
A Clique-Based Method Using Dynamic Programming

for Computing Edit Distance between Unordered Trees

Tomoya Mori1, Takeyuki Tamura1, Daiji Fukagawa2,
Atsuhiro Takasu3, Etsuji Tomita4, Tatsuya Akutsu1,∗

1 Bioinformatics Center, Institute for Chemical Research, Kyoto University,
Kyoto, Japan

2 Faculty of Culture and Information Science, Doshisha University,
Kyoto, Japan

3 National Institute of Informatics, Tokyo, Japan
4 University of Electro-Communications, Tokyo, Japan
∗ Corresponding Author: takutsu @ kuicr.kyoto-u.ac.jp

Abstract

Many kinds of tree structured data such as RNA secondary structures have be-
come available due to the progress of techniques in the field of molecular biology.
In order to analyze the tree structured data, various measures for computing the
similarity between them have been developed and applied. Among them, tree edit
distance is one of the most widely used measures. However, the tree edit distance
problem for unordered trees is NP-hard. Therefore, it is required to develop effi-
cient algorithms for the problem. Recently, a practical method called clique-based
algorithm has been proposed but it is not fast for large trees.

This paper presents an improved clique-based method for the tree edit distance
problem for unordered trees. The improved method is obtained by introducing a
dynamic programming scheme and heuristic techniques to the previous clique-based
method. In order to evaluate the efficiency of the improved method, we applied the
method to comparison of real tree structured data such as glycan structures. For
large tree structures, the improved method is much faster than the previous method.
In particular, for hard instances, the improved method achieved more than 100 times
speed-up.
Key words: unordered trees, tree edit distance, maximum clique, dynamic pro-
gramming, glycan

1

1 INTRODUCTION

Tree structured data such as RNA secondary structures (Jiang et al., 2002; Zaki et al.,
2005), phylogenetic trees (Horesh et al., 2006), glycans (Aoki et al., 2004), and vascular
trees (Yu et al., 2007) often appear in computational biology. Consequently, various
techniques have been developed and applied to analysis of these tree structured data.
Among them, comparison of tree structured data is important because it can be used for
searching for similar objects. The tree edit distance is one of the most widely used measures
for comparison of tree structured data (Bille, 2005). In this measure, the distance between
two trees is measured by the minimum cost sequence of edit operations that transforms
one tree into another tree where an edit operation is either a deletion of a node, an
insertion of a node, or a substitution of a label of a node. For the tree edit distance
problem for ordered trees, Tai developed an O(n6) time algorithm (Tai, 1979), where n is
the number of nodes in a larger input tree. After several improvements, Demaine et al.
developed an O(n3) time algorithm and showed that this bound is optimal under some
computation strategy (Demaine et al., 2009).

The tree edit distance between ordered trees is useful if the ordering among children
has important meanings. However, it is preferable to regard input trees as unordered trees
in some applications (Aoki et al., 2004; Horesh et al., 2006). Unfortunately, Zhang et al.
proved that the tree edit distance problem for unordered trees is NP-hard (Zhang et al.,
1992). In order to cope with this hardness, Akutsu et al. developed a fixed parameter
algorithm which works in O(2.62k · poly(n)) time (Akutsu et al., 2011a), where k is the
maximum allowed edit distance. Although their algorithm might be useful for comparison
of very similar trees (i.e., where k is small), it is not useful for comparison of non-similar
trees. Horesh et al. developed an A∗ algorithm (Horesh et al., 2006). Although their
algorithm works efficiently for comparison of moderate size unlabeled trees under the unit
cost distance (i.e., the cost of each edit operation is 1), it is unclear whether it can be
efficiently applied to labeled trees or general cost cases.

Fukagawa et al. recently proposed a practical method for computing the tree edit
distance between unordered trees (Fukagawa et al., 2011) using algorithms for computing
the maximum clique (Tomita et al., 2010, 2011). In this method, an instance of the tree
edit distance is directly transformed into an instance of the maximum vertex weighted
clique problem and then an existing clique solver (Nakamura and Tomita, 2005) is applied.
Although similar reductions have been proposed for variants of the tree edit distance
problem (Pelillo et al., 1999; Torsello and Hancock, 2003) and other problems (Ogawa,
1986), to the best of our knowledge, it was the first method that exactly solves the proper
tree edit distance problem for unordered trees using the maximum clique. The method
was applied to comparison and search of similar glycan structures and shown to be efficient
for moderate size tree structures (Fukagawa et al., 2011). However, it was not fast enough
if large glycan or tree structures were given.

Therefore, in the preliminary version of this paper (Akutsu et al., 2011b), we improved
the method of (Fukagawa et al., 2011) and developed a dynamic programming-based (DP)
algorithm that repeatedly solves instances of the maximum vertex weighted clique prob-

2

lem as sub-problems. Due to this improvement, sparser graphs are generated and thus
maximum clique instances can be solved more efficiently in many cases. Although multi-
ple clique instances must be solved in the improved method, it is expected that speed up
due to sparsity is more beneficial if input trees are large. Furthermore, by utilizing the
feature of DP, we introduced heuristic techniques which do not violate the optimality of
the solution. When it was applied to comparison of large glycan structures, our improved
method showed speed-up in most cases. However, there still exist cases for which it takes
long CPU time. In particular, it takes very long CPU time if there exist many leaves. In
such a case, constructed graphs would contain many vertices and edges and thus a clique
algorithm does not work efficiently.

In this full version, we augment this DP-based approach by introducing new heuristic
techniques to further reduce the computation time without violating the optimality of the
solution, especially for trees with many leaves or many isomorphic subtrees. Furthermore,
in order to utilize maximum clique algorithms in place of maximum vertex weighted clique
algorithms, we develop a new clique-based method for computing the unordered tree edit
distance in which the maximum vertex weighted clique problem is transformed into the
maximum clique problem.

We compare the improved clique-based method and the maximum clique-based method
with the previous maximum vertex weighted clique-based method (Fukagawa et al., 2011)
using glycan data obtained from the KEGG database (Kanehisa et al., 2010) and Web
logs data CSLOGS opened to the public1 (Zaki et al., 2005). The results suggest that
the improved clique-based method is much faster than the maximum clique-based method
and the previous clique-based method (Fukagawa et al., 2011) in most cases of comparison
of large tree structured data. In particular, when there exist many leaves or isomorphic
subtrees, our improved method shows significant speed-up.

1http://www.cs.rpi.edu/˜zaki/software/

3

2 TREE EDIT DISTANCE

Before presenting the method, we briefly review tree edit distance and edit distance map-
ping for rooted, labeled, and unordered trees (Bille, 2005; Zhang et al., 1992).

Let T be a rooted unordered tree where each node v has a label ℓ(v) over an alphabet
Σ. r(T), V (T), and E(T) denote the root, the set of nodes, and the set of edges of T ,
respectively. For a node v ∈ V (T), des(v) and T (v) denote the set of descendants of v (not
including v) and the subtree induced by v and its descendants, respectively. In this paper,
n denotes the number of nodes in a larger input tree, that is, n = max{|V (T1)|, |V (T2)|})
where T1 and T2 are input trees.

