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We have studied a local deposition method based on dynamic-mode AFM using a hollow tip with an

aperture. In this method, liquid droplets are deposited onto a conductive substrate through the aperture

by applying an electric voltage pulse and are imaged using the same AFM tip immediately after the

deposition. In this study, we applied this method to local deposition of a glycerol solution, which can

be utilized in the printed electronics and the biosensor fabrication technology. The solution in the

hollow was covered with a hydrophobic ionic liquid with an extremely low vapor pressure to prevent

the evaporation of the solution because the quick evaporation heavily affected the dynamic-mode

AFM operation. We succeeded in the stable deposition of an array of ultrasmall droplets, which

contained an added salt and possible involatile residues in the glycerol solution. VC 2012 American
Institute of Physics. [http://dx.doi.org/10.1063/1.3699388]

I. INTRODUCTION

Deposition of ultrasmall liquid droplets has attracted much

attention because of the development of the printed electronics1

as well as the biosensor fabrication technology.2 There have

been a large number of studies on the fundamental behavior

of the liquid droplets, such as their evaporation3–5 and

wettability.6–14 Depending on the purpose, an optimal deposition

method can be used from various techniques: microsyringe,14

microspotting,2 inkjet printing technique,15 and electrospray

technique.16,17 An atomic force microscope (AFM) tip was also

used as a local deposition tool.18,19 Recently a deposition

method using a hollow tip with an aperture at the apex of the

AFM tip was also developed.20,21 The droplets can be easily de-

posited by the contact of the tip with the substrate surface by

these AFM-based techniques, which are convenient tools for the

local deposition of small droplets and=or functional materials

such as metal nanoparticles, DNA=RNAs, and proteins. How-

ever, the deposited droplet volume and shape can be strongly

affected by the various surface conditions such as surface rough-

ness and interfacial energy between the liquid and the surfaces

of both tip and substrate.22–25 They also depend on the solubility

of the sample molecules to be deposited.26,27

We developed a local deposition technique (referred to as

nano-inkjet printing method) based on dynamic-mode AFM

using a non-volatile ionic liquid.28 In our previous study, the

droplets with a volume ranging from zepto (10�21) liter to

yocto (10�24) liter were deposited onto a conductive surface.

We also fabricated thin films with a thickness of several nano-

meters by depositing the zeptoliter droplets with a small spac-

ing less than 100 nm.29,30 The technique can be applied to the

deposition of the colloids containing metallic particles to fabri-

cate metallic lines with a linewidth of several dozen nanometers

so that the size in the printed electronics, where the minimum

linewidth is still on a micrometer scale,15 can be drastically

reduced. However, an ionic liquid is scarcely used as a solvent

for such local deposition.

In this study, the nano-inkjet printing method was so

improved that a volatile glycerol solution was used. Since

the glycerol solution can dissolve various functional materi-

als such as metal nanoparticles, DNA=RNAs, and proteins,

the fabrication allows us to fabricate the organic=polymer

transistors1 and the DNA=protein arrays.2

II. EXPERIMENTAL

Local deposition was performed using a commercial AFM

instrument (SPA300=NanoNavi Station, SII NanoTechnology)

and a commercial cantilever (OMCL-HA100WS, Olympus)

modified by a focused ion beam (SMI-2050MS, SII NanoTecho-

nology). The modified cantilever with an aperture had an approx-

imate 1 pL hollow, in which a sample solution was loaded by

using a dipped glass capillary. We deposited droplets by applying

an electric voltage pulse between the backside coating and a con-

ductive surface after bringing the tip in close proximity of the

surface.

