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Abstract

We consider the role of the nonrecourse financing of securitization by a financial institution

(FI). Our model suggests that even though the FI has the opportunity to provide liquidity

support afterward, it is optimal for the FI to use the nonrecourse financing of securitization

initially, because the nonrecourse security makes liquidation of the original asset more at-

tractive for an FI that knows that the original asset is bad. However, our model also predicts

that the nonrecourse financing of securitization, together with short-term maturity financ-

ing, forces the financial system to perform inefficiently in handling troubled loans and causes

problems with inefficient liquidity support and overinvestment under certain conditions, de-

spite the nonrecourse property of securitization. The theoretical results provide empirical

implications for recent problems with securitized and structured finance in the United States

and Europe.

JEL Classification Code: D82, D86, G21, G23, G24, G33.

Keywords: asset-backed securities, financial distress, liquidity, maturity mismatch, struc-

tured finance.
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1. Introduction

Many commercial and investment banks have recently issued structured finance products

such as mortgage-backed securities (MBSs) and collateralized debt obligations (CDOs) into

which mortgages and other loans are pooled. These banks have also made extensive use

of off-balance-sheet financing in originating these products. For example, the portfolios of

structured finance products are transferred to off-balance-sheet vehicles. To raise funds for

originating the products, banks act as sponsors for asset-backed commercial paper (ABCP)

programs. In these programs, off-balance-sheet vehicles–ABCP conduits and structured

investment vehicles (SIVs)–issue ABCP to third-party investors, and pay their sponsoring

banks for transferred assets with the proceeds of the ABCP. The principal and interest

payments of ABCP to third-party investors are made by the cash flows that are generated

from the assets transferred to the off-balance-sheet vehicles. As a result, the off-balance-

sheet vehicles invest in illiquid long-maturity assets and issue short-maturity paper. Because

the debt obligations of off-balance-sheet vehicles are usually contractually remote from the

sponsoring banks, these banks are not required to treat the assets and debt obligations of

such vehicles as their own. In this sense, such financing has the nonrecourse property for

sponsoring banks. However, to ensure funding liquidity, sponsoring banks typically provide

their conduits and vehicles with credit enhancement, liquidity support, or both, despite

the nonrecourse property. For this reason, if an ABCP conduit or SIV cannot roll over its

maturing paper, and thus liquidity drawdowns are made to the full extent of the outstanding

commercial paper (CP), the sponsoring bank is forced to provide funding support to the

ABCP conduit or SIV and thus becomes the sole funding provider. Note that renegotiation

is practically impossible in securitization. The sponsoring bank can then direct the ABCP

conduit or the SIV either to maintain its assets or to sell them in the market.1

The federal mortgage agencies (Fannie Mae and Freddie Mac) also issue MBSs and struc-

tured mortgage products. As they guarantee each MBS they issue, securitization involves a

liquidity support problem whose effect is similar to that of the securitization of mortgages

from commercial and investment banks.2

The goal of this paper is to explore the role of nonrecourse financing of securitization.

The main question in this paper is whether it is optimal for a financial institution (FI) to

1For institutional details, see Gorton (2009), Brunnermeier (2009), and Coval, Jurek and Stafford (2009).
2For these issues, see the website of Freddie Mac (http://www.freddiemac.com/mbs).
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offer a security that is backed by an investment asset with a nonrecourse property. In the

context of structured finance products, this question is equivalent to discussing why the FI

invests in illiquid long-term assets, borrows using nonrecourse short-term securities financed

by off-balance-sheet vehicles, and accepts the possibility of providing liquidity support for

these vehicles afterward, despite the nonrecourse property. Indeed, if the FI provides liq-

uidity support to off-balance-sheet vehicles, why would the FI use nonrecourse financing

of securitization in the first place? Many reasons come to mind, including regulatory and

ratings arbitrage, where the FI takes most of the risky loans off its balance sheet to avoid

holding costly capital against them, and a low and predictable short-term interest rate envi-

ronment, where many profitable managers are ‘searching for yield’. However, it is interesting

to investigate whether the FI should exploit the nonrecourse financing of securitization, even

though these institutional features disappear.

To attain this goal, we construct a model in which an FI has investment opportunities but

does not have sufficient funds because it must meet other ‘liquidity needs’ or constraints.

Even in this situation, the FI may still invest its own funds and finance the outstanding

required funds from external initial uninformed investors (denoted by UIs). To do so, the FI

may offer a security that is backed by only the underlying investment asset. For practical

or theoretical reasons, we assume that the FI finances the outstanding required funds with

short-term securities, thereby allowing the withdrawal of UIs before the cash flows of the

asset are realized (in other words, a maturity mismatch exists between the underlying asset

and its funding source).3 The FI is then exposed to the risk of early withdrawal by the

UIs even though the security has the nonrecourse property. However, the FI may have an

advantage if the FI acquires information as a delegated monitor on behalf of the UIs when

new information is realized after the investment.

The FI then faces two problems. The first is that despite the FI’s willingness to continue

with the investment, the UIs may withdraw their funds upon the arrival of bad news because

they do not have access to the private information held by the FI. If the FI wishes to continue,

it must then finance the withdrawn funds from the ex post capital market by issuing claims

3For simplicity, as in the recent financial crisis literature (see Diamond and Rajan (2009), He and

Xiong (2009), Shleifer and Vishny (2010), Uhlig (2010), Huang and Ratnovski (2011), and Acharya and

Viswanathan (2011)), we have not modeled the choice of maturity structure specifically until Section 6.1.

In Section 6.1, we relax this assumption and show that all of our results still hold. For theoretical studies

exploring the reasons different maturities are used, see Calomiris and Kahn (1991), Flannery (1994), Berglof

and von Thadden (1994), Diamond and Rajan (2001), Stein (2005), Brunnermeier and Oehmke (2010), and

Segura and Suarez (2011).
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backed by its own assets and providing liquidity support even though the initial security

has the nonrecourse property.4 Thus, UIs may create and amplify risk for the FI in the

event of their withdrawal, precipitated by adverse perceptions of the investment asset. The

second problem is that the private information held by the FI also causes an adverse selection

problem in the ex post capital market. This forces the FI to issue an underpriced security.

Faced with this combination of problems, the FI must decide whether to issue an initial

security with a nonrecourse property in the first place. The FI may also decide whether to

undertake information acquisition. In turn, the FI’s decisions may cause a problem with

overinvestment.

Let us suppose that the FI, the UIs, and the investment assets are identified as the spon-

soring bank, ABCP investors, and MBSs and CDOs or their original assets, and that the

initial nonrecourse security that allows the early withdrawal of the UIs is interpreted as the

ABCP issued by the ABCP conduit or SIV. This model serves to clarify why the FI employs

nonrecourse securitized bank loans even though these loans result in losses from suboptimal

risk sharing and the FI takes the opportunity to provide liquidity support afterward. The

model also sheds light on the question of whether the nonrecourse financing of securitization

forces the financial system to perform less efficiently in handling troubled loans, thereby

causing an overinvestment problem.

If the FI can choose whether to undertake information acquisition, the main theoretical

results of the paper are as follows.

(i) A security with a nonrecourse property backed by a particular asset held by the FI is ex

ante preferred to any security backed by its total assets, such as deposit claims.

(ii) Under the optimal nonrecourse security, the UI always withdraws early when future

economic conditions are expected to be bad.

(iii) Uninformed finance, inefficient liquidity support, and overinvestment are more likely to

arise, despite the nonrecourse property of the security, as the profitability of the asset at

the high revenue state is larger or the liquidation value of the asset relative to the amount

funded by the UI is smaller or the likelihood of success for the asset investment is expected

to be higher.

4Many recent papers (for example, see Diamond and Rajan (2009), Bolton, Santos, and Scheinkman

(2011), and Acharya and Viswanathan (2011)) have tried to explain the fire sale or market freeze phenom-

ena. These models all rely on an implicit assumption that financial intermediaries are constrained from

raising outside funds during financial distress. Our paper complements these studies because many financial

intermediaries were able to raise outside funds during the recent credit crises.
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Our model suggests that it is optimal for the FI to use the nonrecourse financing of

securitization initially even though the FI takes the opportunity to provide liquidity support

afterward. However, our model also predicts that the nonrecourse financing of securitization,

together with short-term maturity financing, is more likely to force the financial system to

perform inefficiently in handling troubled loans, thereby causing problems with inefficient

liquidity support and overinvestment, if the profitability of the asset at the high revenue

state increases or if the liquidation value of the asset relative to the amount funded by the

UI decreases or if the likelihood of success with the asset investment increases.

Intuitively, the reason a security with a nonrecourse property backed by a particular asset

held by the FI is ex ante preferred to any security backed by its total assets is because the

former mitigates the unfavorable effect of the adverse selection problem of the FI raising

additional funds to avoid the liquidation of the remaining assets of the FI when the UI

withdraws early at the rollover date. More specifically, the nonrecourse security makes its

original asset remote from the remaining assets of the FI, thereby enabling the FI to do

without the liquidation of the remaining assets of the FI when liquidating the original asset.

This makes liquidation of the original asset of the nonrecourse security more attractive for an

FI that knows that the original asset is bad. Thus, by establishing bankruptcy remoteness,

the nonrecourse security can reduce any additional adverse selection cost in the ex post

capital market even though the FI may raise additional funds to provide liquidity support.

Such optimality of the nonrecourse security depends on the short-term maturity structure

of the security, under which the UI can withdraw early upon the arrival of bad news. Short-

term financing then makes the recourse financing disadvantageous by creating an unfavorable

effect of the additional adverse selection problem caused by the early withdrawal of the UI,

while making nonrecourse financing advantageous by ruling out the unfavorable effect of

raising the FI’s borrowing cost in response to the rise in bankruptcy possibility at time 2.

On the other hand, the early withdrawal of the UI when future economic conditions are

expected to be bad stems from the following. If the UI withdraws early, the FI incurs the

adverse selection cost of raising additional funds when continuing to invest. By contrast, if

the UI continues with the investment, the FI incurs an opportunistic strategy cost because

the FI cannot be committed to liquidating a devalued asset. Indeed, the FI prefers to issue

a security that induces the early withdrawal of the UI because the adverse selection cost

is smaller than the opportunistic strategy cost if the FI can choose whether to undertake

information acquisition.
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Given the early withdrawal of the UI when future economic conditions are expected to be

bad, the third main result is obtained because, under the conditions stated in this result,

an FI with a high-quality asset is less likely to be distinguished from an FI with a devalued

asset, even by adjusting the repayments to outside investors in the ex post capital market.

A pooling strategy with overinvestment then prevails, because an FI with a devalued asset

incurs no additional costs other than repayment when imitating an FI with a high-quality

asset. It is not surprising that uninformed finance is more likely to prevail under the condi-

tions stated in the third main result, because information acquired by the FI is less likely to

be used.

The logic of this paper, that the nonrecourse financing of securitization is optimal, is closely

related to that of Inderst and Mueller (2010), who examine optimal CEO compensation

and retirement policy when the CEO is informed privately about the firm’s continuation

value under his leadership. Inderst and Mueller show that under certain circumstances,

steep incentive and severance pay makes quitting attractive for “bad” CEOs who know that

they do not have the necessary ability to manage the firm. On the other hand, because

the nonrecourse security in our model makes the original asset remote from the remaining

assets of the FI, it enables the FI to avoid the liquidation of the remaining assets of the

FI when liquidating the original asset. This makes liquidation of the original asset more

attractive for an FI that knows that the original asset is bad. If abandoning the investment

is viewed as abandoning the firm’s management position, the role of nonrecourse financing of

securitization in our model seems to correspond well to that of steep incentive and severance

pay in Inderst and Mueller.

Holmström and Tirole (1998) investigate a model where firms can meet their future liq-

uidity needs by obtaining an irrevocable line of credit from a financial institution that issues

shares backed by claims on its financial position. Winton (2003) considers how the firm’s

initial choice between debt and equity finance is determined when the financial institution

must always meet its interim liquidity needs by issuing securities backed only by its claims

on the firm. However, neither of these studies deals with the optimality of the nonrecourse

financing of securitization in the ex ante stage, when the FI may provide liquidity support

in the ex post stage, despite the nonrecourse property.

This paper relates to the literature on security design and securitization. DeMarzo and

Duffie (1999) and DeMarzo (2005) suggest that the process of pooling and tranching in se-

curitization alleviates the underpricing involved in the asset sale because it enhances risk
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diversification and prevents informed intermediates from exploiting uninformed investors

under an ex post signaling model. Conversely, by endogenizing both the withdrawal and liq-

uidity support decisions, our model suggests that the nonrecourse property of securitization

mitigates the underpricing involved in the additional financing required by the FI when UIs

withdraw. Taking the short-term maturity structure as given, Shleifer and Vishny (2010),

Uhlig (2010), and Huang and Ratnovski (2011) provide an interesting model of financial

intermediaries that securitize, distribute, and trade loans. On the other hand, Brunnermeier

and Oehmke (2010) and Segura and Suarez (2011) develop a model of endogenous maturity

structure for financial institutions. However, these studies do not explore the optimality

of nonrecourse financing with credit enhancement policy in securitization. The difference

between our work and the above-mentioned papers is that we derive the interrelated role of

the nonrecourse and short-term maturity financing of securitization endogenously.5

Indeed, this is the first paper to explore the optimality of nonrecourse financing of secu-

ritization when creditors refuse to rollover their lending and withdraw early at the rollover

date. Previous papers, such as Benveniste and Berger (1987) and Carlstrom and Samolyk

(1995), claim that either exogenous recourse or capital constraints on the sponsoring bank

is a key factor that creates the need for securitized bank loans. By contrast, our model at-

tempts to explain endogenously why the nonrecourse financing of securitization occurs even

though the FI may provide liquidity support afterward. Ayotte and Gaon (2011) investigate

securitization by focusing on the special protection provided by “bankruptcy remoteness”

and suggest that the nonrecourse security protects the security holders from dilution of their

claims when the debtor-in-possession (DIP) lenders can issue additional senior claims in

bankruptcy. However, Ayotte and Gaon do not allow the security holders to withdraw early,

nor do they discuss the adverse selection issues. Our paper highlights the role of the nonre-

course security that alleviates the adverse selection incentive in the additional financing of

the FI when the security holders withdraw early.6

5Gorton and Souleles (2006) also provide a model for securitization and special-purpose vehicles (SPVs)

and show that the repeated relational contract relation explains sponsoring banks’ liquidity support of

their SPVs in certain states of the world. The relational contract relation has also been explained by

Boot, Greenbaum, and Thakor (1993). In our paper, the liquidity support by sponsoring banks can be

derived without any reputational considerations. Campello and de Matta (2011) discuss the “empty creditor”

problem in credit default swaps (CDSs). Although CDS contracts affect lenders’ preference between out-

of-court restructuring and bankruptcy, Campello and de Matta do not consider the additional financing

required by the borrower when the borrower’s revenue is short, nor do they discuss the adverse selection

issues.
6For the literature of nonrecourse financing other than securitization, John (1993) develops an analysis
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The paper is organized as follows. Section 2 presents the basic model. Section 3 examines

equilibrium under informed finance. Section 4 specifies the uninformed finance equilibrium

and discusses the equilibrium configuration of informed and uninformed finance. Further,

this section makes it clear that nonrecourse financing of securitization is optimal. Section

5 explores the empirical implications. Section 6 assesses the robustness of the main results.

Section 7 concludes the paper. All proofs are in the Appendix.

2. The Model

The model has three periods (t = 0, 1, 2). All agents are risk neutral and the risk-free

discount rate of interest is zero.

At the beginning of time 0, a financial institution (denoted by FI) holds cash I − I (> 0)
and an asset AO that yields a cash flow at time 2.

7 In addition, the FI has a new investment

AI that yields a cash flow at time 2 but requires a fixed investment outlay of I at the

beginning of time 0. Thus, the FI must raise the shortfall of I. To finance the amount I, the

FI issues asset-backed securities that are sold to outside initial investors at the beginning of

time 0. However, the outside initial investors can demand the redemption of these securities

at time 1 (for the relaxation of this assumption, see Section 6.1). For brevity, we refer to

these outside initial investors as UIs. Further, there are many other outside investors in the

ex post capital market. We provide additional details about the financing problem later in

this section.

The cash flows of AI and AO for each contingency and their conditional probabilities are

given in Table 1. More specifically, at the end of time 0, we allow for two states of nature,

s ∈ {g, b}. The good state of nature, g, occurs with probability p (∈ (0, 1)), and the bad
state, b, occurs with probability 1− p. There are three qualities of AI , q ∈ {h,m, `}, which
of spin-offs that enjoy the benefit of debt-related tax shields. She indicates that the investment disincen-

tives caused by the introduction of risky debt may be reduced by spin-offs. Chemmanur and John (1996)

analyze limited-recourse project financing and spin-offs under a symmetric information model driven by

considerations of corporate control. Kahn and Winton (2004) suggest that “bipartite” structures–two sep-

arate subsidiaries that make loans of similar type but differing risk; for example, a “good bank/bad bank”

structure–reduce risk-shifting incentives in the safer subsidiary by insulating safer loans from riskier loans.

