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Numerical demonstration of the reciprocity among
elemental relaxation and driven-flow problems for
a rarefied gas in a channel

Shigeru Takataa) and Masashi Oishi
Department of Mechanical Engineering and Science, Kyoto University,
Kyoto 606-8501, Japan

(Received 8 November 2011; accepted 3 January 2012; published online 26 January 2012;
corrected 2 February 2012)

Relaxations from a uniform mass/heat flow and flows driven by an external force/

temperature-gradient for a rarefied gas between two parallel plates are studied on

the basis of the kinetic theory of gases. By numerical computations of the

linearized Bhatnagar–Gross–Krook model of the Boltzmann equation, it is

demonstrated that the reciprocity among these elemental flows derived from a

general reciprocity theory for time-dependent problems [S. Takata, J. Stat. Phys.

140, 985 (2010)] holds at any time and any Knudsen numbers. Moreover, a

propagation of the discontinuity of the velocity distribution function (VDF) in the

relaxation problems and that of the derivative discontinuity of the VDF in the

driven-flow problems are demonstrated. Their relation is also clarified. VC 2012
American Institute of Physics. [doi:10.1063/1.3678308]

I. INTRODUCTION

Cross relation between different phenomena described by the linearized Boltzmann equation

has been discussed or pointed out by various researchers from 1970s.1–7 They considered steady (or

quasi-steady) systems and discussed a symmetry of thermodynamic fluxes when they express the

entropy production as a sum of the products of the thermodynamic forces and conjugated thermody-

namic fluxes. As pointed out in Refs. 2, 5, and 6 in the studies of slip coefficients and thermal polar-

ization, however, Onsager’s symmetry does not necessarily hold in its original spirit. The symmetry

argument could be direct, transparent, and flexible, if we reconsider it from another viewpoint.

In fact, we have recently developed a general framework of the symmetry from a viewpoint

of the Green function, which applies not only to steady systems8,9 but also to time-dependent sys-

tems,10 the latter of which contains some results similar to the linear response theory11,12 for sys-

tems of arbitrary Knudsen number. In the present paper, we provide a simple numerical

demonstration of the symmetry for time-dependent problems which has been rarely discussed in

the literature. More precisely, we consider a rarefied gas in a channel and study two relaxation

problems from a uniform mass/heat flow and two driven-flow problems (flows caused by a uni-

form gravity/temperature-gradient). We numerically demonstrate the identities of fluxes among

the four different problems on the basis of the Bhatnagar–Gross–Krook (BGK)13,14 model of the

Boltzmann equation under the diffuse reflection condition. In the relaxation problems, as expected

by a general discussion found in Refs. 15–17, the velocity distribution function (VDF) of gas mol-

ecules is discontinuous not only on the channel walls but also inside the gas. We call attentions of

the reader to it, and moreover, point out that the derivative of VDF, not the VDF itself, is discon-

tinuous in the driven-flow problems. This feature is explained in the connection to the discontinu-

ity in the relaxation problems.

The paper is organized as follows. We first formulate elemental four problems, i.e., two

driven-flow and two relaxation problems, in Sec. II and present the reciprocal relations of fluxes

that hold among them in Sec. III. Then, in Sec. IV, we provide numerical results, which support

a)Electronic mail: takata.shigeru.4a@kyoto-u.ac.jp.
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the reciprocity presented in Sec. III and illustrate the propagation of discontinuities of the VDF

and its derivative in the relaxation and driven-flow problems, respectively.

II. PROBLEM

Consider a rarefied gas between two parallel plates separated by a distance D. We denote a

position vector by Dx and introduce the rectangular coordinates such that the two plates

are located at x1 ¼ 61=2. Hence, the x1-direction is normal to the plates, while the x2- and x3-

directions are parallel to the plates. We assume that (i) the gas behavior is described by the

