TITLE:
Lewis-acid-mediated ring-exchange reaction of dihydrobenzofurans and its application to the formal total synthesis of (-)-quinocarcinamide

AUTHOR(S):
Chiba, Hiroaki; Sakai, Yuki; Oishi, Shinya; Fujii, Nobutaka; Ohno, Hiroaki

CITATION:

ISSUE DATE:
2012-11

URL:
http://hdl.handle.net/2433/160700

RIGHT:
© 2012 Elsevier Ltd.; この論文は出版社版ではありません。引用の際には出版社版をご確認ご利用ください。; This is not the published version. Please cite only the published version.
Graphical Abstract

Lewis-acid-mediated ring-exchange reaction of dihydrobenzofurans and its application to the formal total synthesis of (−)-quinocarcinamide

Hiroaki Chiba, Yuki Sakai, Shinya Oishi, Nobutaka Fujii,* Hiroaki Ohno*

Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyoku, Kyoto 606-8501, Japan
Lewis-acid-mediated ring-exchange reaction of dihydrobenzofurans and its application to the formal total synthesis of (−)-quinocarcinamide

Hiroaki Chiba, Yuki Sakai, Shinya Oishi, Nobutaka Fujii, * Hiroaki Ohno *
Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan

ARTICLE INFO

Article history:
Received
Received in revised form
Accepted
Available online

ABSTRACT

An unusual Lewis-acid-mediated ring-exchange reaction of dihydrobenzofurans is described. The fused tricyclic ring system is the key structural element for this reaction as it restricts C–N bond rotation and/or destabilizes the benzofuran ring. We achieved the formal total synthesis of (−)-quinocarcinamide using a combination of this reaction and the Au(I)-catalyzed 6-endo-dig hydroamination of an alkyne.

Keywords:
(−)-quinocarcinamide
Lewis acid
ring-exchange
dihydrobenzofuran

This is an author version based on a template provided by Elsevier.

1. Introduction

Quinocarin is a pentacyclic tetrahydroisoquinoline alkaloid, isolated by Takahashi and Tomita in 1983. Its intricate polycyclic architecture and potent broad-spectrum antitumor activity have attracted both synthetic and biological chemists, culminating in several efficient syntheses, reported by Fukuyama, Garner, Terashima, Myers, Zhu, and Stoltz. We recently reported the enantioselective total synthesis of (−)-quinocarcin using Au(I)-catalyzed intramolecular hydroamination of alkynes (Scheme 1). In this synthesis, we had to overcome the challenging problem of cleaving the dihydrobenzofuran ring in 6, which was a key structural element for the 6-endo-dig over 5-exo-dig hydroamination. Based on the LiI-mediated ring-opening halogenation of benzofurans in the presence of SiCl₄ and BF₃·AcOH reported by Zewge et al., we attempted a ring-exchange strategy using neighboring group participation of the carbonyl oxygen of lactam to afford an oxazolidinium intermediate. Exposure of lactam to BF₃·Et₂O and SiCl₄ in 1,2-dichloroethane (1,2-DCE) afforded a suspension, which possibly contained the expected oxazolidinium intermediate. Addition of H₂O to the resulting suspension led to recovery of the starting material, but work-up with CsCl afforded the desired chlorinated phenol in 92% yield.

Based on these results, we thought that easier ring-opening of dihydrobenzofuran would be achieved by introduction of an appropriate nucleophilic functionality in the substrate. We embarked on an investigation to clarify the structural requirements which would accelerate the ring-opening reaction. Its synthetic application to the formal total synthesis of (−)-quinocarcinamide is also described.

Scheme 1. Total synthesis of (−)-quinocarcin. [6]
2. Results and discussion

We tested our theory using the reaction of N-Boc-dihydroisoquinoline 9 (Scheme 2). Treatment of 9 with SiCl₄ and BF₃·OEt₂ in 1,2-DCE afforded oxazolidinone 10 in 84% yield. In this case, the reaction proceeded at room temperature and work-up with CsCl (to suppress the reverse reaction) was not necessary. When the reaction was performed in the absence of BF₃·OEt₂, the starting material 9 was only recovered. This is in good accordance with the literature. This ring-exchange reaction is interesting and unusual because the normally stable dihydrobenzofuran ring can be selectively converted into the oxazolidinone by simultaneous C–O bond cleavage of the dihydrobenzofuran and C–O bond formation of the oxazolidinone ring. We thought that the possible requirements for the ring-exchange reaction would be: (1) restricted C–N bond rotation to give the appropriate arrangement of the carbonyl oxygen at the back of the furan C–O bond as shown in A, and (2) slightly distorted tricyclic ring systems in 6 and 9 to destabilize the benzofuran ring. Restriction of the C–N bond in 9 can be achieved by the tricyclic ring system and/or an aminomethyl substituent at the C-3 position of dihydroisoquinoline.

