STUDIES
ON
STOCHASTIC DYNAMIC OPTIMIZATION
MODELS WITH APPLICATIONS

by
KATSUSHIGE SAWAKI

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENT FOR THE DEGREE OF
DOCTOR OF ENGINEERING

AT
KYOTO UNIVERSITY
Kyoto, Japan
JANUARY, 1997



ABSTRACT

This dissertation develops wide classes of stochastic dynamic optimization models that
are characterized by many stochastic processes and several fields of applications. Chapter
2 studies a certain class of dynamic programs and its applications. Chapter 3 deals with
inventory control models, including the study of optimal policies with fixed inventory
holding costs and for price differential products with no carrying over of any remaining
inventory to the next day. In Chapter 4 airline seat allocation models are analyzed to
derive an optimal booking policy. In Chapter 5 we consider portfolio selection problems
related to allocating firms’ or individuals’ wealth (money) among available assets. Money
is also able to be treated as inventory. In Chapter 6 we propose new software reliability
growth models based on counting processes for instruction execution in software. Chapter

7 summarizes conclusions drawn from the previous chapters.
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Chapter 1

Introduction

The combined theories of dynamic programming and Markov decision processes have been
applied to many managerial decision problems, including inventory resource allocation.
portfolio management, and machine maintenance problems.

When an information generating process is described by a Markov process and a
multi-stage decision process is able to be applied through the technique of dynamic pro-
gramming, the possibility of handling the dynamic system in a multi-period model as well
as the risk precautionary motive has been widely recognized. However, two problems are
often pointed out as the reasons why the combined theory of dynamic programming and
Markov decision theory has been abandoned as a multi-stage decision making process:
first, it is practically correct that a dynamical system can be approximated by a Markov
process; secondly, the larger the size of the problem becomes, the larger the computational
burden of an algorithm based on dynamic programming.

This thesis aims at overcoming the theoretical defects of Markov decision processes
by considering many stochastic processes; in regard to dynamic programming we develop
a theory for a general class of dynamic programs that yield policies that are simple and
e-optimal. The formulation of our general class of dynamic programs is motivated by
consideration of the special structure that the partially observable model possesses.

In this thesis an important special class of stochastic dynamic models that requires a
series of sequential decisions is widely considered from various aspects. These decisions
must be made sequentially over both discrete periods and continous time. However, not

all decisions need be made at the beginning of the period; instead, we have to choose a



“policy” that determines what we should do in each period as a function of the information

that is then available.

Organization of the Dissertation

It has been recognized that stochastic dynamic optimization models are primarily
concerned with the aspects of problem solving related to formulating multi-stage decision
making processes, evaluating the predicted effects of certain risk environments and de-
riving optimal policies. Each different mathematical model may focus on one or more of
these aspects. Therefore, it is helpful to organize these models according to their primal
functions and applicable fields.

Chapter 2 provides a formulation of a general class of dynamic programs in which there
are distinguished subsets of policies and value functions. An algorithm, called generalized
policy improvement, is used to find =-optimal policies. Piecewise linear dynamic programs
and partially observable Markov decision processes treated in Sections 2.3 and 2.4 of
Chapter 2 are special cases of such simple dynamic programs. In Section 2.6 we show
that partially observable Markov decision processes can be transformed into piecewise
linear dynamic programs.

In Chapter 3 we show how evalnative and predictive inventory models can be com-
bined in certain special cases of dynamic stochastic models to derive optimal policies.
In particular, Section 3.3 analyses an inventory control problem of allocating products
between two types of prices.

In Chapter 4 we consider airline seat allocation models with stochastic demands over
a discrete time horizon in Section 4.3 and a continous time horizon in Section 4.2, respec-
tively. There is a strong similarity between ordinary inventory control and airline seat
management. Airline seats are also inventory products which are perishable or can not
be carried over for future use, and the total amount of the products is fixed.

In Chapter 5 we consider the multi-asset version of the consumption and portfolio
selection problem that is solved by using stochastic dynamic programming. The analysis
begins with a static formulation of the intertemporal model with various risk measures in
Section 5.2 and then derives the continous-time formulation for semi-martingale processes

in Section 5.3. Since the Black-Scholes model in 1973 was a break through paper in the

field of modern finance theory in the 1970s, we show another derivation of the option

pricing formula in Section 5.4,

Chapter 6 is a study of developing a new software reliability growth model focused

on software module structures. It is shown in Section 6.2 that software developed by

an object-oriented approach has a better quality in terms of the proposed measure of

reliability compared with one developed by functional decomposition. In Section 6.3 this

model is extended to one predicated on counting processes of instruction executions

In Chapter 7 we summarize the results drawn from the previous chapters as conslusion



Chapter 2

Simple Dynamic Programs with

Applications

2.1 Introduction

Blackwell [17], Denardo [31], Strauch [118] et al. consider a general class of monotone
contractive dynamic programs. In this chapter we consider a special class of Denardo’s
dynamic programs which satisfies the monotone and contraction assumption. Brumelle
[19] and Brumelle and Putterman [20] develops a theory, as well as an algorithm for
a state increment dynamic programming which is applied to the continues time model
where the state dynamics is described by differential equations. The concepts of “state
increment” is similiar to the one of simple partition in this chapter in the sense that a
convex polyhedral cell of a simple partition corresponds to rectangular block of a state
increment dynamic programming.

In Section 2.2, we consider a class of dynamic programs, based upon Sawaki [101], in
which there are distinguished subsets of policies and value functions, respectively called
simple policies and simple value functions. An algorithm called generalized policy im-
provement is used to find s-optimal policies. This algorithm has the property that only
simple functions and policies are generated. When formulated as a dynamic program, it
has an uncountable state space. However, the sets of simple policies and simple value
functions can be chosen so that they are easily represented in a computer.

Section 2.3 considers a modification of dynamic programs which satisfies the mono-

tone and contraction assumptions (see Sawaki [101]). This class of dynamic programs is

characterized by the piecewise linearity that the cost function is piecewise linear whenever
the terminal cost functon is piecewise linear. Sawaki and Ichikawa [107] points out that
partially observable Markov decision processes have this property.

An algorithm based on policy improvement is developed to construct z-optimal policies
and s-optimal cost functions. This algorithm has the advantage of involving only linear
functions. A numerical example is also presented,

In Section 2.4 we consider an optimal control problem for partially observable Markov
decision processes with finite states, signals and actions over an infinite horizon. It is
shown that there are s-optimal piecewise-linear value functions and piecewise-contant
policies which are simple. Simple means that there are only finitely many pieces, each
of which is defined on a convex polyhedral set. An algorithm based on the method of
successive approximation is developed to compute z-optimal policy and z-optimal cost.
Furthermore, a special class of atationary policies, called finitely transient, will be con-
sidered. It will be shown that such policies have attractive properties which enable us to
convert a partially observable Markov decision chain into s usual finite state Markov one.

Section 2.5 is related to theoritcal development for more general classes of partially
observable Markov and semi-Markov decision processes with imperfect information struc-
tures. The approach taken is to considere such processes with imperfect information states
in terms of the probability distributions of those states, which themselves form Markov
processes and are generated from a Bayes’ rule. Those studies have possible applications
in inventory control, queuing, machine maintenance problems, etc.

Section 2.6 considers how partially observable Markov decision processes may be
trasformed into piecewise linear ones, which have many advantages in that they are easily
represented in a computer. Also we refer Sawaki [100] to specify how to find the products

of simple partitions on which cost functions are piecewise linear.

2.2 Generalized Policy Improvement for Simple Dynamic Programs

An algorithm for dynamic programs was developed in [11] and [20]. This algorithm,
called generalized policy improvement, includes policy improvement [11], [17] and succe-

sive approximation [11] as special cases. In this paper we consider a class of dynamic
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programs, called simple, with the property that the generalized policy improvement al-
gorithm stays within a certain subset of value functions and policies. Simple dynamic
programs are defined in Subsection 2.2.1. Conditions that ensure the existence of an
s-optimal policy within the distinguished subset of policies and an algorithm for finding
such a policy are given in Subsection 2.2.3.

Piecewise linear dynamic programs, discussed in Subsection 2.2.2 are a special case of
simple dynamic programs. In this type of dynamic program the distinguished subsets of
value functions and policies used by the algorithm are easily stored in a computer even
for uncountable state space problems. Partially observable Markov decision processes [6],
[46], [110], [114], are piecewise linear dynamic programs. The piecewise linear structure

was first noted by Sondik [115], Sawaki [107] and [98].

2.2.1 Simple Dynamic Programs

A simple dynamic program is a special case of a dynamic program which satisfies
the monotonicity and contraction assumptions of Denardo [31]. These assumptions and
Denardo’s notation are now reviewed. The state space §) is an arbitrary set. Let V be the
set of alll bounded real value functions on 2. An element of V is a value function. The
norm defined by ||v|| = sup{|v(z)| : z € 2} makes V a Banach space. For v and v in V
we write u < v if u(z) < v(z) for each z € 2. The norm of V is monotone in the sense
that 0 < u < v implies ||lu < ||v]|.

For each € §2 there is a set D, of decisions. Let A be the Cartesian product X ,eqD,.
An element 6 € A is a policy. The return function h assigns a real number to each triplet
(z,d,v) € Ureni{z} x D, x V. In a Markov decision process the return function A(z,d,v)
can be interpreted as the value of choosing decision d when in state z if a terminal
reward v(z) is received whenever the pair (z,d) causes a transition to the state z. The
return function is assumed to satisfy the contraction and monotonicity assumptions. The
contraction assumption is that for some 3 € [0,1), |h(z.d,u) — h(z,d,v)| < Blu — v| for
eachu € Vv € V,z € Q, and d € D,. The monotonicity assumption is that for each
z € Nandd € D, h(z,d,v) < h(z,d,u) whenever u < v in V. For § € A define
Hg : V. — V by (Hsv)(z) = h(z,6(z),v) for v € V and = € 2. Assume for each v € V
there is some 6 € A such that Hsv = sup{Hsv;6 € A}. (Denardo in Corollary 2 of

Theorem 1 [31] gives a useful sufficient condition for this hold.) Define H. : V — V by
H.v = sup{Hsv : § € A}. Here we deviate slightly from Denardo by using H. instead of
A.

An operator H : V — V is monotone if u < v implies Hu < HV, and is a contraction
if for some 8 € [0,1), ||Hu — Hv|| < Bllu = v|| for each u and v in V.

Denardo verifies
that H. and H; are monotone contraction operators.

By Banach's fixed point theorem for contractions, for each § € A there is a unique
vs € V such that Hsvs = vs. The function vs is called the value of the policy §. Similarly
v", called the optimal value, is uniquely defined by H.v* = v*. Denardo shows that
v" = sup{vs : § € A}. If ||lus — v*|| < € then & is an e-optimal policy, and if ||v — v"|| < =
then & is an c-optimal value function.

The objects defined so far and the assumptions that have been imposed are collec-
tively called a contractive monotone dynamic program. A simple dynamic program is a
contractive monotone dynamic program which has a subset of value functions V! C V

and a subset of policies A’ C A which satisfy the following two conditions :

1. Hsv € V" whenever § € A’ and v € V":

2, if v € V', then there exists some § € A’ such that Hsv = H.v.

Elements of V' and A’ are simple value function and simple policies, respectively.

2.2.2 Piecewise Linear Dynamic Programs

Let RV be N-dimensional Euclidean space. Any set of the form {z € RN : Kz <
b,Lx << d} where K and L are N by N matrices and b and d are in RY is called a
conver polyhedron. Suppose A C R¥. A collection P = {B1,Bs,...,By} of subsets of
A is a partition of A if B; n B; =0 fori # j and if UZ; Bi = A. Each member B, of a
partition P is a cell. If each cell of a partition is a convex polyhedron, then the partition
is simple. The product of two partition Pyand Pyis P,-P,={BnD:Be P.D ¢ PR}.
The product of P, - P;. .. P,, is defined inductively by [T, P, = P, - [1%} P.. Clearly, the
finite product of simple partitions is simple. A partition P is finer than a partition P if

each cell of P has a partition which is a subset of 7.




Suppose that & C RY and let V be as defined in the previous subsection. A function
v € V is a piecewise linear if there exists a simple partition {By, B,...., By} of 2 and a
set, of vectors {vy,v3,...,vn} such that v(z) = v;-z for » € B;,i = 1,2,...,m. Piecewise
affine functions are defined analogously as functions which are affine on each cell of a
simple partition. A policy § € A is piecewise constant if there is a simple partition
{By, By, ..., By} of @ and a set of decisions {dy,dy,....dy} such that é(z) = d; for
¢ € B; and d; € Nyep, Dzt = 1,2....,m. A piecewise linear dynamic program is a simple
dynamic program with V' as the set of all piecewise linear functions in V and A’ as the
set of all piecewise constant policies in A,

Although the cannonical example for the rest of our paper is a piecewise linear dynamic
program and the particular case of a partially observable Markov decision process, other
simple dynamic programs are also of interest. The paper by Denardo and Rothblum [32]
discusses simple dynamic programs with V' as the set of affine functions in V' and A’ as
the set of constant policies in A. An example of theoretical (rather than computational)
interest arises when D, = D for z € 2 where D is a measurable space, V' is the set
of Borel measurable function in V', and A’ is the set of measurable policies in A. An
economic model motivated by Walras [130] provides still another example. Let 2 be the
set of possibleprice vectors of N securities (or N commodities). Assume that there is
a finite set D of decisions, each of which can be implemented at any = € Q. For each
d € D there is a corresponding stochastic matrix P;. If the price of vector is z in one
period, then it is Pz in the next period if decision d is chosen. The return function is
h(z,d,v)=r14-¢ — €+ Bv(Pyz) for z € V,d € D,v € V,0 < § < 1, and vector r; € R"
and £ € R. The term r4- z — £ is the immediate reward if decision d is chosen while in
the state z. Since h(z,d,v) is piecewise affine in z whenever v is piecewise affine. it can
be shown by an argument analogous to that in Theorem 2.2.1 which follows that this is
a simple dynamic program with V' as the set of piecewise affine functions and A’ as the
set of piecewise constant policies.