Bhatnagar–Gross–Krook (BGK) model13,14 kinetic equation and that (ii) the gas molecules are dif-

fusely reflected on the plates. We investigate the gas behavior in the following four cases where

the deviation from the reference resting equilibrium state with density q0 and temperature T0 is so

small that the linearization of the equation and boundary condition is allowed. In what follows,

the time is denoted by t0t, the molecular velocity by ð2RT0Þ1=2
f, the velocity distribution function

by q0ð2RT0Þ�3=2ð1þ wÞE with E ¼ p�3=2 expð�jfj2Þ, where R is the specific gas constant and

t0 ¼ D=ð2RT0Þ1=2
is a reference time. The four cases are

(DP) The plates are maintained at the reference temperature T0. Initially, the gas is in the ref-

erence resting equilibrium state, i.e., w ¼ 0 at t ¼ 0, and a uniform external force ð0;�F; 0Þ per

molecule is acting on the gas. Here the ratio CDP ¼ FD=mRT0 (m is the mass of a molecule) is

small, i.e., jCDPj � 1.

(DT) The plates are maintained at temperature T0ð1þ CDTx2Þ (jCDT j � 1). Initially, the gas

is at rest with the reference pressure p0 ¼ q0RT0 and the same temperature distribution as the

plates,18 i.e., w ¼ CDTx2ðjfj2 � 5=2Þ at t ¼ 0.

(RP) The plates are maintained at the reference temperature T0. Initially, the gas flows uni-

formly with the velocity ð0;�U; 0Þ, i.e., w ¼ �2½U=ð2RT0Þ1=2�f2 at t ¼ 0. Here,

CRP ¼ 2U=ð2RT0Þ1=2
is small (jCRPj � 1).

(RT) The plates are maintained at the reference temperature T0. Initially, there is a uniform

heat flow ð0;�q; 0Þ in the gas,18 i.e., w ¼ �2½q=p0ð2RT0Þ1=2�f2ðjfj2 � 5=2Þ at t ¼ 0. Here,

CRT ¼ 2q=p0ð2RT0Þ1=2
is small (jCRT j � 1).

See Fig. 1 for the schematic of each case. Hereinafter, we put the subscript index a ¼ DP, DT,

RP, RT to the quantities, e.g., wDP, in order to identify the problem.

In the above four cases, we can seek the solution wa in the form

wDPðt; x; fÞ ¼ CDP/DPðt; x1; fÞ;

wDTðt; x; fÞ ¼ CDT

�
x2

�
jfj2 � 5

2

�
þ /DTðt; x1; fÞ

�
;

wRPðt; x; fÞ ¼ CRP/RPðt; x1; fÞ;
wRTðt; x; fÞ ¼ CRT/RTðt; x1; fÞ;

where /aðt; x1; fÞ is a function such that /að�f2Þ ¼ �/aðf2Þ and /að�f3Þ ¼ /aðf3Þ, and the

problem is reduced to the following initial- and boundary-value problem for /a:

@/a

@t
þ f1

@/a

@x1

¼ 1

k
ð�/a þ 2hf2/aif2Þ þ Ia; (1a)

/a ¼ 0;

�
f17 0; x1 ¼ 6

1

2

�
; (1b)

/a ¼ /in
a ; ðt ¼ 0Þ; (1c)

where

IDP ¼ �f2; /in
DP ¼ 0; (1d)

IDT ¼ �f2

�
jfj2 � 5

2

�
; /in

DT ¼ 0; (1e)
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IRP ¼ 0; /in
RP ¼ �f2; (1f)

IRT ¼ 0; /in
RT ¼ �f2

�
jfj2 � 5

2

�
: (1g)

Here

hf i ¼
ð

f ðfÞEðfÞdf; k ¼
ffiffiffi
p
p

2

‘0

D
;

and ‘0 is the mean free path of a gas molecule at the reference equilibrium state, i.e.,

‘0 ¼ ð2=
ffiffiffi
p
p
Þð2RT0Þ1=2=ðAq0Þ, where A is a constant such that Aq0 is a collision frequency. In

Eq. (1a), the moments h/ai and hjfj2/ai have already vanished because /a is odd with respect

to f2.