However, none of these papers discusses the continuation/liquidation decision of the financial intermediary

after the withdrawal of uninformed investors under the adverse selection environment. Thus, these papers

cannot show clearly that the nonrecourse property of securitization mitigates the underpricing involved in

the additional financing of financial intermediation after the uninformed investors withdraw.
7Although we may interpret the FI as a nonfinancial firm, our model is particularly appropriate to financial

firms because they tend to use higher leverage and more short-term debt.
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differ in their earnings ability. If s = g, then q = h occurs with certainty. Alternatively, if s

= b, then q = m occurs with probability δ (∈ (0, 1)) and q = ` occurs with probability 1 −
δ. This framework can capture the situation where the quality of AI deteriorates during the

lending period, even though it appears to be good at the time of the initial investment.

If investment in AI is continued at time 2, AI generates a cash flow that depends on q. If

q = h, then AI yields a cash flow R with certainty. Next, if q = m, then AI yields R with

probability σm (∈ (0, 1)) and yields no cash flow with probability 1 − σm. If q = `, then AI

yields R with probability σ` (∈ (0, 1)) and yields no cash flow with probability 1− σ`. As q

= m is a higher-quality type than q = `, we assume that σm > σ`.

For asset AO, we assume that because of market- or industry-level fluctuations, the cash

flow distributions of AI and AO are correlated: AO yields a cash flow Z with certainty if

AI yields R, whereas AO yields Z with probability σZ (∈ (0, 1)) and no cash flow with

probability 1 − σZ if AI yields no cash flow. Hence, σZ is interpreted as the probability of

success in AO when AI yields no cash flow.

If AI is liquidated at time 1, it can be redeployed for the value L. However, if investment

in AI is continued through time 2, the liquidation value is zero. Conversely, we assume that

AO generates no liquidation value at times 1 and 2. No liquidation value of AO at time 1 is

assumed because we focus on the case where the liquidity provision for the FI is limited at

time 1 when s = b. In fact, our main results hold if the expected cash flow of AO at s = b

is sufficiently larger than its liquidation value.

For the information structure, at the end of time 0, each agent can observe the state of

nature, s, that captures the future economic environment that affects the quality of AI .

However, as the state of nature reflects immeasurable perceptions in the marketplace about

the future economic environment, we assume that it is observable but not verifiable. In

addition, at the end of time 0, the FI can privately observe the quality of AI .
8 These

assumptions imply that only the FI can distinguish between q = m and q = `, although

q = h is observable (but not verifiable). We also assume that both the cash flow and the

liquidation value outcomes of AI and AO are observable and verifiable. Finally, we assume

that all of the probabilities are common knowledge.

Note that the likelihood of AI or AO generating a positive cash flow is larger for q = m

than for q = ` as long as σm > σ`. Hence, the UI and outside investors in the ex post capital

market face adverse selection problems at s = b regardless of whether the FI issues a security

8The case of an uninformed FI is discussed in Section 4.1.
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backed by the cash flows of AI , or AO, or both.

The structure of the game is illustrated in Figure 1, and is described as follows.

(1) At the beginning of time 0, the FI places its funds I − I in AI and offers the UI an
initial security to seek I. The UI then decides whether to place funds I in the security.

(2) At the end of time 0, the state s and the quality q are realized.

(3) The UI decides whether to continue or withdraw at time 1, given its updated beliefs

about q.9

(a) If the UI chooses to continue, the FI decides whether to continue or liquidate AI at time

1, given the realized value q.10

(b) If the UI withdraws at time 1, the FI decides whether to continue or liquidate AI at

time 1, given the realized value q. If the FI chooses to continue, it issues a new security to

outside investors in the capital market at time 1. The outside investors then decide whether

to place their funds in the security, given their updated beliefs.

(4) Whenever possible, the beliefs of each agent must satisfy Bayes’ rule.

To solve the model, we use the concept of a perfect Bayesian equilibrium.

We are now in a position to consider how the FI finances the amount I. In the subsequent

analysis, we focus on the effect of the securitization of the cash flow of AI or the cash flows

of AI and AO. To this end, we formalize the following arrangement. First, we assume

that the FI has a superior understanding of the quality of the assets and their likelihood of

earning returns, whereas other investors do not.11 Hence, if the FI directly sells AI and AO,

their values are substantially discounted. Second, we assume that the FI cannot raise I by

securitizing the cash flow of AO alone until time 1, because these proceeds have been used

for other urgent or opaque liquidity needs of the FI until time 1, when these liquidity needs

disappear. Other liquidity needs may include limited-time investment opportunities, the

contractual takedown or withdrawal of funds by another customer, or a temporary financial

crisis.12

9Allowing the UI to withdraw some but not all of its investment is not optimal because of the linearity

of the model.
10We assume that the FI retains control over the liquidation decision. This is not restrictive, because the

UI is not informed of q at s = b, so that under Assumption 2, imposed below, it would always be forced to

continue to invest if the UI retained control over the liquidation decision. This assumption is also consistent

with actual practice and is supported theoretically by Riddiough (1997), who shows that the junior security

holder should control the liquidation decision under asset-backed securities.
11This holds not only for many relationship-lending assets but also for MBSs. See Glaeser and Kallal

(1997) and DeMarzo (2005).
12There may be several other reasons the FI is initially willing to invest only a limited amount. For
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Hence, at the beginning of time 0, we focus on the case where the FI issues an initial

security backed by the cash flow of AI to raise I. Later, we consider an initial security

backed by the cash flows of AI and AO to relax the nonrecourse property, and we show that

it is still optimal for the FI to issue an initial security backed by the cash flow of AI alone.

As s is unverifiable and q is privately observed at s = b by the FI, the initial security

backed by the cash flow of AI is of the debt type, so that the UI agrees to lend I at time

0 and requires a repayment X at time 2 if AI yields R, and 0 if AI yields no cash flow.
13

Because the claims of the UI are secured solely by the cash flow of AI , the UI cannot receive

anything at time 2 when AI yields no cash flow. If liquidation occurs, the UI secures the

liquidation value of the asset in lieu of security repayment. We assume that the claims of

the UI take priority over those of the FI. Thus, the receipts from AI are used to repay the

UI before any revenues are directed to the FI. The priority structure is justified later.

In fact, the UI keeps the option to withdraw funds at time 1. This is equivalent to assuming

that the FI finances the long-term asset AI by issuing a short-term security at time 0 and

letting the UI roll it over at time 1. This assumption seems to correspond well to the nature

of short-term rollover debt such as commercial paper or margins and collateral requirements

in financial contracts.14 However, in Section 6.1, even though the FI can choose the maturity

structure of debt, we show that our main results are unaffected.

Thus, the UI can choose whether to withdraw its funds at time 1, given its updated beliefs

about q and the security provisions, because the UI observes s at the end of time 0. First,

suppose that the UI does not withdraw. The FI must now decide whether to continue or

liquidate. If the FI chooses to continue, investment in AI is continued through time 2. If the

FI chooses to liquidate, each agent receives its claim according to its priority structure at

time 1. Next, suppose that the UI withdraws. Again, the FI must decide whether to continue

or liquidate. However, if the FI chooses to continue, it must assure the UI of I at time 1.15

instance, the FI may be wealth constrained or may prefer to have only limited exposure to an asset for

reasons of risk shifting or capital constraint (see Jones, 2000).
13It is not useful for the FI to report the realization of q to the UI before the UI makes its withdrawal

decision. This is because the FI always reports q = m because q is private information at s = b and the FI

incurs no cost by reporting q = m.
14Short-term maturity financing is assumed by most recent studies of securitization. See the literature in

footnote 3.
15If the FI can choose a smaller promised payment than I when the UI withdraws, the FI is more likely to

continue to invest in AI . However, this implies that inefficient continuation is more likely to occur, because

inefficiency arises only as inefficient continuation in the present model. By contrast, suppose that the FI can

choose a larger promised payment than I–that is, I 0 > I–when the UI withdraws. Regardless of whether
the equilibrium is located in the separating or the pooling region when the FI’s promised payment is fixed
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Thus, the FI must finance the funds withdrawn by the UI, I, at time 1 by raising new funds

from outside investors in the capital market. This can be viewed as the FI giving liquidity

support to the deteriorated asset, although the FI uses the nonrecourse security. Indeed,

after withdrawal, the UI may be allowed to refinance the new funds for the FI in the capital

market, or it may not do so because of an internal code for risky investment. Throughout

most of this paper, we consider the latter. We discuss the former in the Appendix, and show

that our main results are unaffected qualitatively by the modification. If the FI liquidates,

each agent receives its claim according to its priority structure at time 1.

If the UI withdraws at time 1 but the FI wishes to continue, we assume that the FI must

issue a new security backed by AI and AO in the capital market at time 1. The optimality

of this form of security is proved in Section 6.2. As q is privately observed by the FI at s

= b, and as the liquidation values of both AI and AO are zero at time 2, the new security

depends only on the cash flows generated by AI and AO. This implies that in exchange for

funding I, outside investors require a repayment YR+Z at time 2 if AI and AO yield a cash

flow R+Z, a repayment YZ if AI and AO yield Z, and 0 if AI and AO yield no cash flow. We

also assume the monotonicity condition YR+Z ≥ YZ. This is standard in the security design
literature and can be formally justified on the grounds of moral hazard.16

Several remarks on the initial security issued at time 0 are in order. First, we rule out the

possibility that the FI renegotiates the security provision with the UI after the realization

of s and q but before the continuation/withdrawal decision of the UI. This assumption is

plausible because we interpret our model in the securitization setting, where the UI comprises

numerous unknown security holders.

Second, the priority of the claims of the UI in liquidation can be justified in several ways.

For one thing, Axelson, Stromberg, and Weisbach (2009) assume that the initial adverse

selection problem of FIs causes strategic defaults of institutions that are not serious. In

our context, this implies that there are many fly-by-night operators that the UI cannot

at I after the withdrawal of the UI, the FI with q = m has no incentive to pay I 0 after the withdrawal of the
UI. Indeed, in the separating region, the additional amount I 0 − I merely causes the FI with q = m to incur

more costs and cannot serve to mitigate adverse selection incentives. In the pooling region, the repayment

level Y m at time 2 that can deter the FI with q = ` from mimicking the FI with q = m does not depend on

I 0 because the self-selection constraint does not depend on I 0. Only the participation constraint of outside
investors in the capital market at t = 1 is affected by I 0. Hence, again, I 0 − I merely increases the costs
incurred by the FI with q = m.
16For justification, see Innes (1990), Nachman and Noe (1994), Axelson (2007) and Axelson, Stromberg

and Weisbach (2009). Because Winton (2003) assumes that the institution meets any liquidity needs by

issuing equity or debt claims on its position in the firm, his model also assumes monotonicity.
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distinguish from a serious FI. We may assume that if the FI can capture some part of the

liquidation value, there are many fly-by-night operators who can earn positive rents by raising

I, investing I in assets with a maximum payoff less than I (but with a positive liquidation

value) and then liquidating the assets. In this situation, the UI cannot break even. Thus,

any optimal security must require that the claims of the FI are junior to the claims of the UI.

It is also possible to justify the priority rule by the unmodeled moral hazard and information

problems of the FI. Winton (1995) argues that most junior claimants should monitor the

project. If the FI does not monitor the asset AI when it has senior claims, our priority

rule may be justified, because the cash flow revenues drop and the security is substantially

underpriced unless the FI has junior claims.17 This priority structure is commonly observed

in practice, where the FI provides credit enhancement such as senior/subordinate structures,

particularly in asset-backed securitization. Bolton and Freixas (2000) assume the priority

structure observed in practice and show that it is the main source (in their model) behind

the banks’ incentive to securitize; that is, banks can do better by undoing priority ordering

through securitization.

To focus on the issue of withdrawal of the UI and to evaluate economic efficiency, we

impose the following parametric restrictions on AI .

Assumption 1: σ`R < L < I < σmR.

Assumption 2: L < σbR, where σb ≡ δσm + (1 − δ)σ`.

Assumption 3: The FI always has an incentive to invest in AI at time 0 because p is

sufficiently large or I is not sufficiently large.

Assumption 1 implies that it is ex post efficient to continue to invest in AI (liquidate AI)

when q = m (q = `). This is because if the FI continues when q = m (q = `), the expected

cash flow of AI , σmR (σ`R), is larger (smaller) than the liquidation value of AI , L. Given

that σb is the probability of AI yielding R conditional on s = b, Assumption 2 indicates that

it is ex post efficient to continue to invest in AI if the quality of AI is uncertain when s =

17In addition, if AI is liquidated at s = b, the UI may face liquidity needs because of the withdrawal

of other investors from its own funds, unless its claims in liquidation are large. The UI is then forced to

liquidate its own assets if it cannot raise the liquidity needs. This possibility is most likely to occur if the

UI is a money market mutual fund, which can neither expect a new inflow of funds in this situation nor

borrow to continue to invest. Even if the UI can raise the required funds, it may be forced to promise

repayment in excess of the fair risk-adjusted level. This is because the adverse selection or moral hazard

problems not modeled here undermine its credibility. This tendency is aggravated if the situation of distress

causes dislocation in the credit and funding markets that could restrict the overall provision and channeling

of credit, or if it induces rating agencies to subsequently downgrade securities issued by the UI.
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b. In our model, if it is optimal to invest in AI at time 0, social welfare depends only on

the decision of whether to continue to invest in AI or liquidate AI at time 1 when s = b.

Assumptions 1 and 3 thus ensure that continuing to invest in AI (liquidating AI) for q = m

(q = `) is the first-best allocation.

Before proceeding to characterize the equilibrium, we put two additional assumptions.

First, the following assumption serves to simplify the analysis of the ex post capital market.

Assumption 4: Z ≥ max
h

σ`R

σ`+(1−σ`)σZ ,
I

σ`+(1−σ`)σZ

i
.

Assumption 4 implies that if q = `, the expected cash flow of AO, [σ` + (1 − σ`)σZ ]Z, is

larger than or equal to that of AI , σ`R, and is also larger than or equal to the investment

of the UI, I. This ensures, in a simplified way, that the FI has an incentive to raise the

withdrawn funds by securitizing AI and AO (or AO alone) at time 1 when s = b. In the

Appendix, we show that our main results are unaffected qualitatively if this assumption is

relaxed.

Second, we impose the following assumption to simplify the subsequent analysis.

Assumption 5: (i) δ > 1 − σm
σm−σ`

p(1−σb)
p+(1−p)σb , and (ii) δ >

(1−σZ)σ`
σZ+(1−σZ)σ` .

Assumption 5(i) is rewritten as an assumption with respect to p: (i0) p > (1−δ)(σm−σ`)
1−σb .18

Assumption 5(i) and (ii) mainly serves to simplify the equilibrium configuration. Assumption

5(i) is also used to ensure that the FI’s claim in the optimal initial security is nonnegative.

In the Appendix, we discuss the relaxation of Assumption 5.

Assumptions 1—5 can be satisfied when δ (the probability of q = m conditional on s = b)

is large, when p (the probability of s = g or q = h) is large, when Z (the cash flow of AO) is

large, when σZ (the probability of success in AO if AI generates no cash flow) is large, and

when I (the fixed investment outlay of AI) is small.

3. Equilibrium

The game is solved through backward induction. In Section 3.1, we first examine the con-

tinuation/liquidation decision of the FI at time 1, taking as given the continuation/withdrawal

decision of the UI at time 1. If the FI chooses to continue to invest in AI and raises new funds

after the withdrawal of the UI, we also investigate the new security offer decision of the FI

at time 1 in the ex post capital market. Taking into account the optimal decisions of the FI

18Note that
(1−δ)(σm−σ`)

1−σb < 1 and ∂
³
(1−δ)(σm−σ`)

1−σb

´
/∂δ < 0.
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at time 1, we next discuss the continuation/withdrawal decision of the UI at time 1. Indeed,

this UI’s decision depends on the initial security offer at time 0. Thus, like a Stackelberg

leader, the FI can affect the continuation/withdrawal decision of the UI by adjusting the

initial security offer. In Section 3.2, taking account of the optimal decisions of the FI and

the UI at time 1, we characterize the optimal initial security offer of the FI at time 0.

3.1. The optimal decisions of the FI and the UI at time 1.–

We must first consider the optimal decisions of the FI and the UI at s = g. Because AI

then yields R with certainty, whereas the junior position of the FI’s claim implies that the

FI receives nothing if it liquidates AI , it is trivial that the FI chooses to continue, regardless

of whether the UI withdraws or continues. Given this, the UI’s ex ante individual rationality

constraint ensures that the UI chooses to continue.

