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Abstract. An infinite plate without thickness is placed in a free-molecular gas, and an external force, obeying Hooke’s law,
is acting perpendicularly on the plate. If the plate is displaced perpendicularly from its equilibrium position and released, then
it starts an oscillatory motion, which decays as time goes on because of the drag exerted by the gas molecules. This unsteady
motion is investigated numerically, under the diffuse reflection condition, with special interest in the manner of its decay. It
is shown that the decay of the displacement of the plate is slow and is in proportion to an inverse power of time. The result
complements the existing mathematical study of a similar problem [S. Caprino, et al., Math. Models. Meth. Appl. Sci. 17,
pp. 1369–1403 (2007)] in the case of non-oscillatory decay.
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INTRODUCTION

Free-molecular gas (or Knudsen gas) is a highly rarefied gas in which collisions between gas molecules can be
neglected completely. Since the free-molecular gas is, in general, much simpler and more tractable than a gas with
intermolecular collisions, its properties have been studied extensively for steady problems (e.g. [1, 2, 3]). In time-
dependent problems, however, there arises a complexity that does not appear in a collisional gas. For instance, let us
consider free unsteady motion of a body with acceleration or deceleration in a free-molecular gas. The gas molecules
that are reflected by the body at early times may hit the body again at later times. In contrast to the collisional gas, such
molecules transfer information about the body at an early stage directly to the body at a later stage and may affect the
motion of the body long time later. In other words, they give rise to a sort of long-memory effect. In what follows, such
multiple collisions of a gas molecule with the body will be called recollisions. The long-memory effect caused by the
recolliding molecules in time-dependent problems of a free-molecular gas was already mentioned in [1]. However, to
the best of the authors’ knowledge, there had been no systematic study of this effect.

Recently, this effect was studied mathematically [4, 5, 6, 7] as well as numerically [8] in connection with the
unsteady motion of a body in a free-molecular gas caused by a constant external force and its approach to the final
steady motion. That is, it was shown that, because of the effect of recolliding molecules, the approach is slowed down
and its rate becomes algebraic (i.e., proportional to an inverse power of time). To be more precise, if we let t∗ be the
time variable, Vw(t∗) the speed of the body, and Vw∞ the final (constant) speed of the body, then it holds that

|Vw∞ −Vw(t∗)| ≈C1/tn
∗ , (1)

for sufficiently large t∗, where C1 is a positive constant, and the positive integer n depends on the dimension of the
body as well as the type of gas-surface interaction.

In the present study, we consider the case of a variable external force that was studied mathematically in [5]. The
problem considered in [5] is as follows. A disk of dimension d, placed in a free-molecular gas, is subject to an external
force in the direction perpendicular to the disk. The external force obeys Hooke’s law regarding the displacement of
the disk from its equilibrium position (elastic force). Thus, if we denote by Xw(t∗) the displacement of the disk in the
direction opposite to the external force, then it is expressed as −KXw(t∗) with a positive constant K. The gas molecules
are assumed to undergo specular reflection on the disk surface. Initially, the disk is fixed with displacement Xw0 (> 0),
and the gas is in a uniform equilibrium state at rest. At time t∗ = 0, it is released with an initial velocity (parallel to the
external force). Then, the disk, in general, starts oscillation, and as time goes on, the motion decays, i.e., Xw(t∗) → 0
because of the drag exerted by the gas.
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In [5], it was proved that there exist cases where Xw(t∗) decays monotonically (without oscillation) and that the
decay in such cases is described by

|Xw(t∗)| ≈C2/td+2
∗ , (2)

with a positive constant C2 for sufficiently large t∗. Our interest is whether the same decay rate is true or not in the case
where the plate undergoes many oscillations before it stops. However, because of mathematical difficulty, analysis
could not be extended to the case with oscillations in [5]. In the present study, therefore, we investigate this problem
numerically. Since we need long-time computations with great accuracy to obtain an accurate decay rate, we restrict
ourselves to the one-dimensional case (i.e., the disk is an infinite plate). In addition, we assume diffuse reflection,
rather than specular reflection, on the surface of the plate. This facilitates computation for the same reason as in [8]
(cf. Sec. V D of [8]).

It should be mentioned that the decay of oscillating motion of a pendulum in a Stokes fluid was studied in [9], in
which the decay rate was shown to be proportional to t−γ

∗ (γ = 1/2 or 3/2).

FORMULATION OF THE PROBLEM

FIGURE 1. Configuration of the problem.

