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Abstract. Relations between different problems described by the linearized Boltzmann equation (LBE) are discussed on the
basis of the classical symmetry of LBE and kinetic boundary condition. The theory is developed for the system of arbitrary
Knudsen number (Kn) from the view point of the Green function. After showing the main idea of the approach to steady
problems for bounded and unbounded domains, its extension to unsteady problems in a fixed bounded domain is given. In
particular, in the latter, recovery of Kubo formula for the viscosity and thermal conductivity in the fluctuation—dissipation
theorem and its extension to the systems of arbitrary Kn are shown. A comment on the extension to gas mixtures is also given.

Keywords: Boltzmann equation, kinetic theory, symmetry, Green reciprocity, Onsager—Casimir relation, fluctuation—dissipation theorem
PACS: 51.10.+y, 47.45.-n, 47.61.Cb, 05.20.Dd, 05.70.Ln

INTRODUCTION

Relations between different problems described by the linearized Boltzmann equation have been discussed by many
researchers because of the interest in Onsager—Casimir relation based on the entropy production argument (e.qg.,
Refs. [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]). For example, Poiseuille flow vs. thermal transpiration and thermophoresis vs.
thermal polarization are typical examples of such relations. In the present paper, we review the main results of our
recent papers [11, 12, 13] that are based on the idea of the Green function and give a direct interpretation of those
relations without entropy production argument. The theory developed in these references makes use of the classical
symmetry of the linearized collision operator and scattering kernel of the boundary condition [15, 5], complemented
by the discussions on the far field behavior in the case of unbounded domain. The used symmetry is the standard
property for the kinetic theory description to be consistent with the second law of thermodynamics [5]. The reciprocal
relations between different problems can be understood by the presented approach as a consequence of the Green
reciprocity. Different from the entropy production argument, the thin layer that contains the surface of (or the interface
with) the body inside is not included in the considered domain in our theory [11, 12]. This feature enables us to develop
the theory for time-dependent problems [12] as a natural extension from the steady case [11]. As a consequence, a
reinterpretation of the Kubo formulas (the fluctuation—dissipation theorem) for the viscosity and thermal conductivity
is obtained. Further, mass and heat flows through a channel can be understood as a generalization of those formulas.
We shall show below the above mentioned results, following Refs. [11, 12]. However, we would like the reader to
remember that some physical settings and notations here may be changed from the originals [11, 12] for conciseness.
Poiseuille flow and thermal transpiration will be repeated in the sequel as an illustrative example.

SYMMETRIC RELATION FOR STEADY BOUNDARY-VALUE PROBLEMS

Consider the steady behavior of a single-component monatomic rarefied gas in a gomaiereZ may be bounded

or unbounded. The state of the gas is so close to the reference equilibrium state at rest with unifornpglansity

temperaturdy that the second (or higher) order effect of the deviation from this state can be neglected (linearization).
With a proper choice of reference lendthwe denote the spatial coordinates, molecular velocity, and velocity dis-

tribution function of molecules blyx, (2kTo/m)Y/2Z, andpo(2kTo/m)~%/2[1+ @(x,{)]E({). Herek is the Boltzmann

constantm is the mass of a molecules, aBd¢) = m%/2exp(—|{|?). Denoting byD the region ofx corresponding

to the dimensional regiof, the gas behavior is described by the following steady linearized Boltzmann equation:

2
Uoe = T (@ +1(kQ), (xeD, R, @

27th International Symposium on Rarefied Gas Dynamics, 2010
AIP Conf. Proc. 1333, 49-56 (2011); doi: 10.1063/1.3562624
©2011 American Institute of Physics 978-0-7354-0888-0/$30.00

o
]

49



Here Kn is the Knudsen number {0Kn < o; Kn = ¢y/L with £o being the mean free path at the reference state) and
is a given function. Most typically, represents the effect of a weak external force, though it is not limited to some real
force (thud will be referred to “external force” in the sequely’ has the following well-known properties [15, 16]:

(i) L(d)” =L(d), whered—(x,{) = P(x,—{) (£ commutes with symmetries ifi-space),

(i) (L (W) =(WL(D)), where(...) = [...({)E({)d{ (self-adjointness),

(i) Z(®P) = 0 holds if and only if® is a linear combination of 1, and|Z|?,

(iv) (®.Z(d)) <0 and the equality holds if and onlydfis a linear combination of &, and|{|? (. is non-negative).
The boundarnywD of the domainD is classified into two parts: the interface with or surface of non-gas material

(“body”), say real boundary)D,,, and artificial boundary)Dyg, i.e., D = dDy, U JDy. * @ obeys the following
condition ondDy:

cp—gw+/zi*ni<0 ZnEQD) RE,EX)(9"—gu)dd, G >0, (22)
00(6.2) = (%) + 268 (%) + (122~ ) Tu (). (20)

where @ andg, with * indicate that their argumen is replaced by "; n (or n) is the unit inward normal to the
boundary; and2RTp)"?uy, To(1+ Tw), andpo(1+ Ry) denote the velocity of the body surface, its temperature, and
corresponding saturation pressure of the gas={ pokTp/m). Because of the steady probleBdoes not deform, so
thatuyin; = 0. Rrepresents the scattering law for gas molecules on the boundary at the referen&esstatitd satisfy
standard properties in kinetic theory (such as the uniqueness condition [16], detailed balance [15, 5]), though there
are some differences depending on whetgy, is a simple boundary or condensed phase. The reader is referred to
Appendix of Ref. [12] for the details. Here, we just remark that, wh&x, is a simple boundary{inig) = 0 and
consequently, may be replaced by an arbitrary constant (for example, one magp4t0).

Next consider the imaginary bounda?¥Dg. We consider the imaginary boundary composed, in the most general

case, of the following three part8Dy = 0D(Sl) U dD(Sz) U dDég)), Where@Dé,3> represents the boundary at infinity when
D is unbounded:

() On o"Dé,l), @ obeys
o(x,{) =hin(x,{) for & > 0,x € 9D, (3a)

wherehj, is a given function foiin; > 0. For later discussions, we denote this function extended to the whole
range of by h(x,{). The way of extension is arbitrary and does not influence the results that follow.

(ii) On dDgz), ¢ obeys

9= h(x,q) +-/1;D<92) /i’ni'<o P(,Z' x)(@ —N)dZ'dS  for Gni > 0,x e DY, (3b)

whereh(x, {) is a given function fol € R3, x € dDgz); n' is the inward unit vector normal @Déz) at position
X'; dS is the surface element aDY at positionx’; andg’ = @(x', ') andh = h(x,’).
(i) WhenD is unboundedg obeys the following condition at infinity (i.ec?,Dé‘?)):
9—h(xq) as|x -, (3¢)
whereh(x, {) is a solution of the Boltzmann equation (1).

The reader is referred to Appendix of Ref. [12] for the propertieB of 0D§2>. Here we just remark that the typical

example ofP on dDéz) is thatg — h obeys the specular reflection or periodic condition. The most important is that the
following relations hold on the boundary:

(¢ini(@—9w)(¢~ —gy)) =0 ondDy, /{}D(Dm(z) (dini(@—h)(¢~ —h7))dS=0. 4

9

1 For examplegDyg is some control surface taken in a gas. Specular reflection and periodic boundary will also be classifibg.into

50



Now we are ready to state the symmetric relation for steady problems:

Proposition 1 Consider the solutiong” and ¢® of the boundary-value problegl)<3) such thatgp® (or ¢B) is a
solution in the case of+ 14, g, = d¢f, and h=h" (or | =18, g, = g8, and h= hB), whereKn (0 < Kn < ), R in
(2a), and P in(3b) are common to the problems. Then@l])ég) is absent o and @B approach K and I in such a
way that

_/[;D@) (Zimi (@™ =) (@B —hB))dS=0, )

the following equality holds:

LDW<ZinigR*¢A>dS+ /a Dg<ZinihB¢A>dS—; / (ZinihB~hA) dS— /D (1B~ ™) dx

Jopg

_ A B WA- Biga L o FA—RB\ de A B
_/‘9DW<Z|n,gW (p}dS+/aDg<Z|n.h B ds 2/aDg<Z.n.h h8) dS /D<| o) dx. ©6)