However, if s = b, the cash flow of AI depends on q, and is not necessarily positive. Because

only the FI privately knows q at time 1, the analysis is much more complicated. In the rest

of this subsection, we focus on the case of s = b.

In Section 3.1.1, we examine the continuation/liquidation decision of the FI after the UI

continues at s = b. In Section 3.1.2, we discuss the continuation/liquidation decision of the

FI after the UI withdraws at s = b, and derive the optimal new security offer of the FI

in the ex post capital market when the FI continues to invest in AI and raises new funds

after the withdrawal of the UI. As the FI privately knows q, the equilibrium in the ex post

capital market is a signaling equilibrium, which is featured in Lemma 2. Taking account of

the optimal decisions of the FI at time 1 derived in Sections 3.1.1 and 3.1.2, we clarify the

continuation/withdrawal decision of the UI at s = b at time 1 in Section 3.1.3.

3.1.1. The continuation/liquidation decision of the FI after the UI continues If

the UI continues, irrespective of whether the FI has q = m or q = `, the FI also continues

because it receives nothing in liquidation. As a result, we present the following lemma.

Lemma 1: When s = b, the FI always continues to invest in AI after the UI continues to

invest in AI at time 1.

Lemma 1 suggests that if the UI does not withdraw at s = b, the FI with q = ` cannot

commit to liquidating AI ; thus, overinvestment occurs for the bad earning ability of the AI

(q = `).
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3.1.2. The continuation/liquidation decision of the FI after the UI withdraws

In this case, suppose that the FI chooses to liquidate. Then, the junior position of the FI’s

claim forces the FI to receive nothing. On the other hand, suppose that the FI chooses to

continue. Then, the FI must finance I to be repaid to the UI in the capital market. The

problem is that the FI knows q, while outside investors in the capital market do not at s

= b. Outside investors can only rationally revise their beliefs after they observe both the

realization of s = b and the FI’s continuation/liquidation and security design decisions at

time 1. As the FI has private information about q, we need to consider not only the pooling

strategy of the FI that does not depend on q but also the separating strategy of the FI that

does depend on q. To refine the optimal strategy of the FI that chooses to continue, we use

the requirement that the equilibrium satisfies the D1 criterion in Banks and Sobel (1987).19

Under D1, outside investors that observe an out-of-equilibrium strategy focus their beliefs

on the type of FI that would benefit them the most from choosing this strategy.

To characterize the signaling equilibrium in the ex post capital market, let FIm denote the

FI with q =m, and let FI` denote the FI with q = `. Under the pooling strategy, we need not

differentiate between the FIm and the FI`. Under the separating strategy, define (Y mR+Z , Y
m
Z )

as (YR+Z , YZ) issued by the FIm. Define <1 ≡ σ`+(1−σ`)σZ
σ`[σb+(1−σb)σZ ] and <2 ≡

σ`+(1−σ`)σZ
σ`[σm+(1−σm)σZ ] , where

<1 > <2.20 Then, we have:
Lemma 2: Suppose that the UI withdraws when s = b.

(i) If 1
σ`
> R

I
≥ <1, the pooling strategy prevails: both the FIm and the FI ` prefer to continue

to invest in AI . The repayment level, Y
P , is Y P = I

σb+(1−σb)σZ .

(ii) If <1 > R
I
≥ <2, the separating strategy prevails: the FIm continues to invest in AI

while the FI ` liquidates AI. The repayment schedule is given by Y
m
R+Z = Y

m
Z = Y m, where

Y m = σ`R

σ`+(1−σ`)σZ (>
I

σm+(1−σm)σZ in this range of
R
I
).

(iii) If <2 > R
I
> 1

σm
, the separating strategy prevails: the FIm continues to invest in AI

while the FI ` liquidates AI. The repayment schedule is given by Y
m
R+Z = Y

m
Z = Y m, where

Y m = I
σm+(1−σm)σZ .

Lemma 2 suggests that despite the nonrecourse financing, the FI raises new funds and

gives inefficient liquidity support in some cases after the withdrawal of the UI. Indeed, if

the profitability of AI at success is sufficiently high (
1
σ`
> R

I
≥ <1), the pooling strategy

19DeMarzo and Duffie (1999) and Winton (2003) also impose the D1 refinement criterion.
20Note that R

I
is restricted by the range ( 1

σm
, 1
σ`
) under Assumption 1. It is immediately apparent from

σm > σb > σ` that
1
σm

< <2 < <1 < 1
σ`
.
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dominates the separating strategy and brings about efficient investment for the medium

earning ability of AI (q = m), but causes overinvestment (inefficient continuation) for the

bad earning ability of AI (q = `) after the UI withdraws. Note that <1 is the threshold
of R

I
above which both the FIm and the FI` prefer to continue under the pooling strategy.

By contrast, if the profitability of AI at success is not sufficiently high (<1 > R
I
> 1

σm
),

the FI raises new funds only if q = m. Thus, the separating strategy dominates the pooling

strategy and creates efficient investment both for q =m and for q = ` after the UI withdraws.

However, if the profitability of AI at success is moderate (<1 > R
I
≥ <2), the FIm must

repay outside investors’ premiums in excess of the fair risk-adjusted level because σ`R

σ`+(1−σ`)σZ
≥ I

σm+(1−σm)σZ . Note that <2 is the threshold of
R
I
above which the FIm must repay outside

investors in excess of the fair risk-adjusted level under the separating strategy.

The intuition is as follows. Under the pooling strategy, if investment in AI is continued,

the FI with q receives R with probability σq but repays Y
P = I

σb+(1−σb)σZ with probability σq

+ (1 − σq)σZ. If AI is liquidated, it follows from L < I that the FI cannot receive anything

regardless of its q. Hence, given the definition of <1, both the FIm and the FI` prefer to

continue, raise new funds, and give liquidity support as long as the profitability of AI at

success is sufficiently high ( 1
σ`
> R

I
≥ <1). However, for <1 > R

I
, the FI` has no incentive to

continue for the repayment level Y P , because its expected payoff at date 1 is negative.

On the other hand, under the separating strategy, the repayment schedule is given by

Y mR+Z = Y
m
Z = Y m to minimize the underpricing of the security, as predicted by the “folklore

proposition of debt” in the standard security design literature (Axelson (2007)). If outside

investors know the quality of AI , only the FIm continues and raises new funds because

the FI` prefers liquidation under Assumption 1. In fact, outside investors do not know the

quality of AI . Because the FI receives nothing in liquidation, the FI` may have an incentive

to mimic the FIm. However, if the profitability of AI at success is sufficiently low (<2 > R
I
>

1
σm
), the expected cash flow received by the FI` in continuation is smaller than its expected

repayment level. Hence, in this case, the FI` prefers to liquidate, while the FIm prefers to

continue. By contrast, if the profitability of AI at success is not sufficiently low (
1
σ`
> R

I

≥ <2), the FI` has an incentive to mimic the FIm if the repayment level demanded of the

FIm, Y m, is the same as the fair risk-adjusted one, I
σm+(1−σm)σZ . Thus, Y

m must be adjusted

upward until the FI` has no incentive to mimic the FIm. As a result, Y m must be set equal

to σ`R

σ`+(1−σ`)σZ ; and <2 turns out to be the threshold defined above.
Because the FIm knows that its quality of AI is q =m, it may prefer to separate itself from
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the FI`. Hence, the FIm may be more willing to make a higher repayment. However, if the

FI` imitates the FIm that chooses to continue, the FI` incurs only the same repayment to

outside investors that the FIm does. Indeed, whether the pooling or the separating strategy

is used by the FI depends on the profitability of AI at success,
R
I
.

If the profitability of AI at success is sufficiently high (
1
σ`
> R

I
≥ <1), the repayment level

Y P under the pooling strategy where both the FIm and the FI` continue is sufficiently low

relative to R that the expected payoff of the FI` is nonnegative. As it is very costly for the

FIm to prevent the FI` from mimicking the FIm’s strategy in this range of R
I
, this induces

the FIm to select the pooling strategy.

By contrast, if the profitability of AI at success is not sufficiently high (<1 > R
I
> 1

σm
),

Y P is sufficiently high relative to R that the FI` has no incentive to continue. This rules

out the pooling strategy where both the FIm and the FI` continue. Furthermore, the FIm

always has the greatest incentive to continue, regardless of the repayment level. Thus, the

FI most willing to continue at any repayment level turns out to be the FIm. Under D1

beliefs, if outside investors observe that the FI continues and seeks additional funding with a

repayment level that induces the FI` to liquidate, they believe that the FI is the FIm. This

rules out the pooling strategy where both the FIm and the FI` liquidate AI . Hence, only the

separating strategy survives. In addition, if the profitability of AI at success is sufficiently

low (<2 > R
I
> 1

σm
), the FI` has no incentive to continue for the repayment level Y m that

would prevail if outside investors were able to learn the quality of AI . Thus, in this range,

the FIm need not repay outside investors any premiums in excess of the fair risk-adjusted

level.

The difference between the results of Lemma 2 and the standard signaling model is that

the pooling strategy prevails if R
I
≥ <1. This is because the FI` incurs no additional costs

other than repayment when imitating the FIm that chooses to continue. Hence, the FIm

cannot prevent the imitating strategy of the FI` if R
I
≥ <1.

3.1.3. The continuation/withdrawal decision of the UI If the UI continues, Lemma

1 shows that both the FIm and the FI` continue. However, if the UI withdraws, Lemma 2

suggests that we must examine the following three cases: (i) 1
σ`
> R

I
≥ <1; (ii) <1 > R

I
≥

<2; and (iii) <2 > R
I
> 1

σm
. Then, we obtain the following lemma.21

Lemma 3: Suppose that s = b.

21We assume that the UI chooses to continue if it is indifferent between continuing and withdrawing.
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(i) If 1
σ`
> R

I
≥ <1, the UI continues if σbX ≥ I. Otherwise, the UI withdraws.

(ii) If <1 > R
I
> 1

σm
, the UI continues if σbX ≥ δI + (1 − δ)L. Otherwise, the UI withdraws.

Intuitively, if the UI continues, both the FIm and the FI` always continue. As the UI does

not know the type of FI at s = b, its interim expected payoff is σbX. On the other hand, if

the UI withdraws, Lemma 2 indicates that the UI expects to receive I if the profitability of

AI at success is sufficiently high (
1
σ`
> R

I
≥ <1), but only δI + (1 − δ)L if the profitability of

AI at success is not sufficiently high (<1 > R
I
> 1

σm
). Thus, comparing the expected payoff

of the UI in continuation with that in liquidation, we derive the result of Lemma 3.

3.2. The optimal initial security offer of the FI at time 0.–

The arguments in Section 3.1 suggest that the optimal initial security at time 0 depends on

whether the UI continues or withdraws at s = b. In addition, as the Stackelberg leader, the

FI can induce the UI to continue or withdraw at s = b by adjusting the security provisions.

Now, given Lemmas 1—3, we divide the analysis for the optimal initial security offer into

the following three cases: (i) 1
σ`
> R

I
≥ <1; (ii) <1 > R

I
≥ <2; and (iii) <2 > R

I
> 1

σm
. For

each of the above three cases, we further need to take account of two situations: (a) where

the UI is induced to continue at s = b; and (b) where the UI is induced to withdraw at

s = b. By comparing the ex ante expected payoffs of the FI in the two situations, we can

determine the optimal security offer of the FI at time 0 for each of the three cases. In the

proof of Lemma 4 in the Appendix, we formalize the maximization problems and derive the

optimal security offer in each of the three cases.

Lemma 4 characterizes the optimal initial security offer. The following definitions are

useful in stating Lemma 4: ϕ(L) ≡ <1
(1−p)σb{(1 − δ)[p + 2(1 − p)σb]L + δ[p + 2(1 − p)σb] −

σb} and ψ(L) ≡ max(min(ϕ(L),<1),<2),22 where L ≡ L
I
is the ratio of the liquidation value

of AI to the funding amount of the UI.

Lemma 4: (i) If 1
σ`
> R

I
≥ <1, the equilibrium (denoted by IFEP) is determined so that

the FI offers a security at time 0 that induces the UI to withdraw when s = b at time 1. The

optimal initial security is X∗ = I. After the withdrawal of the UI, both the FIm and the

FI ` prefer to continue to invest in AI. The repayment level from the FI to outside investors

in the new security at time 1, Y ∗, is Y ∗ = I
σb+(1−σb)σZ .

(ii) If <1 > R
I
≥ ψ(L), the equilibrium (denoted by IFEC) is determined so that the FI offers

22Note that ϕ0(L) > 0 and ϕ(1) > <1.
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a security at time 0 that induces the UI to continue when s = b at time 1. The optimal

initial security is X∗ = δI+(1−δ)L
σb

. Both the FIm and the FI ` continue to invest in AI when

s = b at time 1.

(iii) If ψ(L) > R
I
> 1

σm
, the equilibrium (denoted by IFES) is determined so that the FI

offers a security at time 0 that induces the UI to withdraw when s = b at time 1. The

optimal initial security is X∗ = [1−(1−p)δ]I−(1−p)(1−δ)L
p

. After the withdrawal of the UI, the

FIm continues while the FI ` liquidates. Furthermore, Y ∗ = σ`R

σ`+(1−σ`)σZ if ψ(L) >
R
I
≥ <2,

and Y ∗ = I
σm+(1−σm)σZ if <2 >

R
I
> 1

σm
.

If the profitability of AI at success is sufficiently high (
1
σ`
> R

I
≥ <1), the optimal initial

security induces the UI to withdraw when s = b but causes overinvestment (inefficient con-

tinuation) for the poor earning ability of AI (q = `) because the FI` continues. This implies

that despite the nonrecourse security, liquidity support can arise for q = ` even though the

UI withdraws. This also means that the FI` can raise sufficient funding for the deteriorated

AI in this case. In this sense, capital market pricing does not work well.

If the profitability of AI at success is moderate but is still high enough relative to L (<1
> R

I
≥ ψ(L)), the optimal initial security induces the UI to continue when s = b and causes

overinvestment for q = ` because the FI` continues. Unlike the case of Lemma 4(i), this

inefficiency arises when the UI continues at s = b. In addition, R
I
= ψ(L) is a threshold line

above which the FI induces the UI to continue at s = b in the range R
I
∈ [<2, <1).

If the profitability of AI at success is moderate but is not high enough relative to L (ψ(L)
> R

I
≥ <2) or is sufficiently low (<2 > R

I
> 1

σm
), the optimal initial security induces the

UI to withdraw when s = b and leads to efficient investment for both q = m and q =

` because the FIm continues while the FI` liquidates. Thus, in this case, capital market

pricing works well so that the FI raises new funds only if q = m. However, the FIm must

repay outside investors’ premiums if ψ(L) > R
I
≥ <2, whereas the FIm only needs to repay

outside investors the fair risk-adjusted level if <2 > R
I
> 1

σm
.

To summarize, the optimal initial security induces the UI to withdraw when s = b, except

for the case in which the profitability of AI at success is moderate but is still high enough

relative to L (<1 > R
I
≥ ψ(L)). Hence, the continuation/liquidation decision of the FI is

given by Lemma 2, except for R
I
∈ [ψ(L), <1). Despite the nonrecourse financing, if the

UI withdraws, the optimal initial security induces the FIm to raise new funds and provide

liquidity support at s = b, while it induces the FI` to raise new funds and give liquidity
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support at s = b only if the profitability of AI at success is sufficiently high (
1
σ`
> R

I
≥ <1).

The intuition for Lemma 4 is explained as follows. Suppose that the profitability of AI

at success is sufficiently high ( 1
σ`
> R

I
≥ <1). Lemmas 1 and 2(i) show that regardless of

whether the FI induces the UI to continue or withdraw at s = b, the FI always continues

to invest until time 2. To check whether the FI induces the UI to continue or withdraw

at s = b, we need to compare the financing costs of these strategies. If the FI induces the

UI to continue, the FI must increase the face value of the initial security, X, to I
σb
, which

guarantees the UI the same interim expected payoff as that from withdrawal. By contrast, if

the FI induces the UI to withdraw, both the FIm and the FI` raise additional funds because

they prefer to continue to invest in this range of R
I
. Thus, the UI can receive the certain

redemption amount of I regardless of q = m or q = `. However, this causes a severe adverse

selection problem in the ex post capital market. Hence, the pooling equilibrium prevails so

that both the FIm and the FI` finance I at time 1 by issuing the same new security with

Y ∗ = I
σb+(1−σb)σZ (see Lemma 2(i)). Indeed, the former cost of the FI inducing the UI to

continue outweighs the latter cost of the FI inducing the UI to withdraw, because the FI

must pay I
σb
even at s = g in the former case. Hence, the FI prefers to induce the UI to

withdraw at s = b. Then, the FI can always raise funds and give liquidity support at s = b

so that overinvestment arises for q = `.