Let us consider an infinite plate without thickness immersed in an infinite
expanse of an ideal monatomic gas in an equilibrium state at rest at tem-
perature T0∗ and density ρ0∗. The temperature of the plate is uniform and
kept at T0∗. Suppose that the plate is placed at X1 = Xw0, −∞ < X j < ∞
( j = 2, 3), where Xi is the Cartesian coordinate system, and that the plate
is subject to an external force F∗(t∗) in the X1 direction per unit area of
the plates (see Fig. 1). The force is assumed to obey Hooke’s law (elas-
tic force) and to be described by F∗(t∗) = −M∗ω2

∗Xw(t∗), where M∗ is the
mass of the plate per unit area, and ω∗ is the proper frequency of oscillation
(X1 = 0 is the equilibrium position of the plate).

At time t∗ = 0, the plate is released with initial velocity Vw0 (in the X1 direction). We investigate the subsequent
unsteady motion of the plate numerically with special interest in the decay of the motion and its rate, under the
following assumptions: (i) The behavior of the gas is described by the Boltzmann equation; (ii) The gas is so rarefied
that the collisions between the gas molecules can be neglected (free-molecular gas or Knudsen gas), and no external
force acts on the gas molecules; and (iii) the gas molecules undergo diffuse reflection on the plate.

Before presenting the basic equations, we first introduce (and repeat) some necessary dimensional quantities: Xi is
the Cartesian coordinate system in space, t∗ the time variable, ξi the molecular velocity, Xw(t∗) the position of the plate
(X1 coordinate), Vw(t∗) the velocity of the plate (in the X1 direction), Xw0 the initial position of the plate, Vw0 the initial
velocity of the plate, F∗(t∗) the external elastic force acting on the plate per unit area, G∗(t∗) the drag acting on the
plate per unit area, M∗ be the mass of the plate per unit area, and f∗(Xi,ξi, t∗) the velocity distribution function of the
gas molecules. Then, we introduce their dimensionless counterparts, xi, t, ζi, xw(t), vw(t), xw0, vw0, F(t), G(t), M, and
f (xi,ζi, t), and define them as

xi = Xi/Xref, t = t∗/tref, ζi = ξi/cref, xw(t) = Xw(t∗)/Xref,

vw(t) = Vw(t∗)/cref, xw0 = Xw0/Xref, vw0 = Vw0/cref, F(t) = F∗(t∗)/(ρ0∗c2
ref),

G(t) = G∗(t∗)/(ρ0∗c2
ref), M = M∗/(ρ0∗Xref), f (xi,ζi, t) = f∗(Xi,ξi,t∗)/(ρ0∗/c3/2

ref ),

(3)

where Xref = (2RT0∗)1/2/ω∗ is the reference length scale, tref = 1/ω∗ is the reference time scale, cref = (2RT0∗)1/2 is
the reference speed, and R is the specific gas constant (the Boltzmann constant divided by the molecular mass).

In the present one-dimensional problem, in which the physical quantities do not depend on x2 and x3, if we introduce
the marginal velocity distribution function g(x1, ζ1, t) =

∫∫ ∞
−∞ f (x1,ζi, t)dζ2dζ3, then we can eliminate the components

ζ2 and ζ3 of the molecular velocity from our problem. That is, the Boltzmann equation for the free-molecular gas (or
the free-transport equation) reads

∂tg+ζ1∂xg = 0, (4)

the corresponding initial condition is

g = g0, g0 = π−1/2 exp(−ζ 2
1 ), (t = 0), (5)
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and the diffuse-reflection boundary condition on the plate is written as

g(x1,ζ1, t) = gw±(ζ1, t), [x1 = xw±(t), ζ1 − vw(t) ≷ 0 ], (6a)

gw±(ζ1, t) = π−1/2ρw±(t)exp(−[ζ1 − vw(t)]2), (6b)

ρw±(t) = ∓2
√

π
∫

ζ1−vw(t)≶0
[ζ1 − vw(t) ]g(xw±(t),ζ1, t)dζ1, (6c)

where xw+ (= xw + 0) and xw− (= xw −0) stand for the surface of the plate facing to the positive x1 direction and the
negative x1 direction, respectively. In Eq. (6) and in what follows, the upper (or lower) signs go together. The equation
of the motion of the plate per unit area is written as

dxw/dt = vw(t), M(dvw/dt) = F(t)−G(t), (7a)
F(t) = −Mxw(t), G(t) = G+(t)+G−(t), (7b)