We used a silicon nitride cantilever having the spring

constant of 15 N=m, the resonance frequency of 160 kHz,

and Au=Cr backside coating. In our previous studies28–30 we

used an ionic liquid with an extremely low vapor pressure so

that we succeeded in the deposition using the aperture

located in the vicinity of the AFM tip. On the other hand, in

this study using an ordinary solvent, we made the aperture at

the apex of the AFM tip to reduce the evaporation of the sol-

vent during the deposition because the vapor pressure of the

solvent is much larger than that of an ionic liquid. The aper-

ture was opened by irradiating an ion beam at the hollow

bottom, the location of which corresponded to the apex of

the AFM tip on the opposite side. Typical modification pa-

rameters were the accelerating voltage of 30 kV, the probe

current of 200 pA, the ion dose of 1013 m�2, and the irradia-

tion diameter of 500 nm. Although we made the aperture at

the tip apex, we were able to image the deposited droplets

a)Electronic mail: h-yamada@kuee.kyoto-u.ac.jp. Telephone: þ81-75-383-

2307. FAX: þ81-75-383-2308.
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using a protrusion at the edge of the aperture. Actually, the

protrusion was used as an AFM tip immediately after the

deposition. The topographic image was not deteriorated even

when the cantilever held the sample solution. The square

region at the center of the cantilever hollow was modified to

expose the SiN surface to wet the solution. Before loading

the solution, the cantilever hollow was cleaned by using a

UV-ozone cleaner for 10 min. When we loaded a solution

with a density of 1.2� 1013 kg=m3 onto the cantilever, the

resonance frequency was shifted by approximately 10kHz.

The measured resonance frequency shift agreed with that

estimated from the volume in the hollow.31

The cantilever was vibrated at a frequency close to its

resonance frequency. The tip-sample distance was regulated

by maintaining the vibration amplitude with a set point in

amplitude modulation AFM. The vibration amplitude of the

tip was approximately 20 nm peak-to-peak and the set point

ratio (the ratio of the set point amplitude to the free ampli-

tude) was 0.60 when imaging droplets and 0.14 when depos-

iting droplets. The lower set point allowed the deposition

due to a smaller tip-sample distance. The tip-sample distance

feedback was turned off for the interval from 1 s before the

onset of the voltage pulse to 1 s after the pulse to reduce the

complicated movement of the tip during the application of

the voltage pulses.28 The step to turn off the feedback is im-

portant to the local deposition. In our previous study, it was

found that the creation of the meniscus between the tip and

sample played a major role in the local deposition. If the tip-

sample distance feedback is being activated during the appli-

cation of the voltage pulse, the creation of the meniscus can

be suppressed. In the cantilever holding the sample solution

in the hollow, the solution surface in the aperture should be a

spherical cap with a curvature radius determined by the Lap-

lace pressure of the solution in the hollow.20,32 We imaged

the deposited droplets reproducibly, which suggested that the

capillary neck was not formed between the solution surface

and the sample surface.

We used glycerol as a solvent, which has a low vapor

pressure of 0.6 Pa on a macroscopic scale. However, it evap-

orates shortly within a few hours because of a large surface

area to volume ratio of a few picoliters droplet filled in the

cantilever hollow. In this study, a glycerol (Nakarai Tesque)

solution in the hollow was coated with a hydrophobic liquid

with an extremely low vapor pressure to prevent the evapora-

tion of the glycerol solution. In the deposition experiments,

the glycerol solution contained 0.99 mL glycerol and 10 lL

1 M ammonium nitrate (Nakarai Tesque) aqueous solution.

The hydrophobic liquid used was an ionic liquid, 1-octyl-3-

methyl-imidazolium hexafluorophosphate (Acros organics).

It was completely separated from the glycerol solution (not

shown). Each liquid was loaded in the cantilever hollow by

using a dipped glass capillary, as shown in Figs. 1(b)–1(d).

Figures 1(e)–1(g) show the cross-sectional schematics at

the dashed white line shown in Figs. 1(b)–1(d). As shown in

Fig. 1(b), the loaded volume was occasionally excessive for

the subsequent loading of the hydrophobic ionic liquid. We

removed the excessive glycerol solution by using a glass

capillary to adjust the volume so as to fill the cantilever hol-

low with the glycerol solution, as shown in Fig. 1(c). After

the adjustment of volume of the glycerol solution, it was sub-

sequently coated with the hydrophobic ionic liquid, as shown

in Fig. 1(d).