Next, suppose that the profitability of AI at success is moderate (<1 > R
I
≥ <2). If the FI

induces the UI to continue at s = b, Lemma 1 implies that overinvestment occurs for q = `.

On the other hand, if the FI induces the UI to withdraw at s = b, Lemma 2(ii) indicates that

the FIm continues while the FI` liquidates. Hence, efficient investment is attained. However,

the FIm must repay outside investors’ premiums in excess of the fair risk-adjusted level to

finance the withdrawn funds. To check which strategy the FI chooses, we need to compare

the financing and investment allocation costs of both strategies.

If the FI induces the UI to continue, the FI must increase X to
δI+(1−δ)L

σb
, which guarantees

the UI the same interim expected payoff as that from withdrawal. Note that even in this

case, the initial security is not necessarily safe; thus, X must be adjusted for the risk.

If the FI induces the UI to withdraw, the FIm must finance I by issuing the new security

with Y ∗ = σ`R

σ`+(1−σ`)σZ at time 1 to separate itself from the FI`. Note that Y
∗ is adjusted for

outside investors’ premiums. On the other hand, the FI` liquidates AI and pays the UI the

liquidation value L. As L is greater than the expected cash flow in continuation, σ`R, under

Assumption 1, the FI can reduce the face value of the initial security X by inducing the UI
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to withdraw and by repaying the UI the certain value of L instead of σ`X when q = `.

Comparing the costs of the above two strategies, we show that if R
I
becomes larger or L

becomes smaller, the face value of the initial security inducing the UI to continue is decreasing

relative to the face value of the initial security inducing the UI to withdraw, whereas the new

security payment of the FI inducing the UI to withdraw is increasing relative to I. Thus, the

cost of inducing the UI to continue is more likely to be lower than the cost of inducing the UI

to withdraw, as R
I
is increasing relative to L. Given the definition of ψ(L), this implies that

in the range of R
I
∈ [<2, <1), the FI induces the UI to continue at s = b if the profitability

of AI at success is moderate but is still high enough relative to L (<1 > R
I
≥ ψ(L)); in

contrast, the FI induces the UI to withdraw at s = b if the profitability of AI at success is

moderate but is not high enough relative to L (ψ(L) > R
I
≥ <2).

Finally, suppose that the profitability of AI at success is sufficiently low (<2 > R
I
> 1

σm
).

Then, the argument is similar to that in the case of ψ(L) > R
I
≥ <2. In addition, as discussed

in Lemma 1(iii), the early withdrawal of the UI causes no adverse selection problem in the

ex post capital market in this range of R
I
. Thus, the FIm need not repay any premiums to

finance the withdrawn amount.

4. The Optimality of Nonrecourse Financing

In Section 3, we assumed that the FI can observe the quality of AI at the end of time 0.

Then, Lemma 4 indicates that there may exist a region in which the UI is induced not to

withdraw at s = b. In this section, we first check whether this region can survive if the FI can

choose whether to undertake information acquisition activity. The optimality of nonrecourse

financing can be derived using this result.

4.1. Informed vs. uninformed finance.–

We suppose that the FI cannot observe the quality ofAI at the end of time 0 unless it pays a

positive cost ²I to acquire information at the beginning of time 0. This is because the FI must

develop methodologies and skills and collect information about the borrower to evaluate the

quality of AI . For simplicity, we assume that ²I is an infinitesimally small positive number,

and that the UI and outside investors know whether information acquisition activity is

undertaken.23 Although ²I is not small, the main results in this paper are unaffected.

23This assumption is also used in Winton (2003). As an alternative, and as in Repullo and Suarez (1998),

we may assume that the FI can (contractually) commit to using information technology.
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Because the informed finance equilibrium (IFE) where the FI engages in information ac-

quisition is exactly the same as that explored in Section 3, except that the FI pays ²I at time

0, we need only investigate the uninformed finance equilibrium (UFE) where the FI engages

in no information acquisition. We then obtain the following lemma.

Lemma 5: Suppose that the FI does not undertake any information acquisition activity.

(i) Suppose that 1
σ`
> R

I
≥ 1

σb
. The optimal strategies of the FI and the UI under the UFE

are the same as those under the IFEP given by Lemma 4(i).

(ii) Suppose that 1
σb
> R

I
> 1

σm
. Let ΠF0 denote the expected payoff the FI at the beginning

of time 0. Then, the optimal value of ΠF0 is lower than or equal to bΠF0, where bΠF0 ≡ [p +
(1 − p)σb]R + ωZ − I.

If the profitability of AI at success is not substantially low (as in the case of Lemma

5(i)), the UFE definitely causes overinvestment at s = b, in the sense that the FI raises new

funds and continues even when q = `. Further, in the range R
I
, the UFE is the same as the

IFEP given in Lemma 4(i), except that the FI does not pay ²I for information acquisition.

This implies that despite the nonrecourse security, the uninformed FI may provide inefficient

liquidity support at s = b after the UI withdraws. On the other hand, when the profitability

of AI at success is substantially low (as in the case of Lemma 5(ii)), the optimal value of the

expected payoff the FI at the beginning of time 0, ΠF0, is lower than or equal to bΠF0, which
would be attained if the FI were able to commit to continue after the withdrawal of the UI.

The intuition for Lemma 5 is as follows. In the case of Lemma 5(i), the uninformed FI

prefers to continue at s = b, regardless of whether the UI continues or withdraws. The

optimal strategies of the FI and the UI in this case are then the same as those under the

IFEP of Lemma 4(i) because in this range of R
I
, the FI does not use any information on q,

even though it acquires information. In the case of Lemma 5(ii), the withdrawal of the UI

at s = b always forces the uninformed FI to liquidate AI and receive nothing. Hence, the

optimal value of ΠF0 is lower than or equal to bΠF0.
Inspecting the ex ante expected payoff of the FI attained in each case of Lemmas 4 and

5, we establish the following lemma about the configuration of the IFE and the UFE.

Lemma 6: Define φ(L) ≡ [δ + (1 − δ)L]<1.
(i) If 1

σ`
> R

I
≥ max(φ(L),<2), the equilibrium is given by the UFE that is characterized by

Lemma 5(i).

(ii) If max(φ(L),<2) > R
I
≥ 1

σm
, the equilibrium is given by the IFES, which is characterized
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by Lemma 4(iii).

Figure 2 illustrates the configuration of the equilibrium given by Lemma 6 with various

regions of the parameter space (as depicted by the parameters L and R
I
) where the UFE or

the IFES prevails.24

The intuition for this lemma is as follows. Under Assumption 5(ii), note that <2 > 1
σb
.

Suppose that the profitability of AI at success is sufficiently high (
1
σ`
> R

I
≥ <1). In this

case, regardless of whether or not the FI acquires information, it always sets X∗ = I and

continues to invest in AI although the UI is induced to withdraw the fund at s = b (see

Lemmas 4(i) and 5(i)). The reason is that investment in AI is worth continuing because
R
I

is sufficiently high and the FI receives nothing in liquidation. As the information obtained

by the FI need not be used in the range of R
I
, the FI does not acquire information in order

to save the information acquisition cost. As a result, uninformed finance prevails.

Next, suppose that the profitability of AI at success is moderate but relatively higher than

L (<1 > R
I
≥ ψ(L)). If the FI acquires information in this range, it is always optimal for the

FI to induce the UI to continue investment because R
I
is relatively higher than L and the

FI receives nothing in liquidation (see Lemma 4(ii)). As a result, the FI must raise the face

value of the initial security, X, to compensate the UI for the default risk borne when the

UI continues to invest. Under uninformed finance, however, the FI can commit to induce

the UI to withdraw the fund so that the FI need not pay the increment in X (see Lemma

5(i)). Under Assumption 5(i), we can show that the possibility of the FI inducing the UI to

continue under informed finance is ruled out by uninformed finance.

We now suppose that the profitability of AI at success is moderate but is not as high as

L (ψ(L) > R
I
≥ <2). In this case, whether or not informed finance prevails depends on the

benefit and cost of the separating strategy chosen by the FI after it observes q at s = b (see

Lemma 4(iii)). The separating strategy creates the benefit of the efficient investment for

both q = m and q = ` because the FI always induces the UI to withdraw the fund at s =

b, and raises new funds and provides liquidity support only if q = m. On the other hand,

there are two costs in the separating strategy. The FI needs to determine the face value of

the initial security, X, by considering that the FIm continues to invest in AI while the FI`

liquidates AI . Given L < I, this implies that the separating strategy sets X higher than

24Given that φ(1) = <1, φ−1(<2) > σ`
σm

and φ(L◦) = <2, where L
◦

σ`
= φ(L◦), Figure 2 is drawn by assuming

L◦ < σb
σm
. In addition, note that R

I
= φ(L) is included in the region {(L, R

I
) | 1

σb
L < R

I
< 1

σ`
L and <2 < R

I

< <1} for L ∈ (L◦, 1). This is because φ0(L) = (1 − δ)<1 ∈ (0, 1
σ`
), φ(L◦) = <2 and φ(1) = <1.
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I in this region. Furthermore, the FIm must repay outside investors’ premiums in excess

of the fair risk-adjusted level to separate itself from the FI` in the ex post capital market.

The benefit of the efficient investment, however, is more likely to outweigh the costs of the

increments of the initial face value and the repayment in the ex post capital market when L
is large or R

I
is small.25 Hence, the FI undertakes information acquisition when L is large or

R
I
is small.

Finally, if the profitability of AI at success is sufficiently low (<2 > R
I
≥ 1

σm
), the FIm

need not pay any premiums to finance the withdrawn funds in the ex post capital market

(see Lemma 4(iii)). Informed finance always prevails in this region because the benefit of

the efficient investment always outweighs the incremental cost of the initial face value.

Using Lemmas 4—6 with Figure 2, we now establish the following proposition.

Proposition 1: If the FI can choose whether to undertake information acquisition activity,

the equilibrium is characterized as follows.

(i) The FI always offers an initial security that induces the UI to withdraw when s = b.

(ii) The FI undertakes no information acquisition, provides inefficient liquidity support, and

overinvests if the profitability of AI at success is not sufficiently small relative to L ( 1σ` >
R
I

≥ max(φ(L),<2)). Otherwise, the FI undertakes information acquisition, provides efficient
liquidity support, and invests efficiently.

Proposition 1 suggests that if the FI can choose whether to acquire information, the

optimal initial security always induces the UI to withdraw early at s = b and forces the FI

to determine whether to raise new funds in order to give liquidity support. The intuition is

that if the FI commits to acquire information, there is a region of (L, R
I
) where the UI does

not prefer to withdraw early at s = b because the FI` then liquidates AI . In this region, the

FI needs to increase the face value of the initial security to compensate the UI for the default

risk arising when the UI continues. However, in this region, if the FI does not attempt to

acquire information, the FI can commit to pay the UI the certain redemption amount of I,

raise new funds, and continue investment in AI after the withdrawal of the UI. Then, the

FI can avoid compensating the UI for the default risk arising when the UI continues. Thus,

if the FI can choose whether to acquire information, in this region, the FI prefers not to

acquire information, and induces the UI to withdraw early at s = b to prevent the face value

25 R
I
= φ(L) is a threshold line below which the former benefit outweighs the latter costs. Note that ϕ(L)

> φ(L), φ(1) = <1, and φ0(L) > 0. Thus, min(ϕ(L),<1) > φ(L) for any L ∈ (0, 1).
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of the initial security from increasing.

Proposition 1 also indicates that if the profitability of AI at success is not sufficiently small

relative to L ( 1
σ`
> R

I
≥ max(φ(L),<2)), inefficient maturity mismatch (inefficient early

withdrawal) arises. Despite the nonrecourse security, the FI` provides liquidity support and

continues to invest in AI . Intuitively, as the FI does not undertake information acquisition

activity in the region, it does not know its own quality. However, the uninformed FI can

raise sufficient funds for the devalued AI at s = b. Thus, there is inefficient liquidity support

and overinvestment for q = ` when s = b. Conversely, if the profitability of AI at success is

not sufficiently small relative to L (max(φ(L),<2) > R
I
> 1

σm
), the optimal initial security

provides a liquidity threat that not only leads to efficient liquidity support and investment

decision by the FI but also enhances information acquisition by the FI.

According to Calomiris and Kahn (1991), Flannery (1994), and Diamond and Rajan

(2001), the mismatch in the maturity structure or the possibility of the early withdrawal

of lenders serves as a commitment device to discipline commercial banks. These studies

show that demand deposits are a way of reassuring investors in a commercial bank that

their investments will not be too badly expropriated by bank management. Conversely,

Stein (2005) finds that mutual and hedge funds allow early withdrawals (equivalent to open

ending) in an attempt to signal the skill of the funds’ managers. However, because both

high-quality and low-quality managers are forced to open end, the resulting equilibrium is

pooling, where all funds choose an open-end form and an inefficient investment strategy.

Brunnermeier and Oehmke (2010) also derive the optimality of excessively short-term fi-

nancing under the possibility of early withdrawal of lenders, although short-term financing

forces lenders to be exposed to unnecessary liquidation.

In contrast to the existing literature, in our model, whether the maturity mismatch causes

inefficiency depends on the parameter values of R
I
and L. If the profitability of AI at success

is not sufficiently small relative to L ( 1
σ`
> R

I
≥ max(φ(L),<2)), the maturity mismatch

causes inefficient liquidity support and overinvestment because the equilibrium is pooling, as

indicated in Stein (2005). Otherwise, the maturity mismatch brings about efficient liquidity

support and investment because it serves as a commitment device to discipline the FI, as

suggested in Calomiris and Kahn (1991), Flannery (1994), and Diamond and Rajan (2001).

Although the Brunnermeier and Oehmke (2010) model causes excessive liquidation, this

result depends on their rat-race framework in which, given that all other lenders are only

providing short-term financing, it is not individually rational for the financial institution to

27



move an individual creditor to a longer maturity. Further, in their setting, there exists no

ex post capital market after the withdrawal of creditors.

4.2. Optimality of the initial security backed by the cash flow of AI alone.–

We initially assumed that the FI could pledge only the cash flow of AI at time 0. To

justify this, we assumed that prior to time 0, the FI issued the old security backed by the

cash flow of AO to finance the FI’s other urgent or opaque liquidity needs. In its place, the

FI may repurchase the existing old security issued prior to time 0 and sell at time 0 an initial

security backed by the cash flows of AI and AO to raise both I and the repurchase payment.

This is equivalent to assuming that the FI can pledge the cash flows of both AI and AO at

time 0. This type of initial security issued at time 0 and backed by the cash flows of AI and

AO can be regarded as an alternative to the initial security issued at time 0 and backed by

the cash flow of AI alone, which has been considered in the previous discussions.

If the FI issues this initial security at time 0 backed by the cash flows of AI and AO to

raise both I and the repurchase payment, we can assume that the initial security matures

at time 1 and that the FI decides whether to roll it over at time 1. As the FI’s other urgent

or opaque liquidity needs disappear at time 1, the FI only needs to finance the amount I

when rolling over the initial security at time 1. The initial security introduced above is then

essentially equivalent to the security offered by the FI to the UI at the beginning of time 0

so that the UI provides I and requires a repayment X at time 2 if AI and AO yield a cash

flow R + Z, a repayment X 0 at time 2 if AI and AO yield Z, and no repayment at time 2 if

AI and AO yield no cash flow. Note that R + Z ≥ X ≥ 0 and Z ≥ X 0 ≥ 0.
Under this type of initial security, suppose that the UI withdraws and the FI liquidates AI

at time 1. However, the liquidation value of AI , L, cannot cover the redemption amount, I,

under Assumption 1. Thus, when the FI pledges the cash flows of both AI and AO, it must

liquidate AO to repay the remaining amount I − L unless it raises new funds in the ex post
capital market. In fact, the liquidation value of AO equals 0, whereas the expected cash flow

of AO at s = b is larger than I − L even for q = ` if [σ` + (1 − σ`)σZ ]Z > I − L. This
last condition is satisfied under Assumption 4. Thus, when the FI liquidates AI at time 1,

it prefers to avoid the liquidation of AO because it cannot receive anything if it liquidates

AO. Hence, the FI must issue at time 1 a new security backed by the cash flow of AO and

finance I − L to avoid the liquidation of AO.
Given these modifications, repeating the arguments for s= g at the beginning of Section 3.1
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and the arguments in Sections 3.1.1 and 3.1.2, we show the following lemma that corresponds

to Lemmas 1 and 2.

Lemma 7: Suppose that the FI undertakes information acquisition activity. Under the

initial security backed by the cash flows of both AI and AO, the optimal strategies of the FI

at time 1 are characterized as follows.

