5�10 min after l-PL mapping

measurements on the 4H-SiC epilayers. Nomarski micros-

copy was utilized to obtain photomicrographs of the etched

4H-SiC surface at the same location where the l-PL intensity

mapping was performed.

III. RESULTS AND DISCUSSIONS

Figure 2(a) shows the l-PL intensity mapping at 390 nm

(near band-edge emission of 4H-SiC) for a 72 lm-thick

4H-SiC epilayer after the two-step thermal treatment. The

carrier lifetime of the sample is approximately 5 ls, as deter-

mined by l-PCD measurement. Three circular areas with

reduced PL emission intensity in contrast to the matrix can

be clearly observed. The dark contrast of the three circular

areas in the l-PL intensity map means that there is an

FIG. 1. (Color online) Schematic configuration of l-PL contrast measure-

ments at a threading dislocation.

FIG. 2. (Color online) (a) l-PL intensity map-

ping at 390 nm for a 72-lm-thick 4H-SiC epi-

layer after two-step thermal treatment. (b)

Surface morphology after KOH etching (the

same location). (c) PL intensity profile around a

TSD shown in (a). (d) PL intensity profile

around a TED shown in (a).
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enhanced nonradiative recombination occurring at these

positions. Among these three circular areas, two of them

show a larger size than the other one. Figure 2(b) shows the

optical microscopy image of the sample surface at the same

location after KOH etching. Three TDs are revealed by char-

acteristic etch pit shapes in the image. It can be seen from

Figs. 2(a) and 2(b) that there is a one-to-one correlation

between the circular areas, with reduced local PL intensity in

the l-PL map with TDs. That is to say, the TDs act as the

enhanced nonradiative recombination centers in the sample.

Furthermore, TSDs exhibit larger and deeper etch pits than

the TEDs, due to the larger Burgers0 vector (the strain field),

as shown in Fig. 2(b). An analogous effect was also observed

in the l-PL intensity map.

A TD contrast profile, i.e., the line scan over the TD, is

given by

CðrÞ ¼ IðrÞ � Imatrix

Imatrix
� 100 %ð Þ;

where r is the lateral beam position relative to the TD line

and Imatrix is the matrix signal far away from it. Usually, the

central value c(0) is denoted as “the maximum contrast value,

Cmax,” irrespective of its sign (here defined negative for a

dark image contrast). Figures 2(c) and 2(d) show the profiles

of PL intensities around a TSD and a TED along the dashed

lines in Fig. 2(a), respectively. The Cmax of TSD defined by

Eq. (1) is 40%, larger than that of TED (26%). The large

Cmax of TSDs in the l-PL intensity map indicates a stronger

nonradiative recombination activity at TSDs than that at

TEDs, being consistent with previous EBIC0s results.13 This

gives the possibility to distinguish the TSDs and TEDs non-

destructively by l-PL mapping, even at room temperature.

For comprehensive studies on the formation of the defect

contrast from TDs, it is necessary to take account of the intrin-

sic nature of dislocation recombination. In general, defects are

supposed to change the local recombination properties of the

crystals. A dislocation in a semiconductor is generally charged,

which induces a band bending in its neighborhood. Hence, a

potential barrier for majority carriers is formed across a space-

charge region, which causes minority carriers to drift toward

the dislocation and significantly enhances their recombination.

Beyond this core effect, the dislocation strain field is also re-

sponsible for a band bending. Dislocations can be phenomeno-

logically described by a cylindrical region of radius rD, where

the carrier lifetime s0 differs (it is generally reduced) from the

bulk value s because of dislocation-induced enhancement of

the recombination probability, as shown in Fig. 1. The radius

rD of the dislocation cylinder can be inferred as the extension

of the core region, strain field, or the space charge region of a

charged dislocation. Within rD, the carrier has a reduced diffu-

sion length, L0 ¼
ffiffiffiffiffiffiffiffiffiffiffi
D � s0
p

, where D is the diffusion constant.

The rD and L0 are dependent on the type of dislocations. Fur-

thermore, the enhanced carrier recombination rate makes the

dislocation cylinder act as a deep drain, attracting carriers in the

surrounding region and expanding the area of dislocation con-

trast in l-PL mapping. This is considered by introduction of a

second region to interpret the dislocation contrast. The second

region is a diffusion-limited region with the bulk diffusion

length L ¼
ffiffiffiffiffiffiffiffiffi
D � s
p

. The width of this diffusion-limited region,

w, is determined by two factors: the carrier recombination rate

at the rD (the boundary effect) and the bulk carrier diffusion

length, L. The former factor is dependent on the type of TDs,

while the latter is not. Taking account of indirect band-gap of

4H-SiC, it is reasonable to propose that the value of w must be

much larger than rD, which is expected to be below� 0.5 lm.