FIG. 1. Schematic of the problems.
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The flow velocity ð2RT0Þ1=2Cað0; ua; 0Þ, heat flow vector p0ð2RT0Þ1=2Cað0;Qa; 0Þ, and the

mass and heat flow rates q0ð2RT0Þ1=2DCaMa and p0ð2RT0Þ1=2DCaHa per unit length in Dx3 are

given by

ua ¼ hf2/ai; Ma ¼
ð1=2

�1=2

uadx1;

Qa ¼
�

f2

�
jfj2 � 5

2

�
/a

�
; Ha ¼

ð1=2

�1=2

Qadx1:

III. RECIPROCITY OF FLUXES

Applying a symmetric relation for time-dependent problems developed in Ref. 10 to the pres-

ent four problems, we find that the identity

ð1=2

�1=2

h/in
b /aidx1 þ

ð1=2

�1=2

ðt

0

hIb/aidtdx1 ¼
ð1=2

�1=2

h/in
a /bidx1 þ

ð1=2

�1=2

ðt

0

hIa/bidtdx1; (2)

holds for any pair of fa; bg ¼ fDP;DT;RP;RTg, where we have used the parity of Ia and /a and

the fact that Ia is independent of t. The non-trivial six identities, i.e., Eq. (2) for a 6¼ b, can be

reduced to three equations:

ðt

0

MRTdt ¼ HDP ¼ MDT ¼
ðt

0

HRPdt; (3a)

MDP ¼
ðt

0

MRPdt; (3b)

HDT ¼
ðt

0

HRTdt: (3c)

Here, the second equality in Eq. (3a) is obtained by taking a time derivative of the identity (2) for

fa; bg ¼ fDP;DTg. The identity (2) for fa; bg ¼ fRP;RTg is omitted here because it is obtained

by taking a time derivative of Eq. (3a). It should be noted that the above identities hold for any

time and any Knudsen number. The physical meanings of the identities are as follows:

1. Heat flow rate HDP driven by the external force is identical to the mass flow rate MDT driven by

the temperature gradient. Moreover, they are identical to the time integration of the mass flow

rate
Ð t

0
HRPdt in the relaxation from the uniform heat flow and that of the heat flow rateÐ t

0
MRTdt in the relaxation from the uniform flow.

2. Mass flow rate MDP driven by the external force is identical to the time integration of the mass

flow rate
Ð t

0
MRPdt in the relaxation from the uniform flow.

3. Heat flow rate HDT driven by the temperature gradient is identical to the time integration of the

heat flow rate
Ð t

0
HRTdt in the relaxation from the uniform heat flow.

In the next section, the above identities are numerically demonstrated to hold.

IV. NUMERICAL RESULTS AND DISCUSSIONS

For actual numerical computations, we introduce marginal VDFs

Faðt; x1; f1Þ ¼
ffiffiffi
p
p ð1

�1

ð1
�1

/aEdf2df3;

Gaðt; x1; f1Þ ¼
ffiffiffi
p
p ð1

�1

ð1
�1

�
jfj2 � 5

2

�
/aEdf2df3;

and transform the problem (1) into that for Fa and Ga (Chu’s method). In order to obtain the flow

velocity ua, it is enough to solve the problem for Fa, which is closed. In order to obtain the heat

012003-4 S. Takata and M. Oishi Phys. Fluids 24, 012003 (2012)
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flow Qa, however, it is necessary to solve the problem for Ga, which is not closed and is dependent

of Fa through ua.

As demonstrated later, the VDF and its derivative can be discontinuous not only on the plates

but also in the gas.15 In order to handle it properly, we adopt a hybrid finite difference scheme

which was first developed in Ref. 15 to avoid a finite difference across the discontinuity. It is a

hybrid between a standard finite difference for t and x1 and a finite difference along the character-

istics on which the discontinuities propagate. The details of the method are described in Ref. 19

and thus are omitted here. Our scheme is basically upwind second-order in x1 and first-order in t.
The data presented below are obtained by the following computational condition: the time step

5� 10�5, a non-uniform grid for x1 which is symmetric with respect to x1 ¼ 0 and divides the

region �1=2 � x1 � 1=2 into 200 intervals, and a nonuniform grid for f1 which is symmetric with

respect to f1 ¼ 0 and divides the region into 116 intervals after restricting the region to

jf1j � 4:429. The grid interval in x1 is smallest (�5:0� 10�4) near the plates and is largest

(�1:8� 10�2) around x1 ¼ 0. The grid interval in f1 is smallest (�3:6� 10�3) around f1 ¼ 0

and is largest (�2:2� 10�1) around f1 ¼ 64:429.