An edit operation on a tree T is either a deletion, an insertion, or a substitution, each
of which is defined by (see also Fig. 1):

• Deletion: Delete a non-root node v in T with parent u, making the children of v
become children of u. The children are inserted in the place of v into the set of the
children of u.

• Insertion: Inverse of the deletion. Insert a node v as a child of u in T , making v
the parent of some of the children of u.

• Substitution: Change the label of a node v in T .

(Figure 1)

For each edit operation, the cost is defined as follows:

• γ(a, ǫ): cost of deleting a node labeled with a.

• γ(ǫ, a): cost of inserting a node labeled with a,

• γ(a, b): cost of substituting a node with label a to label b,

The edit distance dist(T1, T2) between two unordered trees T1 and T2 is the cost of the
minimum cost sequence of edit operations that transforms T1 to T2, where we adopt the
following standard assumption so that dist(T1, T2) becomes a distance metric (Bille, 2005;
Zhang et al., 1992):

• γ(a, b) ≥ 0 for any (a, b) ∈ Σ′ × Σ′,

• γ(a, a) = 0 for any a ∈ Σ′,

• γ(a, b) = γ(b, a) for any (a, b) ∈ Σ′ × Σ′,

• γ(a, c) ≤ γ(a, b) + γ(b, c) for any (a, b, c) ∈ Σ′ × Σ′ × Σ′,

4

where Σ′ = Σ ∪ {ǫ}.
There is a close relationship between the edit distance and the edit distance mapping

(or just mapping) (Bille, 2005; Zhang et al., 1992). M ⊆ V (T1)×V (T2) is called a mapping
if the following conditions are satisfied for any two pairs (u1, v1), (u2, v2) ∈ M (see also
Fig. 2:

(i) u1 = u2 iff v1 = v2,

(ii) u1 ∈ des(u2) iff v1 ∈ des(v2).

(Figure 2)

Let I1 and I2 be the sets of nodes in V (T1) and V (T2) not appearing in M , respectively.
Then, the following equality holds (Bille, 2005; Zhang et al., 1992):

dist(T1, T2) = min
M

{
∑

u∈I1

γ(ℓ(u), ǫ) +
∑

v∈I2

γ(ǫ, ℓ(v)) +
∑

(u,v)∈M

γ(ℓ(u), ℓ(v)) }.

Here we introduce a score function f(u, v) for (u, v) ∈ V (T1) × V (T2) defined by

f(u, v) = γ(ℓ(u), ǫ) + γ(ǫ, ℓ(v)) − γ(ℓ(u), ℓ(v)).

Then, we can see that f(u, v) = f(v, u) ≥ 0 holds. It should also be noted that under
the unit cost model (i.e., γ(a, b) = 1 for all a 6= b), f(u, v) = 2 holds if ℓ(u) = ℓ(v), and
f(u, v) = 1 holds otherwise. Let score(M) be the score of a mapping M defined by

score(M) =
∑

(u,v)∈M

f(u, v).

Let MOPT be the mapping with the maximum score. Then, the following property holds
(Akutsu et al., 2011a):

dist(T1, T2) = min
M

{
∑

u∈I1

γ(ℓ(u), ǫ) +
∑

v∈I2

γ(ǫ, ℓ(v)) +
∑

(u,v)∈M

γ(ℓ(u), ℓ(v)) }

= min
M

{
∑

u∈V (T1)

γ(ℓ(u), ǫ) +
∑

v∈V (T2)

γ(ǫ, ℓ(v))

+
∑

(u,v)∈M

(γ(ℓ(u), ℓ(v)) − γ(ℓ(u), ǫ) − γ(ǫ, ℓ(v))) }

=
∑

u∈V (T1)

γ(ℓ(u), ǫ) +
∑

v∈V (T2)

γ(ǫ, ℓ(v))

− max
M

{
∑

(u,v)∈M

(γ(ℓ(u), ǫ) + γ(ǫ, ℓ(v)) − γ(ℓ(u), ℓ(v))) }

=
∑

u∈V (T1)

γ(ℓ(u), ǫ) +
∑

v∈V (T2)

γ(ǫ, ℓ(v)) − score(MOPT), (1)

5

assuming that the root of T1 corresponds to the root of T2 in MOPT , where this assumption
can be removed if we add dummy nodes as new roots. It is to be noted that the first
and second terms in the right hand side of the last equality are invariant with a mapping.
Therefore, this equality means that the tree edit distance can be obtained by computing
a mapping with the maximum score.

6

3 METHOD

3.1 Maximum Vertex Weighted Clique

Let G = (V,E) be an undirected graph. A subgraph G′ = (V ′, E ′) of G = (V,E) is
called a clique if it is a complete subgraph (i.e., {{vi, vj} | vi, vj ∈ V ′, vi 6= vj} = E ′).
The maximum clique problem is to find a clique with the maximum number of vertices
in a given undirected graph G = (V,E). Although the maximum clique problem is NP-
hard, several practical algorithms have been developed (Tomita et al., 2010, 2011). In
this paper, we use a variant of the maximum clique problem called the maximum vertex
weighted clique problem. In this variant, each vertex v has a weight w(v) and the problem
is to find a clique G′ = (V ′, E ′) which maximizes

∑

v∈V ′ w(v) (see also Fig. 3).

(Figure 3)

3.2 Algorithm MWCQ and MCS

Nakamura and Tomita developed a practically efficient algorithm called MWCQ for the
maximum vertex weighted clique problem (Nakamura and Tomita, 2005). After prelimi-
nary experiments on maximum vertex weighted clique algorithms (Nakamura and Tomita,
2005), we employ MWCQ as a solver for the maximum vertex weighted clique problem.
Here, we briefly review MWCQ.

The underlining algorithm of MWCQ is a very simple and fast branch-and-bound
depth-first-search algorithm MCQ for finding a maximum clique of an unweighted graph
(Tomita and Seki, 2003; Tomita et al., 2011). MCQ employs greedy approximate coloring
to obtain an upper bound of the size of a maximum clique. The size of a maximum clique
in an unweighted graph is bounded above by the number of approximate color classes (the
total number of disjoint sets of independent set). This relation contributes to an effective
bounding condition.

For a vertex weighted graph, the maximum weight of a clique in a graph is bounded
above by the summation of the maximum weight in each approximate color class (inde-
pendent set). Then we have a simple algorithm MWCQ for finding a maximum vertex
weighted clique by introducing the above new bounding condition into MCQ instead of
the previous one together with appropriate ordering of vertices as in MCQ.

Furthermore, Tomita et al. proposed a new branch-and-bound algorithm MCS for
the maximum clique problem (Tomita et al., 2010). In MCS, new approximate coloring is
introduced along with other new techniques, which makes MCS much faster than MCQ for
most instances. In order to utilize MCS, to be shown below, we develop a method which
does not use a maximum vertex weighted clique algorithm but instead uses a maximum
clique algorithm.

7

3.3 Previous Method

Before presenting our improved clique-based method, we briefly review the previous clique-
based method (Fukagawa et al., 2011) (see also Fig. 4), which is referred to as CliqueEdit
in this paper.