G±(t) = ±
(∫

ζ1−vw(t)≶0
[ζ1 − vw(t) ]2 g(xw±(t),ζ1, t)dζ1 +

∫
ζ1−vw(t)≷0

[ζ1 − vw(t) ]2 gw±(ζ1, t)dζ1

)
, (7c)

and their initial conditions are given as

xw(0) = xw0, vw(0) = vw0. (8)

Here, G±(t) are the drag acting on xw±(t). The dimensionless parameters characterizing the present problem are the
mass ratio M, i.e., the density of the plate divided by the reference density of the gas, the initial position of the plate
xw0, and the initial velocity of the plate vw0. For various sets of M, xw0, and vw0, we solve the coupled system, Eqs.
(4)–(6) and Eqs. (7) and (8) numerically, with special interest in the long-time behavior of the motion of the plate xw(t)
and vw(t).

INTEGRAL EQUATION FOR THE NUMERICAL ANALYSIS

The equations for the gas, Eqs. (4)–(6), can be converted into the integral equations for ρw±(t), which are more
convenient for numerical analysis. We will give a brief outline of the derivation of the integral equations for the
present one-dimensional problem (for the details, see [8], in which the corresponding integral equations are derived
for two-dimensional case in the problem of unsteady motion of an infinite plate with finite width caused by a constant
external force).

The free transport equation (4) indicates that the velocity distribution function g(x1,ζ1, t) is constant along the
characteristics x1 −ζ1t = const. In the following discussion, we fix the present time t and introduce the time variable

FIGURE 2. (a): The trajectory of the plate (the solid curve) and the segments that can be seen from a point A: (xw(t), t) (the
thick solid curve). The dashed lines drawn downward from the point A are tangent to the trajectory of the plate. From the point A+:
(xw+(t), t) (the right-side face of the plate), the segment P1P

′
1 and P2P

′
2 can be seen, and from the point A−: (xw−(t), t) (the left

side face of the plate) the segment Q1A− can be seen. (b): The relation between xw(t), xw(s), t, s [= s(ζ1, t)], and ζ1. The molecules
that depart from xw(s) at time s(< t) hit the plate xw(t) at time t with the velocity ζ1 [cf. Eq. (10)].
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in the past s (s ∈ [0, t]). Let us consider the gas molecules impinging on the plate surface x1 = xw± at time t. If we trace
back the trajectories of such molecules, we either hit on the trajectory of the plate at a time in the past s or reach the
initial distribution g0 without hitting on the trajectory. The former molecules correspond to the recolliding molecules.
With these facts in mind, we can express the right-hand side of Eq. (6c) in terms of g in the past by the following
procedure.

The typical trajectory of the plate in (x1, t) plane under the elastic force is shown in Fig. 2(a). Figure 2(a) is in
fact one of the trajectories x1 = xw(s), s ∈ [0, t] (t = 13 in the figure) computed from (4)–(8) numerically, where the
parameters are chosen in such a way that the description of solution method is facilitated (M = 5, xw0 = 1, and vw0 = 0).
Consider the molecules impinging on the plate at a point (xw(t), t), which is denoted by the symbol A in the figure. The
solid curve indicates the trajectory of the plate x1 = xw(s), s ∈ [0, t], and the straight dashed lines, drawn downward
from A, show some of the trajectories of impinging molecules x1 − ζ1s = xw(t)− ζ1t. The velocity of an impinging
molecule is computed from the slope of its trajectory in (x1, t) space, and the faster the molecule, the milder the slope
of the trajectory.

For brevity, we consider the molecules that hit the right-side surface x1 = xw+(t) (the plate surface facing to the
positive x1 direction). There are a finite number of segments of the trajectory x1 = xw+(s), s ∈ [0, t) that can be seen
from point A without being hidden by the trajectory of the plate itself. In the case of Fig. 2(a), the segment P1P

′
1 and

P2P
′
2 are such segments. We denote the molecular velocities, corresponding to the tangential lines to the trajectory

x1 = xw(s) drawn from A, by ζ (n)
+ , where ζ (n1)

+ < ζ (n2)
+ if n1 < n2 and n = 1,2, · · · ,n+ [n+ = 2 in the case of Fig. 2(a)].