Our motivation for studying piecewise linear and piecewise constant functions is that
they can be conveniently represented in a computer. This property is shared by some
other possible choices of V' such as piecewise affine or even piecewise plynominal. For

example, a simple partition {B,.B,,...,B,,} can easily be stored in computer. Each cell

of B; of the partition is characterized by a list of inequalities, An mequality consists

of a vector, a number which is the righthand side, and an indication of the type of

inequality. A piecewise linear function v requires, in addition to partition, a vector »
3 3 “4

for each cell of partition. Affine. piecewise affine, and piecewise constant functions (e.g

policies) can similarly be stored in a computer,

The intersecton of two cells can be

performed by combining the corresponding lists of inequalities. Thus it is easy to form

product partitions. To avoid replicating a list of inequalities which is in several cells, it

Is convenient to address the lists indirectly. Emptyness of a cell can be checked using a

Phase [ linear program. Since the number of variables (N if O C RY), we actually check

the dual problem for unboundedness.

The next theorem provides a sufficient condition for a monotone contractive dynamic

program to be a piecewise linear dynamic program. The proof is contructive and provides

an algorithm for computing Hsv for § € A’ and v € V/ and an algorithm for computing

H.v and finding 6 € A’ such that Hsv = H.vforv € V'. In order to code these algorithms

a subroutine computing A(-, d, v) for d € D and piecewise linear v is needed. An example

of an algorithm evaluating a return function is described in Subsection 2.2.3.

Theorem 2.2.1 Suppose that a monotone contractive dynamic program has the property

N
that @ C RN and that for each z € Q. D, is the same finite set D = {1,2,. .., p}. Let

; ; el
V7 be the set of piecewise linear value functions and let A’ be the set of piecewise contant

policies. Ifh(-,d,v) € V' for eachd € D andv € V then the dynamic program is piecewise
linear.

Proof Choose v € V' and 6 € A, Suppose §(z) = d; for = € B: where { By Bays -3 B}

18 a simple partition of . For i = 1,2,...,m the return function h(-,d;,v) is piecewise

linear, say h(z,d;,v)+ w;; -z for @ € C;; where {Cia,Ca, ..
% Let B, = {C eapBiy =19

-+Cin} is a simple partition of
.sn}. Note that P. is a simple partition of B; and that
P = UL, P, is a simple partition of 0 In addition, (Hsv)(z)

=wj;-zforz e B; N C;;
which is a cell in P. Thus Hsv € V.

Let v € V'. We next show how to find § € A’ such that Hsv = How. For d €
4-Z for z in the j-th cell of a simple parti-

P. Let the cellls of P = {B;, Bym. . e g

D, h(-,d,v) is piecewise linear, say h(z,d,v) = r;

tion Py. Form the product partition X a1 Py =



and let ayg = v;q if B; is a subset of the j-th cell of Fy. Foreachd € D, P is finer than F; so
that, h(z,d,v) = -z forz € B;,i=1,2,...,m. Fori=1,2,....mand j =1,2,...,p

define the convex polyhedrons

Gi; = {z € Biox > a2 for d=1.2,..., j=1 and

a;e > aur for d=j+1,...,p}.

Then Q; = {Gy; : j = 1.2,...,p} 1s a simple partition of B; and @ = UL, Q; is a simple

partition of 2 with the property that
(Ho)(z) =ay -z if z€Gy whichis a cell of Q.
The policy é € A defined by §(z) = 7 for z € G,; satisfies Hsv = H.v.

2.2.3 The Generalized Policy Improvement Algorithm for Simple Dynamic Pro-

grams

First we review some properties of iterates of operators from Denardo [31]. If H is a
contraction operator in V with contraction coefficient 3, then for each v € V, ||[H"v—1o| —
0 as n — oo where # is the unique fixed point of H. This algorithm for approximating
the fixed point # of H is called successive aproximation. A termination criterion is given
by

o= Hol| < (1—B)e implies fjo— ] <& (2.1)

An upper bound on the number of iterations starting from » required to obatin an -
approximation tod can be derived from |[v — Hv|| < (1 = B)e/8" implies ||[H"v — 3| < <.
Restating this implication explicitly in terms of n, we have

(1-5)

PR a4 L =3 2.2
ool 4

|H"v—¢|| <z for n>log

if H is a monotone operator and v < Hv, then H"v < H™'v forn =0,1,2,... So in this
case successive approximation generates a monotone sequence of functions which coverge
to the fixed point of H.

In a simple dynamic program successive approximation provides a means of approxi-
mating either v, or v"by iterating Hs or H., respectively, until (2.1) is satisfied. If v € V,
then H"v € V' for each n. If in addition § € A’, then Hl'v € V' for each &) Thus the

oS
10

G.
following algorithm, called generalized policy improvement by Brumt[].le [19]; only involves

functions in V' and policies in A'.

Algorithm

Step 0 Start with v € V' satisfying vy < H.vg. Set n = 0.
Step 1 Find §, € A' such that H; v, = H.v,.

Step 2 1f |lvn — Hs,va|| < (1 — B)e then go to Step 4.

Step 3 Otherwise choose some positive integer k, and evaluate vy, := Hf:v“. Increment;

n by 1 and go to Step 1.

Step 4 &y is an s-optimal policy and the value functions v, and H.v, are z-optimal (v, <
H.v, < v°).

As noted above, v, can be approximated by iterating H, .

Provided that a vy with the properties specified in the Step 0 can be found, the other
steps can be performed by the definition of a simple dynamic program. We next argue
t.h.;l. the termination criterion in Step 2 will eventually be satisfied and that § and vy,
have the properties stated in the Step 4. Since v* is the unique fixed point of H., it follows
by Theorem 2.2.2 of Brumelle [19] that v, is increasing and sup, v, < v*; by Theorem
3.2 19] H}vy < v, < v™; since H.is a contraction operator, lim,, I_z,’,gvg = v”; and since the
norm of V' is monotone, lim, v, = v*. Consequently, the termination criterion in Step 2
will eventually be satisfied, and by (2.1)it ensures that Uy 1s an e-optimal value function.
By Theorem 2.2.2 [19],
tn £ Hs,vn < Hi vy < ... < v". But Hf v, — vs,. Thus v, < vs, < v° and v, is
an z-optimal policy. In addition to showing that the algorithm converges, this argument

verifies the following theorem.

Theorem 2.2.2 A simple dynamic program has simple =-optimal value functions and
simple e-optimal policies, provided that there exists some vo € V' such that vy < H.vyp.

If each kn = 1, then the algorithm reduces to successive approximation and Step

1 becomes: evaluate H.v,. If in Step 2 limg_, H}‘nvu = U4y can be evaluated, then
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Uns1 = Us, and the method is policy improvement. It is for this reason that the method
is called generalized policy improvement. However, V' is not necessarilly closed in V, and
vs is not necessarilly in V' even for § € A'. Thus k, must be finite in order to involve
only functions in V.

The question of how best to establish the appropriate values of the parameters ke,
in the algorithm is succesive approximation which converges linearly by (2.1). However,
the effort per iteration is small. If each k, = oo, then the policy improvement is known
to converge quadratically in some situations [20], [85]. However, ky = oo might take us
outside of V', It seems reasonable to take ky small, perhaps even 1, in the early iterations,
and then to later increase k, so that U;‘;vn approximates vs, in order to take advantage
of the super-linear cé;wesgence.

In the remainder of the paper we discuss the implimentation of the algorithm for piece-
wise linear programs and for partially observable Markov decision processes. Provided
the return function can be computed, Theorem 2.2.1 provides algorithms for performing
Steps 1 and 3.

We next show how to compute ||vy — vnsall- Let Py and P,y; be simple partitions
corresponding to the piecewise linear functions v, and vn41. Then each function is piece-
wise linear with respect to {Bi1,Ba;..«sBm} = Pa X Py, Let va(z) = wi-z and
Unp1(z) = wl -z for z € Bi. The quantities M; = max{|w; -z — wh-z|: 2 € B} can be
computed by linear programming. Thus ||va — Va4 || = sup M; can be computed. Step
2 need not be performed each iteration. Since (2.2) provides an upper bound on the
number of remaining iterations in terms of ||v, — ¥n41 ||, a reasonable procedure would be
to compute this upper bound and then do some fraction, say 10%, of third number of
iterations before next checking the termination criterion in Step 2.

In Step 0 a suitable vy must be found. For a partially observable Markov decision
process one can choose vo(z) = —M /(1 = B) for each z € , where M = max{|r(d,?)| :

de D,i€ S).
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2.3 A Modification of Piecewise Linear Dynamic Programs and Their Appli-

cations

First, we shall formulate a general dynamic programming problem under the setting
of Denardo [31]. Secondly, a piecewise linear dynamic program will be defined. It is a
special class of general dynamic programs which satisfies the monotonicity and contraction
assuptions.

The state space ) is an arbitrary set of a real linear space. For each z € Q there is
a set A, of actions. Let A be the Cartesian product X,;eqA;. An element § € A is a
policy. There is always an optimal stationary policy among a general class of policies in
a contractive monotone dynamic program by Denardo [31] or Blackwell [17]. It suffices
to consider only the class of stationary policies. Let V' be the set of all bounded real
valued functions on §). An element of V is a cost function. V is a Banach space with
the norm ||v|| = sup,eq |v(z)]. For u,v € V if u(z) < v(z) for all @ € Q. The loss
function h is defined to be a mapping from U,eqz x A; X V to a real number. Our
objective function to be minimized is somehow ambigous, unless that the loss function h
is specified. In a Markov decision process, however, h(z,a,v) can be written as h(z,a,v) =
clz,a)+ B [ v(y)g(dy|z, a) where c(z,a) is the immediate cost, 3 the discount factor and
g(-|z,a) the transition probability on Q2 given z and a. Therefore, note that the system
dynamics as well as the objective function is concealed behind our formulation. Assume
that the loss function satisfies the monotonicity and contrction assumptions, that is for
each * €  and a € A h(z,a,u) < h(z,a,v) whenever u < v in V, and for some
B € [0,1), |h(z,a,u) — h{z,a,v)| < B|lu — v|| for each u,v € V,z €  and a € A.. For
8 € A define Us x V — V by (Usv)(z) = h(z,é(z),v) for v € V and z € Q. Assume
that there is some § € A such that Usv = infsea Usv. Also, define U, : V — V by
U.v = infsea Usv. If 8(z) = a for each a € €, then we write U, = Us. Denardo [31]
verifies that U. and U; are monotone contraction operators. By Banch's fixed point
theorem, for each § € A there is a unique » € V such that Usv® = »°. Similarly there is
v* € V such that U.v* = v*. Such v® and v* are called the cost of the policy é and the
optimal cost, respectively. Denardo [31] shows that v™ = infsea v™. If ||[v® —v7|| < &, then

6 is an e-optimal policy, and if |jv — v™|| < &, then v is an z-optimal cost function. Our
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purpose is to find such e-optimal policy and z-optimal cost function.

Any set of the form {z € @ : &;(z) < (or K)dj,j = 1,2,...5mi}8 = 1,2,...,m,
where {;; is a linear functional and d; a real number is called a convex polyhedron a
collection P = {E;, Ey, ..., E,} of subsets of ) is apartition if E; N E; =0 for i # j and
U, E; = Q. Each member of a partition is a cell. m is the number of cells in partition.
If each cell of a partition is a convex polyhedron, then the partition is called simple. The
product of two partitionP; and Py is Py- Py ={END : E € P,,D € P,}. The product of
Py - Py Py is defined by [T2, P, = P, - [1%;" P:. Plainly, the finite product of simple
partitions is again simple. A vector valued function v on (2 is piecewise linearif there
exists a simple partition {E, Es, ..., E,,} of Q and m linear functions vy, v, ..., v, such
that v(z) = vi(z) for all x € E;,i = 1,2,...,m. A piecewise linear contant policy is
simple and easily reprensented in computer. For example a a bang bang control is such
piecewise contant policy. The paper Denardo and Rothblum [32] discusses affine (but not
piecewise) dynamic programs.

Although v* is not necessarily piecewise linear and 6™ is not necessarily piecewise
constant, we will show for a class of dynamic program having the structure described
in the following assumption that there are s-optimal piecewise linear cost function and

piecewise contant policies.

Assumptions I For each a, (U,v)(z) is piecewise linear on (2, provided that v is piece-

wise linear on ).

The following theorem shows that the structure in Assumption I implies how U. and
Us preserve the pieecewise linearity of loss functions and the piecewise contant of policies.

Assume from now on that A, = A = {a1,4a,,...,a,} for all z € O is finite.