(Figure 4)

CliqueEdit is based on a simple reduction from the tree edit distance problem for
unordered trees to the maximum vertex weighted clique problem. Based on Eq. (1),
for calculating the tree edit distance, it is enough to find a mapping M maximizing
∑

(u,v)∈M f(u, v). In order to find such a mapping, an undirected graph G = (V,E) is
constructed from two input trees T1 and T2 by

V = { (u, v) | u ∈ V (T1), u 6= r(T1), v ∈ V (T2), v 6= r(T2) },

E = { {(u1, v1), (u2, v2)} | u1 6= u2, v1 6= v2,

u1 ∈ des(u2) iff v1 ∈ des(v2),

u2 ∈ des(u1) iff v2 ∈ des(v1) }.

Then, we can see that there is a one-to-one correspondence between the set of cliques and
the set of mappings (i.e., (u, v) in a clique corresponds to (u, v) in a mapping M). By
assigning a weight w(x) = f(u, v) to each vertex x = (u, v) ∈ V , an optimal mapping
MOPT corresponds to a maximum vertex weighted clique. Therefore, the tree edit distance
problem can be solved by computing a maximum vertex weighted clique.

3.4 Reduction from the Maximum Vertex Weighted Clique Prob-
lem to the Maximum Clique Problem

In order to utilize MCS (Tomita et al., 2010) instead of MWCQ (Nakamura and Tomita,
2005), we develop a simple method that transforms the maximum vertex weighted clique
problem into the maximum clique problem.

Let G = (V,E) be a weighted graph such that V = {v1, . . . , vn} and each vertex vi

has a weight w(vi). From G = (V,E), we construct an unweighted graph Ĝ = (V̂ , Ê) by
(see also Fig. 5)

V̂ = {vj
i | vi ∈ V, j = 1, 2, . . . , w(vi)}, (2)

Ê = {{vj
i , v

ℓ
k} | {vi, vk} ∈ E ∨ (i = k ∧ j 6= ℓ)}. (3)

(Figure 5)

Proposition 1. The weight of the maximum vertex weighted clique of G = (V,E) is equal
to the size of the maximum clique of Ĝ = (V̂ , Ê).

8

Proof. Suppose that there exists a clique Gc = (Vc, Ec) with the weight W and the size
m in G, where

Vc = {vi1 , . . . , vim},

Ec =

(

Vc

2

)

.

In this case, there also exists a clique Ĝc = (V̂c, Êc) in Ĝ, where

V̂c = {vj
ik
| vik ∈ Vc, j = 1, 2, . . . , w(vik)},

Êc = {{vj
ih

, vℓ
ik
} | {vih , vik} ∈ Ec ∨ (ih = ik ∧ j 6= ℓ)}.

Since |V̂c| = W and Êc =
(

V̂c

2

)

, Ĝc is a clique with the size W . Hence, if there exists a

clique with the weight W in G, there exists a clique with the size W in Ĝ, so that if G
has the maximum vertex weighted clique with the weight W , Ĝ has the maximum clique
with the size W .

Conversely, we assume that there exists a clique Ĝc = (V̂c, Êc) with the size W in Ĝ,
where

V̂c = {vj1
i1

, . . . , vjW

iW
},

Êc =

(

V̂c

2

)

.

Here, vjk

ik
is a copy of vik and ih = ik can hold. From the way to construct Ĝ (see Eq. (2)

and (3)), there also exists at least one clique Ĝ′
c = (V̂ ′

c , Ê
′
c) with the size W ′(≥ W) in Ĝ,

where

V̂ ′
c = {vj

ik
| vjk

ik
∈ V̂c, j = 1, . . . , w(vik)},

Ê ′
c =

(

V̂ ′
c

2

)

.

In this case, there also exists a clique Gc = (Vc, Ec) in G, where

Vc = {vik | vjk

ik
∈ V̂c},

Ec = {{vih , vik} | {vj
ih

, vℓ
ik
} ∈ Ê ′

c ∧ ih 6= ik}.

Since the weight of Gc is equal to W ′ and Ec =
(

Vc

2

)

, Gc is a clique with the weight W ′.

Hence, if there exists a clique with the size W in Ĝ, there exists a clique with the size
W ′(≥ W) in Ĝ, so that there exist a clique with the weight W ′ in G. Thus, if Ĝ has the
maximum clique with the size W , G has the maximum vertex weighted clique with the
weight W . Therefore, the weight of the maximum vertex weighted clique of G is equal to
the size of the maximum clique of Ĝ.

9

The method of combining this transformation with CliqueEdit is called UwCliqueEdit.
Since a vertex with weight w is transformed into w vertices, this method can only be ap-
plied to graphs with small integer vertex weights. However, if we consider the unit cost
edit distance, each vertex in G = (V,E) has weights 1 or 2. Therefore, this method can
be applied to computation of the unit cost tree edit distance.

3.5 Improved Method

In order to improve CliqueEdit, we combine a dynamic programming (DP) approach
employed in (Akutsu et al., 2011a) with the clique-based approach. We call the resulting
method DpCliqueEdit.

Let (u, v) ∈ V (T1) × V (T2). We define W [u, v] be the score of an optimal mapping
between T1(u) and T2(v) where the root of T1(u) need not correspond to the root of T2(v).
We compute W [u, v] in a bottom up way (i.e., from leaves to roots) using DP. Suppose
that W [u′, v′] are already computed for all (u′, v′) ∈ des(u)× des(v). Then, we construct
an undirected vertex weighted graph G(u,v) = (V(u,v), E(u,v)) by

V(u,v) = { (u1, v1) | u1 ∈ des(u), v1 ∈ des(v) },

E(u,v) = { {(u1, v1), (u2, v2)} | u1 6= u2, v1 6= v2,

u1 /∈ des(u2), u2 /∈ des(u1),

v1 /∈ des(v2), v2 /∈ des(v1) },

w((u1, v1)) = W [u1, v1].

Let Wmax be the weight of the maximum vertex weight clique for G(u,v). Then, we calculate
W [u, v] by2

W [u, v] = max











maxv′∈des(v) W [u, v′],
maxu′∈des(u) W [u′, v],
Wmax + f(u, v),

where W [u, v] is initialized by

W [u, v] =

{

maxv′∈{v}∪des(v) f(u, v′) if u is a leaf,
maxu′∈{u}∪des(u) f(u′, v) if v is a leaf.

Different from the reduction in CliqueEdit, edges are not created in DpCliqueEdit if
there is a descendant-ancestor relation between u1 and u2 (or between v1 and v2, see
also Fig. 6). Therefore, it is expected that graphs constructed in DpCliqueEdit are much
sparser than those in CliqueEdit though DpCliqueEdit must solve many clique instances.
Since sparseness of the graph greatly affects the efficiency of clique finding, it is also
expected that DpCliqueEdit is faster than CliqueEdit if non-small trees are given. It is to
be noted that transformation to maximum clique cannot be applied to this case because
W [u, v] might take a large value even for the unit cost case.

2A slight modification is required if u or v is a root because roots cannot be deleted or inserted.