It should be noted that the relation (6) holds unconditionally for bounded domain, while it is not clear whether or
not condition (5) for (6) to hold is fulfilled in general for unbounded domain. This is due to the slow degay ot
a far distancé.Nevertheless,

1. for spatially one dimensional half-space problems,
2. for the case wher@D,, is confined in a finite ball,

we can prove (5) and thus the relation (6) (see lemma 2 of Ref. [11]). For the other cases, one is required to check the
condition (5) in each application of (6). Clarifying a general situation for (5) to hold would be desired.

In the relation (6), the role of problems A and B is symmetric. One of the important features of (6) is that each
term is a definite flux ofp® or @B. It is due to (4) and (5) and implies that a proper flux through the boundary of
concerned problem may be obtained from a flux of another problem. This observation eventually leads us to a general
representation of flux through the boundary in terms of a properly defined Green function, which we shall explain in
the next section. The relations between independent problems mentioned in the introduction are to be obtained as a
consequence of that representation [11, 13]. Another feature of (6) istttaat be arbitrary and is not limited to the one
arising from the linearization around local Maxwellian suchasr ¢ (|{|> — g). Actually, some unsteady problems
and steady half-space problems can be formulated as steady problems with other formi$wad, for instance,
relations between second-order slip coefficients can be discussed by the relation (6) (see Sec. 3 of Ref. [11]).

GREEN FUNCTION AND GENERAL REPRESENTATION FOR FLUXES

In this section, we introduce the Green function and discuss the general representation for the flux. Here we restrict
ourselves to the simplest case whBres boundeddD = dD,,, andl = 0, for the sake of clarity?
Taking into account the specific form gf;, let us consider the response of the system to the point souptaced
atXo on dDy, and denote it byz(@%) (x, ), wherea = 1,2{ti(Xo),|{|2 — 3 andtj(Xo) is a unit tangential vector to
0Dy, atXo. Thus,G(@%)(x, ) is a solution of the boundary-value problem (1) and (2) withO andgy, = a d(X—Xo).
Applying the symmetric relation (6) to the pair 6 (x,{) andG#>1)(x,{) (B = 1,2ti(x1),|{|? — 3) leads to

<ZiniB—G(or;xo)>(xl) _ (ZiniG_G<B;X1)>(XO)~ (7

2 Note that, in three dimensional problem, according to Fourier's law of heat conduction and Stokes equation for incompressible fluid, temperature
and flow velocity approach their far field with the rate ¢f¥| if Dy, is confined in a finite ball. Such behavior is properly discussed in Ref. [6],

while much faster approach is claimed in Ref. [7] by assuming the local Maxwellian at a far distance. As pointed out in Refs. [11, 14], the fast
approach estimate in Ref. [7] is not correct. Incidentally, there is no estimate on the far field behavior in Ref. [10].

3 In some problems, both side of (6) diverge due to the forimIsfmany cases, however, such divergence can be avoided by a proper transformation.

In the reformulated problengy, may be changed to a more general form. In the case, in applying Propositio%]j;ng(Zi nigS-gh))ds should

be added to the left-hand side aﬂ(% Jap, (G nigh g8)) dS to the right-hand side of (6).

4 Ref. [11] gives a unified argument for two cases uniderO0: (i) 0Dg = dDél) U 0D£,2) (thusD is bounded) and (iipDg = dDgf) (thusD is
unbounded).
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FIGURE 1. Poiseuille and thermal transpiration flows. (a) Sketch of the problems. (b) Geometry of the pipe cross-section.