Consequently, the diameter of the TDs contrast, 2Rcontrast

¼ 2(rDþw), is determined by both the carrier recombination

rate within the dislocation cylinder region (the maximum con-

trast of TDs) and the bulk carrier recombination rate.

To accurately fit the intensity profiles near the TDs, an

appropriate physical model of carrier generation function,

recombination process, and PL collection coefficients is

required. Here, to simplify the simulation process, a simple

decay formula was employed to fit the experimental data:

IðrÞ ¼ Imatrix � IDexp � r

Leff

� �
;

where ID is the PL intensity reduction (depth) at the TD line

(r¼ 0). In the l-PL map, L0 and L cannot be determined sepa-

rately, but form together an “effective diffusion length (Leff)” of

TDs. The fitting results are shown by the solid curves in

Figs. 2(c) and 2(d). The effective diffusion length near the TSD

is approximately 10 lm, while that of TED is about 9 lm. The

small difference of the effective diffusion length between TSD

and TED indicates that the diffusion-limited region is the domi-

nant part in Rcontrast, being consistent with the above discussion.

The result also indicates that the bulk carrier recombination plays

a great role in the interpretation of the PL contrast of TDs.

There are two stages before the radiation recombination

of excess carriers: the first is the carrier generation process

and the second is the carrier diffusion process. The excess

carriers are mainly concentrated in the central region of the

incident laser beam, for example, below 0.8 lm in our case.

Then the excess carriers randomly walk away from the

source point by diffusion. However, if there are lots of deep

levels existing in the sample, the carriers will be captured by

these traps before they approach the TDs. This means that

the dark area of a TD contrast (pR2
contrast) shrinks due to the

deep levels in the sample. Figure 3 schematically shows the

FIG. 3. (Color online) Schematic representation of the carrier recombina-

tion around a TD in the cases of: (a) low trap concentration (long bulk life-

time) and (b) high trap concentration (short bulk lifetime).

033525-3 Feng, Suda, and Kimoto J. Appl. Phys. 110, 033525 (2011)

Downloaded 10 Sep 2012 to 130.54.110.73. Redistribution subject to AIP license or copyright; see http://jap.aip.org/about/rights_and_permissions



impact of deep levels on the recombination behavior of car-

riers around a TD. In the case of low deep-level concentra-

tion shown in Fig. 3(a), the carriers can diffuse over long

distances without being trapped. Most carriers can migrate to

the TD, even if they are generated far from it, resulting in a

large dark area of pR2
contrast and also a strong contrast of TDs

in the l–PL intensity map. This situation may be preferable

to distinguish TSDs and TEDs in l–PL mapping by compar-

ing the sizes of their dark areas and the values of Cmax. With

increasing the concentration of deep levels, more and more

carriers will be trapped by deep levels, making the dark area

of pR2
contrast shrink due to the decrease of the bulk diffusion

length. When the deep-level concentration is very high, as

shown in Fig. 3(b), strong carrier recombination occurs at

the deep levels instead of at TDs, and the contrast of TDs

becomes weak, making it difficult to distinguish TSDs and

TEDs. In the worst case (very high deep-level concentra-

tion), there will be no discernible contrast for the TDs due to

the significant recombination at deep levels before reaching

TDs. The concentration of deep levels is linked to the carrier

lifetime of samples. Consequently, the profile of TDs in the

l-PL intensity map might greatly depend on the carrier life-

time of epilayers.

Since the Z1/2 concentration, the dominant lifetime killer

in n-type 4H-SiC epilayers, can be selectively increased by

low-energy electron irradiation, the lifetime can be intention-

ally controlled.17 In this work, electron irradiation with an

energy of 160 keV was performed to a 50 lm-thick as-grown

n-type epilayer. The maps for the fluence of electron irradia-

tion and of the Z1/2 concentration in the irradiated epilayer

are schematically illustrated in Fig. 4(a). The carrier lifetimes

of the irradiated sample were measured by l-PCD with a spa-

tial resolution of 200 lm, as shown in Fig. 4(b). A higher flu-

ence results in the shorter carrier lifetime, as expected. The

carrier lifetime of the sample was locally divided into six

regions, with the decreasing values corresponding to the elec-

tron fluences as 1.6, 1.4, 1.1, 0.8, 0.5, and 0.1 ls, respec-

tively. l-PL mapping at 390 nm was firstly performed on the

whole area of the electron-irradiated sample with a scan step

of 10 lm (in the low-resolution mode), as shown in Fig. 4(c).