Then, we can rewrite Eq. (6c) as

−ρw+(t)
2
√

π
=

∫ vw(t)

−∞
[ζ1 − vw(t) ]g0(ζ1)dζ1 +

n+

∑
n=1

∫ ζ (n+1)
+

ζ (n)
+

[ζ1 − vw(t) ] [gw(ζ1,s(ζ1, t))−g0(ζ1) ]dζ1, (9)

where the time in the past s(ζ1, t) ∈ [0, t) is obtained implicitly from the equation

xw+(t)− xw+(s(ζ1, t))
t − s(ζ1, t)

= ζ1, (10)

[see Fig. 2(b)] and ∑n+
n=1 · · · = 0 if n+ = 0. If s(ζ1, t) obtained from (10) is multivalued as shown in Fig. 2(b), choose

the largest s ∈ [0, t). In addition, notice that ζ (n++1)
+ = vw(t) holds in (9) [see Fig. 2(a)]. The first term on the right-hand

side of (9) is the contribution if all the impinging molecules at time t come from the initial velocity distribution g0. The
impinging molecules whose velocity ζ1 is contained in the ranges of integration in the terms under summation ∑n+

n=1
departed from the plate in the past at time s(ζ1, t), not from the initial distribution. The correction caused by these
molecules, which we call the recolliding molecules, is made by the terms under the summation ∑n+

n=1. In the same way,
G+(t) in (7c) is recast as

G+(t) =
∫ vw(t)

−∞
[ζ1 − vw(t) ]2 g0(ζ1)dζ1 +

n+

∑
n=1

∫ ζ (n+1)
+

ζ (n)
+

[ζ1 − vw(t) ]2[gw(ζ1,s(ζ1, t))−g0(ζ1) ]dζ1

+
∫ ∞

vw(t)
[ζ1 − vw(t) ]2 gw+(ζ1, t)dζ1. (11)

The equations for ρw−(t) and G−(t), corresponding to Eqs. (9) and (11), respectively, are readily obtained in the same
way. Equations (9) and (10) and those for ρw−(t), with explicit form of gw± [Eq. (6b)], are the integral equation for
ρw+(t) and ρw− to be solved together with Eqs. (7a), (7b), (8), and (11) and the equation for G−(t). Since the numerical
scheme is very similar to that used in [8], it is omitted here.

NUMERICAL RESULT

Before presenting the numerical results, we introduce the following auxiliary function α: α(h) = dlog |h|/dlog t,
[h = xw(t) or vw(t) ], where log(·) is the common logarithm [log(·)≡ log10(·)]. Hence, if we have α(h)≈ p, it indicates
h ≈ t p. The numerical results of α(xw) and α(vw) are summarized in table 1. Figure 3 shows the behavior of xw for
cases 1, 4, 6, and 7 in table 1. To be more precise, Fig. 3(a) shows the single logarithmic plot of xw(t) vs t for case 1
and case 1′ (see the next paragraph for case 1′). Figure 3(b) shows the double logarithmic plot of xw(t) vs t for cases
1, 4, 6, and 7. Figure 3(c) shows the plot of α(xw) vs t for cases 1, 4, 6, and 7.
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TABLE 1. Values of α(xw) and α(vw) for different parameters M, xw0, and vw0 at log t = 3.0, 3.5, and 4.0.
Parameters −α(xw) −α(vw)

Case M xw0 vw0 log t = 3.0 log t = 3.5 log t = 4.0 log t = 3.0 log t = 3.5 log t = 4.0
1∗ 10 1 0 1.99464 1.99833 1.99947 2.99189 2.99749 2.99921
2∗ 5 1 0 1.99994 · · · · · · 2.99990 · · · · · ·
3∗ 2 1 0 2.00291 · · · · · · 3.00436 · · · · · ·
4 1 1 0 2.00446 2.00140 2.00044 3.00670 3.00211 3.00066
5∗ 10 0.5 0 1.99314 · · · · · · 2.98962 · · · · · ·
6∗ 10 0.1 0 1.99250 1.99766 1.99926 2.98864 2.99649 2.99889
7 1 0.1 0 2.00412 2.00130 2.00041 3.00619 3.00195 3.00061
8∗ 10 0 1 1.99585 · · · · · · 2.99367 · · · · · ·
9∗ 10 0 0.1 1.99541 · · · · · · 2.99301 · · · · · ·

∗ case with oscillatory motion of the plate.

FIGURE 3. Long-time behavior of the position of the plate xw(t) for cases 1, 4, 6, and 7. (a) log |xw| vs t for case 1. In case 1′,
recollision is neglected. (b) log |xw| vs log t. (c) α(xw) vs log t. In (b) and (c), the solid line indicates case 1, the dotted line case 4,
the dashed line case 6, and dash-dot line case 7.