This means that the cause and result (induced flow or flux) are reciprocal between two different points on the boundary
(Green reciprocity). Note that the solution of the same problem with arbigxat@ndl = 0) can be expressed by

o2) = [ (Ru0)IGH(X.2) + Uy (%0) G20 (x. )+ Tu ) G430 ) ais,
where dg denotes the element surface at positkgrandi,, is the unit vector in the direction af,. Thus, by taking
into account (7), the mass, momentum, and heat flows across the bodiaat x; is expressed as

_ . : 5 ,
(GiniB~ @) (x1) = /aD (Pw<ZiniG(B'Xl)> — Uy (2G4 GPX) 4 1 (i (17 - Q)G(B’X1)>) ds (8)
wherep = 1, 2Zitj(x1), and|{|? — g gives mass-, momentum-, and heat-flow expression. This is the general representa-
tion of the fluxes through the boundary in the simplest case. Equation (8) shows that the flow (or Auxpofient at

X1 on dD,, is immediately obtained if one knows the system response to the point soBa »f. If (8) is integrated

with respect tox; over a part of boundar$(C dDy,), the mass and heat fluxes througts obtained as

. . 5 g
[@npgds= | (Ru(@ne?¥) —u2ginGe®9) +n@n(Z2- 6?9 Jas @)
whereB = 1, [{|> - 3 and G(*¥(x,{) is a solution of the boundary-value problem (1) and (2) witk 0 and
ow = o Xs(X), wherexs(x) = 1 if X € Sand xs(x) = 0 otherwise.

Discussions of the above idea for a wider class of situations can be found in Ref. [11] (see footnote 4). For example,
if D is bounded and a part of its boundary is artificial, the fluxes through som& padDg are expressed as

= _ ny— (0,5 - h— (0,9 oy —
/S<z.n.a o) dS— /dDW<Z.n|gWG )dS+/aDg<Z.n.h G >dS+/S<Z.n.a hyds, (10)

wherea =1, 27}, |{|2 - 3 andG(*¥(x, {) is a solution of the boundary-value problem (1)—(3b) with g, = 0 and
h= axs(X). The reader is referred to Secs. 4 and 5 of Ref. [11] for more general representations and examples.

Poiseuille flow and thermal transpiration.Consider the steady Poiseuille flow and thermal transpiration in a
straight pipe (Fig. 1). The geometry of the pipe cross-section may be arbitrary. Let us denote the perturbed velocity
distribution function of the former byP(x,{) and the latter by (x,). Then¢ is a solution of (1), (2), and (3b)
in the domain grayed in Fig. 1 [@ x; < 1 andx, € S, wherex, = (x,x3)] with gy = | = 0 andh = x;, while @"
is a solution of (1), (2), and (3b) in the same domain vgigh=h = x¢(|{|* — %) andl = 0 (magnitude of imposed
gradient of pressure and temperature are rescaled as unity because of the linear frabldra;kernel of periodic
condition). Note that” is the Green functiol(:9 of the considered domain. Thus, from (10) with= 1, the
following expression is eventually obtained (by taking account of obvious propertigsarfdg"):

' 5
[(@o"ds= [(a(27-2)e")ds (a1
This is the known reciprocity relation [3] as the Onsager—Casimir relation (see also Example 5 of Ref. [11]).

We finally mention that the relation of the above theory to entropy production argument is discussed in Ref. [14]. In
Ref. [14], it is shown that the conventional Onsager—Casimir relation can be established in a pointwise way, thanks to
the Green reciprocity. Further, the situation where the conventional Onsager—Casimir relation holds istlarified.

5 Itis pointed out from early days that the conventional Onsager—Casimir relation does not hold in general, even for gross quantities like the fluxes
discussed above. See, e.g., Sec. 15.10 of Ref. [5] and references therein. Thermophoresis is an example [6, 13, 14].

52



SYMMETRIC RELATION AND GREEN FUNCTION FOR UNSTEADY PROBLEMS

In discussing the reciprocity based on entropy production, it is necessary to consider the production in a thin layer that
contains the interface between the gas and “body.” The production in the layer is estimated indirectly from the entropy
balance at steady state by assuming the local equilibrium inside the body, which has naturally limited the argument
to steady problems. On the other hand, the symmetric relation and Green function approach in previous sections do
not contain the thin layer in the considered domain. In other words, the argument of the thin layer is not necessary to
discuss the relations between two independent problems, once one accepts boundary conditions that have the standard
properties in kinetic theor§.Thus, the approach in Ref. [11] can be extended to unsteady problems. In this section,

we shall present some consequences obtained from this extension on the basis of Ref. [12].