(i) If the UI continues to invest in AI at time 1, the FI continues to invest in AI for any s.

(ii) Suppose that the UI withdraws at time 1.

(a) Suppose that s = g. Then, the FI continues to invest in AI .

(b) Suppose that s = b. (α) If 1
σ`
> R

I
≥ <1L, both the FIm and the FI ` continue to invest

in AI . The repayment level from the FI to outside investors in the capital market is Y P

= I
σb+(1−σb)σZ . (β) If <1L >

R
I
≥ 1

σm
, the FIm continues to invest in AI while the FI `

liquidates AI. The repayment level from the FI ` to outside investors in the capital market

is Y ` = I−L
σ`+(1−σ`)σZ . The repayment level from the FIm to outside investors in the capital

market is Y mR+Z = Y
m
Z = Y m: Y m = σ`R+I−L

σ`+(1−σ`)σZ if <1L >
R
I
≥ max (<2 − 1−L

σ`
, 1
σm
); and

Y m = I
σm+(1−σm)σZ if max (<2 −

1−L
σ`
, 1
σm
) > R

I
> 1

σm
.

Because 1 > L, the possibility of both the FIm and the FI` raising new funds and con-

tinuing to invest in AI after the withdrawal of the UI at s = b is more likely to occur if the

initial security is backed by the cash flows of both AI and AO instead of AI alone. Intuitively,

even if the FI liquidates AI at time 1 when the initial security is backed by both AI and

AO, it does not prefer to liquidate AO to repay the insufficient amount I − L. Thus, the FI
issues the new security backed by AO and finances I − L. As the probability of AO yielding
R is larger for q = m than for q = `, this new security issue further strengthens the FI`’s

imitating incentive, thus making it more expensive for the FIm to separate itself from the

FI`. As a result, under the recourse security, the pooling equilibrium strategy arises in a

broader region after the withdrawal of the UI because it is more costly for the FI` to liquidate

AI. Backing the security with other assets of the FI is thus more likely to induce the FI` to

continue investing in AI at time 1 after the UI withdraws. As shown below, this implies that

the recourse security would raise the FI’s borrowing costs when the FI can choose whether

to acquire information.

Next, applying the arguments for s = g at the beginning of Section 3.1 and the arguments

in Section 3.1.3, and using the results of Lemma 7, we show the following lemma that

corresponds to Lemma 3.
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Lemma 8: Suppose that the FI undertakes information acquisition activity. Under the

initial security backed by the cash flows of both AI and AO, the optimal strategies of the UI

at time 1 are presented as follows.

(i) Suppose that s = g. Then, the UI always continues.

(ii) Suppose that s = b. Then, the UI continues if σbX + (1 − σb)X
0 ≥ I. Otherwise, the

UI withdraws.

Note that the UI receives I even at the liquidation of AI because the FI must avoid the

liquidation of AO in this security. Hence, the UI can always obtain I when withdrawing.

Now, using arguments similar to those of Lemma 4, the configuration of the IFE under the

initial security backed by both AI and AO is given by a form similar to the configuration of

the IFEP, IFEC, and IFES indicated by Lemma 4. In fact, for the region corresponding to

the IFEC of Lemma 4, recourse financing may be optimal. Intuitively, if the initial security

is backed by the cash flows of both AI and AO instead of AI alone, it reduces the bankruptcy

possibility at time 2 if the UI is induced to continue investing when s = b (as in the region

corresponding to the IFEC of Lemma 4). Such a reduction of the bankruptcy possibility at

time 2 relaxes the incentive compatibility constraint to ensure that the UI continues, thereby

leading to a reduction of the FI’s initial promised repayment when s = g and lowering its

borrowing costs. Thus, if the FI need not raise additional funds in the capital market at

s = b because the UI continues investing at s = b, the decline in the FI’s borrowing costs

may make recourse financing advantageous.

To exclude the above possibility, we again assume that the FI can choose whether to

undertake information acquisition activity. First, repeating arguments similar to those used

to derive Lemma 5, we have the following lemma:

Lemma 9: The optimal value of ΠF0 under uninformed finance when an initial security is

backed by the cash flows of both AI and AO is equal to bΠF0 if R
I
≥ L

σb
; otherwise, it is lower

than or equal to bΠF0, where bΠF0 ≡ [p + (1 − p)σb]R + ωZ − I.
Intuitively, under uninformed finance in this case, the FI continues after the withdrawal

of the UI if and only if σbR − I ≥ −(I −L); that is, σbR ≥ L. This is because the FI must
raise the amount I −L to avoid the liquidation of AO when liquidating AI . Then, repeating
arguments similar to those used in Lemma 5, we obtain the result of this lemma.

Using Lemmas 7—9, we obtain the following proposition.

Proposition 2: If the FI can choose whether to undertake information acquisition activity,
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the initial security backed by the cash flow of AI alone dominates the initial security backed

by the cash flows of both AI and AO.

Intuitively, the initial security backed by both AI and AO makes it more difficult for the

FI` to liquidate AI at s = b. The reason is that if the FI liquidates AI , it must issue the

new security backed by AO and finance I − L to avoid the liquidation of AO. However, this
strengthens the FI`’s imitating incentive, which forces the FIm to issue the more underpriced

security to separate itself from the FI`. On the other hand, because the initial security

backed by AI alone makes AI remote from AO, it enables the FI to avoid the liquidation of

AO without the issue of any new security when liquidating AI . This makes liquidation of AI

more attractive for the FI`, which knows that AI is bad. In fact, the initial security backed

by both AI and AO can reduce the bankruptcy possibility at time 2 relative to the initial

security backed by AI alone if the UI continues investment at s = b. This effect reduces

the expected initial promised repayment of the FI by relaxing the incentive compatibility

constraint that ensures that the UI continues. However, the latter effect does not exist as

long as the UI withdraws at s = b. The reason is that the individual rationality constraint

to ensure that the UI can recover its funding amount I must then be binding, instead of

the incentive compatibility constraint to ensure that the UI withdraws. Then, the expected

initial promised repayment of the FI cannot be reduced because it must be set equal to I.

Hence, if we compare the benefits of the recourse security with those of the nonrecourse

security, the benefits of reducing the bankruptcy possibility under the recourse security are

dominated by those of relaxing the FI`’s imitating incentives under the nonrecourse security.

Thus, the commitment provided by recourse financing is harmful because it affords the FI`

more incentives to continue investing in AI at s = b and causes the inefficient allocation

of investment, although it may reduce the possibility of bankruptcy at time 2. Thus, the

FI’s ex ante expected payoff will be lower under the recourse security. By establishing

bankruptcy remoteness, the nonrecourse security allows the FI to commit to more efficient

decisions on whether to liquidate or continue AI . As a result, even though the FI may

finance additional funds and provide liquidity support to AI afterward, the nonrecourse

security becomes optimal in the first place.

This logic is similar to that of Inderst and Mueller (2010), who examine the optimal CEO

compensation and replacement policy when the CEO privately observes an interim signal

about the likely firm value under his continued leadership and when the CEO turnover must
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be incentive compatible from the CEO’s perspective. The CEO’s desire to continue to hold

his position, together with his private information at the interim stage, creates a wedge

between efficient CEO replacement and actual CEO turnover. Steep incentive and severance

pay can mitigate such CEO entrenchment because it makes continuation unattractive for

“bad” CEOs. The nonrecourse security in our model plays a role similar to that of the steep

incentive and severance pay in Inderst and Mueller, in the sense that it makes continuation

of investment in AI unattractive for the FI`.

Proposition 2 reveals a novel aspect of the security design of the financial institution:

namely, the institution should initially issue a security backed by a particular investment

asset instead of its total assets to resolve the overinvestment problem. This novel aspect

is crucially dependent on three features: (i) the possibility of maturity mismatch (or early

withdrawal), (ii) information asymmetry, and (iii) the endogenous choice of information

acquisition. Note that the FI prefers recourse financing unless the first two features exist.

The reason is that recourse financing then does not strengthen the FI`’s imitating incentive,

but reduces the FI’s borrowing costs through a reduction in the bankruptcy possibility at

time 2. Further, if the FI commits to acquiring information, nonrecourse financing may not

be optimal for R
I
∈ [ψ(L), <1), when the UI is induced to continue investment in AI at s =

b (see Lemma 4(ii)). This is because, in this case, the FI need not raise additional funds at

s = b. Again, recourse financing does not tighten the FI`’s imitating incentive, but reduces

the FI’s borrowing costs through a decrease in the bankruptcy possibility at time 2.

Benveniste and Berger (1987) and Carlstrom and Samolyk (1995) indicate that either the

exogenous recourse or the capital constraint on the original bank is a key factor in explaining

the role of asset-backed lending. On the other hand, the logic of Proposition 2 makes it clear

that the optimality of nonrecourse financing of securitization is endogenously derived and is

interrelated with not only the maturity structure of the FI and the information asymmetry,

but also the FI’s information acquisition activity.

Ayotte and Gaon (2011) discuss securitization by focusing on the special protection pro-

vided by ‘bankruptcy remoteness’ to distinguish asset-backed securities (ABS) from secured

or unsecured debt. They suggest that in bankruptcy, the debtor-in-possession (DIP) lender

can transfer sufficient wealth from existing unsecured creditors through dilution of their

claims by issuing senior claims. Ayotte and Gaon show that ABS protect ABS investors

from the DIP lender in bankruptcy and can prevent inefficient continuation of the firm.

However, they do not allow ABS investors to withdraw early, nor do they examine the ad-
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verse selection issues. Proposition 2 highlights the role of the nonrecourse security that

mitigates the adverse selection incentive for the FI` in the ex post capital market when the

UI withdraws early.26

DeMarzo and Duffie (1999) and DeMarzo (2005) argue that the process of pooling and

tranching in securitization alleviates the underpricing involved in the asset sale, because

it enhances risk diversification and prevents informed intermediaries from exploiting unin-

formed investors under the ex post signaling model. In fact, these papers do not consider

the early withdrawal of uninformed investors, nor do they consider the additional financ-

ing possibility of informed intermediaries. Alternatively, Proposition 2 suggests that the

nonrecourse property of securitization mitigates the underpricing involved in the additional

financing by the FI after the UI withdraws.

Gorton and Souleles (2006) discuss the possibility of liquidity support by a sponsor for

its SPV in securitization in certain states of the world, even though it is not legally bound

to do so. They suggest that the sponsor colludes with investors in the SPV by agreeing to

the implicit state-contingent subsidization in a repeated game context. In this paper, the FI

provides liquidity support for AI , even in a static context if it is ex post optimal for the FI

to do so when the UI withdraws at time 1. However, if the profitability of AI at success is

not sufficiently small relative to L ( 1
σ`
> R

I
≥ max(φ(L),<2)), inefficient liquidity support

and overinvestment occur, even in the case of the nonrecourse security.

Combining Propositions 1 and 2, we establish the following corollary.

Corollary to Propositions 1 and 2: If the FI can choose whether to undertake infor-

mation acquisition activity, the nonrecourse financing of securitization dominates traditional

bank loans with deposit claims backed by the bank’s total assets. However, inefficient liquidity

support and overinvestment arise despite the nonrecourse property of the security, as long as

the profitability of AI at success is not sufficiently small relative to L.

To summarize, the nonrecourse financing of securitization may be used even though not

only regulatory and ratings arbitrage, but also the low-interest-rate environment are alle-

26Proposition 2 also provides a different aspect of securitization from Bolton and Freixas (2000). They

assume the priority of bank debt over bonds and suggest that the priority structure invokes excessive liqui-

dation because the bank’s priority can be maintained only if the firm is liquidated. Securitization in their

model arises to remove the undesirable effects of priority structure by making the bank’s claim junior to

the claims of asset-backed security holders. By contrast, in our model, the priority structure creates the

overinvestment problem, as in Ayotte and Gaon (2011). Proposition 2 suggests that under adverse selection

problems, asset-backed securities with a nonrecourse property are more likely to motivate the institution to

liquidate its deteriorated assets, and are thus more likely to alleviate the overinvestment problem.
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viated. This result also holds notwithstanding that the FI may provide liquidity support

afterward.

4.3. Comparative statics.–

We conduct a comparative static analysis. The variables in which we are interested are

the profitability of AI at success,
R
I
, the ratio of the liquidation value of AI to the funding

amount of the UI, L, the asset quality of AI , (σm,σ`), and the asset quality of AO, σZ .

Proposition 3: If the FI can choose whether to undertake information acquisition activity,

the UFE–where the FI undertakes no information acquisition, provides inefficient liquidity

support, and overinvests–is more likely to occur, the larger is R
I
, the smaller is L, the larger

is σm, the larger is σ`, or the smaller is σZ.

Proposition 3 suggests that the UFE is more likely to occur when the profitability of AI

at success increases or when the liquidation value of AI decreases relative to the funds raised

from the UI or when the asset quality of AI (or AO) is expected to be higher (lower).

The intuition for this proposition is as follows. The results of R
I
and L depend on the FI`

continuing (or liquidating) at s = b in the UFE (or the IFES) in Lemma 6. This implies

that an increase in R increases the ex ante expected payoff of the FI, Π∗F0, in the UFE

more than Π∗F0 in the IFES. Hence, the FI is less likely to acquire information, the larger

is R
I
. By contrast, when L is smaller, Π∗F0 in the IFES decreases while Π

∗
F0 in the UFE is

unchanged. Hence, the FI is less likely to acquire information, as L is smaller. A rise in σm

or σ` increases Π
∗
F0 in the UFE more than Π∗F0 in the IFES. This is because a rise in σm

or σ` reduces the FI’s repayment to outside ex post capital market investors in the UFE by

making it easier for the FI to assure outside investors of their reservation payoff, whereas

a rise in σ` increases the FIm’s repayment in the IFES by making it more difficult for the

FIm to separate itself from the FI`. On the other hand, an increase in σZ decreases the FI’s

repayment to outside investors in the IFES more than that in the UFE by mitigating the

adverse selection problem. This reduces the likelihood of the UFE.

5. Empirical Implications

5.1. Securitized and structured finance.–

Asset-backed securities are one of the most significant financial innovations of recent

decades. In particular, a growing number of commercial and investment banks issue struc-
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tured finance products such as MBSs and CDOs into which mortgages and other loans are

pooled. The portfolios of the products are usually transferred to off-balance-sheet vehicles.

In these products, the securitized claims on the pool’s payments are carved into various

‘tranches’ or classes of risk, for example, senior, mezzanine and equity tranches. The major-

ity of buyers of senior tranches are institutional investors, while parts of the lower tranches

are sold to high-yield-seeking investors, such as hedge funds. Recently, in order to sell some

parts of the senior tranches, banks have acted as sponsors of ABCP programs by letting

off-balance-sheet vehicles–ABCP conduits and SIVs–issue short-term maturity paper in

the form of ABCP.27

As ABCP conduits invest in illiquid long-maturity assets and issue short-maturity paper,

sponsoring banks typically provide credit enhancement and/or liquidity support to their con-

duits. Indeed, the majority of ABCP conduits have liquidity lines committed by sponsoring

banks for the full amount of outstanding CP. Hence, if the ABCP conduits face liquidity

needs such that their issued CP is to be forcibly repurchased, they will need to be funded

by the sponsoring banks. SIVs are similar to ABCP conduits. The difference is that SIVs

operate with much less liquidity support and have substantially more stringent rules of op-

eration.28 In fact, sponsoring banks are often forced to support the SIV financially even

though they are legally separate entities. As a result, ABCP investors are in most cases

insulated from market value risk. If an ABCP conduit or SIV cannot roll over its maturing

paper, and liquidity drawdowns are thus made to the full extent of the CP outstanding, the

sponsoring bank is forced to provide funding support and becomes the sole funding provider.