10

(Figure 6)

3.6 Heuristics

In addition to the use of dynamic programming, we introduce some heuristic techniques
to reduce the computation time without violating the optimality of the solution.

An important observation is that

W [u1, v1] ≥ W [u2, v1] (4)

always holds if u2 is a descendant of u1. Based on it, we introduce the following two
heuristic techniques.

(1) Each of u and v has only one child.

In this case, we need not construct G(u,v). Instead, we can compute W [u, v] simply by
taking the maximum of

W [u, v1], W [u1, v], W [u1, v1] + f(u, v),

where u1 and v1 are the children of u and v, respectively (see also Fig. 7).

(Figure 7)

Proposition 2. If each of u ∈ T1 and v ∈ T2 has only one child, W [u, v] can be computed
by W [u, v] = max{W [u, v1],W [u1, v],W [u1, v1]+f(u, v)}, where u1 and v1 are the children
of u and v, respectively.

Proof. We consider the following three cases.

(i) In the case that u (resp. v) is deleted and v (resp. u) is not deleted, from the assump-
tion and Eq. (4), since W [u1, v] ≥ W [u′

1, v] for all u′
1 ∈ des(u1) (resp. W [u, v1] ≥

W [u, v′
1] for all v′

1 ∈ des(v1)), W [u, v] = W [u1, v] (resp. W [u, v] = W [u, v1]) holds.

(ii) In the case that u corresponds to v, since each of u and v has only one child,
Wmax = W [u1, v1], where Wmax is the weight of the maximum vertex weight clique
for G(u,v). Hence, W [u, v] = Wmax + f(u, v) = W [u1, v1] + f(u, v).

(iii) In the case that both u and v are deleted, W [u, v] = W [u1, v1] apparently. Now, the
score of this case is smaller than or equal to that of case (ii), because f(u, v) ≥ 0.

11

Therefore, we can calculate W [u, v] by

W [u, v] = max











W [u, v1],
W [u1, v],
W [u1, v1] + f(u, v).

(2) u2 ∈ des(u) (resp. v2 ∈ des(v)) does not have a sibling.

In this case, we need not generate a vertex (u2, v
′) for any v′ (resp. (u′, v2) for any u′) in

the construction of G(u,v) because any mapping between T1(u2) and T2(v) can be included
in some mapping between T1(u1) and T2(v) where u1 is the parent of u2 (see also Fig. 8).

(Figure 8)

Proposition 3. Suppose that u ∈ T1 and v ∈ T2. If u2 ∈ des(u) (resp. v2 ∈ des(v))
does not have a sibling, W [u, v] can be computed without generating a vertex (u2, v

′) for
any v′ (resp. (u′, v2) for any u′) in the construction of G(u,v), where v′ ∈ des(v) (resp.
u′ ∈ des(u)).

Proof. Consider a mapping between T1(u) and T2(v). A weighted graph G(u,v) is con-
structed from T1(u) and T2(v). Besides, let Gc2 = (Vc2 , Ec2) be a clique including (u2, v

′) ∈
V(u,v)(G(u,v)). Here, because any mapping between T1(u2) and T2(v) can be included in
some mapping between T1(u1) and T2(v), there also exists a clique Gc1 = (Vc1 , Ec1) in-
cluding (u1, v

′) ∈ V(u,v)(G(u,v)), where u1 is the parent of u2, and Vc2(Gc2) \ {(u2, v
′)} =

Vc1(Gc1) \ {(u1, v
′)}. Furthermore, W [u1, v

′] ≥ W [u2, v
′]. Let w(Gc1) and w(Gc2) be the

weights of the Gc1 and Gc2 , respectively. Then, the following inequality holds:

w(Gc1) =
∑

(x,y)∈Vc1

W [x, y]

=
∑

(x,y)∈Vc1
\{(u1,v′)}

W [x, y] + W [u1, v
′]

≥
∑

(x,y)∈Vc2
\{(u2,v′)}

W [x, y] + W [u2, v
′]

=
∑

(x,y)∈Vc2

W [x, y]

= w(Gc2).

Hence, the score of Gc2 is smaller than or equal to that of Gc1 . Therefore, we need not
generate a vertex (u2, v

′) for any v′ in the construction of G(u,v).

12

Although DpCliqueEdit with heuristic techniques (1) and (2) is much faster than
CliqueEdit (Akutsu et al., 2011b) in most cases, it takes very long CPU time in some
cases, especially if there exist many leaves. In such a case, constructed graphs would
contain many vertices and edges and thus a clique algorithm does not work efficiently. In
order to cope with such difficult cases, we introduce other heuristic techniques as follows.

The efficiency of MWCQ is much affected by the number of edges in G(u,v). Due to the
definition of E(u,v) described in Section 3.5, if u1, v1, u2, v2 are leaves, there is always an
edge between (u1, v1) and (u2, v2). Therefore, if there are many leaves in T1 and T2, G(u,v)

has many edges and then MWCQ takes much longer computation time. Since more than
a half of nodes are leaves even in binary trees, some heuristic techniques handling leaves
are necessary for further speed up.

(3) u1, u2, v1, and v2 (u1 6= u2, v1 6= v2) are leaves, and ℓ(u1) = ℓ(u2) or ℓ(v1) = ℓ(v2).

In this case, we need not create an edge {(u1, v2), (u2, v1)} for any u1, u2, v1, and v2 in the
construction of G(u,v) because the score of a mapping including two pairs (u1, v2), (u2, v1)
is equal to that of a mapping including two pairs (u1, v1), (u2, v2). Therefore, we have
only to create an edge {(u1, v1), (u2, v2)} without creating an edge {(u1, v2), (u2, v1)} (see
also Fig. 9).

(Figure 9)

Proposition 4. Suppose that u1, u2 ∈ T1 and v1, v2 ∈ T2. If u1, u2, v1, and v2 (u1 6=
u2, v1 6= v2) are leaves, and ℓ(u1) = ℓ(u2) or ℓ(v1) = ℓ(v2), W [u, v] can be computed
without creating an edge {(u1, v2), (u2, v1)} for any u1, u2, v1, and v2 in the construction
of G(u,v).

Proof. If there exists a mapping M which includes two pairs (u1, v1), (u2, v2) between T1

and T2, it is implied that there also exists a mapping M ′ which includes two pairs (u1, v2),
(u2, v1) instead of (u1, v1), (u2, v2) between T1 and T2. Now, the following equality holds:

score(M) =
∑

(x,y)∈M

W [x, y]

=
∑

(x,y)∈M\{(u1,v1),(u2,v2)}

W [x, y] + f(u1, v1) + f(u2, v2)

=
∑

(x,y)∈M\{(u2,v1),(u1,v2)}

W [x, y] + f(u2, v1) + f(u1, v2)

=
∑

(x,y)∈M ′

W [x, y]

= score(M ′)

Hence, the score of a mapping including two pairs (u1, v2), (u2, v1) is equal to that of a
mapping including two pairs (u1, v1), (u2, v2). Therefore, we have only to create an edge
{(u1, v1), (u2, v2)} without creating an edge {(u1, v2), (u2, v1)}.