Theorem 2.3.1 Suppose that Assumption I holds that v is piecewise linear. Then
(i) Usv is pievewise linear whenever § is piecewise contant;
(ii) U.v is piecewise linear; and

(ii) there exists a piecewise constant policy § such that Us = U,w.
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Proof

(i) Suppose that § is piecewise constant with respect to a simple partition {£;}. Let

E; be an arbitrary but fixed cell from the partition and suppose that é(z)
x € E;. then

= a for

(Usv)(z) = (Uv)(z) forz € E;.

From Assumption 1, U, v is piecewise linear for each a. Hence Usv is piecewise linear

on each cell E;, and is consequently piecewise linear on .

(ii)-(iii) The functions U, are piecewise linear by Assumption I. Suppose that U, v is piece-
wise linear with respect to the simple partition P,. Let P = [l.ca Pa: Then P is

finer than each P,, and also each U, is piecewise linear with respect to P. For each

F € P and a € A, there is some linear functional af such that

(Uav)(z) = ak(z) for ze€F.

For each F' € P, define the sets G4, b€ 4 = {1,2,...,p}, by G5 = {2 : a2 <
ayz,a=1,2,...,6—1 and a}xﬁa%z,azb%-l,-..,p}. Then {G%:a € A} = Pr

is a partition of F and P = [Irep Pr is a partition of £ with the property that
(Us,)(z) =ak(z) if ze G% € P.

The policy é defined by §(z) =a for z € G% € P satisfies Usv = ULv.

Corollary Suppose that Assumption I holds and that v° € V is piecewise linear.

(i) Define v"(z) = (Usv™')(z),n =1,2... ., for piecewise constant §.
(ii) Define v"(z) = (U 1) (z),n=1,2,....

Then v™ is piecewise linear and there exists a piecewise constant stationay policy §,

satisfying Us v"1.

We next consider the effects of iterating monotone contraction mappings such as U,

and U, citing some results of Denardo [31].
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Lemma 2.3.1 Suppose that U is a contraction mapping on V with contraction coefficient

B < 1. Let v° € V be given and define the functions v*,n = 1,2,... by

v*(z) = (Uv"")(z).

Then

(i) {v"} converges in norm to the fized point © of U; i.c., Ut = v.

Now assume that U is also monotone.
(it) If v* < 0° then {v"} is monotonically decreasing to ®.
(iii) If v* > 1, then {v"} is monotonically increasing to ¥.

Remarks 1 The fized point © need not to be piecewise linear since the cells in the limiting

partition are not necessarily finite in number nor polyhedral.

Examples
Model 1. A markov decision process (Blackwell [17])

Let © be a bounded convex polyhedron in R and the loss function h(z,a,v) =
¢(z,a)+B [ v(z')g(dz’|z, a) as mentioned in the preceding section. Assume that c(z,a) =
¢® - z, which may be interpreted to be the expectation of ¢* if z is a probability vector.

Also assume that for each convex polyhedron B C

¢*(B.2) = [ #q(de'lz,a)

is piecewise linear in z with respect to a simple partition P*(B) = {E;(a,B),j =
1,2,...,m, g} for each a where the integral of the vector z’ is defined componentwise.
These two assumptions imply Assumption I.

We explicitly check that Assumption I is satisfied. Let a € A be arbitrary but fixed and
suppose that v is piecewise linear with respect to a simple partition {£;,i = 1,2,...,m}.
Let P* = I, P2(E;) = {E%j = 1,2,...,r}, the product partition, which is again

simple.

Uaw)(e) = -2+ [ vla')q(de'le,a)
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= c“-.r+.3zm;f

(v;2")g(da'|z,a)
=1 Ex
= c*r+ ﬂgv,- : ('/;' z'q(dz'|z,a))
= ¢ -z+ EZv.-q"(E,-,:c)

=1

= [ +8) wAilz for z € Ej(a,E;)
=]

where A}, -z = ¢°(Ei, z) for z € Ej(a, E;) and the index j depends on i for each a € A.
The third equality is obtained from the fact that the integral of the inner product is equal
to the inner product of the integral if v; does not depend on z,a and each componentwise
integral is well defined. U,v is linear on each E;‘ Hence U,v is piecewise linear with

respect to the simple partition P?* = {E’j‘, J =1,2,...,r}, which satisfies Assumption I.

Model 2. A partially observable Markov Decision Process (Sawaki and Ichikawa
[107], Dynkin [39])

We will show that a partially observable Markov decision process is a special case
of model 1. Consider a Markov decision process with state space {1,2,..., N}, with
finite action set A, with the probability transition matrices p® and with immediate cost
vectors ¢*. Let Z, be the state at the n-th transition. Assume that the process {Z,,n =
0,1,2,...} cannot be observed, but at each transition a signal  is transmitted to the
decision maker. The set of possible signals # is assumed to be finite. For each n, given
that Z, = j and that action a is to be implemented, the signal ,, is independent of the
history of the signals and actions {fg, ag, 0;,a,,....0,_1. a0 1} prior to the n-th transition
and has conditional probability denoted by V5o = Plbn = 0|2, = j, a1 = a].

Let @ = {z = (z4,22,....2N) : z?‘;l.r; = 1L,z; 2 0,¥;} C RN. Define the i-th

component of X,,, the random variable of z, to be
P|Z, = i|0o, 0, 01,8154+« On1,80-1,0,), i=1,2,...,N.
It can be shown (see Dynkin [39]) that
PlZuss = 7100, 00,01, . .., 0nyan, 0] = P[Znyq = I0nt1,60, X,

Thus X, represents a sufficient statistics for the complete past history {6o, o, . .., an_1,0, }.
It follows that {X, : n = 0,1,2,...} is a Markov process (see Dynkin [39]), called the
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observed process. Its immediate cost is ¢(z,a) = ¢® - x. Its probability transition function

is determined by the following calculation. For each measurable subset B C Q.2 € 1,
and a € A,
¢(Blz,a) = P[Xas1 € B|Xy =2.0, = 0]
= Y PlXn41 € Blfnsa = 0, X, = z,a, = a]
i N Pllnss = 0lZna = j2 X = 2,a] - PlZps1 = j|1Xn =2,y = al
= ZP[;{““ € Blfps1 = 0, X = 2,0y = a
@

.ZT;GZ'P[Z“‘H ™ jlzh =i, Xn =2,8p = a]P[Z.. = llxﬂ =Tyl = a]
2 i

ZP[XH'H € B|9n+1 = G,X,, =T,0,y = G]Z"{;SZPSI;
g 3 i
= Z P[Xn41 € Blns1 =0, X5 = 2,0, = a]1P%(0)z
[

where 1 = (1,1,...,1) and P*(8) = [Pg@] = [Pri)-

Define the vector T(z|0.a) by
P(0)x
1P*(0)x

T(z]8,a) =

Note that T(X,|0,a) = Xu41, and that
1, if T(z|f,a) € B

=6 Xﬂzxﬁa"za T
P[X 41 € BlOnsa s ] { 0, if otherwise

So,

¢(Blz,a)= Y. 1P*(0)x
bed?(B.x)

where ¢°(B,z) = {6 : T'(z|6,a) € B}.
Finally, we show that the observed process {X,} is a special case of Model 1; i.e.,
¢*(B,z) = [g'q(dz'|z,a) is piecewise linear in z for each convex polyhedral set B C 2

and action a € A. Using the previously computed ¢(B|z,a) we have

¢(B,z) = '/B:r:'q(da:’lz:,a)

= Y Tz)0,a]1P*(0)z
deo?(B.x)

ﬂ-?)—mlf”(a):c
964’;{%‘3) 1P(0)z

>, PO)=

fege(B,x)

I
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which can be shown to be piecewise linear (see Brumelle and Sawaki [22]).
Theorem 2.3.2 For each iteration, n = 0,1,2,..., in the algorithm,

y"S Uy 2 UZy" > ... > Ubry" =™,
In other words, {y"} is a decreasing sequence,

Proof First, it is true for n = 0. Since ¥ > Ugpu® and since Uz is monotone, it
follows that y° > Ugpy® > Uky® > ... = Uy’ = y* = Upy'. By definition §' satisfies
Upy' = U.y'. However, U.y' < Ugy' < y', and so not only is the theorem established

for n = 0, but, we have also shown that Usy' < y'.

Now suppose Ugy™ < y™. The same argument as in the first paragraph establishes the
theorem for n and also that Uz, ,,y™*"' < y™*'. Hence the proof is completed by induction.

Corollary y" 2 v" forn=1,2.....
Proof For an arbitrary n,y" > Usy™ 2 U.y™. Since U, is monotone, y* > Uly" for
each j. By Lemma 2.3.1, Uy" decreases monotonically and converges io v* as j — oc.
Consequently, " > v* and the proof is complete.

We next show that if the algorithm terminates then it will provide an z-optimal cost

function and an s-optimal policy.

Theorem 2.3.3 If ||ly” — y"*!|| < (1 — B)e, then ||y — v7|| € ¢, i.e., y" is e-oplimal.

Moreover, 6" is also =-optimal and v* < v¥" < y".
Proof Note that Ugy™ = U.y™ and that by the previous corollary y* > v*.

" ="l < lly" = Uay™|| + [|Uay"™ = Ut”|
< ™ = Usny™|| + Blly™ — ||
< " = Uny®|| +Blly" = v°|| for m=1,2,...,
because
y" 2 Upey" 2 Uny” for m=1,2,.... (Theorem 2.3.2.)
Thus
(1=B)y" —v°l| < llv" = Ugsy™ll = " —y™*'|| < (1 = B)e,
and so ||y" —v*|| £ e.

The last statement in the theorem follows by Theorem 2.3.2 and Corollary.
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Theorem 2.3.4 Suppose that {y"} is a sequence of costs generated by the algorithm.
(i) y" is converges pointwise to y € V.
(it) y = Uy, €., y 5 optimal.

In other words, the algorithm converges.

Proof

(i) First of all we shall show that {y"} is bounded below. By Theorem 2.3.2 we have
y* > Uny" for eachm =1,2,... . It is well known (see [17] and [31]) that UZy™ —
o™ as m — oo. Therefore y* > v*'. From & > v* € V, there exists an M
such that [[v*"|| £ M. Hence y"(z) 2 —M for all z. From Theorem 2.3.2 y" is a

decreasing sequence. Hence y" converges pointwise,
(ii) By a choice of y° and Theorem 2.3.2 we know that

1. y* > Uspy™ 2 Uny®

To show The other way we have

o

y* = UB-y"'  (By definition of y")
< Upmay™' (UPy<Uy, Vyev)
= Uy (By definition of §*~1).

Then from (1) and (2), we obtain
U..y“ S yn E U.y“'_i.

From the statement (i) " — y. Since a contraction mapping U. is continuous,

U.y® — U.y. Therefore, we must have
Uy=y

which completes the proof. o
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A Numerical Example

This subsection presents a numerical example for Model 2, partially observable Markov
decision processes, especially in the case of two dimensions, Q = {(zy,z3)|zy + 22 =
l, 21,29 2 0}, A = {1,2} and # = {1,2}. The necessary data are shown in Table 2.1. To
specify the stopping rule we choose 7 = 0.8 and = = 0.01. Therefore, if |[y" — " || >
0.002, then the algorithm stops and y" is s-optimal.

Set #; = z. To start the algorithm an initial piecewise constant policy §° and an
initial piecewise linear function y° satisfying y° > Uy y® must be found. Choose a policy
&° minimizing ¢* - z; thus §°(z) = 1if ¢ < 2, &(z) =2 if # > 2. Set an initial cost
function ¥°(z) = (0,0)(z,1 —z)7 with the partition {[0, 1]}, which is piecewise linear and
satisfies y° > Upy®. Also set k, = 1 for all n. The computational results programmed in
FORTRAN are shown in Table 2.2. We may observe from Table 2.2 that the algorithm
converges at period n = 35, and an =-optimal cost is —15.166 — 3.826z if ¢ < 0.571 and
—16.732—1.086xz if z > 0.571. An s-optimal policy §*°(z) = 1 if < 0.571 and §*°(z) = 2
if z > 0.571. Table 2.2 also shows that an z-optimal policy converges (at n = 10) much
faster than an s-optimal cost does.