With a proper reference scalg we denote the time bigt. Below, @, |, gw (or Ry, Uy, andty), hi,, andh may
depend on timeg(t,x,{), 1 (t,X,{), gw(t,X,{) [Ru(t,X), uy(t,X), andty(t,Xx)], hin(t,x,{), andh(t,x, {). However,
the domairD is bounded and does not change in time, sotlyat = 0. Then, the behavior of the gas is described by
the following linearized Boltzmann equation in place of (1):

op ,09_ 2 1
Shar T4 5% = Jakn

Here Sli= L /to(2kTo/m)/?] is the Strouhal number. The initial data is denoted by putting the subscripted “initial”:
@(0,%,8) = @nitial(x,{)  ({ € R®, x€D). (13)

Z(p)+1 (L eR3 xeD, t>0). (12)

SinceD is boundeddDgs) does not exist. The kernefon dD,, andP on dDéz) do not depend oh Then, for solutions
of initial- and boundary-value problems (12), (13), (2)—(3b), we obtain the following:

Proposition 2 Let ¢* be a solution of the initial- and boundary-value problg®), (13), (2)<3b) with | = I4,

gw =gy, h="h", and @il = qﬁtl Let B be a solutlon of the initial- and boundary-value probl¢h®), (13),
(2)-(3b)with | =18, g, =B, h= and @nitial = @B, Here the bounded domain D, the Strouhal and Knudsen
numbersShandKn, the collision operatorf and the kernels R and P are common to both the problems with solutions
¢" and ¢B. Then, the following relation holds:

sh [ (gha @) 0 dcs (1 g0 [ @neh « o) txos
_/[; (@i (hB = @) ( tde+2/ (Zni(hB~ M) (, %) dS
_Sh/ (@ B X) dx+/ ) (t,X) dx — /aDW<Zini(g\,Av’*(p ))(t,%)dS
- /(9Dg<zini<h’*- L)X ds+ [ (Gn(t P ds @

Here, fx g is the convolution of f and g with respect to time (thusgf= g f):

frg(t, /f glt—r,-)dr.

This is an extension of Proposition 1 to unsteady problems for fixed bounded domains. The symmetry of the roles
of problems A and B is retained thanks to the symmetric property of convolution. From the relation (14), one
can derive a natural extension of the flux representations to unsteady problems. The reader is referred to Sec. 5 of
Ref. [12] for the missing details. Here, we shall present general representation of mass, momentum, and energy in the
domain by considering the response of the system to the initial perturbation, which is peculiar to unsteady problems,
and to “external force.” Then, the Poiseuille flow and thermal transpiration are discussed in view of the obtained
representations.

6 The appropriateness of the kinetic boundary conditions in view of the thermodynamics was studied by L. Waldmarier).etwisSee, for
example, Refs. [1, 5, 8] and references therein.
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Let us denote byc(@) the response of the system to spatially uniform initial daiga = (), wherea is an
arbitrary given function. Thus3(@) is a solution of initial- and boundary-value problem (12), (13), (2)—(3b) with

ow =h=1=0andg@niia = a (i.e., Gi(:i{t)ial = a). Then, from (14), we obtain the following:

Proposition 3 Consider the initial- and boundary-value probléa®), (13), (2)«(3b)in the domain D. Then the total
a-moment in the domain at any time are expressed in terms of the Green function for the initiat data

Sh./;(o{i(p> (t,x)dx = Sh./l;«ﬂgitialG(a)ﬂLx) dx+ /;(' ~xG@)(t,x) dx

_ ) _ (- s G@
/dDW<z.n.<gW G(@)) (t,x)dS /(,Dg<z.n|<h G@))(t,x)dS  (15)

Whena =1, ¢, andgmz, (15) gives the expression of the total mass, momentum, and energy in the domain.