A. Flux reciprocity

Figure 2(a) shows the profiles of the heat flow QDP and the flow velocity uDT at various time t
in the case of k ¼ 1, while Fig. 2(b) shows the profiles of the heat flow QRP and of the flow veloc-

ity uRT . As clearly observed, the profiles are all different from one another. Nevertheless, Fig. 3

shows that the gross quantities HDP, MDT ,
Ð t

0
HRPdt, and

Ð t
0

MRTdt agree at any time t for any k, as

the identity (3a) predicts. In the present computation, relative errors among these four quantities at

sampling time t¼ 0.01, 0.05, 0.10, 0.50, 1.00, 2.00, 3.00, 4.00, 8.00, 10.0, 15.0 are bounded by

0.18%, 0.05%, and 0.02% for k¼ 0.1, 1, and 10, respectively.

Figure 4(a) shows the profiles of uDP and uRP, while Fig. 4(b) those of QDT and QRT . Again

the profiles are different; nevertheless, Fig. 5 shows that the gross quantities MDP and
Ð t

0
MRPdt as

well as HDT and
Ð t

0
HRTdt agree at any time t for any k, as the identities (3b) and (3c) predict. The

relative errors of the numerical data are at the same level as before.

The identities in Eq. (3) deduced from the general theory in Ref. 10 have thus been demon-

strated numerically.

FIG. 2. Comparisons of mass and heat flow profiles in the half channel 0 � x1 � 0:5 at several values of t in the case of

k ¼ 1. I. (a) QDP and uDT , (b) QRP and uRT . Solid lines indicate QDP in (a) and QRP in (b), while dashed lines indicate uDT

in (a) and uRT in (b).
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B. Velocity distribution function

As an example of the marginal VDF, we show FRP of the relaxation problem (RP) in Fig. 6(a)

and FDP of the driven flow problem (DP) in Fig. 6(b) at various time t at position x1 ¼ 0:397 in the

case of k ¼ 1. As observed in Fig. 6(a), the former has two discontinuities for every fixed t and x1.

FIG. 3. Time evolution of the fluxes in Eq. (3a) for various k. (a) Long time evolution (0 � t � 15), (b) short time evolu-

tion (0 � t � 1). Solid lines indicate HDP, open circles MDT , open triangles
Ð t

0
HRPdt, and open inverted triangles

Ð t
0

MRTdt.

FIG. 4. Comparisons of mass and heat flow profiles in the half channel 0 � x1 � 0:5 at several values of t in the case of

k ¼ 1. II. (a) uDP and uRP, (b) QDT and QRT . Solid lines indicate uDP in (a) and QDT in (b), while dashed lines indicate uRP

in (a) and QRT in (b).
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They originate from the initial discontinuity on the plates caused by the difference between the

boundary and initial data [compare Eqs. (1b) and (1f)] and propagate along the characteristics

with decaying in time by intermolecular collisions. Detailed descriptions of the VDF discontinuity

can be found in Refs. 16 and 17. The location of the discontinuities is easily identified as

x1 ¼ 61=2þ f1t (f17 0), and thus they are captured by the hybrid finite-difference scheme.15 On

the other hand, in the driven-flow problem (DP), there is no difference between the boundary and

initial data [compare Eqs. (1b) and (1d)], and accordingly FDP is continuous [see Fig. 6(b)]. A

close observation shows, however, that FDP is not smooth at the same location as the discontinuity

of FRP, i.e., at x1 ¼ 61=2þ f1t (f17 0), which is captured also by the use of the hybrid finite-

difference scheme. The features described in this paragraph are shared with FDT and FRT .

The reason of the derivative discontinuity seems less clear than that of the VDF discontinuity.