Because a large number of agents are involved in ABCP programs and are unknown to the

sponsoring banks, the renegotiation of ABCP programs is practically impossible.29

In our model, the sponsoring bank, ABCP investors, and MBSs and CDOs or their original

assets are interpreted as the FI, the UI, and the investment asset AI , respectively. Off-

balance-sheet vehicles and their financing strategy of borrowing using short-term paper are

also viewed as the nonrecourse and short-maturity properties of the initial security issued by

27ABCP conduits are bankruptcy-remote SPVs established by sponsoring banks and are funded through

the issuance of ABCP to finance the purchase of MBSs and CDOs. An SPV is a legal entity created by a

sponsor or originator by transferring assets to the SPV. Its sole purpose is to collect principal and interest

cash flows from the underlying assets and pass them to the owners of the various tranches.
28SIVs also issue medium-term notes and capital notes, which are generally ranked lowest in order of

repayment and have a longer maturity. Sponsoring banks usually invest in capital notes.
29For details of the issues discussed here, see FitchRatings (September 12, 2007), BearStearns (August 9,

2007), IMF (October, 2007), IMF (December, 2007), Gorton (2008), Brunnermeier (2009), and Coval, Jurek

and Stafford (2009).
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the FI. In addition, liquidity support to conduits or SIVs by sponsoring banks is regarded

as the liquidity support of the FI. The inability of the market to identify and quantify

precisely what losses lie in the MBSs and CDOs or their original assets corresponds to

the information structure of the participating agents in our model. Because the potential

profitability of the original assets such as subprime (or alternative-A) mortgages and credit

card, auto, and buyout loans is sufficiently high, Proposition 3 (or Lemma 6) suggests that the

equilibrium is located in the UFE region in Figure 2. Hence, the inefficient liquidity support

and overinvestment problems can arise because sponsoring banks with deteriorated assets

are expected to continue to invest in MBSs and CDOs or the original assets. This tendency

is strengthened further if the liquidation value of MBSs and CDOs decreases as a result of

the decline in the original assets. Moreover, this kind of equilibrium is more likely to occur,

as the repayment likelihood of original asset loan borrowers is ex ante expected to be higher.

In recent years, two institutional and structural features have also played an important role

in the likelihood of the occurrence of this kind equilibrium. One is regulatory and ratings

arbitrage, whereby sponsoring banks took most of their risky loans off their balance sheets

so as not to hold costly capital against them.30 The other is a low-interest-rate environment,

in which securitized and structured products enjoyed popularity among portfolio managers

because many were ‘searching for yield’. These features further strengthened the occurrence

of equilibrium with inefficient liquidity support and overinvestment.

5.2. Securitization by federal mortgage agencies.–

The federal mortgage agencies (Fannie Mae and Freddie Mac) issue MBSs (such as the

Gold Participate Certificate by Freddie Mac). They also act as sponsors for structured

mortgage products (such as the real estate mortgage investment conduits program by Fred-

die Mac), referred to as collateralized mortgage obligations (CMOs), in which cash flows

from the underlying assets are allocated to tranches of varying maturities, coupons, and

payment priorities. Because CMOs are backed by MBSs guaranteed by these agencies, the

securitization involves a liquidity problem similar to that in Section 5.1.

6. Extensions and Robustness Checks

6.1. Optimality of the short-term debt.–

30For the effect of existing regulations on the quality of mortgage loan originations, see Keys et al. (2009).
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If the FI can choose to offer an initial security that prevents the UI from withdrawing

at time 1, the FI need not consider the incentive compatibility constraint for the UI with

respect to whether the UI withdraws its funds at time 1. Even in this case, we can show

that this initial security is dominated by a security that allows the UI to withdraw at time

1. The reason is that if the UI cannot withdraw until time 2, Lemma 1 suggests that the FI

always chooses to continue. Thus, we can show that the ex ante expected payoff of the FI

is equal to bΠF0 given in Lemma 5 or 9, regardless of whether the initial security is backed
by the cash flow of AI alone or of both AI and AO (see the Appendix).

31 Hence, all of the

propositions and lemmas in Sections 3 and 4 continue to hold.

6.2. Optimality of the new security backed by both AI and AO at time 1.–

Even if the FI issues a new security backed by AO alone at time 1, it follows from Assump-

tion 4 that the possibility of bankruptcy of the FIm or FI` in the new security is exactly

the same as in the new security issued at time 1 and backed by AI and AO. In addition,

in both new securities, the bankruptcy case is equivalent to the case where no cash flow

is generated. Hence, we can exclude the new security backed by AO alone without loss of

generality. However, the FI may issue a new security backed by AI alone at time 1, just like

the initial security. This type of new security increases the likelihood of default of the FI`

more than that of the FIm. In the pooling case, this change increases the expected payoff

of the FI` but decreases that of the FIm. In the separating case, this change tightens the

incentive compatibility constraint for the FI` and reduces the expected payoff of the FIm,

although it does not affect the expected payoff of the FI`.32 These arguments show that out-

side investors with D1 beliefs consider the FI to be the FI` if the FI offers the new security

backed by AI alone at time 1 in the pooling equilibrium, and that the FIm has no incentive

to offer the new security backed by AI alone at time 1 in the separating equilibrium.

31In fact, if 1
σ`
> R

I
≥ max(φ(L),<2), the expected payoff of the FI at time 0 under the long-term debt is

the same as that under the short-term debt. However, there are several reasons why the short-term debt has

additional advantages. First, the UI prefers the short-term maturity. For example, if the UI is faced with

liquidity needs when s = b, it may have to reserve funds at time 1. Then, if the UI can satisfy its liquidity

needs using the withdrawn funds, the FI can reduce compensation for the UI’s cash hoarding costs by issuing

short-term debt. Second, in this range of R
I
, the face value of the long-term debt must be larger than that of

the short-term debt because the UI can always recover the investment funds under the short-term debt. If

R is not large enough to cover the face value of the long-term debt, this would be an additional advantage of

the short-term security. Finally, several studies suggest the role of the short-term debt in reassuring investors

in a bank that they will not be too badly expropriated by bank managers (see Calomiris and Kahn (1991),

Flannery (1994), and Diamond and Rajan (2001)).
32Note that the effect on the FI’s borrowing cost for the new security is different from that for the initial

security because the FI knows its own AI .
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6.3. Nonoptimality of the FI repurchasing the initial security at time 1.–

Without loss of generality, we focus on the case of s = b. We also restrict ourselves to the

case of informed finance because under Assumption 2, the FI has no incentive to buy back

the security at time 1 in order to liquidate AI if it has no private information on q.

If at time 1 the FI repurchases the initial security backed by AI , the UI must at least be

assured of the interim expected payoff attained when withdrawing. Otherwise, the UI rejects

the repurchase offer and withdraws or continues. Hence, given the FI’s strategy derived in

Lemma 4, the minimum payment to be paid to the UI for repurchase is: (i) if 1
σ`
> R

I
≥

ψ(L), it is I; and (ii) if ψ(L) > R
I
> 1

σm
, it is δI + (1 − δ)L. In both cases, the FI` has no

incentive to repurchase the security at time 1 because I > δI + (1 − δ)L > L > σ`R. With

the expectation that only the FIm will repurchase the security, the UI requires at least I.

Whichever case occurs, neither the FIm nor the FI` has any positive incentive to repurchase

the security.

7. Conclusion

This paper explored the role of nonrecourse financing of securitization by an FI. In equi-

librium, even though the FI may provide liquidity support afterward, a security with a

nonrecourse property backed by a particular FI asset is ex ante preferred to any security

backed by all of its assets (such as deposit claims), because the nonrecourse security makes

liquidation of the original asset more attractive for an FI that knows that the original assets

are bad. Furthermore, it is also optimal for the FI to offer a security that induces the early

withdrawal of uninformed investors when uninformed investors learn that future economic

conditions will be bad. However, uninformed finance, inefficient liquidity support, and over-

investment are more likely to arise if the profitability of the asset at the high revenue state

increases or if the liquidation value of the asset decreases relative to the amount funded

by outside initial uninformed investors or if the likelihood of success with the asset invest-

ment increases. The theoretical results have empirical implications for recent problems with

securitized and structured finance in the United States and Europe.

However, the application of our model is not necessarily restricted to the issue of securi-

tization. For example, in the Japanese main bank system following the end of the 1990s,

non-main banks withdrew their funds early when they suspected that the borrowing firms

were likely to become financially distressed. Whether the withdrawal of non-main banks can

provide a threat that disciplines the misbehavior of the main bank is an empirical issue.
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Appendix

Proof of Lemma 2: We first examine the pooling strategy of the FI.33

Lemma A1: Under the pooling strategy, both the FIm and the FI ` prefer to continue to

invest in AI if and only if
R
I
≥ <1. The repayment level, Y P , is Y P = I

σb+(1−σb)σZ .

Proof of Lemma A1: In this case, both the FIm and the FI` use the same strategy.

We subsequently solve for the equilibrium Y P by assuming that Z ≥ Y P holds, and then we
verify that the equilibrium value of Y P really satisfies Z ≥ Y P . Suppose that both the FIm
and the FI` continue. If Z ≥ Y P , the interim expected payoff obtained by the FI with q (or
by outside investors), ΠPF2(q) (or Π

P
O2), under the pooling strategy is Π

P
F2(q) = σq(R − Y P

+ Z) + (1 − σq)σZ(Z − Y P ) (or ΠPO2 =
P
q

δq[σq + (1 − σq)σZ ]Y
P ), where δm = δ and δ`

= 1 − δ. Note that under the pooling strategy, outside investors expect that the repayment

probability is
P
q

δq[σq + (1− σq)σZ ]. It follows from the participation constraint for outside

investors that Y P is determined by Y P = IP
q

δq[σq+(1−σq)σZ ]
= I

σb+(1−σb)σZ . Under Assumption

4, this Y P satisfies the condition Z ≥ Y P . Substituting Y P into ΠPF2(q) yields

ΠPF2(q) = σqR+ [σq + (1− σq)σZ ]Z − σq + (1− σq)σZ

σb + (1− σb)σZ
I. (A1)

Now, suppose that the FI with q liquidates AI . Because the FI’s claim is junior, we have

ΠPF2(q) = [σq + (1− σq)σZ ]Z. (A2)

Comparing (A1) and (A2), we show that the FI with q prefers to continue as long as R ≥
σq+(1−σq)σZ

σq [σb+(1−σb)σZ ]I ≡ ψ(σq). Because σm > σ`, we obtain ψ(σ`) > ψ(σm). As both the FIm and

the FI` make the same choice under the pooling strategy, they prefer to continue after the

withdrawal of the UI under the pooling strategy if and only if R
I
≥ <1. k

Because the situation where both the FIm and the FI` prefer to liquidate AI after the

UI withdraws is the residual case in which neither the pooling strategy with continuation

nor the separating strategy is chosen, we proceed to discuss the separating strategy. Indeed,

outside investors demand at least I
σ`+(1−σ`)σZ of the FI` if they know that the FI is the FI`.

However, the expected payoff of the FI` is then larger in liquidation than in continuation

33We assume that the FI chooses to continue if it has no preference between continuing and liquidating.
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because [σ` + (1 − σ`)σZ ]Z > σ`[R + Z − I
σ`+(1−σ`)σZ ] + (1 − σ`)σZ [Z − I

σ`+(1−σ`)σZ ] under

Assumption 1. This implies that if the separating strategy is possible, the FIm continues

while the FI` liquidates. Thus, outside investors can perfectly infer the innate value of their

debt claim from the decision by the FI to continue or liquidate under the separating strategy.

Now, we have the following lemma.

Lemma A2: Under the separating strategy, the FIm continues to invest in AI while

the FI ` liquidates AI. The repayment schedule is given by Y
m
R+Z = Y mZ = Y m, where Y m

= σ`R
σ`+(1−σ`)σZ (>

I
σm+(1−σm)σZ ) if

R
I
≥ <2; and Y m = I

σm+(1−σm)σZ if
R
I
< <2. No other

separating strategy is viable.

Proof of Lemma A2: We only need to prove the case where the FIm continues while the

FI` liquidates. We first show that Y mR+Z = Y
m
Z = Y m if Z ≥ Y m. Indeed, the most effective

security design for preventing the FI` from pretending to be the FIm is that Y mR+Z = Y
m
Z =

Y m, because it follows from the monotonicity assumption that the expected repayment of

the FI` is then largest if Z ≥ Y m. We will thus solve for the equilibrium Y m by assuming Z
≥ Y m, and we then verify that the equilibrium value of Y m satisfies Z ≥ Y m.
If Z ≥ Y m holds, the expected payoff obtained by the FIm (or by outside investors),

ΠSF2(m,Y
m) (or ΠSO2(Y

m)), is ΠSF2(m,Y
m) = σm(R − Y m + Z) + (1 − σm)σZ(Z − Y m)

(or ΠSO2(Y
m) = [σm + (1 − σm)σZ ]Y

m). Note that under the separating strategy, outside

investors expect that the repayment probability is σm + (1 − σm)σZ. On the other hand, if

the FI` mimics the strategy of the FIm, the expected payoff of the FI` is

ΠSF2(`, Y
m) = σ`(R− Y m + Z) + (1− σ`)σZ(Z − Y m). (A3)

The self-selection constraint of the FI` and the participation constraint of the outside in-

vestors are now characterized by

[σ` + (1− σ`)σZ ]Z ≥ σ`(R− Y m + Z) + (1− σ`)σZ(Z − Y m), (A4)

[σm + (1− σm)σZ ]Y
m ≥ I. (A5)

Note that the FI` obtains [σ` + (1− σ`)σZ ]Z if it does not mimic the FIm; that is, it liqui-

datesAI . Solving (A4) and (A5) with respect to Y
m yields Y m ≥max

h
σ`R

σ`+(1−σ`)σZ ,
I

σm+(1−σm)σZ

i
.

If Z ≥ Y m, then ΠSF2(m,Y
m) is maximized if the FIm offers the following security: Y m =

σ`R

σ`+(1−σ`)σZ if
R
I
≥ <2, and Y m = I

σm+(1−σm)σZ if
R
I
< <2. Note that the security satisfies Z
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≥ Y m under Assumption 4. Substituting Y m into ΠSF2(m,Y m), we obtain

ΠSF2(m) = σmR+ [σm + (1− σm)σZ ]Z − σm + (1− σm)σZ

σ` + (1− σ`)σZ
σ`R if

R

I
≥ <2, (A6)

ΠSF2(m) = σmR+ [σm + (1− σm)σZ ]Z − I if
R

I
< <2. (A7)

The remaining problem is to show that the separating equilibrium is possible; that is,

the FIm prefers continuing rather than liquidating. Indeed, it follows from Assumption 1

and σm > σ` that Π
S
F2(m) ≥ [σm + (1 − σm)σZ ]Z, regardless of whether

R
I
≥ <2 or R

I
<

<2. Because the expected payoff obtained by the FIm in liquidation is equal to [σm + (1 −
σm)σZ ]Z, the FIm prefers continuing rather than liquidating. k

Now, let us note that <1 > <2 because of σm > σb. It follows from the proofs of Lemmas

A1 and A2 that the expected payoff of the FI with q under the optimal pooling strategy,

ΠP∗F2(q), is given by (A1) if and only if
R
I
≥ <1, while the expected payoff of the FIm under

the optimal separating strategy, ΠS∗F2(m), is given by (A6) or (A7) according to
R
I
≥ <2 or

R
I
< <2. Furthermore, the expected payoff of the FI` under the optimal separating strategy,

ΠS∗F2(`), equals [σ` + (1 − σ`)σZ ]Z.

Suppose that R
I
≥ <1. Then, it follows from (A1) and (A6) with the range RI that ΠP∗F2(m)

≥ ΠS∗F2(m) and ΠP∗F2(`) > ΠS∗F2(`). Thus, in this range
R
I
, the optimal pooling strategy given

in Lemma A1 dominates the optimal separating strategy given in Lemma A2.

If <1 > R
I
, the pooling strategy given in Lemma A1 is infeasible. Hence, we must compare

the optimal separating strategy given in Lemma A2 and the pooling strategy in which both

the FIm and the FI` prefer to liquidate after the UI withdraws. Suppose that the liquidation

strategy is switched to the continuation strategy with Y m = σ`R

σ`+(1−σ`)σZ when
R
I
≥ <2 or

with Y m = I
σm+(1−σm)σZ when

R
I
< <2. Then, the expected payoff of the FIm increases,

because it follows from (A6) and (A7) with σm > σ` and σmR > I that Π
S∗
F2(m) > [σm + (1

− σm)σZ ]Z, while the expected payoff of the FI` does not increase, because it follows from

(A3) and the range of R
I
that [σ` + (1 − σ`)σZ ]Z ≥ ΠSF2(`, Y

m). Now, the FIm has more

incentive to switch to the continuation strategy defined above than does the FI`. Hence,

if the FI chooses the continuation strategy with Y m = σ`R

σ`+(1−σ`)σZ or Y
m = I

σm+(1−σm)σZ
according to R

I
≥ <2 or R

I
< <2, outside investors with D1 beliefs think that the FI is the

FIm. The pooling strategy with liquidation is thus pruned from the game. ¥

Proof of Lemma 3: (i) If R
I
≥ <1, Lemma 2 implies that both the FIm and the FI`
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continue after the withdrawal of the UI. If the UI withdraws, it always receives repayment

I. If the UI continues, the interim expected payoff is σbX because the FI continues while

the UI does not know the type of FI. Thus, the UI continues if and only if σbX ≥ I.
(ii) If <1 > R

I
, Lemma 2 shows that after the withdrawal of the UI, the FIm continues,

whereas the FI` liquidates. Then, if the UI withdraws, it receives repayment I when the FI

is the FIm, while it receives repayment L under the assumed priority rule when the FI is the

FI` . Thus, the UI continues if and only if σbX ≥ δI + (1 − δ)L. ¥

Proof of Lemma 4: To prove Lemma 4, we prove the following lemma.