13

(4) u1, u2, v1, and v2 (u1 6= u2, v1 6= v2) are leaves, and all labels of them are different.

In this case, we need not create an edge {(u1, v2), (u2, v1)} for any u1, u2, v1, and v2 in
the construction of G(u,v) for the same reason as in the case (3).

Proposition 5. Suppose that u1, u2 ∈ T1 and v1, v2 ∈ T2. If u1, u2, v1, and v2 (u1 6=
u2, v1 6= v2) are leaves, and ℓ(u1), ℓ(u2), ℓ(v1), and ℓ(v2) are different, W [u, v] can be
computed without creating an edge {(u1, v2), (u2, v1)} for any u1, u2, v1, and v2 in the
construction of G(u,v).

Proposition 5 can be proved in the same way as the proof of the Proposition 4, so we omit
the proof of Proposition 5.

The idea of (3) focusing on the same labeled leaves is extended to the isomorphic subtrees.
If T1 and T2 are isomorphic including label information, we write T1 ≈ T2.

(5) T1(u1) ≈ T1(u2) (u1 6= u2) or T2(v1) ≈ T2(v2) (v1 6= v2).

In this case, we need not create an edge {(u1, v2), (u2, v1)} for any u1, u2, v1, and v2

in the construction of G(u,v) because of the following reason. When T1(u1) ≈ T1(u2) or
T2(v1) ≈ T2(v2), the score of mapping {(T1(u1), T2(v2)), (T1(u2), T2(v1))} is equal to that
of mapping {(T1(u1), T2(v1)),(T1(u2), T2(v2))}. Therefore, we have only to create an edge
{(u1, v1), (u2, v2)} without creating an edge {(u1, v2), (u2, v1)} (see also Fig. 10).

(Figure 10)

Proposition 6. Suppose that u1, u2 ∈ T1 and v1, v2 ∈ T2. If T1(u1) ≈ T1(u2) (u1 6=
u2) or T2(v1) ≈ T2(v2) (v1 6= v2), W [u, v] can be computed without creating an edge
{(u1, v2), (u2, v1)} for any u1, u2, v1, and v2 in the construction of G(u,v).

Proof. If there exists a mapping M which includes two pairs (u1, v1), (u2, v2) between
T1 and T2, it is implied that there also exists a mapping M ′ which includes two pairs
(u1, v2), (u2, v1) instead of (u1, v1), (u2, v2) between T1 and T2. Moreover, from the as-
sumption, the score of mapping {(T1(u1), T2(v2)), (T1(u2), T2(v1))} is equal to that of map-
ping {(T1(u1), T2(v1)), (T1(u2), T2(v2))}, that is, W [u1, v1] = W [u2, v1] and W [u2, v2] =
W [u1, v2]. Now, the following equality holds,

score(M) =
∑

(x,y)∈M

W [x, y]

=
∑

(x,y)∈M\{(u1,v1),(u2,v2)}

W [x, y] + W [u1, v1] + W [u2, v2]

=
∑

(x,y)∈M\{(u2,v1),(u1,v2)}

W [x, y] + W [u2, v1] + W [u1, v2]

=
∑

(x,y)∈M ′

W [x, y]

= score(M ′)

14

Thus, the score of a mapping including two pairs (u1, v2), (u2, v1) is equal to that of a
mapping including two pairs (u1, v1), (u2, v2). Therefore, we have only to create an edge
{(u1, v1), (u2, v2)} without creating an edge {(u1, v2), (u2, v1)}.

It is expensive to determine whether two graphs are isomorphic or not but we can solve
the problem easier when the two graphs are trees. Though various algorithms are invented
for the problem, we employ an algorithm introduced in (Matoušek and Nešetřil, 1998).
The algorithm transforms the tree isomorphism problem into the comparison of simple
numerical sequences.

From the propositions 2 ∼ 6, we have the following theorem.

Theorem 1. DpCliqueEdit with the heuristic (1) ∼ (5) computes dist(T1, T2) without
violating the optimality of the solution.

It should be noted that we can use the heuristic techniques only if DP is introduced
to the clique-based approach.

15

4 EXPERIMENTAL RESULTS

In order to evaluate the efficiency of the improved method and heuristic techniques, we ap-
plied CliqueEdit, UwCliqueEdit, and DpCliqueEdit to comparison of real tree structured
data. As the tree structured data, we employed glycan structures that were obtained from
KEGG/Glycan database (Kanehisa et al., 2010) and CSLOGS dataset which consists of
Web logs files (Zaki et al., 2005).

It is to be noted that, as far as we know, there exists no other publicly available
program for exactly computing the unordered tree edit distance and thus we only com-
pared these methods. From the result given in (Horesh et al., 2006), it is considered
that CliqueEdit has similar efficiency (Fukagawa et al., 2011) to the A∗-algorithm for
unordered tree edit distance (Horesh et al., 2006).

We implemented CliqueEdit, UwCliqueEdit, and DpCliqueEdit using C++ language
and compared UwCliqueEdit and DpCliqueEdit with the previous method CliqueEdit. In
the implementations of CliqueEdit and DpCliqueEdit, MWCQ (Nakamura and Tomita,
2005) was used as a maximum vertex weighted clique algorithm, while in that of Uw-
CliqueEdit, MCS (Tomita et al., 2010) was used as a maximum clique algorithm. DpCliqueEdit-
A, DpCliqueEdit-B, DpCliqueEdit-C, DpCliqueEdit-D, and DpCliqueEdit-E
represent DpCliqueEdit without heuristics, with heuristics (1)(2), with heuristics (1)(2)(3),
with heuristics (1)(2)(3)(5), and with all heuristics, respectively. The preliminary version
of DpCliqueEdit in (Akutsu et al., 2011b) is equivalent to DpCliqueEdit-B. We performed
computational experiments using a PC with 2.66 GHz Intel Core i7 CPU and 3.88 GB
RAM running under the Mac OS X operating system. In this paper, we focus only on
the computational efficiency and do not conduct computational experiments for evalu-
ating the performance (i.e., accuracy of comparison) of CliqueEdit, UwCliqueEdit, and
DpCliqueEdit because these methods compute the same distances, the performance of
CliqueEdit was already evaluated in the previous work (Fukagawa et al., 2011), and the
tree edit distance is the most established distance measure for trees (Bille, 2005).

For evaluation of the methods, we used the standard weighting scheme (i.e., f(u, v) = 2
for ℓ(u) = ℓ(v), f(u, v) = 1 for ℓ(u) 6= ℓ(v)) corresponding to the unit cost edit distance.

4.1 Glycan Structures

As in our previous work (Fukagawa et al., 2011), we randomly selected 100 pairs of
glycan structures with a specified range of the total number of nodes (i.e., the sum of
the numbers of nodes in T1 and T2) and measured the average CPU time (user time) per
pair. Unbalanced cases in which the size of one structure was smaller than 1/3 of the
other structure were excluded. For each of the ranges in 60 ∼ 79, we took the average
over 20 pairs because there did not exist an enough number of pairs, where we could
use 19 pairs among 20 pairs for the range of 70 ∼ 74 because there was a hard case for
which DpCliqueEdit-A could not output a solution within 60 minutes. For the ranges of
80 ∼ 84, 85 ∼ 89, and 90 ∼ 94, only 9, 5, and 4 pairs were available, respectively. We
could use only 4 pairs among 5 pairs for the range of 85 ∼ 89 and 2 pairs among 4 pairs

16

for the range of 90 ∼ 94 because there were hard cases for which DpCliqueEdit-A could
not output a solution within 60 minutes.