Poiseuille flow and thermal transpiration.Consider the time-dependent Poiseuille flow and thermal transpiration
(Fig. 1). The former can be formulated as the flow of a gas, which is initially in the thermal equilibrium at rest with
the pipe wall of uniform temperature, caused by a uniform weak external force in the (neggatiisction. Thusgp®

is a solution of (12), (13), and (2) with = S, 9D = 9Dy, = 9S,| = —{4, gw = 0, andg’,;,; = 0. On the other hand,
the solutiong" of the thermal transpiration problem can be expressegf asx1(|{|?> — 3) + @' (t,x,,{), where®"
is a solution of (12), (13), and (2) with = S, 0Dy, = 9S,0Dg =0, | = ~41(|q1?— g), gw = 0, and a certain initial
dataqaﬁ]iﬁaI (x1,{). Then, from (15) witha = {3, the following expressions are obtained:

sh /S (D) (t,x, ) dx, = — /0 t /S (26 (s,x, ) dx, ds, (16a)
Sh'/s.(Zlpr>(t,xL) dx, —— Sh/s<cbhialG(Z1>>(t,xL)de _ ./: '/S'<zl(|z|2 _ g)e<ﬁ>>(s x.)dx.ds,  (16b)

where the relationi; [@"] = u [®T] has been taken into account. Thus, the mass flow (flux) through the pipe can be

expressed for any time in terms of the Green function for the initial datBurther, sinc&(¢) — 0 ast — o, (16) is
reduced in the same limit to

Sh'/S(Zl(pP>(xl)de =—/OOO/S<ZlG(Zl)>($XL)dXLds,
sh (9" xdx == [ [(@2P-3)6%) (sx.)dxuds

The left-hand side is the mass flow of the steady Poiseuille flow and thermal transpiration. These expressions will be
interpreted as an extension of the fluctuation—dissipation theorem to the case of arbitrary Kn in the next section.

Next we consider the response of the system to an “external foreett ({), which is uniform both in time and
space, and denote it %), whereq is an arbitrary function. Thu§(@") is a solution of initial- and boundary-value
problem (12), (13), (2)-(3b) wity = h = @nitas = 0 andl = a. Then, from (14), we obtain the following:

Proposition 4 Consider the initial- and boundary-value probl€t?), (13), (2)3b)in the domain D. Then, the total
a-moment in the domain from the initial time can be expressed in terms of the Green function for “externabforce”

./(: /;((17([)) (s x) dxds = Sh'/;fﬂﬁma@(a;l)>(t7x) dx -+ ./|;<I —x G (t,x) dx

f/ <Zini(g\,‘v*G“’?')))(t,x)dS—/ (@ni(h™ «G@) (t,x)dS  (17)
Dw Dg

Whena =1, ¢, and%|Z|2, (17) gives the expression of total mass, momentum, and energy in the domain from the
initial time.
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Poiseuille flow and thermal transpiration.Consider again the time-dependent Poiseuille flow and thermal transpi-
ration problems. As is seen from its definitiagf, is no other tharG(~%) (= —G(%@1), Thus, (17) witha = —Z; and
@ = ®T eventually leads to

//Zl(p (s.X,)dx, ds= Sh/ ol oP)(t.x.) dxl+//61 \z\z—f) P)(sx,)dx ds,  (18a)

and thus

/ (Z10")(t,x, ) dx, =Sha, / (@7 @P)(t,x, ) dx, + / (2122~ g)qopxt,xl)de. (18b)
S JS S

Equation (18b) is an extension of the reciprocal relation between the steady Poiseuille flow and thermal transpiration.
In the limitt — oo, the first term on the right-hand side vanishes, becalfigends to a steady solution. Thus, in the
same limit, (18b) is reduced to the known reciprocity relation (11). [The pregenith t — o is different frome®

in (11) byx;. However, this difference does not change the form of the relation (11).] It should be noted that the same
reciprocity as the steady case remains valid for any tim@] i, =

SIMILARITY TO FLUCTUATION-DISSIPATION THEOREM

The Green function&(@) and G(“" in the previous section are closely related to each other In fact, it is confirmed
by substitution that SH [§ G(@)(s,x, {)ds solves the initial- and boundary-value problem @f")