We used an ultrasmooth conductive surface: a Pt film

with the thickness of 4 nm, which was deposited on an

annealed Al2O3 (0 0 0 1) substrate33 by RF sputtering. The

deposition and imaging of the droplets were performed in a

nitrogen environment to reduce the capillary force acting

between the AFM tip and the sample surface.

III. RESULTS AND DISCUSSION

A. Liquid coating to prevent the solvent evaporation

We investigated the effect of the liquid coating using the

hydrophobic ionic liquid, as shown in Figs. 2 and 3. Figure 2

shows a graph of the resonance frequency of the cantilever

holding the glycerol solution without the liquid coating as the

function of the elapsed time immediately after loading the

solution onto the cantilever. It can be clearly seen that the res-

onance frequency shifts by approximately 0.2 kHz min�1

before 90 min after loading the glycerol solution. This is

because the loaded glycerol solution decreased due to the

evaporation of the glycerol. Figure 3 shows the result of using

the cantilever holding a dye solution with the liquid coating.

The dye solution contains 0.98 mL glycerol, 10 lL 1 M am-

monium nitrate aqueous solution, and 10 lL 1.32 mM cyanine

3 bihexanoic acid dye (Sigma Aldrich) aqueous solution. In

this experiment, we did not remove the Au coating of the can-

tilever hollow. Figs. 3A(1)–(6) show the bright-field (left

images) and fluorescence images (right images). Fig. 3B

shows a graph of the resonance frequency as a function of the

FIG. 1. (a) Scanning ion microscope

image of the fabricated aperture. The

inset image shows the AFM tip before

the modification. The white arrow indi-

cates a protrusion, which is the AFM tip.

(b)–(d) Photographs of the cantilever

hollow when coating a glycerol solution

with a hydrophobic ionic liquid. (b)

Glycerol solution is excessively loaded,

(c) adjusted to fill the hollow, and (d)

coated with the hydrophobic ionic liq-

uid. (e)–(g) Cross-sectional schematics

of the cantilever hollow at the broken

white line shown in (a) correspond to

each condition shown in (b)–(d).
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elapsed time. In the fluorescence images, the dashed white

lines indicate the shape of the cantilever. The bright-field and

fluorescence images were taken using a fluorescence micro-

scope (BX-51, Olympus) equipped with an excitation filter

(BP530-550), an absorption filter (BA575IF), a dichroic mir-

ror (DM570), and a mercury lamp. As shown in Fig. 3A(1),

the loaded glycerol droplet on the cantilever can be seen in

the bright-field image, the shape of which corresponds to that

of the fluorescence from the dye in the fluorescence image,

thereby showing the location of the glycerol solution from

each fluorescence image at different points. Even if the sol-

vent completely evaporates from the hollow, the dye remains

in the hollow. However, the fluorescence from the dye cannot

be observed in the experiment because the excited dye on the

Au coating of the hollow is quenched. Actually, prior to this

experiment, we verified that the fluorescence from the

micrometer-size droplet of the dye solution on the Au coating

gradually disappeared because the solvent of the dye solution

evaporated from the Au coating. This result suggested that the

fluorescence from the dye solution residue on Au coating was

not observed. As shown in Fig. 3A(1), the dye solution was

excessively loaded. The excessive dye solution was removed

by a glass capillary, as shown in Fig. 3A(2). After the adjust-

ment of volume of the dye solution, the measured resonance

frequency was approximately 154 kHz (see the arrow labeled

as (2) in Fig. 3B. Before loading, the measured resonance fre-

quency was approximately 163 kHz (see the arrow labeled

“Before loading” in Fig. 3B). Thus, the frequency shift caused

by adding the dye solution was found to be approximately

9 kHz, which corresponded to the loaded volume (1.4 pL).