The goal of this section is to generate and construct =-optimal cost and z-optimal
policies in a sequential fashion for a general class of dynamic programs. Toward this end
we have taken advantage of the properties of piecewise linear cost functions and piecewise
constant policies. These properties guarantee that the algorithm involves only piecewise
linear and constant functions which belong to the class of linear programs. Finally we
should also emphasis the importance of the algorithm capable for solving continuous state
dynamic programs. Many sequential decision problems under uncertainty often turn out
to have a probability vector as their state space, which is no longer finite nor countably
infinite, but continuous. Therefore, the algorithm developed in this section will become

more important in the field of sequential decision problem under uncertainty.
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Table 2.1: Data for A Numerical Example

actions p° o™

a=1 |[(5,-1)]0.7 03]0.75 0.25
0.9 0.1]0.60 0.40

a=2 |(-4,-3) |05 0.5]030 0.70
0.4 06 |040 0.60

Table 2.2: A List of Optimal Values and Partitions

Periods n | cost function y* | Policies and Partitions | |ly* — "'l
1 1-4x 1 (0.00,0.666] | 5.00
-3-x 2 (0.666,1.00]

2 -4.12-3.84x 1 [0.00,0.579] | 2.96
-5.179-1.08x 2 (0.579,1.00]

3 -6.35-3.827x 1 [0.00,0.572] | 2.22
-7.92-1.086x 2 (0.572,1.00]

5 -9.53-3.826x 1 [0.00,0.571] | 1.411
-11.095-1.086x 9 (0.571,1.00]

10 -13.324-3.826x 1 [0.00,0.571] | 0.462
-14.889-1.086x 2 (0.571,1.00)

20 | -14.975-3.826x 1 [0.00,0.571] | 0.05
-16.540-1.086x 2 (0.571,1.00]

30 -15.152-3.826x 1 [0.00,0.571] | 0.005
-16.717-1.086x 2 (0.571,1.00]

35 -15.166-3.826x 1 [0.00,0.571] | 0.001
-16.732-1.086x 2 (0.571,1.00]
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2.4 Optimal Control for Partially Observable Markov Decision Processes

over an Infinite Horizon

The partially observable Markov process, intoduced by Dynkin [39], consists of two
stochastic processes, the core process {X,.n =1.2,...}, which cannot directly oberved.
and the signal process {S,.n = 1,2,...} which becomes known at each decision epoch
n=1,2,.... The core process is a Markov chain and the signal process is probabilistically
related to the core process by the conditional probability i of observing a signal 8 given
that the core process is in state ¢. Dynkin shows that the state occupancy probability
represents a sufficient statistic for the complete past history. Astrom [5] also consid-
ered a similar model with finite states and finite actions over a finite horizon, using the
method of successive approximation to find =-optimal cost vectors, however, it is only ap-
plicable to problems in two dimensions. Smallwood and Sondik [114] have independently
obtained similar results. Later Sondik [116] extended this model to the infinite horizon
and introduced the class of finitely transient policies. White [131] has considered a par-
tially observable semi-Markov process with a finite horizon where the controler konows
the times of the core process transition. Sawaragi and Yoshikawa [110] also studied the
partially observable control problem with countable states, uncountable action sets and

L1
can be transformed into an ordinary complete,observable one.

infinite horizon, where they have explicitly stiowed that such partially observable models

In this section, under the setting of [114], we shall consider an optimal control problem
with discounted cost over an infinite horizon. We introduce three concepts of simple
partitions, simple policies, and piecewise linear functions. Using only these concepts we
present an algorithm to find an approximation to the optimal cost function. We also show
that we can construct an s-optimal simple stationary policy. We are guaranteed to obtain
an c-approximation of the optimal cost function in finite steps, and each step we only
need to find a finite number of vectors by linear programming. Also, an application to a
machine maintenance model will be discussed.

Furthermore, in this section a special class,called finite transient, of stationary policies

will be considered. We shall show that such policies have very attractive properties and

are useful for approximating an optimal policy. If policies are finitely transient, partially
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observable Markov decision processes can be reduced without loss of generality into finite
states Markov decision processes with complete observation.

Sondik [116] has originally introduced the concept of finite transientness of policies for
the model with finite sets of states, signals and actions over infinite horizon. However.
many patrs of his paper are unclear. These will be revised and clarified by giving a
different definitions of finitely transient policies. The same notations and symbols as in

Sondik’s paper are adopted here except where confusion accurs.

2.4.1 Statement of the Problem

Consider a Markov decision process (called the core process) with state set Q =
{1,2,..., N}, with finite action set A with probability transition matrices {P*,a € A},
and with immediate cost vectors {¢°,a € A}. Let X, be the state at the n-th tran-
sition. Assume that the process {X,,n = 0,1,2,...} cannot be observed, but in each
transition a signal is transmitted to the decision maker. The set of possible signals
S={1,2,...,0} is assumed to be finite. For each n, given that X, = j and that action a
is to be implemented, the signal 4, is independent of the history of the signals and actions
{6o,a0.01.a1,....0,_1.a,_,} prior to the n-th transition and has conditional probability
denoted by 7§ = P[0, = 0|X, = j,a]. At time n = 0,1,2,...let 7 = (7;) be the
state probability (/N-vector). For a transition probability p* = (Pf) and an information
structure I'* = diag(+%) put Qf = p°I's.

If the current state information vector is 7, a signal # is observed and action a has

been chosen, then the next state information is given by

_ 7@
T(x|0,a) = ——_—{ﬂlw,a} (2.3)
where
ma) =addl, 1=4{l,... ,1)T.
Let

N
N={r€RN:Y m=1, x>0 foralli}

=1

We define A as the family of mappings 6 : T xI1 — A where T' = [0,¢). Each element
of A is called a policy. Given an initial distribution 7(0) and a policy 6, the subsequent
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information vectors 7(n) form a Markov process. Our discounted control problem for an

initial distribution 7(0) is described by

)
g B §(n,=(n))
min Ea[?:ﬂ: B'm(n)q Js

where E is the expectation with respect to the signal, 4,0 € 3 < 1, is the discount factor
and the cost at time n is given by the inner product 7q" with action a. Let C(x|6) be a

cost of a stationary policy é at an initial value 7. Then it is well known (see [17], [31])

that C'(x|8) satisfies
C(x18) = n¢’ + ﬁ%:{e|w,5}c(f(w|a,5)|é). (2.4)
Let C%(x) be the optimal cost, then the following is true (see [17], [29]).
Theorem 2.4.1 There ezists an optimal stationay policy & with C(x|6 = C*(). Also,
C*(w) satisfies
C*(r) = min{rg* + 83 _{8|r,a}C*(T(x]6,a))} (2.5)

JES
for any = € I1.

An s-optimal cost function C is one satisfying
I~ €l = sup [c*(x) - C(al)] < <. (2.6)

A policy 6 such that C = C(-|8) satisfying (2.6) is an e-optimal policy and its cost function
we define simple partitions, simple pilicies and piecewise linear functions.

Definition 1 A partition {V;)™, of all = is called simple if each V; is a convex polyhedral
set, where a convex polyhedral set is the solution set of a finite system of linear inequalities,
i.e.,

V,-={wEI]:v;jr<0,j=1,2,...,n;}

where v;; € RV and v is the inner product of v;; and 7.

Remarks 2 Inequalities of the form vr < 0 contains those of the form vx < a,a scalar.

In fact vr < a is equivalent to (v — al)r < 0.

Lemma 2.4.1 Let P = {V;} and Py = {W;} be two simple partitions of =. Then, the
product partition Py - Py = {V; N W,;} is again simple.
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Proof Here we omit V; N W; if V —in W; = 0. The sets V; N W, are disjoint and are
convex polihedral sets. Hence P; - P, is simple.
Definition 2 A stationary policy ¢ is called simple with respect to a simple partition
{V;} if 8(x) = a; on Vi1 =1,2,...,m.
Definition 8 A real valued function f on = is called piecewise linearif f(7) = fix on
Vi,i=1,2,...,m, where {V;} is a simple partition f; € RN,
Example: Define an information structure as a mapping from the set of states (unob-
servable) of the core process to the set of distinctive signals % The decision maker chooses
an information structure from the set of available structures decides upon an action for
the system.

Let a = (a;,a;) be the pair of actions, @, for the system control and a, for information
acquisition. More precisely, we have Ay

A

P3(8) = PP

E

7q" =) miy P3 Y vie(i.g.a1,02)

i=1 =1 6=l
where ¢(i,7,0,a;,a;) is the immediate cost of the core process when a state of the core
process moves from i to j and a signal # observed under actions a; for the system and
a, for the information structure, and = = (7,....7x) is the probability vector with an

interpretation =; is the probability that the core process is in state 7,

Consider a machine maintenance and repair model (e.g. Smallwood and Sondik [114])
as an application of partially observable models. But this model is a modification of
Smallwood and Sondik’s. The machine consists of two internal components. The states
of the core process X, = 1,7 = 1,2,3, have the following interpretation. If i = 1, then
both components are broken down, if 1 = 2 either one is broken down and if 7 = 3 both of
them are working. Assume that the machine produces M finished producis at each period
and the machine cannot be inspected. The actions a, for the machine control are to repair
and to repair the machine. The actions a, for information acquisition are the numbers
of a sample to choose out, of the M finished products. The signals § are the number
of defective products in the sample, which forms the signal process {0,,n = 1,2,...}.
The core process {X,,n = 1,2,...} is the unknown states of the components of the

machine. Let m; = P{X, = i},7 = 1,2,3 and put 7 = (7,7, 73). Then, the process
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{(Xn,6:),n = 1,2,...} becomes a partially observable machine maintenace and repair

model with actions a = (a,,a,) and immediate cost Tq°.
2.4.2 Finitely Transient Policies

In this subsection a special class of simple stationary policies, called finitely transient.

will be studied. The class of such policies has very attractive properties even though all

stationary policies do not belong to such a class.
Define, for a simple policy 4,
I)":?{W;T{w]&é}el)k_l}, k=1.2,... (2.7)
where
DP= U DS = ‘_L;{w € : ym =0}
which forms the boundary set of the partition {Vi} corresponding to a simple policy é.

Let V¥ = {V¥}™ | be the collections of sets whose boundaries are Uf-o D* and then V*

is a refinement of V*~1, k > 1, where V° = {V;}.

Definition 4 A simple policy 6 is called finitely transient if there is an integer k£ < oo
such that

T(V}(0,6) C V4 foralld
where T'(V16,8) = {T(x|0.6) : # € V} and v(7,0) is the index of the set containing
T(x|0,6) for m € V;‘.

Lemma 2.4.2 Let ks be the smallest such integer. D* = 0 for all k > ks if only if & is
finitely transient with the inder k.

Proof Suppose that § is finitely transient with the index ks, that is,
T(V{*|0,6) C V.4 for all 6.

D* = ( because T VJ-"’ |6,8) is the set of all possible state information at the ks-th period
and Df is open in II for all 4, k. Let £5 be the set function defined as £s(B) = Us{r :

T(=|0,6) € B}
DF = U{r: T(x]6,8) € D*)
= Ls(D*¥)
£5(D°)

Il
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If D* = £5(D°) = 0, then
DF = £4(0) =0

Hence, by induction D* = 0 for all k > k;.
Conversely, D¥ = 0 for all k > ks and that

T(V/10,6) ¢ Vp’;j.o) for some 6.

So, there exists 7!, 7* € VJ-" such that for some 0, T'(='|0,8) and T'(7*|0,6) do not belong
to the same set V;fi i)
Then. thereis a constant A, 0 < A < 1, such that NT'(x*|0,8)+ (1 - X)T(x*/0,8) € D*
and X is given by
v = M

Q%
NT(x(0,8) + (1 = N)T(=%(0.6) = T(A=' 4+ (1— A)=*|6,8).

By letting 7 = Ax! + (1 — A)x?, we obtain
T(x|0,6) € D*
which is contradiction.

Lemma 2.4.3 Let Q5! Qg -+ Q5 = (@3)* and O be a zero row vector. A simple policy

is finitely transient if there exists an integer k < oo such that
Vi (@2)F >0 Vi;(Q2)* <0 forall 0,a,i,j.
Proof

D* = U{x:T(x|0,6) € DL
= Uh{r: v;;(Q3)*x = 0}.

Since 7; = 0 and ¥, 7; = 1, D* = 0 if v;;(Q3)* > 0 or O for all 6,a,1,j. By Lemma 2.4.2,

this completes the proof. a

Remarks 3 In Lemmas 2.4.2 and 2.4.3, the assumplion concerning & being simple is

crucial. A counter example is presented as follows:
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suppose that there are only two states N =2 and ng =1 — =3 2> 0.

Define,
ay, if my is rational;
6(my) = {

a,, otherwise
which is stationary but not simple. Then D® is the uncountable discountinuous set which

never becomes empty. Therefore, a finitely many partition {V;} does noi exists.
Theorem 2.4.2 Lel & be a simple policy. Then, the following are eguivalent.
(i) & is finitely transient with the indez ks.
(it) C(=|8) is piecewise linear.

Proof

(i)=+(ii) Suppose that we have a finitely many partition V* = {1’3"} for k > ks. Let C(x)é) =

Faj, ¥ € 1-3” and a; = ¢% + 85 Q¢ au(;5)- Then
C(rlf) = =a;, weV}

= w(¢¥ +8). Q7 avia)
7

= ] rQ% =B

= #¢ + B;{ﬂﬂ.ﬁ}-——-——-{ww’&} ay;e forallz eV}

= w¢" + B {#]0,8}T(x|0,6)a, ;0 for & finitely transient
2]

= =g’ + B8 _{rl0,8YC(T(x|0,6)|8)
6

(UsC(x)

Il

Since C(-|§) is unique solution of Us, C(-|8) = C(:|6).

(ii)—(i) From piecewise linearity of C(-|6), we have C(x|6) = ax; for # € V} with the

partition {V}*} for k > kyelta and é(x) = a;, 7 € VE. So
C(T(x10,6)|6) = T'(x|0,8)ay ;e for = € V.

Then, we must have T'(x|0,8) € "‘;'k(i-ﬂ) for all # € V} and all 4.
So

T{V}|0,6} C V%4 for all 6.

29



Corollary If a policy é is finitely transient with the simple partition {V;}. then its cost

C(x|6) can be computed by solving the following equations.

C(r|6) = ma; forallme V;, 5 =12,...,m (2.8)

a; = q* + SZ Q;"C!,,U_‘g). = SRR (2.9)
[

The proof immediately follows from Theorem 2.4.1. Note that the set of equations (2.9)

has a unique bounded solution and that m need not be equal to the number of actions.

2.4.3 Properties of U/, and U,

This subsection is a study of the properties of U, and U.. Most of these properties
will be used later in the development of the algorithm to find z-optimal approximations
to C™ and 6.