Lemma A3: (i) Suppose that 1
σ`
> R

I
≥ <1. The optimal strategies of the FI and the UI

are the same as those of Lemma 4(i). The ex ante expected payoff of the FI, Π∗F0, is Π
∗
F0 =bΠF0 ≡ [p + (1 − p)σb]R + ωZ − I, where ω ≡ p + (1 − p)[σb + (1 − σb)σZ ].

(ii) Suppose that <1 > R
I
≥ <2. (a) If <1 > R

I
≥ ψ(L), the optimal strategies of the FI

and the UI are the same as those of Lemma 4(ii); and Π∗F0 = [p + (1 − p)σb]R + ωZ −
δ[p+(1−p)σb]−σb

σb
I − (1−δ)[p+(1−p)σb]

σb
L − I. (b) If ψ(L) > R

I
≥ <2, the optimal strategies of the

FI and the UI are the same as those of Lemma 4(iii); and Π∗F0 = [p +
(1−p)δ(σm−σ`)σZ

σ`+(1−σ`)σZ ]R +

(1 − p)(1 − δ)L + ωZ + (1 − p)δI − I.
(iii) Suppose that <2 > R

I
> 1

σm
. The optimal strategies of the FI and the UI are the same

as those of Lemma 4(iii); and Π∗F0 = [p + (1 − p)δσm]R + (1 − p)(1 − δ)L + ωZ − I.
Proof of Lemma A3: (i) In this case, it follows from Lemma 3(i) that the UI continues

(or withdraws) at s = b if σbX ≥ I (σbX < I), and it follows from Lemma 1 (or 2(i)) that

both the FIm and the FI` continue after the UI decides to continue (or withdraw). Hence,

if we impose the condition σbX ≥ I, the security design problem of the FI at time 0 is

max
X

ΠF0 = max
X

[p+ (1− p)σb](R−X + Z) + (1− p)(1− σb)σZZ − (I − I), (P1)

subject to the following: (i) (IRU1), [p + (1 − p)σb]X ≥ I; (ii) (ICU1), σbX ≥ I; and (iii)
(NR), R ≥ X ≥ 0. The objective function represents the ex ante expected payoff of the FI.
As the FI continues until time 2 and need not finance I at time 1 in this case, it receives R

+ Z from the cash flows of AI and AO but repays X with probability p + (1 − p)σb, and it
receives Z from the cash flow of AO with probability (1 − p)(1 − σb)σZ . Note that the FI

does not know q at time 0, and must contribute I − I. (IRU1) is the individual rationality
constraint for the UI. (ICU1) ensures that the UI continues at s = b. (NR) is the nonrecourse

constraint of each agent’s claim.
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If we impose the condition σbX < I, then the FI’s problem is

max
X

ΠF0 = max
X

p(R−X + Z) + (1− p)
½
σb

∙
R+ Z − I

σb + (1− σb)σZ

¸

+(1− σb)σZ

∙
Z − I

σb + (1− σb)σZ

¸¾
− (I − I), (P2)

subject to the following: (i) (IRU2), pX+(1−p)I ≥ I; (ii) (ICU2), σbX < I; and (iii) (NR).

The objective function represents the ex ante expected payoff of the FI. As the FI continues

until time 2 but must finance I at time 1 when s = b, it receives R + Z from the cash flows

of AI and AO but repays X with probability p, receives R + Z from the cash flows of AI

and AO but repays
I

σb+(1−σb)σZ with probability (1 − p)σb, and receives Z from the cash flow
of AO but repays

I
σb+(1−σb)σZ with probability (1 − p)(1 − σb)σZ. Note that the repayment

to outside investors in this case is given by Lemma 2(i). (IRU2) is the individual rationality

constraint for the UI. (ICU2) ensures that the UI withdraws at s = b.

Now, comparing the optimal value of problem (P1) with that of problem (P2) yields the

optimal initial security in the case of 1
σ`
> R

I
≥ <1. We begin by analyzing problem (P1).

Rearranging (IRU1) and (ICU1), we have X ≥ I
p+(1−p)σb and X ≥

I
σb
. It follows from

I
p+(1−p)σb <

I
σb
that (ICU1) is more likely to bind than (IRU1). Because ΠF0 decreases in X,

ΠF0 is maximized by X
c, which is the minimal value of X that satisfies both (ICU1) and

(NR); that is, Xc = I
σb
. Note that Xc satisfies (NR) because R

I
≥ <1 (> 1

σb
under σm > σ`).

Substituting this Xc into ΠF0 of (P1), we obtain

ΠcF0 = [p+ (1− p)σb]R+ ωZ − p(1− σb)

σb
I − I. (A8)

We next deal with problem (P2). Rearranging (IRU2) and (ICU2), we have I ≤ X < I
σb
,

which is nonempty. Because ΠF0 decreases in X, ΠF0 is minimized by X
w; that is, Xw = I.

Note that Xw satisfies (NR). Substituting this Xw into ΠF0 of (P2), we have

ΠwF0 =
bΠF0 ≡ [p+ (1− p)σb]R+ ωZ − I. (A9)

Comparing (A8) and (A9), we obtain the optimal solution given in Lemma A3(i).

(ii) In this case, it follows from Lemma 3(ii) that the UI continues (or withdraws) at s =

b if σbX ≥ δI + (1 − δ)L (or σbX < δI + (1 − δ)L), and it follows from Lemma 1 (or
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2(ii)) that both the FIm and the FI` continue after the continuation of the UI (or the FIm

continues but the FI` liquidates after the withdrawal of the UI). If we impose the condition

that σbX ≥ δI + (1 − δ)L, the security design problem of the FI at time 0 is characterized

by

max
X

ΠF0 given by (P1), (P3)

subject to the following: (i) (IRU1); (ii) (ICU3), σbX ≥ δI + (1− δ)L; and (iii) (NR). Note

that (ICU3) ensures that the UI continues at s = b.

By contrast, if the condition that σbX < δI + (1 − δ)L is imposed, the FI’s problem is

max
X

ΠF0 = max
X

p(R−X + Z) + (1− p)
½
δσm

∙
R+ Z − σ`R

σ` + (1− σ`)σZ

¸

+δ(1− σm)σZ

∙
Z − σ`R

σ` + (1− σ`)σZ

¸
+ (1− δ)[σ` + (1− σ`)σZ ]Z

¾
− (I − I), (P4)

subject to the following: (i) (IRU4), pX + (1 − p)[δI + (1 − δ)L] ≥ I; (ii) (ICU4), σbX <

δI + (1 − δ)L; and (iii) (NR). The objective function represents the ex ante expected payoff

of the FI. As the FIm (FI`) continues (liquidates) after the UI withdraws, the FI receives R

+ Z from the cash flows of AI and AO but repays X with probability p, receives R + Z from

the cash flows of AI and AO but repays
σ`R

σ`+(1−σ`)σZ with probability (1 − p)δσm, receives
Z from the cash flow of AO but repays

σ`R

σ`+(1−σ`)σZ with probability (1 − p)δ(1 − σm)σZ ,

and only receives Z with probability (1 − p)(1 − δ)[σ` + (1 − σ`)σZ ] (see Table 1). Note

that the repayment to outside investors is given by Lemma 2(ii). (IRU4) is the individual

rationality constraint for the UI. (ICU4) ensures that the UI withdraws at s = b.

Comparing the optimal value of problem (P3) with problem (P4) leads to the optimal

security in the case of <1 > R
I
≥ <2. We begin by solving problem (P3). Using a procedure

similar to solving problem (P1), we have Xc =
δI+(1−δ)L

σb
and

ΠcF0 = [p+ (1− p)σb]R+ ωZ − p+ (1− p)σb
σb

[δI + (1− δ)L]− (I − I), (A10)

if only (ICU3) binds, that is, if

δ [p+ (1− p)σb]− σb

p+ (1− p)σb + (1− δ)L > 0. (A11)
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Note that Xc < R for R
I
≥ <2 (> 1

σb
under Assumption 5(ii)), and that (A11) is satisfied

under Assumption 5(i) because L > σ`
R
I
> σ`

σm
from Assumption 1. We next proceed to

solve problem (P4). Again, using a procedure similar to solving problem (P2), we obtain Xw

=
[1−(1−p)δ]I−(1−p)(1−δ)L

p
if only (IRU4) binds, that is, if (A11) is satisfied. Otherwise, there

is no solution. Note that Xw < R and (A11) are satisfied for R
I
> 1

σm
and L > σ`

σm
under

Assumptions 1 and 5(i). Substituting Xw into ΠFO of (P4), we see

ΠwF0 =

∙
p+

(1− p)δ(σm − σ`)σZ

σ` + (1− σ`)σZ

¸
R+ (1− p)(1− δ)L+ ωZ + (1− p)δI − I. (A12)

Comparing (A10) and (A12) yields the optimal solution when <1 > R
I
≥ <2: it is given by

Lemma A3(ii)(a) if <1 > R
I
≥ ψ(L), and is given by Lemma A3(ii)(b) if ψ(L) > R

I
≥ <2.

(iii) In this case, the decision criterion of the UI continuing or withdrawing is the same as

the case when <1 > R
I
≥ <2. Hence, we examine the two situations: σbX ≥ δI + (1 − δ)L

or σbX < δI + (1 − δ)L. In the former, the FI’s problem is the same as in (P3) because

the UI continues. In the latter, where the UI withdraws, the FI’s problem is represented by

max
X

ΠF0 = max
X

p(R−X + Z) + (1− p)
½
δσm

∙
R+ Z − I

σm + (1− σm)σZ

¸

+δ(1− σm)σZ

∙
Z − I

σm + (1− σm)σZ

¸
+ (1− δ)[σ` + (1− σ`)σZ ]Z

¾
− (I − I), (P5)

subject to (IRU4), (ICU4), and (NR). Note that the repayment to outside investors is given

by Lemma 2(iii).

Comparing the optimal value of problem (P3) with that of problem (P5) yields the optimal

initial security when <2 > R
I
> 1

σm
. We solve problem (P5) in a similar way to problem (P4).

Under Assumptions 1 and 5(i), we have Xw =
[1−(1−p)δ]I−(1−p)(1−δ)L

p
and

ΠwF0 = [p+ (1− p)δσm]R+ (1− p)(1− δ)L+ ωZ − I. (A13)

Comparing (A10) and (A13) gives the optimal solution of Lemma A3(iii) under Assumptions

1 and 5(i). k

The results of Lemma 4 are immediate from Lemma A3. ¥

Proof of Lemma 5: The UFE is obtained by the same backward induction procedure as
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that of Section 3. We first discuss the optimal decisions of the FI and the UI at time 1.

Again, at s = g, it is trivial that both the FI and the UI choose to continue. Hence, we

focus on the case of s = b. Let us first examine the FI’s continuation/liquidation decision

after the UI withdraws. Then, only the pooling equilibrium needs to be considered because

the FI does not know which q is realized. Thus, the repayment level of the FI in the capital

market is I
σb+(1−σb)σZ . Because the FI receives nothing if liquidation occurs, the FI continues

(liquidates) after the withdrawal of the UI if σbR − I ≥ 0 (σbR − I < 0). For the FI’s

continuation/liquidation decision after the UI continues, the result is the same as Lemma

1. Now, let us discuss the continuation/withdrawal decision of the UI at time 1. Then, the

argument of the FI’s continuation/liquidation decision stated above leads to the following

two cases: (i) 1
σ`
> R

I
≥ 1

σb
; and (ii) 1

σb
> R

I
> 1

σm
. In the first case, the FI continues after

the withdrawal of the UI. Hence, the UI continues (or withdraws) if and only if σbX ≥ I (or
σbX < I). In the second case, the FI liquidates after the withdrawal of the UI. Thus, the

UI continues (or withdraws) if and only if σbX ≥ L (or σbX < L).

Now, we proceed to explore the FI’s security offer at time 0. Again, we analyze the

following two cases: (i) 1
σ`
> R

I
≥ 1

σb
; and (ii) 1

σb
> R

I
> 1

σm
. Furthermore, for each of these

cases, we need to consider both the situations in which: (a) the UI is induced to continue

at s = b; and (b) the UI is induced to withdraw at s = b. Given the optimal decisions of

the FI and the UI at time 1, if 1
σ`
> R

I
≥ 1

σb
, we solve the same problems as (P1) and (P2)

that are in the proof of Lemma 4, and compare their optimal values of ΠF0. Then, it follows

from Lemma A3(i) that X∗ = I and Π∗F0 = bΠF0. In the case where 1
σb
> R

I
> 1

σm
, if the UI

is induced to continue at s = b, we solve the same problem as (P1), except that (ICU1) is

changed by σbX ≥ L because the FI liquidates after the withdrawal of the UI when 1
σb
> R

I

> 1
σm
. Solving this problem in a similar way to problem (P1), we can show that Π∗F0 = [p

+ (1 − p)σb](R − L
σb
) + ωZ − (I − I) if L > σb

p+(1−p)σb ; and Π∗F0 = bΠF0 if L ≤ σb
p+(1−p)σb .

On the other hand, if the UI is induced to withdraw at s = b, the FI solves the following

problem: max
X

ΠF0 ≡ max
X

p(R − X) + ωZ − (I − I), subject to pX + (1 − p)L ≥ I, σbX
< L and (NR). Applying a procedure similar to that of Lemma A3(i), we can prove that

Π∗F0 = pR + (1 − p)L + ωZ − I if L > σb
p+(1−p)σb ; and there is no solution if L ≤

σb
p+(1−p)σb .

However, in any case of 1
σb
> R

I
> 1

σm
, we can show that Π∗F0 ≤ bΠF0 under our assumptions.

Summarizing these arguments, the result in this lemma is verified. ¥

Proof of Lemma 6: Note that <2 > 1
σb
with Assumption 5(ii), and that the FI pays an
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infinitesimally small cost ²I under information acquisition at time 0. Then, we show that

if 1
σ`
> R

I
≥ <1, the equilibrium is given by the UFE, which is characterized by Lemma

5(i); and under Assumption 1, if <2 > R
I
> 1

σm
, the equilibrium is given by the IFES, which

is featured by Lemma 4(iii) or A3(iii). Now, if <1 > R
I
≥ <2, comparing Π∗F0 of Lemma

A3(ii)(a) with Π∗F0 of Lemma 5(i) verifies that the former is smaller than the latter under

(A11) or Assumption 5(i). Note that L > σ`
σm
holds in Assumption 1, as proved in Lemma

A3(ii). The remaining issue is to check whether Π∗F0 of Lemma A3(ii)(b) is larger than

Π∗F0 of Lemma 5(i). This difference equals
(1−p)I
<1 [φ(L) − R

I
]. Thus, the former is larger (or

smaller) than the latter if φ(L) > (or <) R
I
. Note that ϕ(L) ≥ φ(L) for <1 > R

I
≥ <2,

because the foregoing argument with the definition of ϕ(L) in Lemma A3 shows that (Π∗F0
of Lemma 5(i)) ≥ (Π∗F0 of Lemma A3(ii)(a)) ≥ (Π∗F0 of Lemma A3(ii)(b)) as long as R

I
≥

ϕ(L). However, we cannot determine whether φ(L) R <2. Hence, these arguments prove
that if <1 > R

I
≥ max(φ(L),<2), the equilibrium is given by the UFE of Lemma 5(i); and if

max(φ(L),<2) > R
I
≥ <2, the equilibrium is given by the IFES of Lemma 4(iii) or A3(ii)(b).