After the subsequent coating of the dye solution in the hol-

low where the hydrophobic ionic liquid was performed, the

measured resonance frequency was approximately 146 kHz

(see the arrow labeled as (3) in Fig. 3B). As shown in

Fig. 3A(3), it was found that the glycerol solution was coated

with the hydrophobic ionic liquid. However, the resonance

frequency shifted by 3 kHz to 149 kHz 210 min after loading

the hydrophobic ionic liquid (see the arrow labeled as (5)

in Fig. 3B). This is probably because part of the glycerol

solution evaporated, which might be caused by an unintend-

edly uncoated glycerol solution. In each image shown in

Figs. 3A(4)–3A(6), the fluorescence from the dye was

observed so that the glycerol solution with the volume corre-

sponding to approximately 6 kHz (0.9 pL) should have

remained in the hollow for the deposition. Note that the

evaporation of the glycerol solution through the aperture was

negligible because the cross-sectional area of the aperture

was much smaller than that of the hollow, which contributed

to the stable dynamic mode AFM operation.

B. Deposition using the glycerol solution without the
liquid coating

The deposition using the glycerol solution without the liq-

uid coating was successfully demonstrated, as shown in

Fig. 4. A voltage of 9.0 V with a duration of 5.0 s was used to

fabricate a 5 � 5 array of droplets; the topographic image of

the droplets was taken by using the same AFM tip after wait-

ing for the complete evaporation of the solution in the hollow.

The cross-sectional image of the droplets at the white line

A–B has a mean height of 4.0 nm with a standard deviation of

0.45 nm and a mean diameter of 91 nm with a standard devia-

tion of 14 nm; thus, the droplet volume was estimated to be

27 zL with a standard deviation of 11 zL, assuming that the

droplets are cylindrical. The calculated volume, however, was

overestimated because the mean curvature radius of the

protrusion as an AFM tip was probably larger than that of

commercial AFM tips. The deposited droplet should consist

of the added electrolyte and the involatile residues of the glyc-

erol because even the micrometer-size droplets evaporate in a

FIG. 2. Resonance frequency curve as a function of the elapsed time after

loading the glycerol solution in the hollow. The dashed line shows the reso-

nance frequency of the cantilever before loading the glycerol solution.

FIG. 3. A. Bright-field and fluorescence images of the cantilever holding

the glycerol solution. B. Resonance frequency curve as a function of

the elapsed time from loading the glycerol solution to the saturation of the

frequency shift. The numerals in the graph indicate the corresponding

bright-field and fluorescence images shown in A.
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few seconds in an ambient environment.24 We succeeded in

the deposition of the glycerol solution in dynamic-mode

AFM. However, the precise control of the deposition by using

the procedure described above was difficult during the deposi-

tion process because the continuous evaporation of the sol-

vent, overall mass change of the cantilever holding the

solution, prevented the tip-sample distance regulation. Note

that the solution concentration also increased with the evapo-

ration, leading to the coalescence of solutes.

C. Deposition using the glycerol solution with the
liquid coating

We show the deposition result using the glycerol solu-

tion with the liquid coating. The deposition was performed

after the saturation of the resonance frequency shift was

observed. We imaged the deposited droplets immediately af-

ter each deposition using the same AFM cantilever, whose

hollow was still filled with the solution. The typical deposi-

tion pattern using a 9.0 V pulse with a duration of 5.0 s is

shown in Fig. 5(a). The volume variation in a 10�10 array

of the droplet was found to be so small that the stable deposi-

tion was achieved. As shown in Fig. 5(b), the cross-sectional

image was obtained at the white line shown in Fig. 5(a). It

was found that the mean height of the deposited droplets

using a duration of 5.0 s at a fixed amplitude of 9.0 V were

0.78 nm with a standard deviation of 0.21 nm, while their

volume was estimated to be 0.91 zL with a standard devia-

tion of 0.49 zL, supposing their droplet structure to be cylin-

drical, as mentioned above. We obtained the results using

different durations at fixed amplitude and found that the

droplet height monotonically increased according to the

pulse duration increase, as shown in Fig. 5(c). Compared

with the former result without the liquid coating, the depos-

ited droplet volume in the former result was larger than that

in this result. We speculated it was due to the surface of the

glycerol solution in the aperture by the differences in the sur-

face energy in the vicinity of the aperture and in the Laplace

pressure of the glycerol solution in the hollow between the

two cantilevers. The detailed mechanism of the local deposi-

tion is discussed in the following.