Let F the space of real valued fucntions on Il with sup norm. Then F is a Banach
space (B-space). Let Il be equipped with Euclidean norm, and let C be the subset of
continuous functions in F. Then C is a closed linear subspace (hence is itself a B-space)
of F. Define operators U,,U., on F by

(Uaf)(m) = mg* + B _{0lm,a}f(T(xl0,a)), fEF,

=

(U.f)(r) = min{xg* + 8 _{0|r,a} f(T(x|0,a)}.
agA ges
Lemma 2.4.4
(i) U,,U. are contraction mappings with contraction coefficient /3.
(ii) U,,U. are monotone, i.e., if f,g € F with f < g, then U.f < U.g and U,f < U,g.

(iii) They map C into itself, thus fized points of these operators are continuous functions.

Proof The properties (i), (ii) are standard. (See [17], [90]). (iii) U, clearly maps C into
self. U.f)(x) is the minimum of finite number of continuous, hence it also continuous,
provided f is continuous.

From Lemma 2.4.4 we get some information on C* and 6.

Lemma 2.4.5 The fized point of U. ezists and is the optimal cost function C*, which is

continuous.
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Before stating our main results, we need two lemmas.

Lemma 2.4.6 Let f be a piecewise linear function w.r.t. {Vi} on I1. Define a stationary

policy 6¢ by U. [, namely, §4(x) = a; if a; minimizes (U, f)(x). Then by is simple.
Proof Let {V;} be the simple partition for f. Define
Vi(a.0) = {r € IL: T(x|f,a) € V).

Then for each a, 0, {Vi(a.0)} is a simple partition. In fact V(a,#) is given by

TQjvi;s
{0|7.a}

<0, j=1‘2,...,71,',

or equivalently,

Qv <0, 71=1,2,...s%;
where v;; characterizes V.. Let {V%} be a simple partition defined by N, ;Vi(a,8) (see
Lemma 2.4.1), then U, f is linear on each V3.

More precisely,

(Uaf)(7) = 76" + B 7 Q3 3 Xy, ()i

GES B
where

) 1, if =€ V3
Xvg, (7) = u

0, otherwise,

and f; is a vector defining f.

Since §é is defined by minimizing finite number of piecewise linear functions, it is simple.
Lemma 2.4.7

(i) If [ is piecewise linear, then U,F is piecewise linear.

(i) If [ is concave, then U,f is also concave,

Proof U,f has the same property as f’s. By the definition of U/.f, the desired results

are obtained.
Theorem 2.4.3 Let fy € F, and define

falm) = (Uefun)(m):
Let 6, be the decision rule at stage n defined by U, f,_,.

31



(i) fa converge to C..

(ii) If fo is piecewise linear, then so is fy for any n. Furthermore, &y is sumple.
(iii) If fo is concave, then f, is concave.

(iv) if f1 € fo, then fu L C*. If f1 2 fo, then fu T C".
Proof The assertions follow from Lemmas 2.4.4 - 2.4.7

Remarks 4 If we take fo(w) = C(r|8) for some stationary policy é, then f, | C°. In
particular, if we take 8(x) = a for all 7, thus C(x|d = fo(7) = =(I = BP*)'q%, then
f,. is continuous concave and piecewise linear and f, | C*. Hence C is continuous and

concave.

Remarks 5 Let fo(7) = minses 7¢°, then fo is piecewise linear, concave and continuous.
Hence (ii) and (iii) hold. Since f, corresponds to the optimal cost for the n-period problem
with discounting, this case is essentially equivalent to the results in [116]. If we further

assume ¢* > 0 for any a € A, then f, T C".

Next we shall discuss the rate on convergence.
Lemma 2.4.8 Let f € F. If |f = U.f|| < (1 = B)e, then ||C™ — f]| S e.
Proof

™= fll £ U =U.fl| +||IU.f - £l
< Blie™ = fll + IV.f = fIl.
After arranging, the result is obtained.
Theorem 2.4.4 If 8"||fo — Ufoll < (1 — B)e, then ||C* — ful| < =.

Proof Since we have

Ifn = Ufall £ |Unfams = UZfaall
< Bllfa-r = Usfaaall

< ﬁn“fo =5 U-foll‘

the theorem follows directly from Lemma 2.4.8.
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Remarks 6 If we calculate || fo — U fol|, then Theorem 2.4.4 tells us when to stop. Fur-

thermore, at each step n we know from ||fu — Usfnll how many steps (at most) we have

to go after step n.

2.4.4 Algorithm

Since Il is uncountable, it is far from trivial to calculate C(#|6) which may not be a
piecewise linear function of 7, except the case that § is finitely transient. In this subsection
we shall approximate C(x|§) by using the method of successive approximation.

The method of successive approximation is a wellknown and popular method for solv-
ing equations. The method is to start with a cost function f5. and to iterate L., con-
structing a sequence of cost functions f, = U.f,_y,n =1,2,.... By Lemma 24.4, U, is a
contraction mapping with fixed point C* and by Theorem 2.4.3, {f,,} converge to ¢". By
Theorem 2.4.4. n can be chosen sufficiently large, so that f, is an =-optimal cost function.
In fact by taking logarithms of the expression in Theorem 2.4.4,

(1—B)e

n> log[m/ log 3

is adequate.

The next theorem provides a means of constructing an s-optimal policy from an £'-
optimal cost function and specifies the relationship between = and ¢'. The algorithm will
first construct an =-optimal cost function. From this cost function, an z-optimal policy
is constructed.

Let fo be piecewise linear, and let 4, be defined by U.f,-1, i.e., éu(7) = a3 if a4
minimizes (U, f,—1)(7). Then 6, is simple, and satisfies U, f,_; = Us, f._1, where U; for
a stationary policy § is defined by

(Usf)(7) = wg" ) + B> {8|x, 8(x)} (T (x]6,6()))-

GES

Theorem 2.4.5 If ||C™ — fo4| £ -‘-,;;% then ||C™ —C(:|6,)|| S =.

Proof It is easy to show that Us for any stationary policy ¢ is contraction mapping and
that the fixed point is C(:|8), i.e., C(x|8) = UsC(:|8)(7).

We obtain

IC* = CCle)ll = Us,C(:|8n) — U.CT||
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IA

|Us. C([6) = UsnC7 || + 1Us, C" = Usu facall + s fum1 = UC7))
BICC182) = €l + BIC™ = facall + Bl acs = €7

A

Here we used the equality Usfn-1 = Us, fa—1. Rearranging the above inequality we obtain

(1=pB)|C(:l6 = n) = C7| < 2B|c” = faaall < (1 = Ble.

Hence [|C(+]6,) — C7|| £ &.

If the state space is uncountable, or even countably infinite, then this procedure is
difficult to implement on a computer. However, since the partially observable Markov
decision process has the structure of piecewise linearity and fo is piecewise linear, then
each f, is piecewise linear and each &, constructed as in the previous theorem is simple
(by Lemma 2.4.6). In this case, the cost functions and policies can be specified by a
finite number of items - the inequalities describing each cell of a simple partition and the

corresponding action or linear function.
Algorithm to Find an s-optimal Simple Policy:
(i) Start with any piecewise linear function fo.
(ii) Compute f; = U. fo.
(iii) Choose an integer n such that
Bl|fo= full £ (1 = B)e,

where &/ = (1 — 3)z/28. Le., choose 7 larger than
(1-8)

2.
logl o — 7! 8%

(iv) Compute f, = U* f,—1 successively until n = .
(v) Consequently, we obtain f; such that
sfall <€
(vi) Construct a policy é satisfying
Usfa = U" fa.

34

Then & is s-optimal.
Remarks 7 The algorithm can be started with [5 = 0.

Remarks 8 The termination criterion, n = n, in the algorithm has the advantage that
Il fo— fill is computed only once. However, it has the disadvantage that ti will probably be

larger than necessary, causing unnecessary iterations.

An alternative would be to compute || f, — fa-1| at each iteration and stop whenever
[l fa=fa-1]| £ (1—8)e'/B. Theorem 2.4.2 guarantees that f, is an =-optimal cost function.
However, the computation of || f, — fx-1]| will, in general, be expensive.

The best procedure is undoubtedly to check || f,, — f»-1|| at some, but not all, iterations.
For example, 7t might be computed based on ||f, — fu-1||. Then at some iteration n near

i

=, recompute n based on || fr — fo||-

2.5 Partially Observable Markov Decision Processes with Abstract Spaces

A number of chapters have resulted from the marriage between the areas of dynamic
programming and Markov decision processes. In developing a theory for optimal control it
was natural to rely on Markov decision theory by making the assumption that the system
can be observed at each stage. In other words, the observer of the system is assumed
to have complete information about the state of the system at the time when transitions
occur. Such a system is said to be observed under certainty or a complete (perfect) state
information.

Since it may be difficult and expensive to obtain such a complete state information,
it is more practical to consider a system with an incomplete information state. This,
for instance, is how problems of statistics, reliability, relevancy, etc. are described in
accounting reports. One interpretation of a Markov decision process under uncertainly is
as follows:

Suppose there is an information structure which is a mapping from the set of states of
the unobservable system to the set of distinctive signals available, where the states of the
system form a Markov process. If the information structure is perfect, there is a one to one

and onto mapping which provides an ordinary Markov decision process under certainly,
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i.e., additional information about the state of the system is not needed. However. if the
set of signals is singleton, a completely uncertain situation results.

In this chapter more general classes of incomplete (imperfect) information structures,
called partially observable Markov decision processes, will be considered and these will be
extended into semi-Markov decision processes. These studies have possible applications in
inventory control, queuing, machine maintenance problems, etc. The approach taken is to
consider Markov and semi-Markov processes with incomplete information states in terms
of the probability distributions of those states, which themselves form Markov processes
and are generated from a Bayesian formula. The problem on dynamic programming side
is to select an action to be performed, observe the signal generated from the information
structure and revise the state information as a result of transitions, in a sequential fashion.
They are generally based on a Bayesian formula.

This model formulation is the “best” that can be expected in the sense that no futher
information is available about the state of the system.

In this section we shall extend these into semi-Markov decision processes. These are at,
least two approaches, that is, the discounted approach due to dynamic programming and
the nondiscounted one due to average cost criteria. The semi-Markov decision processes

are mainly studied using the second approach (Miller [75], Ross [88], Lippman [63]). Ross

2.5.1 Partially Observable Markov and Semi-Markov Processes

Consider a control process, referred to as a partially observable Markov process, which
is described by a pair of random sequences { Xy, S;} where the process {X}} is not able to
be observed but the signal process {S;} becomes known to the observer at each decision
epoch t. The decision maker chooses an information structure from a set of available
structures and decises upon an action for the system.

Policies for information acquisition and system control are sought to minimize expected

costs over an infinite horizon.

Model Formulation

Let (2, F, P) be a probability space on which a semi-Markov jump process {X;,0 <

t < oo} mapping from 2 to X a separable metric space is defined, where (2 is a non-empty
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Borel subset of a complete separable space and F is the o-field with respect to €. Let S.
be a random variable mapping from 2 to a signal space S which is assumed to be a Borel
subset of a complete separable metric space. Let (5,8, 1) be the probability signal space
where S is a o-field of S and for each M € S, u(M) = P{S~}(M)).

It is of interest to interpret the signal space S in such a way that if s = (6, 7) for #
output and 7 time between transitions, then S = x R* where 0 is the set of outputs and
R* is a non-negative real line, and furthermore K = p1 X po where p; is the same measure
as in {2, and p, is the counting measure for a Markov chain and a Lebesgue measure for
(continuous time) semi-Markoy processes. The process is described by the pair of random
variables { X}, 5,0 < t < oo} where the process { X} cannot be observed but the process
{S:} becomes known to the observer at each time t,0<t < co.

Let II be the set of probability distributions of X, and TI, be a random variable of
the distribution of X, at the n-th epoch. Let A be the set of actions a which is assumed

to be finite. Let H, = {Xo,@0,S0,....Xn,0n,5,} and H, = {50 = 8,8n = 4, H;q},

n=1,2,... where Hy is given. Note that H, ¢ H,. Assume that there is some decision
rule &, such that &,(H,_;)=a, for each n=1,2,.--. A sequence R = {6}, is called a

policy and f = {6}32, is called a stationary policy. It is assumed that for every z € Q,
a € A there is a known probability measure Q*(-,-|z) on F x S such that Pr{X,;, €
IS5, EM|X;,=2,0,=a, S;=s, H, ;= Q*T,M|z) for every I' x M € F x S and
all histories H,_,. Also, assume that Q*(T',-|z) is absolutely continuous with respect to

the measure u. Then, by the Radon-Nikodym’s Theorem, there exists g*(I', -|z) such that

Qu(T. Mlz) = [ ¢*(T,sle)u(ds), 2,V eF,Mes.