The PL intensity is reduced in the irradiated region, being

consistent with the reduction of carrier lifetime.

The l-PL mapping with a scan step of 0.5 lm (in the

high-resolution mode) was then performed at each region to

reveal the effects of carrier lifetimes on the non-radiative

recombination behavior at TDs, as shown in Fig. 5. It is evi-

dent that, by reducing the carrier lifetime, the circular area of

TDs in the l-PL map becomes small and the contrast

becomes weak. For the regions with a lifetime longer than

0.5 ls (Figs. 5(a)–5(d)), the contrast for individual TDs can

be clearly observed, while, when the carrier lifetime is below

0.5 ls (see Fig. 5(e) and 5(f)), the contrast of TDs becomes

too faint to be clearly identified.

Figure 6(a) shows the values of Cmax for TSDs and

TEDs as a function of the carrier lifetime. When the carrier

lifetime decreases to 0.1 ls, it is difficult to fit the data due

to the presence of noise, resulting in a similar contrast

of� 15% for both TSDs and TEDs. It is obvious that the

value of Cmax increases with increasing the carrier lifetime

for both TSDs and TEDs. TSDs always show a larger value

of Cmax compared with TEDs, and the PL contrast between

TSDs and TEDs also increases with increasing the carrier

lifetime. The effective diffusion lengths (Leff in Eq. (2)) near

TSDs and TEDs as a function of the carrier lifetime are

revealed in Fig. 6(b). For carrier lifetimes below 1.1 ls, the

effective diffusion lengths of TSDs and TEDs show similar

values. Noticeable differences in the effective diffusion

length between TSDs and TEDs can be obtained for carrier

FIG. 4. (Color online) (a) Map of the flu-

ence of electron irradiation and Z1/2 concen-

tration in the irradiated sample. (b) Map of

carrier lifetimes in the irradiated sample. (c)

l-PL intensity mapping at 390 nm of the

sample.

FIG. 5. (Color online) l-PL intensity mapping images taken at the sample

regions with various carrier lifetimes: (a) 1.6 ls, (b) 1.4 ls, (c) 1.1 ls, (d)

0.8 ls, (e) 0.5 ls, and (f) 0.1 ls.
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lifetimes longer than, for example, 1.4 ls. It should be noted

that Fig. 6(b) is plotted in a log-log scale. The dependence of

effective diffusion length on carrier lifetime shows a slope of

approximately 0.5 for both TSDs and TEDs (see the dashed

line in Fig. 6(b)). This means that the diffusion-limit region is

dominant in forming the dark area of TDs in l-PL mapping

for the samples with relatively long carrier lifetimes. The

observed results are well-consistent with the discussion men-

tioned above using Fig. 3. Our data indicate that longer car-

rier lifetimes are crucial for the nondestructive visualization

of individual TDs and to distinguish TSDs and TEDs in 4H-

SiC epilayers by l-PL mapping. If the carrier lifetimes of the

samples are shorter than 0.5 ls, discernable contrast cannot

be obtained for the individual TDs in the l-PL intensity map.

Furthermore, the surface recombination must also cause

reduction of TD’s contrast and the shrinkage of the effective

diffusion length in the l-PL intensity map, which needs fur-

ther investigation to propose a complete physical model.

IV. CONCLUSION

l-PL intensity mapping was performed to characterize

the local nonradiative recombination at individual TDs in

4H-SiC epilayer. The results of the l-PL intensity mapping

were compared with the post-decoration etch photomicro-

graphs. The one-to-one correspondence between the disloca-

tions and the l-PL mapping contrast has been obtained. It

was shown that TSDs have a more pronounced impact on the

nonradiative recombination activity than TEDs. The contrast

of TDs is enhanced by increasing the carrier lifetime. Carrier

lifetimes longer than 0.5 ls are necessary to obtain a clear

contrast pattern for the individual TDs.
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