The result of the computational experiment is shown in Table 1. From this table, it
is seen that DpCliqueEdit-B, DpCliqueEdit-C, DpCliqueEdit-D, and DpCliqueEdit-E are
much faster than CliqueEdit, UwCliqueEdit, and DpCliqueEdit-A for non-small glycan
structures. In particular, DpCliqueEdit-D is the fastest for comparison of large glycan
structures. Although UwCliqueEdit is faster than CliqueEdit in most cases, it is not fast
for comparison of large glycan structures because it constructs larger and denser graph Ĝ
as G becomes larger and thus MCS does not work efficiently. Besides, DpCliqueEdit-A
is not fast despite the fact that DpCliqueEdit-B ∼ DpCliqueEdit-E are faster than the
other methods. This is because DpCliqueEdit repeatedly solves instances of the maximum
vertex weighted clique problem as sub-problems, so that it takes long CPU time if the
heuristic techniques are not introduced. Since the heuristic techniques proposed in this
paper cannot be used without using DP, DP needs to be introduced in order to reduce the
computation time. Although CliqueEdit and UwCliqueEdit are faster than DpCliqueEdit-
B ∼ DpCliqueEdit-E for small glycan structures, comparison of large glycan structures is
more crucial because it takes a large amount of time.

(Table 1)

Table 2 shows the results on pairs of trees (i.e., hard cases) for which some of the
examined methods could not compute the distance within 60 minutes. From this table,
though there is no great difference between DpCliqueEdit-B ∼ DpCliqueEdit-E except
for the range of 90 ∼ 94 in Table 1, we find that DpCliqueEdit-D and DpCliqueEdit-E
are much faster than the other methods in hard cases. This implies that DpCliqueEdit-
D and DpCliqueEdit-E utilize the existence of the same labeled leaves, different labeled
leaves, and isomorphic subtrees, and thus need much shorter time for MWCQ. It takes
long CPU time for DpCliqueEdit-A to output a solution in most cases. This is because it
costs much CPU time to construct G(u,v) and solve the maximum vertex weighted clique
problem repeatedly. It is also seen that there exist some instances which UwCliqueEdit
can solve within 60 minutes whereas CliqueEdit or DpCliqueEdit-B cannot solve within
60 minutes. However, UwCliqueEdit is not faster than CliqueEdit and DpCliqueEdit-B
for comparison of large glycan structures.

From the results of these computational experiments, we can conclude that DpCliqueEdit-
D and DpCliqueEdit-E are more useful than the other proposed clique-based methods.
Using heuristics (3) and (5), DpCliqueEdit-D and DpCliqueEdit-E are much faster than
DpCliqueEdit-B (i.e., the preliminary version of DpCliqueEdit in (Akutsu et al., 2011b)).

(Table 2)

4.2 CSLOGS Dataset

As in the comparison of glycan structures, we randomly selected 100 pairs of Web logs
data with a specified range of the total number of nodes (i.e., the sum of the numbers of

17

nodes in T1 and T2) and measured the average CPU time (user time) per pair. Different
from comparison of the glycan structures, we randomly selected trees from CSLOGS and
created two sub-datasets called SUBLOGS3 and SUBLOGS5 in this paper. Each sub-
dataset has 15000 trees whose sizes are restricted to smaller than or equal to 80, where
the maximum number of children of each node is limited to smaller than or equal to 3 and
5 in SUBLOGS3 and SUBLOGS5, respectively. The percentage of the number of trees in
which the maximum number of children of each node are restricted to 3 and 5 is about
65% and 81% of the total number of them in CSLOGS. Unbalanced cases mentioned in
Section 4.1 were excluded.

The results of the computational experiments we performed with SUBLOGS3 and
SUBLOGS5 are shown in Table 3 and Table 4, respectively. From Table 3, it is seen that
UwCliqueEdit is the fastest for small trees. However, as the total number of nodes of input
trees becomes larger, it takes longer CPU time for UwCliqueEdit to solve the problem,
and there exist hard cases for which UwCliqueEdit could not output a solution within 60
minutes. For non-small trees, although most methods could not solve the problem in 60
minutes in some cases, DpCliqueEdit-E could in 60 minutes for all cases we selected in
this experiment. Similarly, from Table 4, we find that UwCliqueEdit is faster than any
other method for small trees and DpCliqueEdit-E is the fastest for non-small trees.

Although there is no great difference between DpCliqueEdit-D and DpCliqueEdit-E
for comparison of glycan structures, DpCliqueEdit-E is the most useful for comparison of
trees. In CSLOGS, there are 13,361 unique Web page (Zaki et al., 2005) and each Web
page is assigned to each node as a label, so that there exist many leaves with different
labels. Therefore, heuristic (4) works efficiently.

(Table 3)

(Table 4)

18

5 CONCLUSION

In this paper, we proposed an improved clique-based method by introducing DP and
several heuristic techniques for computing the tree edit distance between rooted unordered
trees. DP and the heuristic techniques are very useful and then the improved method is
much faster than the previous method in most cases of comparison of real tree structured
data. In particular, for hard instances of comparison of glycan structures, the improved
method achieved more than 100 times speed-up. Although the improved method is not
faster for comparison of small glycans, it is not crucial because comparison of large glycan
structures takes much longer CPU time than that of small glycans. In comparison of Web
logs data, it takes long CPU time to compute the edit distance between trees when there
exist some nodes with many children. However, most biological data such as glycans,
RNA secondary structures, and vascular trees might have few internal nodes with many
children.

Although the improved method is much faster than the previous method, there still
exist cases for which it takes long CPU time. In particular, it takes long CPU time if
there exist long subtrees (i.e., there exist many nodes but few leaves) because the heuristics
(1)(2) proposed in this paper can reduce the computation time only if there exist nodes
with one child in the long subtrees, and the heuristics (3)(4)(5) cannot well contribute to
reduction of the number of edges in such cases and thus the maximum vertex weighted
clique algorithm does not work efficiently. How to cope with such cases is left for future
work.

Moreover, in order to achieve further speed-up, we should develop an improved al-
gorithm for the maximum vertex weighted clique problem because an improvement of
the efficiency of clique finding directly leads to an improvement of the efficiency of our
proposed algorithm. In particular, a maximum vertex weighted clique solver specialized
for properties of weighted graphs generated by the clique-based algorithm might be useful
for the tree edit distance problem. How to develop such an algorithm is also left as future
work.

In addition to the future work mentioned above, some modifications are needed for
application to analysis of tree structured data used in computational biology. Although
we have used the unit cost edit distance in computational experiments, more suitable cost
functions should be used for analysis of biological and other objects. Development of cost
functions suitable to individual applications is also left for future work.