Lemma 2.5.1 For eachT € F ands € §

P{Xn € I‘lnn--l =m0, = 8,0y = a} = f:j:((g,zll:;;ggjz)) = TP{H'S,G}

Proof P{X,el|l,;=nx,8,=sa,= a}

- P{X,el'\,S, =sll,.; =x,a, = a}
P{S, = s|lllp-y = 7,a, = a}

e fo P{Xn €IS, =s|X, -1 = z,a, = a} P{dz|ll,_, = 7, a, = a}
Jo P{, S, = s|Xpy = 2,0, = a}P{de'|ll,-y = 7,00 = a}
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_ o e(Ts(e)n(d)
Ja (9, s|z")w(dz")

= Tr{x|s,a}
because X,._; is independent of a, due to the fact that 8,(Il,-1) = an

Remarks 9 Suppose that Q is countable, S, = (0, 7s) for 7. the time between transitions
and P{gﬂ = ﬂl:r:,; = iTr. =tl.a, = a, Hn—l} — T?&'
Then it follows that

Y PLIG ()5
Zi.; WiPi;' ?j(”’??&

P{X,=jlHp-y =m0, =0, =t,0n = G} =
where PS are transition probabilities of { X, },

and [¢ f&(t)dt = P{tn < t|Xn1 =1, Xn = j,an = a}

Lemma 2.5.2 Let H, =[S =8,8n=0,Ha1], n=12,--
Then
P{Xn €T|Hy} = P{Xp €ET|lli-1 = a1, 50 = 8,80 = a}

Proof Let 7a(T) = P{X, € T|H.}.

7a([) = P{X,€T|H,}=P{X, €T|S: = 5,0 =a,Hp}
P{X, €T, S, =8|oa =0, Ha}
PS5, =3sla, =, Ha-1}
JoP{X, €T,S, = s|X,y =2,a, = a, H, . }P{dz|a, = a,Hn1}
Jo P9, S = 8| Xn-y = @', 0 = a, Hy o } P{d2'|ay, = a, Het)

Jo¢* (T sle)aa(dz) _
Ta e @ sl rr(@e) — T 1)

- P{Xﬂ € rlnn-—l = Tp-1y5n = 8,0 = a}

due to Lemma 2.5.1. Therefore, the distribution 7, is a sufficient statistic with respect to
H, in the sense that II,, represents all the informations on the past history of observations
of the Markov process. It is important to note that {Il,} itself forms a Markov chain

because it depends only on one step transition probabilities and 7,_;.

2.5.2 Control Model and Optimal Policies

If the process is in = € €, action a is chosen and a signal s is observed, then two things

occur:
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(i) we incur a cost ¢(z,a) which is a bounded Borel measurable function on 2 x A.
where if one allows the cost to depend also on the next state visited and the signal

observed, then c(z,a) should be interpreted as an expected cost as
o(z;a) = _/;/Qc(a:,a, 2!, 8)Q%(dz’, s|z)u(ds).
(i1) the next state of the process is chosen according to the transition probability
Q*(T', Slz) = Pr{X;41 €T,5|X, =2,a, =a} foreveryl € F.

Since the states of the system cannot be observed and distributions =, which them-

selves form a Markov chain represent all the available information about the history of
the system, 7, are used as states of dynamic programming.

For any policy R, define
CR("_) = ER[E H?;fﬁ(si)c(xu-ﬂu)m: = }71
n=1
and
C x(x)= ir}g\_f Cr(r),mell

where II_,8(S;) =1 forn > 1 and 0 < B(S,) < 1 for all S,, n =1,2,.--. Accordingly,
B(S,) 1s called a discount factor which depends on a signal S, received at the nth epoch.

It is of interest to note that we have 8(S,) = § for Markov decision processes and
B(S,) = e #™ for semi-Markov decision processes with S, = (#,,7,) for 7, the time

between transitions.

Condition 1 For a given € > 0 there exists é§ € S and 3,(d) such that

0<8(s)<B8(6)<1 forall se S\é
and

LQ“(Q,(‘SlI)T(d:ﬂ) <1—¢ forall aeA, = € Il
Lemma 2.5.83 For any policy R Cr(x) is bounded for all = € 11

Proof There exists a constant K such that |c{z.a)| < K forall z € Q

Cr(r) < KE[>: MBS = 7]

n=1
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= K i ER[IT7=! 8(S)|, = =)

n=1

K Y- TS EplB(S:) iy = 7]
n=1

because S; is conditionally independent for a given Xj.

]

Erl8(5:)Ti-y = 7] jn ER[B(S)|Xizy = z)Pr{dz|Il_, = =}

= [ [ ()@@ sle)u(ds)x(de)

where the policy R is assumed to assign an action a at the (n - 1)-th epoch,

= 1= [ [ Qe sle)ulds)r(dz)

=1-f/ (1= B()Q (. sle)u(ds)x(da)
= [ [ = BNQ (@, sle)u(ds)(dz)

< 1-(-50) [ [ @@ sk)uds)n(dr)

= 1-(1-5(8)) [ [1 - Q°(2 8le)(da)

< 11— fo(6))

Therefore

Ca(x) < K 301 — (1 = Bo(®))" = K/(1 - u(8))e

n=1

for € > 0 and Fy(d) < 1.
We have the following generalized form of Bellman's dynamic equation.

Theorem 2.5.1 C'+(7) = min{ L felz, a)+ js B(s)C(T{xls,a})Q*(Q, sle)u(ds)lx(dz)}.

The proof is omitted.

For a stationary policy f mapping from II to A, define

(Tpu)(x) = [ [ela, Sm) + [ BT {rls, 1(2))QNQ sla)ulds)x(de)

and

(Tyu)(r) = mind [ [e(z,a) + [ Bls)u(T {ls,a}))@°(S, sloyu(ds)}m(d)}
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Let B(Il) denote the set of all bounded functions with respect to the sup norm. Then
Cgr(=) € B(II) for all R.
Note that B(II) is complete.

Lemma 2.5.4 For every u.v € B(Il) and stationary policy f
(1) u < v implies Tyu < Tyv
(i) T;Cy = Cy

(iii) T{u uniformly converges to C; for all u € B(II).

The proof is very easy and then is omitted.

Lemma 2.5.5 Let Bla|r) be the probability of choosing action a when the state informa-
tion s .

Then
Y™ plalr)(T.Cr)(x) > Ca(x) for any p(-}).

agA

Theorem 2.5.2 For every u,v € B(I1) and the sup norm || - ||
[ Tsu — Tav|| < 8'flu— v
where B' =1 — €(1 — By(8)) for € > 0,54(8) < 1 of Condition I.

Theorem 2.5.3 A stationary policy f, selecting the action minimizing the right hand
side of Theorem 2.5.1, is optimal.

Theorem 2.5.4 For any stationary policy f, let f' be a policy selecting the action mini-
mizing T,Cy. Then
Cp(n) S Cy(m) forallxw

Particularly, if Cp(7) = Cy(7), then f is optimal.

Lemma 2.5.6 Forr €1Il,i=1,2,....mand =%, \; =1, \; > 0 for all i.
Then

T{3_ Air'ls,a} = A{r'|s,a}for every s, a

=] 1=1

where

r _ AiJo¢*(Q, s|z)m(dz) N o )\ —
A= T ¢, slz)(dz) and = g.&r Eﬁgz\,—l.
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The proof is easy and is omitted.
Theorem 2.5.5 Let (150)(x) = C"(x) for all € Il. Then C™(x) is piccewise-linear and

concave in & and then C = (7) is concave in ™ as n — o0,

Proof The proof is trivial for n = 1. Assume forn — 1.
Let (T50) = nEn(T"aC""l)(r}. Let #t, 7 €lland A, 0L 1.
Let 7 = Ax! 4+ (1 — A)=?
(T,c")(x) = ,\_Lc(:c,a_)?rl(dx)-i-(l-A)/ﬂc(a‘.a)drz(dx)
+f j;3'(3)(7""1'1‘{/\:1"l + (1 = XN)=?ls, a}Q(Q, s|x)u(ds)(dx)
als

= z\_/nc(.s.,a)wltdm) +(1— A)Lc(r,a)rz[dm) +_/;f55(s)0“'1)\’{7’1r’|3,a}

+(1 = X )P {='(s,a)}Q"(Q. s|z)u(ds)7(dz)
= 3 /ﬂ oz, a)x (dz) + ]n js B(s)C™ (T {5, a})Q(S2, sl )u(ds)w" (da)]

+(1 =) fn e(z,a)r?(dz) + '[n fs B()C™ (T {725, a})Q*(Q. s|z)u(ds)w?(dx))

= MLC™M(xY) + (1 - V.G (7).

Since C"* = “gil T,C"(x) and A is finite, C"(x) is piecewise-linear and concave in 7 and
a

so C*(w) is concave as n — 0.

Bounds for optimal expected costs
Let us consider two extreme cases, (i) the states of the system are observable (complete

state information), (ii) the state of the system are not observable at all (no observation).

(i) Complete state information
Define
C'(z) = ‘%f ER[Z B(S;)e(xn, a,)| X = z]

n=1
and let

C'(x) = jﬂ C'(z)r(dz)

where 7 is the distribution of X; for the partially observable model.

(ii) No observation
Define |
C"(x) = inf Er[}_ €B(r1 + -+ + Tn-1)e(Xn, an)|th = 7]

n=1
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where control policy is based only on a prior state information and so no a posterior

state information is obtainable.
Theorem 2.5.6 C'(7) < C (7)) < C"(x) for all = € 1I.

Proof Let H! = {rg, Xo,ap,"++,X,.Sn,a,} for the complete state information case and
H! = {7g,a9,- -- ,a.} for the no observation case.

Then, for the action space A define as follows;

by H, — A for the complete information
b,: H, — A for the partial observation, and

8, : H] — A for no observation.

Obviously
He Oy CHL

Then
C'(z) < Cx*»(x) < C"(x) forall rell

Remarks 10 Under Condition I C"(x) is again bounded by K/e(1 — By(6)). Hence,
C(r) S Cx(r) < C"(z) < KJe(l — Bo(6)). It is of interest to note that C'(x) is lin-
ear in w. C"(7) — C'(x) represents a value of complete information and C"(x) — C * ()

is a value of partial information.

2.6 Transformation of Partially Observable Markov Decision Processes into

Piecewise Linear Ones

It is well known (see Sawaragi and Yoshikawa [110], Dynkin [39]) that partially observ-
able Markov decision processes (abbreviated by POMP) with finite (or at most countable)
states can be transformed into completely observable Markov decision processes (abbre-
viated by MP) with continuous states. But the state space of transformed MP becomes
the set of probability vectors which is no longer finite nor countable but continuous (con-
tinuum). Then it is almost impossible to compute an optimal cost and its corresponding
policy of continuous state MP in the form of dynamic programming. Sawaki [96] recently

discusses piecewise linear MP. In this section it is shown that such POMP are actually
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piecewise linear MP with complete state observations. Since piecewise linear MP have
many advantages for applications and implementation in a computer, it is important and
of interest to provide a justification of the transformation of POMP to completely ob-
servable MP. which enables us to handle uncountable (continuous) state space MP and
lightens a computational burdens. Also it will be shown how to find the coefficients of
piecewise linear functions and to handle the product of simple partitions for the purpose

of computer implementation.

2.6.1 Piecewise Linear Markov Decision Processes

Piecewise linear MP are special cases of the general MP with finite actions which satisfy
the monotone contradiction mapping assumption of Denardo [31]. Under the setting
of Blackwell [17] the general MP with finite actions are defined by the four subjects
(2. A,g,¢), where Q is a linear vector state space, A is the finite set of actions a €
A.q(-|x.a) is the one step transition probability on  for each pair (z,a) € 2 x A, and
¢(+,-) is the bounded immediate cost on (2, A). Define a policy é : @ — A. Our expected
discounted total cost V?(z) at an initial state r under a statinary policy & is written as

Vi(z)=E {f: B Xy 6( X)) X = } .

n=1
where {X, : n = 1,2,...} is a Markov chain with transition probability ¢(-|z,8(z)) and

f,0 € 3 < 1, is the discount factor. Define the optimal cost V* by
V*(z) = inf Vi(z) forall z€Q,
s€A

where A is a family of stationary policies. It is well known that there always exists an

optimal policy 8 which is stationary, and V®" = V* satisfies V* = U.V~, where
U.v(z) = min {c(:c,a) +8 jn v(m')q(dm’lx,a)}
for v € B(2) the set of bounded functions on Q. Also, define Us : B(Q2) — B() by

(Usv)(z) = e(z,8(2)) + B [ v(z")a(dr'|z,6(x)).

We write Us = U, if 6(z) = a for = € (L
A collection P = {E,, E,,..., E,} of subsets of  is a partition of Qif E;N E; = 0 for
i # j and if UL, E; = Q. Each member of partition P is a cell. If each cell of a partition
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is a convex polyhedron then the partition is called simple. A function v is piecewise linear
if there exists a simple partition P = {E1.Ey,...,E.} such that »(z) = v(z) for all
x € Ej,i = 1,2,...,m and each v — i is the restriction to E; of a linear functions on €.
A policy & € A is piecewise constant if there is a simple partition {E;, E. .. .. E.} of Q
such that §(x) = a; for all z € E..

Definition MP are called piecewise linear if there is exists a simple partition P =

{E,. E;, ..., Epn} of 2 such that (Usv)(z) is piecewise linear for v piecewise linear and &

piecewise constant.

Lemma 2.6.1 If MP is piecewise linear, then U.v is piecewise linear and there ezists a

piecewise constant policy 6 such that Usy = UL,

Proof Suppose that Usv is piecewise linear with a simple partition {E\,Ey...,E,} and
that Usv = U,v for x € E; an arbitrary but fixed cell. Therefore, there exists a simple
partition P" for each a € A. Then we may suppose that U,v is piecewise linear with
respect to the simple partition P*. Let P = [[,c4 P* which is the product of the simple
partitions. Since the product of simple partitions is again simple, P is simple and finer
than each P?, and so each U,v is piecewise linear with respect to P. For this refined

partition P, there is some linear functional a} such that for each F € P and a € A
(Uqv)(z) = a%(z) for z€F.