Scheme 2. Lewis-acid-mediated ring-exchange reaction of N-Boc-dihydroisoquinoline 9.

To clarify the structural requirements for the ring-exchange reaction, we investigated the reaction using N-Boc-3-aminodihydrobenzofurans 11a–c (Table 1, entries 1–3). These substrates contain the minimum necessary functionalities for the reaction. Treatment of dihydrobenzofurans 11a–c with BF₃·OEt₂ and SiCl₄ in 1,2-DCE did not provide the oxazolidinones 12. Instead, amines 13a/b and 11a, formed by removal of the Boc group, were obtained in modest yields. Similarly, methyl carbamate 11d did not produce oxazolidinone 12b, but underwent elimination of methyl benzylcarbamate (entry 4). These observations show that (1) restricted C–N bond rotation and/or (2) a distorted tricyclic ring system are important for a successful ring-exchange reaction.

We then investigated partial restriction of the C–N bond rotation by introduction of a substituent at the 4-position of the benzofuran ring. Treatment of 4-iododihydrobenzofurans 11e/f with BF₃·Et₂O and SiCl₄ only gave the corresponding amines 13e/f, without promoting the ring-exchange reaction (entries 5 and 6). In sharp contrast, tricyclic dihydroisoquinoline 11g (entry 7), which was prepared by Sonogashira coupling of aryl iodide 11e with phenylacetylene, followed by Au(I)-catalyzed 6-endodig hydroamination of an alkyn, afforded the corresponding ring-exchange product 12g in 95% yield upon exposure to identical reaction conditions. When the tricyclic tetrahydroisoquinoline-type substrate 11h was used, the corresponding ring-exchange product 12h was obtained in 45% yield along with 18% yield of the amine 13h. These results showed that the appropriate fused ring structure, which would restrict the arrangement of the carbonyl oxygen and destabilize the benzofuran ring, is vital for this unusual ring-exchange reaction. Tricyclic dihydroisoquinoline substrate 11i, N-methoxycarbonyl analogue of 11g, was also converted into the same phenol 12g albeit in lower yield (entry 9). Unfortunately, treatment of substrate 11j, with no substituent at the C-3 position of dihydroisoquinoline, led to a complex mixture of unidentified products (entry 10). On the other hand, when using substrate 11k, we obtained the resulting phenol 12k in 75% yield bearing a bromo substituent, which is useful for further elaborations. It is noteworthy that in this case SiBr₄ was used in place of SiCl₄ because the reaction of the bromide 11k under the standard conditions caused halogen-exchange to form a considerable amount of the corresponding chloride (ca. 50% yield, judged by 'H NMR and GC-MS, entry 11).

Table 1

<table>
<thead>
<tr>
<th>Entry</th>
<th>Dihydrobenzofuran</th>
<th>Phenol (%)a</th>
<th>Amine (%)a</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tetrahedron
3. Application to the formal total synthesis of (−)-quinocarcinamide. Reagents and conditions: a) methyl 2-[methyl(propargyl)amino]acetate, Pd(OAc)$_2$, n-Bu$_4$NOAc, DMF, 80 ºC; b) IPr–AuCl, AgNTf$_2$, 1,2-DCE, 45 ºC; c) Me$_2$SO$_4$, Cs$_2$CO$_3$, acetone, 0 ºC; d) K$_2$CO$_3$, EtOH, 20 ºC. IPr = 1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene.

3. Conclusions

In summary, we investigated the Lewis-acid-mediated ring-exchange reaction of dihydrobenzofuran. A tricyclic ring system for the restriction of the C–N bond rotation and/or destabilization of the benzofuran ring is the key structural element for the success of this ring-exchange reaction. A combination of this reaction with the Au(I)-catalyzed 6-endo-dig hydroamination of an alkene was used to achieve the formal total synthesis of (−)-quinocarcinamide.