¥

Proof of Lemma 7: The result of part (i) is evident from Lemma 1. To prove the result of

part (ii), we first specify the expected payoff of the FI with q, ΠPF2(q), in liquidation under

the pooling strategy. In this case, after the UI withdraws, both the FIm and the FI` liquidate

AI and issue the same new security backed by AO to avoid the liquidation of AO. Then,

the repayment level is I−L
σb+(1−σb)σZ , which means that Π

P
F2(q) equals [σq + (1 − σq)σZ ][Z −

I−L
σb+(1−σb)σZ ]. We next examine the expected payoff of the FI`, Π

S
F2(`), in liquidation under

the separating strategy. In this case, if the FI` liquidates AI and issues a new security backed

by AO to avoid the liquidation of AO, the outside investors demand
I−L

σ`+(1−σ`)σZ of the FI`

because they know the FI’s type. Hence, ΠSF2(`) equals [σ` + (1 − σ`)σZ ]Z − I + L. This
implies that if the initial security is backed by AI and AO, Π

S
F2(`) is smaller in continuation

than in liquidation under separating, because σ`[R + Z − I
σ`+(1−σ`)σZ ] + (1 − σ`)σZ [Z −

I
σ`+(1−σ`)σZ ] < [σ` + (1 − σ`)σZ ]Z − I + L under Assumption 1. Hence, if the separating
strategy is possible, the FIm continues while the FI` liquidates. Given these findings and

<1L − (<2 − 1−L
σ`
) > 0, we complete the proof by repeating the arguments of Lemma 2. ¥

Proof of Lemma 8: For s = g, the result of this lemma is trivial. For s = b, suppose

that the UI withdraws. Then, the UI receives I irrespective of whether the FI liquidates or

continues. This is because the FI must avoid the liquidation of AO when liquidating AI . On
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the other hand, suppose that the UI continues. Then, the interim expected payoff of the UI

is σbX + (1 − σb)σZX
0. Hence, the UI continues if and only if σbX + (1 − σb)σZX

0 ≥ I. ¥

Proofs of Lemma 9 and Proposition 2: Suppose that the FI offers an initial security

backed by both AI and AO. The discussions in Section 3.2 are modified as follows. First,

given Lemma 7, the partitions of the range of R
I
are (i) 1

σ`
> R

I
≥ <1L, (ii) <1L > R

I
≥

max (<2 − 1−L
σ`
, 1
σm
), and (iii) max (<2 − 1−L

σ`
, 1
σm
) > R

I
> 1

σm
. Second, Lemma 7 also implies

that in the proof of Lemma 4, the objective functions of (P1) and (P3) are replaced by max
X,X0

ΠF0 = max
X,X0

[p + (1−p)σb](R − X + Z) + (1 − p)(1 − σb)σZ(Z − X 0) − (I − I), whereas
the objective functions of (P4) and (P5) are replaced by max

X,X0
ΠF0 = max

X,X0
p(R − X + Z)

+ (1 − p){δσm(R + Z − Y m) + δ(1 − σm)σZ(Z − Y m) + (1 − δ)[σ` + (1 − σ`)σZ ](Z

− Y `)} − (I − I). Note that Y m and Y ` in the latter are given by Lemma 7(ii)(b)(β) for
each range of R

I
. For the constraints of problems (P1)—(P5), (IRU1) is changed by [p + (1 −

p)σb]X + (1 − p)(1 − σb)σZX
0 ≥ I, whereas (IRU4) is changed by pX + (1 − p)I ≥ I. It

also follows from Lemma 8 that (ICU1) and (ICU3) are changed by σbX + (1 − σb)σZX
0 ≥

I, whereas (ICU2) and (ICU4) are changed by σbX + (1 − σb)σZX
0 < I. (NR) is changed

by R + Z ≥ X ≥ 0 and Z ≥ X 0 ≥ 0. For the remaining items in problems (P1)—(P5), there
are no modifications.

Repeating arguments similar to those used to derive Lemma 4, we can derive the following

findings. First, in the modified problems of (P1) and (P3), the optimal value of ΠF0 is

lower than bΠF0 because the modified constraint of (ICU1) or (ICU3) is binding. The result
depends on the fact that the UI obtains more if the modified constraint of (ICU1) or (ICU3) is

binding than if the modified constraint of (IRU1) is binding. Second, in the modified problem

(P2), the introduction of X 0 merely tightens the modified constraint of (ICU2). Thus, it is

optimal to set X 0 = 0; that is, the initial security backed by AI alone is optimal. Third, in

the modified problem (P4), the requirement that the FI` raises the additional amount I −
L when liquidating AI causes the optimal value of ΠF0 to be lower than ΠwF0 of (A12) in

the original problem (P4). This is because the additional raising in liquidation tightens the

self-selection constraint on the FI` so that the FIm must issue the more underpriced security

to separate itself from the FI` (compare Y m in Lemma 2(ii) and Y m in the case of the higher

R
I
in Lemma 7(ii)(b)(β)). Indeed, the difference between the optimal values of the original

and modified problems is given by (1 − p)δ σm+(1−σm)σZ
σ`+(1−σ`)σZ (I − L).34 Fourth, in the modified

34Note that the occurrence of a decrease in X due to an increase in the payoff of the UI under liquidation
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problem (P5), the optimal value of ΠF0 equals Π
w
F0 of (A13) in the original problem (P5)

because the adverse selection issue is ineffective in this case (see Y m in Lemma 2(iii) and

Y m in the case of the lower R
I
in Lemma 7(ii)(b)(β)).35

Now, repeating arguments similar to those of Lemma 4, the configuration of the IFE under

the initial security backed by both AI and AO is given by a form similar to the configuration

of the IFEP, IFEC, and IFES of Lemma 4.

On the other hand, the maximization problems of the FI under uninformed finance are

modified as follows. Using a procedure similar to that of Lemma 5, we can show that under

uninformed finance, the FI continues (or liquidates) after the withdrawal of the UI if σbR

− I ≥ (or <) − (I − L); that is, σbR ≥ L (or σbR < L). Note that the FI must raise the
amount I − L to avoid the liquidation of AO when liquidating AI regarding this security.
Thus, we must analyze the two cases: (i) 1

σ`
> R

I
≥ max ( L

σb
, 1
σm
), and (ii) max ( L

σb
, 1
σm
) >

R
I
> 1

σm
. In case (i), the modified problem is the same as the modified problem of (P1) (or

(P2)) under informed finance defined at the beginning of this proof if the FI induces the UI

to continue (or withdraw), except that the FI does not pay ²I . In case (ii), the modified

problem is the same as the modified problem of (P1) under informed finance defined at the

beginning of this proof if the FI induces the UI to continue, except that the FI does not pay

²I . However, it is replaced by max
X,X0

p(R − X) + ωZ + pI + (1 − p)L − I subject to pX
+ (1 − p)I ≥ I, σbX + (1 − σb)σZX

0 < I, R + Z ≥ X ≥ 0, and Z ≥ X 0 ≥ 0 if the FI
induces the UI to withdraw. Note that in this security, the UI can always recover I even if

it withdraws at time 1. Now, repeating arguments similar to those used to derive Lemma 5,

we can show the result of Lemma 9.

Indeed, Lemma 6, with Lemmas 4, 5, and A3, shows that the optimal initial security

backed by AI alone results in the optimal value of ΠF0, which equals bΠF0 under uninformed
finance if 1

σ`
> R

I
≥ max(φ(L),<2) or exceeds bΠF0 under informed finance ifmax(φ(L),<2) >

R
I
> 1

σm
). The optimal value of ΠF0 in Lemma 6 is also continuous even at the threshold lines

dividing the (L, R
I
) space into each region. However, if the FI offers an initial security backed

by AI and AO, under informed finance, the optimal value of ΠF0 in each of the modified

problems is lower than or equal to that of the corresponding original problem; further, under

uninformed finance, the optimal value of ΠF0 is equal to bΠF0 if RI ≥ L
σb
(< 1

σb
), and is lower

than or equal to bΠF0 if L
σb
> R

I
. Thus, we establish the result of Proposition 2. ¥

(see the modified constraint of (IRU4)) cancels out the additional payment of Y ` given by Lemma 7(ii)(b)(β).
35Again, a decrease in X cancels out the additional payment of Y `.
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Proof of Proposition 3: The results of R
I
and L are evident from Lemma 6 and φ0(L) >

0. In addition, ∂<2
∂σm

< 0, ∂<2
∂σ`

< 0, ∂<2
∂σZ

> 0,
∂φ(0)

∂σm
< 0,

∂φ(0)

∂σ`
< 0,

∂φ(0)

∂σZ
> 0,

∂φ0(L)
∂σm

< 0,
∂φ0(L)
∂σ`

< 0 and
∂φ0(L)
∂σZ

> 0. Given φ0(L) > 0 and φ(1) = <1, the results of σm, σ` and σZ are derived

from comparative statics on the condition in Lemma 6(i). ¥

Optimality of the short-term debt (Section 6.1): Note that the FI always chooses to

continue if the UI cannot withdraw at time 1. Then, the optimal security design problem

for the FI at time 0 when the initial security is backed by the cash flow of AI is: max
XF

ΠF0

given by (P1), subject to (IRU1) and (NR). Solving this problem, we can show that the ex

ante expected payoff of the FI is equal to bΠF0. Similarly, in the case of the initial security
backed by the cash flow of both AI and AO, we can prove that the ex ante expected payoff

of the FI is equal to bΠF0. ¥
The participation of the UI in the capital market at time 1: If the UI can buy the

security issued by the FI in the capital market at time 1, the results of Sections 3.1.1 and

3.1.2 still hold. However, the results of Section 3.1.3 must be modified if the UI obtains a

positive rent in so doing. Hence, using Lemma 2, Lemma 3 is rewritten as follows.

Lemma 30: Suppose that s = b.

(i) If <1 > R
I
≥ <2, the UI continues if σbX ≥ δ[σm+(1−σm)σZ ]σ`R

σ`+(1−σ`)σZ + (1 − δ)L. Otherwise,

the UI withdraws.

(ii) If R
I
≥ <1 or if R

I
> <2, the results of Lemma 3 still hold.

Using Lemma 30, we must rearrange (ICU3) and (ICU4) in problems (P3) and (P4) when

<1 > R
I
≥ <2. We must also rearrange (IRU4) in problem (P4) when <1 > R

I
≥ <2, because

the reservation utility of the UI increases by the same amount as the expected positive

rent. For the other items in problems (P1)—(P5) or for the uninformed case, there are no

modifications. Thus, in problems (P3) and (P4), this extension tightens (ICU3) and (IRU4)

but relaxes (ICU4). In the equilibrium given by Lemmas 4 and 6, only (IRU4) is binding

at the solution to problem (P4). On the other hand, in the equilibrium given by Lemma 6,

the solution to problem (P3) is dominated. These findings show that this extension merely

expands the UFE region of Lemma 6(i), but reduces the IFES region of Lemma 6(ii) where

the FIm repays outside investors’ premiums, because the FI must increase X in the IFES.

Applying similar arguments to obtain the results corresponding to Lemmas 7—9, we can

derive results similar to those of Propositions 1 and 2. ¥

Relaxation of Assumption 4: If Assumption 4 is not satisfied, Z ≥ Y must be binding in
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the proof of Lemma 2. Then, the monotonicity constraint is satisfied with strict inequality:

YR+Z > YZ. In fact, even if Y
P
R+Z > Y PZ in Lemma 2(i), this does not affect the result of

Lemma 4(i) under the risk-neutrality assumption. On the other hand, if Y mR+Z > Y mZ in

Lemmas 2(ii) and (iii), this effect makes it more likely that the FI` will mimic the FIm

because the most effective security design for deterring the FI` from mimicking the FIm

is that Y mR+Z = Y mZ = Y m. Hence, the relaxation of Assumption 4 decreases the ex ante

expected payoff of the FI if the UI really withdraws at s = b and if the ex post equilibrium

in the capital market is separating. This implies that the combined region of the IFEP and

IFEC of Lemmas 4(i) and (ii) and the UFE region of Lemma 6(i) expand. However, except

for these changes, the main results of Lemmas 4 and 6 (that is, Proposition 1) are preserved.

If max
h

σ`R

σ`+(1−σ`)σZ ,
I

σ`+(1−σ`)σZ

i
> Z ≥ I−L

σ`+(1−σ`)σZ , the FI can avoid the liquidation of

AO when liquidating AI . Then, Proposition 2 still holds, because with Z ≥ Y binding, the
advantage of the initial security backed by both AI and AO is reduced. If

I−L
σ`+(1−σ`)σZ > Z

> 0, the FI` prefers to liquidate AO when liquidating AI . However, as long as the expected

cash flow of AO at s = b is larger than the liquidation value of AO (≡ 0), the advantage
of the initial security backed by both AI and AO is further reduced. Hence, Proposition

2 continues to hold. Furthermore, whichever happens, the optimality of the new security

backed by both AI and AO at time 1 also continues to hold because the difference between

the bankruptcy losses of the FI` and the FIm is still the largest in this class of security. ¥

Relaxation of Assumption 5: To simplify the analysis, we focus on the case in which the

FI can choose whether to undertake information acquisition. Given the proofs of Lemmas

4 and 6, Assumption 5(i) ensures that only (ICU3) (or (IRU4)) binds in problem (P3) (or

(P4) and (P5)), that Xw < R holds in problems (P4) and (P5), and that (Π∗F0 of Lemma

5(i)) > (Π∗F0 of Lemma A3(ii)(a)). Without Assumption 5(i), we obtain the following result.

Lemma A4: Suppose that Assumption 5(i) is not satisfied: δ ≤ 1 − σm
σm−σ`

p(1−σb)
p+(1−p)σb .

(i) If L > σb−δ[p+(1−p)σb]
(1−δ)[p+(1−p)σb] and

R
I
≥ 1−(1−p)[δ+(1−δ)L]

p
, the result of Lemma 6 still holds.

(ii) Suppose that L > σb−δ[p+(1−p)σb]
(1−δ)[p+(1−p)σb] and

R
I
<

1−(1−p)[δ+(1−δ)L]
p

or that L ≤ σb−δ[p+(1−p)σb]
(1−δ)[p+(1−p)σb] .

(a) If 1
σ`
> R

I
≥ 1

σb
, the equilibrium is given by the UFE that is featured by Lemma 5(i). (b)

If 1
σb
> R

I
> 1

σm
, the equilibrium is given by the UFE that is featured in Lemma 5(ii) or the

IFE in which the FI induces the UI to continue.

Proof of Lemma A4: If L > σb−δ[p+(1−p)σb]
(1−δ)[p+(1−p)σb] and

R
I
≥ 1−(1−p)[δ+(1−δ)L]

p
, we can still ensure

that only (ICU3) (or (IRU4)) binds in problem (P3) (or (P4) and (P5)), that Xw ≤ R holds
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in problems (P4) and (P5), and that (Π∗F0 of Lemma 5(i)) > (Π∗F0 of Lemma A3(ii)(a)).

However, if L > σb−δ[p+(1−p)σb]
(1−δ)[p+(1−p)σb] and

R
I
<

1−(1−p)[δ+(1−δ)L]
p

, (IRU4) is inconsistent with X ≤ R
in problems (P4) and (P5). Then, in the range <1 > R

I
under informed finance, the optimal

initial security is given by that which induces the UI to continue and sets (ICU3) to be

binding in problem (P3). However, this implies that the optimal initial security generates

Π∗F0 of Lemma A3(ii)(a). Given that (Π
∗
F0 of Lemma 5(i)) > (Π

∗
F0 of Lemma A3(ii)(a)) in

this range and that <2 > 1
σb
, the IFE is dominated by the UFE of Lemma 5(i) if 1

σ`
> R

I

≥ 1
σb
. Now, if L ≤ σb−δ[p+(1−p)σb]

(1−δ)[p+(1−p)σb] , we can show that in the range of <1 >
R
I
, the only IFE

is given by the optimal initial security that induces the UI to continue and sets (IRU1) to

be binding in problem (P3). Furthermore, we can prove that Π∗F0 of this IFE is the same as

that of the UFE of Lemma 5(i) if 1
σ`
> R

I
≥ 1

σb
, except that the FI must pay ²I in the IFE. k

Hence, even though Assumption 5(i) is not satisfied, the main result of Lemma 6 or

Proposition 1 is preserved if R
I
and L are large enough; it also holds for 1

σ`
> R

I
≥ 1

σb
if L

is not large enough or if L is large enough although R
I
is not large enough. In this region,

Proposition 2 also holds.

Next, if Assumption 5(ii) is not satisfied, then 1
σb
≥ <2 (however, note that <1 > 1

σb
).

Thus, from Lemmas 4 and 5, we obtain the following result instead of Lemma 6.

Lemma A5. Suppose that Assumption 5(ii) is not satisfied: δ ≤ (1−σZ)σ`
σ`+(1−σ`)σZ . (i) If

1
σ`

> R
I
≥ max(φ(L), 1

σb
), the equilibrium is given by the UFE that is featured by Lemma 5(i).

(ii) If max(φ(L), 1
σb
) > R

I
≥ max(φ(L),<2), the equilibrium is given by the IFES that is

featured by Lemma 6(ii) where the FIm repays outside investors’ premiums or the UFE that

is featured by Lemma 5(ii). (iii) If max(φ(L),<2) > R
I
> 1

σm
, the result of Lemma 6 still

holds.

The only difference is that if R
I
lies in the middle range of R

I
∈ (<2, 1

σb
), there may be a

UFE region where both the UI and the FI continue at s = b or a UFE region where the UI

withdraws and the FI liquidates AI at s = b. Thus, in this range, the overinvestment problem

may occur because the UI does not withdraw at s = b, or the underinvestment problem may

arise because overliquidation cannot be prevented. Further, Proposition 2 holds in any R
I
∈

( 1
σh
, 1
σ`
) outside of this middle range. ¥
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Table 1.  The cash flows of A1 and A0 and their probabilities conditional on q. 
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