For each F € P, define the sets G5, b € A, by G} = {2 € F : o}z = min, a%z}. Then
F F F F

{G} :a € A} = PF is a partition of F. Put P = UpepPF and then P is a partition of (2

with the property that

(U.V)(z) =af(z) if z€G%:eP.

The policy 6 defined by §(z) = a for z € G% € P satisfies UsV = U, V.

Corollary Suppose that MP is piecewise linear with contraction mapping U which is
either U — 6 or U.. Let v" = Uv™™! for n = 1,2,..., and v" be piecewise linear. Then
v" is piecewise linear and the stationary policy &,, defined by Us, = U™ 1, is piecewise
constant. Furthermore v™ converges in norm to the fixed point V* or V* corresponding

to U, or Us, respectively.
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Remarks 11 The fired points V= or V¢ need not to be piecewise linear and 8" need not to
be piecewise constant since the number of cells in the limiling partition is not necessarily

finite.

2.6.2 Partially Observable Markov Decision Processes

First, we shall introduce POMP and provide a lemma to be used for transformation
of POMP into piecewise linear MP.

Consider Markov decision process (called the core process) with state set {1,2,.... N},
with action set A, with probability transition matrices { P} and with immediate cost vec-
tors h®. Let Z, be the state at the n-th transition. Assume that the process {Z,.n =
0,1,2,...} cannot be observed, but at each transition a signal is transmitted to the deci-
sion maker. The set of possible signal © is assumed to be finite. For each n, given that
Z, = j and that action a is to be implemented, the signal 0, is independent of the history
of the signals and actions {6y,a0,0;,a1,...,0,_1,a,_1} prior to the n-th transition and
has conditional probability denoted by +§; = P[#, = 0|Z, = j,al.

Let @ = {2 = (21,22,..., 25} : T, 2; = 1,z; > 0,Vi}. Define the i-th component of

X, the random variable of z, to be
P2 =300 06,01, . . s On iy Ou~i3Oa), 32,200 V.
It can be shown (see Dynkin [39]) that
PlZps1 = j100,80: 015+ . - 405y 8ns Oni1] = PlZns1 = F10ns15 80, X

Thus X, represent a sufficient statistic for the complete past history {0, ag,...,a,_1,0,}.
It follows that {X, :n =0,1,2,...} is Markov decision process (see Dynkin [39]), called
the observed process. Its immediate cost is ¢(z,a) = h%z. Its action set is A. Its prob-
ability transition function is determined by the following calculation: For each measure

subset BC Q,z € ), and a € A,

Q(Bkcs a) = -P[Xn+1 & Ban =N = a]
ZP[XH+1 < B|6ﬂ+l = G,Xﬁ =I,a5 = a]z‘}’;&z P%I,‘

Y P[Xp41 € Blfpys = 6, X, = 2,0, = a]LP*(0)z
[/
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where 1 = (1.1,...,1) and P*(0) = [P3~%]". Define the vector 7(z|8,a) by

_ P*(f)x
T 1P (0)a

Note that T(X,|0,+1,6,) = X4, and that

1(z)0,a)

1, if T(zl9, :
P[Xn+1 € Biaﬂ‘i"l —— 6-.4}(!1 =T,y = G‘] = 70 (.f[ 0-) € B
0. otherwise.
So,

¢(Blz,a)= Y 1P%(8),
gEd(B x)

where ®%(B,z) = {0 : T'(z|0,a) € B}.
Next, we show that ¢*(B,z) = [g2'g(d2’|2,a) is piecewise linear in z for each convex

polyhedral set B C Q and action @ € A. Using the previously computed g\ Blz,a) we

have
¢*(B,z) = / Yg(dele,a)= Y T(zlh,a)1P*8)x (2.10)
B 6ed°(B.x)
P(0)x
- 1p°(0)z = p*(0)z. 2.11
ae@ﬂz(:s.zj 1P2(0)x 9@2(:3.:) @ i

Thus it is sufficient to verify that the set valued function ®*(B,-): Q — 29 is piecewise

constant on (2, where 2° is the power set of ©. To this we need
Lemma 2.6.2 For each signal 8, action a, and set B € Q, define
B ={zeQ:T(z|0.a) € B}.
Then for any subset of signals v C ©, we have
%(B,z)=v ifandonlyif z€ () Ef'“ n N (BB2),
fev feve

Proof Note that B3 = {z : § € ®*(B,z)}. Thusif z € EP* for 6 € o, then 6 €
$°(B,z). On the other hand, is z € (Ef‘“)‘ for 6 € ¥*, then 6 € ®°(B, z). Consequently,
¥° C (9%(B,z))°. It follows that ¢ = (B, z).

Conversely, suppose that ®(B, &) = . Then & € B/ for each 0 € ¢ and & € (EP®)°
for each 6 € ¢°, which completes the proof. o

The next theorem shows that POMP is actually piecewise linear MP and provides a

formula for computing the cost function which is convinient for computer implementation.
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Theorem 2.6.1 Suppose v(z) = vi(2) for x € E; with a simple partition P, = {E\, Ea, ..., Fy}
of Q. Then

(Uv)(z) = {h“ +8) v ) p“(ﬂ)} z for z€NZEp (¥:),

i fev;
where E3(¥) = {x € Q: ®*(B,z) = ¢} and N7, B} (¥;) is a cell in the partition P of
defined by
P=T[{E;(¥): v €2}
i=1

That is, U,v is piecewise linear with the partition P.
Proof First observed from equation (2.11) and Lemma 2.6.2,

fBz’q(drﬂr,a) = Y T(z|f,a)P%(0)a

ey

Y. P (0)z for xe€ Ej(v).
=

Therefore we have

(Upv)(z) = h“x—i-ﬁfnv(:r')q(da:'|.r,a}

m
= h%z+ ﬁgvg fB.- 2'q(dz'|x,a)
= {h“ + ﬁi-v,- ZP“(G)} gz for z € Ep(¢¥)
i=1 fev
Lemma 2.6.2 gives an explicit representation of Ef(1) and ¢°( B, z) is piecewise linear
with respect to the partition {E§(w) : 1 — 2°}, where it is assumed that ¢*(B,z) = 0 if
Eg(v) = 0 for all ¢». Although this partition is not simple, it can easily be refined to a
simple partition as in the next paragraph.
Suppose that B C ( is a convex polyhedral set. Sincefor X e Q ={z: T z; = 1,2; >
0 Vi} an inequality Iz < b can be rewritten as lz — b= (| — bl)z < 0, we can without

loss of generality assume that B has the representation
B={z€N:Kz<0,Lz <0}
for some matrices K and L, where 0 = (0,0,...,0)7. With this representation of B,
EP* = {z€Q:T(z)0,a) € B}
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N L PA{0)z P2(0)z
= {I S (IR VI (P 0}

{z € Q: KP*(0)z < 0, LP*(f)z < 0}

I

{z €Q: K*(0)z <0,L%(0) < 0},

where K%(8) = K P*(0) and L6a(6) = LP*(0). SO each EP* is a convex polyhedral set.
Each (EP)* can be represented as a union of disjoint convex polyhedral sets. It follows
that E%(3) is a union disjoint polyhedral sets, say Eg(y) = U:;l{E"B(t;})]. Thus ¢*(B,z)
is piecewise linear with respect to the simple partition {E;(¢'): j = 1,2,...,ny.¢ € 2°}.

Our motivation for studying piecewise linear MP which include POMP as special cases
is that they are easily represented in a computer in terms of piecewise linear costs and
piecewise constant policies as well as simple partitions. For example, a simple partition

P ={E, E,,....E.} can easily be stored in a computer as:
w={z: Kz < . L'z < d."}, g= |0 o

where each b and d' is an NV-dimensional vector and each K* and L' is a matrix with N-
dimensional rows. A piecewise cost function f(z) = fiz and a piecewise constant policy

8(z) = a; on E;. This situation will be denoted by
f“'{(fi;K;1bi;L£1di)a 3.=152'-:---1n]'1
6 ~ {(ai; K*, 0, L) d'), i=1,2,. 5
E; ~ (Kb L. d').
Our MP requires a performance of product of simple partitions. This can be performed

by combining the corresponding lists of inequalities as the intersection of two cells. Thus

it is easy to form product partitions.
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Chapter 3

Optimal Policies in Inventory

Control Problems

3.1 Introduction

In this chapter we consider two types of dynamic inventory control problems. The
first type is of a classical inventory control problem with fixed ordering costs. The second
one is of products which can not carried over to the future demand.

In Section 3.2 we consider a dynamic stochastic inventory model with fixed inventory
holding and shortage costs in addition to a fixed ordering cost. We discuss a sufficient
condition for the (s,S) policy to be optimal in the class of such stochastic inventory
models. Furthermore, we explore how such a sufficient condition can be rewritten when
the demand distribution is specified. Several examples like uniform, exponential, normal
and gamma distribution functions are treated.

The main result of this paper is to show on the basis of Ishigaki and Sawaki [49] that
the (s, S) policy is still optimal under a simple condition even if the fixed inventory costs
are involved. Even though Aneja nd Noori [3] consider a similar model only with fixed
inventory shortage cost, our proof for the optimality of an (s, S) policy in the multi-
period model is different from and much simpler than theirs. It is well known (see Scarf
[111], and Veinott [124], [125], [126]) that the (s,S) policy is optimal for the stochastic
inventory control problem with fixed and proportional production costs. As to dynamic
stochastic inventory control the concept of K-convexity is crucial to the existence of an

optimal policy which is (s, S) type. However, if the inventory cost includes a fixed cost,
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the (s, S) policy is no longer optimal. For example, Aneja and Noori [3] discuss a sufficient
condition for the (s, S) policy to be optimal if the inventory shortage cost has a fixed part
but inventory holding cost does not have such a fixed one.

In Section 3.3 we deal with the problem of selling a fixed number of units of certain
products that cannot be carried over and are not storable for consumers. Hotel rooms.
airplane seats, and concert seats are examples of such products that are sold at multiple
prices under certain restrictions (see Sawaki [106]).

This chapter analyses the problem of allocation products between two types of. prices
when the demands for the types of product are stochastically dependent. We derive a
simple formula for determining how many products to sell at each price. In addition, we
provide three interesting examples of cases in which demand distribution is specified.

Vacant hotel rooms. seats in passenger planes, and seats in concert halls are examples
of what are referred to as “inventory” in their respective business circles. The special
feature of such inventory items is that the saleable total capacity is fixed in advance
and it is impossible to carry over any remaining inventory to the next day. In order to
counteract this physical property of inventory that is incapable of being carried over to the
next day, businesses with such inventory aim at guaranteeing demand by setting multiple
prices on inventory items of identical quality and issuing a variety of discount tickets at a
relatively early stage. Users, on the other hand, also have different preferences in regard to
inventory items of identical quality. Thus, for example, people who use passenger planes
for tourism purposes generally make reservations at a comparatively early time and at the
cheapest discount fare possible, as opposed to those who use passenger planes for business
trips.

In Section 3.3 we hypothesize a case in which, when the amount of saleable inventory
is fixed in advance, two types of demand for such inventory items occur as a result of
differences in the time that demand arises and in profitability. We consider the problem

of deciding how to distribute the inventory items between these two types of demands.
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3.2 On the (s, S) Policy with Fixed Inventory Costs

In this section we consider a finite dynamic stochastic inventory problem with a single

item. We need the following assumptions and notations:
o The unsatisfied demand is lost.

o If the demand is less than stock level, then holding cost incurrs at the end of each
period. This holding cost consists of two parts, the fixed holding cost [B,;] and the

proportional holding cost [A].

e If the demand is bigger than the stock level, then shortage cost incurrs. This short-
age cost again consists of two parts, the fixed shortage cost [B,] and the proportional

shortage cost [p)].

e If an order is taken, then the ordering cost incurrs. This ordering cost consists of

the fixed ordering cost [K] and the proportional cost [c].

e Demand of each period is given by the random variable which has the probability

density function (p.d.f.) ¢(§). We assume that p.d.f. é(£) is differentiable.
e Both cost functions and p.d.f. of demand are identical over the periods.

Let us assume that the planning horizon is discrete, finite and consists of N periods. At
first we consider the expected cost over n periods (n < N). If the stock level immediately
after an ordering is y, then the sum of the expected holding and shortage costs to be

charged during a period is given by
Ly) = h['w-e)ee)de +By [ o(e)de
40 [ (€~ v)o(€)de + By [ o(e)de (3.1)
where we assume that B, is not equal to B;. If B; = B,, then it is easy to see from
equation (3.1) that the sum of the fixed holding and shortage cost is independent of y.
Therefore, this model reduces to the classical stochastic inventory model only with a fixed

cost. Let C,(z) be the minimum of the expected total discount cost over n-periods when

= is the starting inventory level before an ordering at the beginning of period n. Then we
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have from the principle of the optimality,

Calz) = min{H(y —z) + Lly) + p]; Co-1(ly — €17)6(€)de } (32)

0, if y<
[y—€]+={ R

y — &, otherwise,
wheren =1,2,..., N, p is the discount factor, 0 < p < 1, Cy(z) = 0 for all = and H(-) is

defined as follows:

0, if y—z<0;
H(y —z) = b = e
K +c-(y—2z), otherwise.