D. Discussion

In our previous studies,28–30 the local deposition of the

ionic liquid was strongly related in the meniscus bridge

between tip=aperture and surface. In dynamic-mode AFM,

the meniscus bridge, affecting the resonance of the cantile-

ver, cannot be created without applying an electric voltage

pulse with an amplitude that was larger than a threshold volt-

age.34,35 This meniscus bridge allows the local deposition. It

was observed that the tip vibration was suppressed due to the

meniscus bridge in a nitrogen environment.

The local deposition using the glycerol solution, as

shown in Figs. 4 and 5, might be caused by the similar phe-

nomenon to that in our previous studies. The deposition vol-

ume of each study was independent of the aperture diameter

and each deposition position was located at each tip position,

which suggested that the outlet of the deposition in this study

was also locally confined in the vicinity of the protrusion as

the AFM tip.28 In our previous studies, we ascribed the crea-

tion of the zeptoliter or less ionic liquid droplets to the local

deposition via a small reservoir of the ionic liquid in the vi-

cinity of an AFM tip. The reservoir was connected to the liq-

uid in the aperture. Note that it is important to pay attention

to the tip-aperture distance of several hundred nanometers in

terms of the control of the local deposition. Because in this

study we made an array of the zeptoliter or less droplets with

FIG. 4. (a) Topographic image of a 5 � 5 array of the droplets deposited by

using a 9.0 V pulse with the duration of 5.0 s. (b) Cross-sectional image at

the white line A–B shown in (a).

FIG. 5. (a) Topographic image of a 10 � 10 array of the droplets deposited

by using a 9.0 V pulse with the duration of 5.0 s. (b) Cross-sectional image

at the white line A–B shown in (a). (c) Droplet height against pulse durations

using a 9.0 V pulse. (d) Schematics of the vicinity of the aperture.
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a spacing that was much less than the aperture diameter

without droplet coalescence, it was naturally concluded that

the meniscus bridge was limited to a local area on the sample

surface, as reported by Fang et al.24 It also suggested that the

liquid on only a part of the inner surface of the aperture, as

shown in Fig. 5(d), extended toward the sample surface and

contributed to the local deposition. Thus, one of the impor-

tant factors for achieving a reproducible deposition is the

control of the end of the solution on the inner surface of the

aperture, which is difficult at present because it can be

affected by various causes such as electrowetting phenom-

enon36,37 and the evaporation of the solvent. Further mecha-

nism of the local deposition will be investigated in the

future.

Moreover, we recently applied this method to the local

deposition of a glycerol solution including Au colloids with

a diameter of 10 nm with the aim of fabricating metallic

wires15,38 and biological sensors.2,16

IV. CONCLUSIONS

We succeeded in the local deposition of zeptoliter or

less glycerol solution, which contained only an added salt

and the involatile residues of the solvent, by using the nano-

inkjet printing method. It was found that the stable deposi-

tion was performed by coating the glycerol solution with the

hydrophobic ionic liquid even when dynamic-mode AFM

was used. Moreover, the deposited droplets were imaged by

using the same AFM tip immediately after the deposition.
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10P. Silberzan and L. Léger, Macromolecules 25, 1267 (1992).
11A. M. Cazabat, N. Fraysse, F. Heslot, P. Levinson, J. Marsh, F. Tiberg,

and M. P. Valignat, Adv. Colloid Interface Sci. 48, 1 (1994).
12S. S. Sheiko, G. Eckert, G. Ignat’eva, A. M. Muzafarov, J. Spickermann,
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