4. Experimental

4.1 Lewis-acid-mediated ring-exchange reaction

General procedure: synthesis of methyl (R)-2-[[10-hydroxy-3-oxo-3,10b-dihydro-1H-oxazolo[4,3-a]isoquinolin-5-yl)methyl]((methyl)amino)acetate (10) (Scheme 2). SiCl$_4$ (0.03 mL, 0.27 mmol) and BF$_3$·Et$_2$O (0.004 mL, 0.03 mmol) were added to a stirred solution of 9 (20.4 mg, 0.05 mmol) in 1,2-DCE (2 mL) under argon at room temperature. After stirring for 4 h, Et$_3$N (0.3 mL) and EtOH (2 mL) were added. An insoluble inorganic residue was filtered off and the filtrate was reduced under pressurized. The residue was purified by column chromatography over silica gel with n-hexane–EtOAc (1:1) to give 10 as a white solid (14.5 mg, 84% yield): R_f = 0.24 (n-hexane–EtOAc 1:1); mp 165–166 ºC; [α]$_D$ = −164.7 (c 0.98, EtOH); IR (neat, cm$^{-1}$): 3265 (OH), 1731 (C=O); H NMR (500 MHz, CD$_3$OD) δ 2.45 (s, 3H), 3.34 (d, J = 10.9, 9.2 Hz, 1H), 5.04 (dd, J = 10.9, 8.0 Hz, 1H), 6.03 (s, 1H), 6.63 (d, J = 7.4 Hz, 1H), 6.68 (d, J = 7.4 Hz, 1H), 7.07 (dd, J = 7.4, 7.4 Hz, 1H); 1C NMR (125 MHz, CD$_3$OD) δ 42.1, 51.9, 56.2, 60.28; H, 5.85; N, 8.72. Found C, 60.27; H, 5.62; N, 8.80.

4.2 Formal synthesis of (−)-quinocarcinamide

Synthesis of ethyl (R)-2-[[10-methoxy-3-oxo-3,10b-dihydro-1H-oxazolo[4,3-a]isoquinolin-5-yl)methyl]((methyl)amino)acetate (15) (Scheme 3). Cs$_2$CO$_3$ (1.03 g, 3.16 mmol) was added to a stirred solution of 10 (0.33 g, 1.05 mmol) in acetone (50 mL) under argon at room temperature. After stirring the mixture for 30 min, Me$_2$SO$_4$ (0.1 mL, 1.07 mmol) was added at −10 ºC, and the resulting mixture was stirred for 4 h at 0 ºC. H$_2$O (50 mL) and EtOAc (50 mL) were added and the mixture was allowed to warm to room temperature. The organic phase was separated and washed with brine, dried over MgSO$_4$, and concentrated under reduced pressure. Purification by column chromatography over silica gel with n-hexane–EtOAc (2:1) gave the corresponding methyl ether as a yellow oil (0.34 g, 97%).

K$_2$CO$_3$ (40.5 mg, 0.29 mmol) was added to a stirred solution of this methyl ether (19.5 mg, 0.06 mmol) in EtOH (2 mL) under argon at room temperature. After stirring the mixture for 9 h,
saturated aqueous NH₄Cl (2 mL) was added. The resulting mixture was extracted with EtOAc. The extract was washed with H₂O and brine, dried over MgSO₄, and concentrated under reduced pressure followed by purification by column chromatography over silica gel with n-hexane–EtOAc (2:1) to give 15 as a yellow oil (12.9 mg, 63%): \(R_f = 0.47 \) (n-hexane–EtOAc 1:1); [\(\alpha \)]\(_{26}^D \) –199.8 (c 0.87, CHCl₃); IR (neat, cm\(^{-1}\)): 1761 (C=O); 1H NMR (500 MHz, CDCl₃) \(\delta \) 1.27 (t, \(J = 7.2 \) Hz, 3H), 2.51 (s, 3H), 3.42 (d, \(J = 16.6 \) Hz, 1H), 3.52 (d, \(J = 16.6 \) Hz, 1H), 3.58 (d, \(J = 14.9 \) Hz, 1H), 3.81 (s, 3H), 4.17 (q, \(J = 7.2 \) Hz, 2H), 4.30 (d, \(J = 14.9 \) Hz, 1H), 4.50 (dd, \(J = 10.9, 9.2 \) Hz, 1H), 4.98 (dd, \(J = 9.2, 8.0 \) Hz, 1H), 5.27 (dd, \(J = 10.9, 8.0 \) Hz, 1H), 6.02 (s, 1H), 6.73 (d, \(J = 8.0 \) Hz, 1H), 6.76 (d, \(J = 8.6 \) Hz, 1H), 7.22 (dd, \(J = 8.6, 8.0 \) Hz, 1H); 13C NMR (125 MHz, CDCl₃) \(\delta \) 14.3, 41.6, 54.7, 55.4, 56.1, 57.6, 60.3, 69.4, 109.7, 112.7, 118.2, 119.1, 129.3, 132.4, 135.3, 154.6, 155.0, 171.2; HRMS (FAB) calcd for C₁₈H₂₃N₂O₅ (MH⁺): 347.1607; found: 347.1609.

Acknowledgments

This work was supported by a Grant-in-Aid for the Encouragement of Young Scientists (A) (H.O.) and Platform for Drug Design, Discovery, and Development from the MEXT, Japan. H.C. is grateful for Research Fellowships from the Japan Society for the Promotion of Science (JSPS) for Young Scientists.

References and notes

10. Less expensive N-methyl sarcosine methyl ester was used as the starting material instead of the ethyl ester, because at the beginning the compound 10 was prepared for model experiment in quinocarcin synthesis.