In Fig. 3(a), case 1′ indicates the result for the same parameters as case 1, but the effect of recollision is neglected,
i.e., the terms under summation in Eqs. (9), (11) and the corresponding terms for ρw− and G− are neglected in the
computation. The difference between case 1 and case 1′ is invisible until t ≃ 150. However, a completely different
behavior is observed for the two cases after t ≃ 150. In the absence of the effect of recollision (case 1′), xw decays
rapidly, oscillating around the equilibrium position (x1 = 0), in such a manner that the amplitude of oscillation
approaches zero exponentially in t. In contrast, the result including the effect of recollision (case 1) demonstrates
a slower decay of |xw|. In addition, |xw| for case 1 decreases monotonically in t for large t without oscillation around
x1 = 0. It should also be noted that, at the beginning of bifurcation of the two cases after t ≃ 150, a tiny oscillation
without crossing x1 = 0 is observed for case 1.

From Fig. 3(b), we observe that log |xw| tends to approach a linearly decreasing function of log t for t larger than
t ≃ 300 (log t ≃ 2.5) for all of cases 1, 4, 6, and 7. In fact, Fig. 3(c) and table 1 show that the gradient α(xw) of each
curve in Fig. 3(b) for large t tends to approach −2 as t increases. The values of α(xw) for other cases in table 1 (cases
2, 3, 5, 8, and 9) also support this conclusion. Similarly, it is seen from the values of α(vw) in table 1 that α(vw) tends
to approach −3 as time goes on (the figures for vw corresponding to Fig. 3 are omitted here because of limited space).
In summary, we may conclude that the displacement of the plate and the velocity of its motion decay in the following
manner for sufficiently large t:

|xw| ≈Cx/t2, |vw| ≈Cv/t3, (12)

where Cx and Cv are positive constants. It is natural that the velocity decays faster by 1/t because vw = dxw/dt. It
should be mentioned that cases 1, 2, 3, 5, 6, 8, and 9 demonstrate the oscillation of the plate around x1 = 0. These
oscillatory cases are beyond the mathematical proof in [5]. We should also note that diffuse reflection gives rise to a
slower decay than specular reflection [cf. Eq. (2) with d = 1].

Finally, we show the velocity distribution function for impinging molecules on the plate. Figure 4 shows g(x1,ζ1, t)
[x1 = xw±(t), ζ1 ≶ vw(t) ] for case 2 at (a) t = 4, (b) t = 13, and (c) t = 27. The long-dashed line indicates ζ1 = vw.
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FIGURE 4. The velocity distribution function for impinging molecules on the plate : g(x1,ζ1, t) [x1 = xw±(t), ζ1 ≶ vw(t) ] vs
molecular velocity ζ1 for case 2. (a) t = 4, (b) t = 13, and (c) t = 27. The velocity ζ1 = vw(t) is indicated by the long dashed line.
Figure 4(b) corresponds to the situation of Fig. 2(a).

For ζ1 > vw (or ζ1 < vw), the distribution function for molecules impinging on the left (or right) side is depicted. The
velocity distribution function is, in general, discontinuous at ζ1 = ζ (n)

± (the dotted line in the figure; see the section
“Integral equation for numerical analysis" for ζ (n)

± ). Figure 4(b) is the velocity distribution functions corresponding
to Fig. 2(a). It is also seen from the figure that, at ζ1 = ζ (n)

± , the derivative of distribution function with respect to
ζ1 diverges. These facts make the computation difficult generally. The use of the integral equations for ρw± has the
advantage of dealing with the discontinuities (or the singularities) accurately.

CONCLUDING REMARKS

In the present study, we have investigated the unsteady motion of an infinite plate in a free-molecular gas caused by an
elastic force, with special interest in the decay rate of the motion, under the diffuse-reflection condition on the plate.
The study complements the mathematical study [5], where a disk of dimension d (d = 1,2,3) is considered under the
specular-reflection boundary condition. In [5], the slow decay proportional to an inverse power of time [Eq. (2)] was
proved when the disk does not oscillate. The present results provide numerical evidence that the slow decay proved
in [5] is also true, except for the fact that diffuse reflection gives a slower decay by 1/t∗ [cf. Eq. (2) with d = 1 and
Eq. (12)], when the motion of the plate is oscillatory. In addition, it is demonstrated that, even in the case of oscillatory
motion, the motion decays monotonically without oscillation after sufficiently large times.
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