However, we have a clear view, once we notice a relation between the relaxation problem [(RP)

or (RT)] and the corresponding driven-flow problem [(DP) or (DT)]. Consider Eq. (1) for relaxa-

tion problem, i.e., a ¼ RP or RT. Integrating it in time from 0 to t, we obtain an initial- and

boundary-value problem for Uaðt; x1; fÞ ¼
Ð t

0
/aðs; x1; fÞds. The resulting problem for URP (or

URT) is found to be identical to the problem for /DP (or /DT). In other words, it holds that

/DPðt; x1; fÞ ¼
ðt

0

/RPðs; x1; fÞds; (4a)

/DTðt; x1; fÞ ¼
ðt

0

/RTðs; x1; fÞds: (4b)

If we take time derivatives of /DP and /DT , they are discontinuous at the position where /RP and

/RT are discontinuous. The derivative discontinuity in f1 of the former two then follows directly.

It is obvious that the identities (3b) and (3c) follow directly from the above relation (4). The

latter, however, implies a stronger statement that

FIG. 5. Time evolution of the fluxes in Eqs. (3b) and (3c) for various k. (a) MDP and
Ð t

0
MRPdt, (b) HDT and

Ð t
0

HRTdt. Solid

lines indicate MDP in (a) and HDT in (b), while open circles indicate
Ð t

0
MRPdt in (a) and

Ð t
0

HRTdt in (b).
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FIG. 6. Marginal velocity distribution functions FRP and FDP at several values of t at position x1 ¼ 0:397 in the case of

k ¼ 1. (a) FRP, (b) FDP. In both (a) and (b), open circles indicate the location of the discontinuities of FRP and of the deriva-

tive discontinuities of FDP with respect to f1. In (a), dashed lines indicate the discontinuities of FRP.

FIG. 7. Comparisons of the profiles of the fluxes in Eq. (5) in the case of k ¼ 1. (a) uDP and
Ð t

0
uRPdt, (b) QDP and

Ð t
0

QRPdt,
(c) uDT and

Ð t
0

uRTdt, and (d) QDT and
Ð t

0
QRTdt. Solid lines indicate uDP in (a), QDP in (b), uDT in (c), and QDT in (d); while

open circles
Ð t

0
uRPdt in (a),

Ð t
0

QRPdt in (b),
Ð t

0
uRTdt in (c), and

Ð t
0

QRTdt in (d).
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uDP ¼
ðt

0

uRPdt; QDP ¼
ðt

0

QRPdt; (5a)

uDT ¼
ðt

0

uRTdt; QDT ¼
ðt

0

QRTdt: (5b)

In other words, the identities should hold at the profile level. Figure 7 shows comparisons between

uDP and
Ð t

0
uRPdt in (a), between QDP and

Ð t
0

QRPdt in (b), between uDT and
Ð t

0
uRTdt in (c), and

between QDT and
Ð t

0
QRTdt in (d) at various time t in the case of k ¼ 1. The identities in Eq. (5) are

demonstrated perfectly in the figure.

V. CONCLUSION

We have investigated four elemental flows of a rarefied gas in a channel, mainly in order to

provide an illustrative example of the time-dependent reciprocity developed in Ref. 10. The

numerical computations have been carried out by the use of the linearized BGK model with the

diffuse reflection boundary condition. The results demonstrate that, as predicted, the reciprocal

relations (3a)–(3c) hold for a wide range of the Knudsen number at any instant. The numerical

solution also demonstrates a propagation of discontinuities of the VDF and its derivative into the

gas region. The derivative discontinuities are observed even in the driven-flow problems, in which

the initial and boundary data are continuously connected at the initial time on the boundary. This

occurrence has been clarified in terms of a further detailed relation of the driven-flow problem to

the corresponding relaxation problem, in which the VDF itself has discontinuities. The detailed

relation further implies the identities between the mass- and heat-flow profiles in driven-flow prob-

lems and the time integrations of those in relaxation problems. This equivalence has also been

demonstrated.

We conclude the paper with summarizing thus demonstrated identities in Table I.
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TABLE I. List of the demonstrated identities.

DP RP DT RT Equation Figure

HDP

Ð t
0

HRPdt MDT

Ð t
0

MRTdt Eq. (3a) Fig. 3

MDP

Ð t
0

MRPdt � � Eq. (3b) Fig. 5(a)

� � HDT

Ð t
0

HRTdt Eq. (3c) Fig. 5(b)

/DP

Ð t
0
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