G (t,x.4) = Sh’l/ G\¥(sx.{)ds
0

Thus, for two arbitrary functiona () andf3({), the following identity holds:

t
/D (BG@)(t,x)dx = Sh L /O /D (GE) G(@)(sx) dxds: (19)

Equation (19) may be regarded as the counterpart of the fluctuation—dissipation theorem for bulk systems or as its
extension to the system of arbitrary Knudsen number (non-bulk system), which is understood as follows:

(i) Puta = 8 and take the limit — . Then, the left-hand side of (19) represents the system response to “external
force” a, while the right-hand side represents the self-correlation of the relaxation process from initial data

(i) Applying (14) to the pair o5 andG(#) gives

[ (GGt dx= [ (iaGP) X dx (20)
Thus, ifa andf are even or odd with respect{g we obtain from (19) and (20)
[ (BO) (¢, dx = eatg [ (aGFD)(tx)x, (21)
D D

whereeq (orgg) = 1if a (or B) is even and-1if a (or B) is odd. In the limitt — oo, the integrand of both sides
of (21) represents the static admittance.dn this sense, (21) represents an extension of the symmetry of static
admittance [17, 18] to the system of arbitrary Kn.

It should be noted that the above approach is more direct and contains a little stronger consequences than that of Sec. 6
in Ref. [12]. We shall show below two examples that supplement the above observations.

Response of the gas in a periodic box.et D be a perlod|c box and consider the system resp@idaéz')
against the “external forcett = 2¢;{». ObviouslyG(?¢2) s spatially uniform andz(?%") — (\/11/2)12:B(|Z|)
ast — o. Here,B is the solution of #({1{,B) = —2{1{>. It is well-known thatB gives the viscosityu [16]:
U = /Tipo(2kTo/m)~205(Z7Z5B). Now, as in (i), we take the limit— oo in (19) with a = B = 241 to have

— polo [ (G 624, 2))at
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In the same way, by considering the system resp@i$e¢2!) against the “external forcett = 1(||? - 3), we
eventually obtain the expression of thermal conductiXitiyom (19):

5

A = 2(k/m) peto / (G2 @28 t, 7))t
0

initial
These correspond to the so-called Kubo formula [17] in the linear response theory.

Poiseuille flow and thermal transpiration.We discuss again the time-dependent Poiseuille flow and thermal
transpiration and give an alternative interpretation to the formulas in the previous sections. As already mentioned,
@° = G4 (= —G(&M), Thus the expression (16a) is no other than (19) witls 8 = ;. Further, becaus®' is

written asT = G(®hitar) 4+ G(~41(Z1-3)1) (= G(®hita) — G(@1(1€1-3)1)), the expression (18a) withT ..., = 0 is no other
than (21) witha = ¢; andB = Z1(||> - g). Thus, the expressions (16a) and (18a) may be regarded as the extensions
of the fluctuation-dissipation theorem and of the symmetry of static admittance respectively. In particular, if we take
the limitt — oo for the latter, the reciprocity between the steady Poiseuille flow and thermal transpiration is recovered.

This is an alternative explanation of the known reciprocity relation by the present approach.

CONCLUDING REMARKS

In this paper, we discussed the relations between two independent problems from the viewpoint of Green functions.
The present approach based on this viewpoint enabled us to establish the reciprocity relation in a pointwise way
(Green reciprocity), by which a general representation of fluxes is deduced. It further enabled us to develop the
theory for steady problems to unsteady problems. As a result, we obtained a natural extension (or counterpart) of
the consequences of the linear response theory for bulk system to the system of arbitrary Kn.

It is straightforward to develop the present theory [11, 14, 12] to gas mixtures. However, it should be noted that,
in order to obtain the result for unbounded domain corresponding to Refs. [11, 14], it is necessary to prove a lemma
corresponding to lemma 2 of Ref. [11]. This can be done by using that in a far field the concentration of component
gas obeys the Laplace equation, in addition to that the flow velocity and temperature behave in the same way as in the
case of single-component gas.
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