ACKNOWLEDGMENTS

This work was partially supported by research collaboration projects by National Institute
for Informatics, and Institute for Chemical Research, Kyoto University. The work of TA
was partially supported by MEXT Grant-in-Aid No.22240009. The work of DF and AT
was partly supported by MEXT Grant-in-Aid No.18049069. The work of ET was partially
supported by MEXT Grant-in-Aid No.22500009.

19

References

Aoki, K. F., Yamaguchi, A., Ueda, N., Akutsu, T., Mamitsuka, H., Goto, S., and Kane-
hisa, M. 2004. KCaM (KEGG Carbohydrate Matcher): a software tool for analyzing
the structures of carbohydrate sugar chains, Nucleic Asids Research 32, 267-272.

Akutsu, T., Fukagawa, D., Takasu, A., and Tamura, T. 2011a. Exact algorithms for
computing tree edit distance between unordered trees, Theoretical Computer Science
421, 352-364.

Akutsu, T., Mori, T., Tamura, T., Fukagawa, D., Talasu, A., and Tomita, E. 2011b
An improved clique-based method for computing edit distance between unordered trees
and its application to comparison of glycan structures, The 4th International Workshop
on Intelligent Informatics in Biology and Medicine, A Part of Proc. 5th International
Conference on Complex, Intelligent and Software Intensive Systems, 536-540.

Bille, P. 2005. A survey on tree edit distance and related problems, Theoretical Computer
Science 337, 217-239.

Fukagawa, D., Tamura, T., Takasu, A., Tomita, E., and Akutsu, T. 2011. A clique-based
method for the edit distance between unordered trees and its application to analysis of
glycan structures, BMC Bioinformatics (Suppl. for APBC 2011), 12, Suppl 1, S14 (9
pages).

Demaine, E. D., Mozes, S., Rossman, and B., Weimann, O. 2009. An optimal decompo-
sition algorithm for tree edit distance, ACM Transactions on Algorithms 6.

Horesh, Y., Mehr, R., and Unger, R. 2006. Designing an A* algorithm for calculating
edit distance between rooted-unordered trees, Journal of Computational Biology 13,
1165-1176.

Jiang, T., Lin, G., Ma, B., and Zhang, K. 2002. A general edit distance between RNA
structures, 2002. Journal of Computational Biology 9, 371-388.

Kanehisa, M., Goto, S., Furumichi, F., Tanabe, M., and Hirakawa, M. 2010. KEGG for
representation and analysis of molecular networks, Nucleic Acids Research 38, D355-
D360.

Matoušek, J., and Nešetřil, J. 1998. Invitation to Discrete Mathematics, Oxford University
Press, New York.

Nakamura, T., and Tomita, E. 2005. Efficient algorithms for finding a maximum clique
with maximum vertex weight. Technical Report UEC-TR-CAS3-2005 (in Japanese),
the University of Electro-Communications.

Ogawa, H. 1986. Labeled point pattern matching by Delaunay triangulation and maximal
cliques, Pattern Recognition, 35-40.

20

Pelillo, M., Siddiqi, K., and Zucker, S. W. 1999. Matching hierarchical structures using
association graphs, IEEE Transactions on Pattern Analysis and Machine Intelligence
21, 1105-1119.

Tai, K.-C. 1979. The tree-to-tree correction problem, Journal of ACM 26, 422-433.

Tomita, E., and Seki, T. 2003. An efficient branch-and-bound algorithm for finding a
maximum clique, in Proc. 4th International Conference on Discrete Mathematics and
Theoretical Computer Science (Lecture Notes in Computer Science Vol.2731), 278-289.

Tomita, E., Sutani, Y., Higashi, T., Takahashi, S., and Wakatsuki, M. 2010. A simple
and faster branch-and-bound algorithm for finding a maximum clique, In Proc. 4th
International Workshop on Algorithms and Computation (Lecture Notes in Computer
Science Vol. 5942), 191-203.

Tomita, E., Akutsu. T., and Matsunaga, T. 2011. Efficient algorithms for find-
ing maximum and maximal cliques: Effective tools for bioinformatics, 625-
640. in Biomedical Engineering, Trends in Electronics, Communications and
Software, Laskovski, A. B. eds., ISBN: 978-953-307-475-7, InTech. Available
from: http://www.intechopen.com/articles/show/title/efficient-algorithms-for-finding-
maximum-and-maximal-cliques-effective-tools-for-bioinformatics

Torsello, A., and Hancock, E. R. 2003. Computing approximate tree edit distance using
relaxation labeling, Pattern Recognition Letters 24, 1089-1097.

Yu, K.-C., Ritman, and E. L., Higgns, E. 2007. System for the analysis and visualization
of large 3D anatomical trees, Computers in Biology and Medicine 37, 1802-1830.

Zaki, M.J. 2005. Efficiently Mining Frequent Trees in a Forest: Algorithms and Applica-
tions, IEEE Transactions on Knowledge and Data Engineering, special issue on Mining
Biological Data, 17, 8, 1021-1035.

Zhang, K., Statman, R., and Shasha, D. 1992. On the editing distance between unordered
labeled trees, Information Processing Letters 42, 133-139.

21

Table 1: CPU time for comparing glycans.

total # nodes CliqueEdit UwCliqueEdit DpCliqueEdit-A DpCliqueEdit-B DpCliqueEdit-C DpCliqueEdit-D DpCliqueEdit-E

30 ∼ 34 0.002 0.003 0.013 0.006 0.006 0.006 0.009
35 ∼ 39 0.004 0.007 0.027 0.011 0.011 0.012 0.017
40 ∼ 44 0.056 0.035 0.107 0.026 0.019 0.021 0.029
45 ∼ 49 0.064 0.036 0.126 0.031 0.030 0.031 0.040
50 ∼ 54 0.078 0.049 0.228 0.039 0.037 0.039 0.051
55 ∼ 59 1.987 0.433 8.968 0.108 0.088 0.086 0.096
60 ∼ 64 2.746 4.949 1.780 0.167 0.163 0.149 0.177
65 ∼ 69 64.290 9.303 39.460 0.381 0.364 0.328 0.357
70 ∼ 74 58.690 0.099 1.337 0.545 0.436 0.463 0.501
75 ∼ 79 2.441 0.918 4.051 0.953 0.752 0.754 0.781
80 ∼ 84 7.150 6.570 44.630 2.516 2.268 1.620 1.653
85 ∼ 89 237.700 28.030 21.110 3.205 3.205 2.413 2.490
90 ∼ 94 303.200 1211.000 1710.000 38.810 26.300 8.165 9.475

Average CPU time (sec.) per glycan pair is shown for each case. Bold face indicates the
best results for each case.

Table 2: CPU time for comparing glycans for each hard case.

glycan pair total # nodes CliqueEdit UwCliqueEdit DpCliqueEdit-A DpCliqueEdit-B DpCliqueEdit-C DpCliqueEdit-D DpCliqueEdit-E

{G04520, G04682} 35 693.400 - 223.900 225.800 0.020 0.020 0.020
{G04520, G05248} 36 1124.000 - 284.500 285.900 0.020 0.020 0.020
{G03769, G04682} 71 - 491.400 - - 10.910 0.490 0.520
{G03769, G04520} 72 - 59.080 - - 11.800 0.420 0.450
{G03769, G05248} 72 - 17.380 - - 56.500 0.600 0.630
{G03769, G05297} 72 - 17.590 - - 56.560 0.600 0.630
{G03655, G03769} 88 108.600 277.400 - 300.700 31.170 5.610 6.430
{G03769, G04206} 91 844.100 1397.000 - 5.870 5.250 5.830 5.120
{G03769, G11847} 91 132.100 911.500 - 108.400 82.880 28.120 22.200

Average CPU time (sec.) per glycan pair is shown for each case. CPU time (sec.) per
glycan pair is shown for each hard case. “-” denotes that the program could not output
a solution within 60 minutes (= 3600 seconds). Bold face indicates the best results for
each case.

22

Table 3: CPU time for comparing Web logs data obtained from SUBLOGS3 dataset.

total # nodes CliqueEdit UwCliqueEdit DpCliqueEdit-A DpCliqueEdit-B DpCliqueEdit-C DpCliqueEdit-D DpCliqueEdit-E

30 ∼ 34 0.003 0.003 0.010 0.007 0.007 0.007 0.008
35 ∼ 39 0.009 0.009 0.024 0.018 0.017 0.018 0.018
40 ∼ 44 0.061 0.023 0.068 0.038 0.032 0.031 0.033
45 ∼ 49 0.218 0.100 0.155 0.059 0.053 0.051 0.050
50 ∼ 54 2.928 0.129 0.370 0.222 0.119 0.117 0.095
55 ∼ 59 2.189 0.809 2.965 0.210 0.173 0.182 0.167
60 ∼ 64 - 39.940 - 20.450 0.542 1.904 0.297
65 ∼ 69 - 17.380 - - 2.230 1.106 0.662
70 ∼ 74 - - - - 3.589 1.423 1.024
75 ∼ 79 - - - - - 1.895 1.566
80 ∼ 84 - - - - - - 2.625
85 ∼ 89 - - - - - 46.920 10.550
90 ∼ 94 - - - - - - 50.570
95 ∼ 99 - - - - - - 64.980

Average CPU time (sec.) per Web logs pair is shown for each case. The maximum number
of children of each node is limited to smaller than or equal to 3. “-” denotes that there
exist at least one hard case for which the program could not output a solution within 60
minutes (= 3600 seconds). Bold face indicates the best results for each case.

Table 4: CPU time for comparing Web logs data obtained from SUBLOGS5 dataset.

total # nodes CliqueEdit UwCliqueEdit DpCliqueEdit-A DpCliqueEdit-B DpCliqueEdit-C DpCliqueEdit-D DpCliqueEdit-E

30 ∼ 34 0.010 0.005 0.029 0.011 0.010 0.011 0.008
35 ∼ 39 0.244 0.034 0.357 0.114 0.027 0.025 0.016
40 ∼ 44 44.090 4.067 41.000 4.630 2.890 1.913 0.028
45 ∼ 49 35.380 7.310 19.140 3.075 1.079 0.994 0.101
50 ∼ 54 - - - - - - 0.141
55 ∼ 59 - 53.750 - - 12.580 12.260 0.423
60 ∼ 64 - - - - - - 17.240
65 ∼ 69 - - - - - - 10.850

Average CPU time (sec.) per Web logs pair is shown for each case. The maximum number
of children of each node is limited to smaller than or equal to 5. “-” denotes that there
exist at least one hard case for which the program could not output a solution within 60
minutes (= 3600 seconds). Bold face indicates the best results for each case.

23

Figures

a

a

a

ae

b

b

c

cd d

f

h hi

i j

j k

g

r r

T
1

T
2

Figure 1

Figure 1: Example of tree edit operations and edit distance mapping for unordered trees.
T2 is obtained from T1 by deletion of node labeled e, insertion of node labeled k, and
substitution of node labeled f with node labeled g, where a tree can contain nodes with
the same label. The corresponding mapping M is shown by broken curves.

24

Figure 2

(i) one-to-one condition (ii) descendant condition

Figure 2: Example of the condition of the edit distance mapping. The left and right
figures correspond to conditions (i) and (ii) for the edit distance mapping, respectively,
where (i) stands for one-to-one condition, and (ii) stands for descendant condition.

Figure 3

3

2

4

1

4

2

(i) maximum clique (ii) maximum vertex weighted clique

Figure 3: Example of the maximum clique and the maximum vertex weighted clique. The
size of the maximum clique of the left graph is four, while the weight of the maximum
vertex weighted clique of the right graph is 10.

25

T1 G

(a,p)

(a,q)

(a,r)

(b,p)

(b,q)

(b,r)
(c,p)

(c,q)

(c,r)

(d,p)

(d,q)

(d,r)

u

a d

b c

v

p q

r

u

a d

b c

v

p q

r

T2

T2T1

Figure 4

Figure 4: Example of a reduction in the previous method (CliqueEdit). A maximum
clique is shown by bold lines in graph G, and the corresponding mapping is shown by
broken lines in bottom left side.

v1

v2

v3

v4

v5 v
1

1

v
1

2

v
1

3
v
2

3

v
1

4

v
1

5

v
2

5

1

1

1

2

2

Figure 5
Figure 5: Example of transformation of a vertex weighted graph into an unweighted graph.
v3 and v5 are duplicated.

26

u v

u1

(u
1
, v1)

(a, b)

v1a b

Figure 6
Figure 6: Difference between the reductions in CliqueEdit and DpCliqueEdit. In compu-
tation of W [u, v] in DpCliqueEdit, vertex (u1, v1) in G(u,v) is not connected to any one of
vertices corresponding to pairs of descendants of u1 and v1.

u v

u1 v1

u v

u1 v1

u v

u1 v1

(i) (ii) (iii)

Figure 7

Figure 7: Heuristic techniques (1). (i), (ii), and (iii) denote the cases (i) ∼ (iii) in the
proof of the Proposition 2.

27

u

u1

u2

v

v'

(u
2
, v')

Figure 8

Figure 8: Heuristic techniques (2). A vertex (u2, v
′) is not necessary for any v′ in the

construction of G(u,v).

..... ..

..
.

...

..
.

..... ..

..
.

...

..
.

a (u1, v1)
u1

a

u2

u1 u2

v2 v1

(u1, v2)

(u2, v1)

(u2, v2)

u v

u v

Figure 9

v2 v1

b c

a a b c

Figure 9: Example of heuristic technique (3). u1, u2, v1, and v2 are leaves, and ℓ(u1) =
ℓ(u2). In this case, we need not create {(u1, v2), (u2, v1)}.

28

(u1, v1)

(u1, v)

(u , v1)

(u , v)

u v

u v

.....

.....

T
1
(u
1
) T1(u�) T

�
(v

�
) T

�
(v
1
)

T
1
(u
1
) T1(u�) T

�
(v

�
) T�(v1)

Figure 10

Figure 10: Example of heuristic technique (4). T1(u1) and T1(u2) are isomorphic including
label information. In this case, we need not create {(u1, v2), (u2, v1)}.

29