The objective of this section is to find an optimal inventory policy which minimizes
the expected total discounted cost. To prove the optimality of an (s, S) policy for the

multi-period model, we first consider the single-period model of this problem.

3.2.1 Single-Period Model

We discuss the optimality of the (s, S) policy in a single period model. N = 1, equation

(3.2) reduces to

Ci(z) = min{H(y — ) + L(y)}- (3.3)

Theorem 3.2.1 For all noninceasing demand density functions, a necessary and suffi-

cient condition for the optimality of an (s, S) policy for the single-period problem is that

Condition (A)

) h+p TR 2
@(9){2}32*31 forall yeR™ if B,— B [ 0,

where Rt = {y|y > 0}.

IA

Proof (Necessity) It suffices to prove for the case B, — By < 0 because the proof of the
case By — B, > 0 can be applied to Aneja and Noori’s result as B = By — By. Let Fy(y|z)
be the quantity inside the braces of the righthand side of equation (3.3) and put Gy(y)
as follows. If y > z, then we have Gy(y) = Fi(y|z) = K + cz

Giw) = -+ h [[ (v = 90k + B1 [ o(€nde+ [ (€ ~w)olee + Ba [ olerae

53



In this case the first and second derivatives of function Gy(y) are as follows:
Gi(v) =c+h [ 6+ Brow) —p [ 6(€)dE ~ Baoly)
G!(y) = hé(y) + Bid'(y) + poly) — B2t/ (y) = (A + p)oly) — (B2 — Bi)¢'(y).  (34)
From the Condition (A),
(h+ p)ély) — (B — By)d'(y) 2 0.
That is
Gi(y) =20
so Gy(y) is convex in y.

If y = z, then we have G;(y) — ey = Fi(y)

Gilz) = ecx+h [ (@—E)ol&)ds + By [ o(€)it
40 [T (€ —a)a6)de + By [ a(E)de (35)
The first and second derivatives of equation (3.5) are as follows:
Gi(z) = c+h [ o(€)de + Bio(x) —p [~ o(6)de — Bas(z)
Gi(z) = ho(z)+Big(z) + pola) — Brd/(2)
= (h+p)olc) — (B = B1)é(2) (36)

Since this equation is identical with the equation (3.4), equation (3.4) and equation (3.6)

implies that G4(y) is a convex function of y = z.

Therefore,
: Gi(y)+ K —cz, if y>u;
Fi(y) = A
Gi(z) — ca, if y=u=,
and
Gi(S)+ K =Gy(s), if z<s;
aigy= 4, ) 1(e) (3.)
Gy(z) — cz, it 2= a3,
where

S = arg{inf{G,(y)}}.
o= mm{2|G1(S) o I Gl(z)}

Consequently, under the condition (A) an optimal inventory policy is as follows:
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(I) if z < s, order S — =
(I1) if 2 > s, do not order.

Such a policy is called the (s, S) policy.

(Sufficiency) We shall show that the following statement. Suppose that the condition

(A) does not hold, that is, there exists y € " such that

dy) ] > | h+tp . >
_— — if B;—-B 0,
Mm{<}&—&’ y ‘{<}

then there are values of parameters K and ¢ for which any (s, S) policy cannot be optimal.
We prove it for the case of By — B; > 0. The proof for the case B, — B; < 0 is similar

and is hence omitied. From assumption, we can find y* such that
?'(y) <0 forall y>y",

where ¢(y) is assumed to be continuously differentiable. Since ¢'(y) is continuous and

negative for sufficiently large y, there exists yq such that

/
) g 143)
Let yo satisfying (3.8). For all y with y > y, an inequality
dly) . _h+p
o(y) — B:— B
holds, which implies that
Gi(y) 2 0. (3.9)
On the other hand, in the left neighbourhood of y,, we have
Gi(y) <0 for y€ (yo—byo), 6>0. (3.10)

Now consider the function f(y) = Gi(y) — (¢ — p). Thus,

f¥) = (h+p)o(y) — (B2 — B1)é(y),

where @ is the cumulative distribution function (c.d.f.) of ¢. Since f(y) = Gi(y), it

follows from (3.9) and (3.10) that f(y) attains a local minimum at yg, where we assume

that this minimum is also global.
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By an appropriate choice of ¢, we can ensure that G'(y) = f(y) + (¢ —p) = 0 at y; and
y, such that GY(y;) < 0 and GY{(y2) > 0. Thus, the function Gj(y) has at least two
consecutive zeros, one at y; where it is concave and the other at y, where G(y) is convex
and there are no zeros at y;. So we can choose an appropriate K < Gylyy) — Gily)-

Summing up the above argument we obtain the optimal inventory policy as follows.
(i) order (y» —z),ifa<z < b
(i1) not oder, otherwise

which is no longer an (s,S) policy. Thus condition (A) is necessary for the (s,S) policy

to be optimal.

Remarks 1 Theorem 8.2.1 concludes that condition (A) is necessary an sufficient con-
dition for the (s, S) policy to be optimal. If the rigthand side of condition (A) is positive,
the condition (A) holds for all nondecreasing p.d.f.. Furthermore, note that pur model
includes Aneja and Noori [3] type (B, = B, By = 0) and Searf [111] type (B, = By =0).

3.2.2 Maulti-Period Model

In this subsection we shall showw that condition (A) is also sufficient for the (s, S)
policy to be optimal in the multi-period model. This is not true in Aneja and Noori [3]

because our proof is difficult from theirs.

Define G,(y) by

Galy) = ey + Ly) + 0 [ Coally — 1) (€ )de

where n = 1,2,..., N. This definition is corresponding to G; in We prove Theorem 3.2.2
by using properties of a K-convex function which is defined as follows.

Definition [K-convexity [111]] Let K > 0, and let G(z) be a differentiable function.
We say that G,(z) is K-convex if

K + Gula+ 2) — Gu(z) — aG(z) 20, z>0,VzVn

Before presenting Theorem 3.2.2 we prepare Proposition 1 and 2 which proofs can be
found in their references.

Proposition 1 (Scarf [111])
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1. O-convex function is ordinary convex.

1

If f(z) is K-convex, then f(z + k) is K-convex for all k.

3. If f and g are K;-convex and K;-convex, respectively, then (af+8g) is (oK +3K;)-

convex for all & and 7 positive.
4. If go(z) is K-convex, so is [5° gn(2€)d(£)dE.

Proposition 2 (Denardo [31]) Let h(y) be convex and nondecreasing on Y. Let C(z)
be K-convexon aset X 2 {h(y)ly € Y}. If all elements a < cof X have C(a) < C(c)+K,
then C[h(y)] is K-convex on Y.

Theorem 3.2.2 [f condition (A) holds, then C,, is K-convex.

Proof The proof is by induction on n. Forn =1, C; is K-convex because equation (3.7)
satisfies the definition of K-convexity (from convexity of Gy ). For n = k, we assume that

Ci is K-convex. From equation (3.2), Cryq(2) is

Cia(z) = min{H(y —2) + L)+ [ Cully — €1*)9(6)}- (3.11)

Let Fi,1(y|z) be the quantity inside the braces of the righthand side of equation (3.11)
and put Gyy,(y) as follows.

F z)+ K —czx, f y>uz;
5 s { ka(yle) v

Frsi(z|z) — ez, it y=u,
Fory > a.
Gia(y) =cy + L(y) +p /:, Cily — €]7)(£)dé.
Since the first term plus the second term is G1(y), so it is O-convex. The K-convexity of
the third term derived from Proposition 1 and 2. Because we can take h(y) = [y — ¢]*
and C(z) = Ci(z), respectively, in Proposition 2, and take g,(z) = Cy(z) in Proposition

1. Thus Gi41(y) is a combination of a convex and a K-convex function and is, therefore,

K-convex. So is Cryq(2).

Theorem 8.2.3 If the p.d.f. of demand, ¢(£), satisfies condition (A), then a (s,,S,)

policy is optimal for our multi-period inventory problem.
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Proof From Theorem 3.2.2, we established Cy(x) is K-convex for all n and hence, the

optimal policy for the n-period problem is (s,,S,) where:
Gul5s) = mjjn Gu(y), Gnl(sn) = K + Gu(Sy).

This policy states that when inventory on hand is equal or below the reorder point s,,,
sufficient stock is ordered to raise the inventory level to the order-up-to-level S,. The

minimum expected total cost of following such a policy would be:

C.(2) K+¢(S, —2)+Co(Sn) = K —cx+ Gi(S,), if z < s,;
n\) =
—cx + Gp(2), i &84,
which is a (s,, S,) policy.
Examples
In this subsection we explore the condition (A) when p.d.f. is specified. If p.d.f. is

uniform. exponential, normal or gamma, the condition (A) can be rewritten as in We

discuss two cases.

Case 1

¢'(y) h+p
< for all Rt B, — B, >0,
¢(y)_Bg—B;°r Yy E 2 1>

If supgy oo %'&)l = —éi% holds, then the condition (A) is immediately satisfied. Therefore
any uniform and exponential distributions satisfy the condition (A).
On the other hand if ¢ is a normal distribution with the mean u and variance o2, then

the condition (A) reduce to :
h + p)o?
B, - B

Since Pr{—40+u <y <40+pu} = 1 and Pr{0 < y < oo} ~ 1 in our model, the condition
(A) satisfies

> 0.

(h+p)o
o >k (3.12)

If (h+p) is large enough compared with |B; — B, |, then the inequality (3.12) may possibly
hold.

40 < pu and

For a gamma distribution with parameter (a,v) condition (A) reduces to

(v— 1)(32 —Bl)
Ve B -B)+h+p

(3.13)
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Therefore if

0<v<l (3.14)

holds, then the condition (A) holds. Furthermore, if (3.14) does not hold but (A + p) is
large enough compared with |B; — B, |, then the inequality (3.13) may possibly hold.

Case 2
dly) , htp
: > forally e RY, B, — B, <0,
oly) B, — B, 4 : ;
If €ocycoe ‘:{{3 > B:tg. holds, then a uniform distribution immediately satisfies the

condition (A).
For the exponential distribution with mean 1/a, the condition (A) reduces to

+p

a<|B;—B1

| < 1. (3.15)

In this case, if (h + p) is large enough compared with |B, — B, |, then the inequality (3.15)
may possibly hold.

For the normal distribution the condition (A) reduce to

(h+p)o?,
Since Pr{—4o0+pu <y <4c+p} =1and Pr{0 < y < oo} =1 in our model, the condition

(A) satisfies

_ (At p)o
B, — By

If (h+p) is large enough compared with | B, — B, |, then the inequality (3.16) may possibly

hold.

For the gamma distribution the condition (A) reduces to

(v—=1)(By — By)
V=B -B)+h+p

40 < p and > 4. (3.16)

(3.17)
Therefore if
a(By—By)+h+p<0, |a(By—B;)+h+p—0, andv>1,

then the inequality (3.17) may possibly hold. Summing up the above discussion, we have
the following proposition which is also summarized in

Proposition 3
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Case 1 For any uniform ditribution or exponential distribution, the condition (A) holds.
If ¢ is a normal distribution with (3.12), or a gamma distribution with (3.13), tthe

condition (A) holds.

Case 2 For any uniform distribution, the condition (A) holds.
If ¢ is an exponential distribution with (3.15), a normal distribution with (3.16), or

a gamma distribution with (3.17), then the condition (A) holds.

Conclusion

In this section we have shown under the condition (A) that the (s, S) policy is optimal
for finite period stochastic inventory models with fixed inventory holding and shortage
costs in addition to a fixed ordering cost. It is found that our proof of this result is
diiferent from and much simpler than Aneja and Noori [3]. This section also provides
an answer to the question of how robust the class of (s, S) policies is for the stochastic
inventory models with fixed costs.

Furthermore, we have demonstrated that the condition (A) is necessary and sufficient
for the (s, S) policy to be optimal. However, this condition may restrict on the class
of probability density functions of demands. When the probability density function of
demand is specified like uniform, exponential, normal or gamma, we have discussed in

how the condition (A) can be rewritten to and whether it holds or not.

3.3 Inventory Control for Price Differentiable Products with No Carrying

Over

Vacant hotel rooms, seats in passenger planes, and seats in concert halls are examples
of what are referred to as “inventory” in their respective business circles. The special
feature of such inventory items is that the saleable total capacity is fixed in advance
and it is impossible to carry over any remaining inventory to the next day. In order to
counteract this physical property of inventory that is incapable of being carried over to the
next day, businesses with such inventory aim at guaranteeing demand by setting multiple
prices on inventory items of identical quality and issuing a variety of discount tickets at a

relatively early stage. Users, on the other hand, also have different preferences in regard to
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inventory items of identical quality. Thus, for example, people who use passenger planes
for tourism purposes generally make reservations at a comparatively early time and at the
cheapest discount fare possible, as opposed to those who use passenger planes for business
trips.

In this section we hypothesize a case in which, when the amount of saleable inventory
is fixed in advance, two types of demands for such inventory items occur as a result of
differences in the time that demand arises and in profitability. We consider the problem
of deciding how to distribute the inventory items between these two types of demands.

We define the two types of demands for inventory items that we are dealing with in
this study as follows. The demand that arises at an early period we refer to as “early
demand,” and its profitability is low. The demand that arises at a late stage we refer to
as “late demand,” and its profitability is high. Since what we are dealing with here is the
sale of space, two special features of these inventory items are that they cannot be carried
over to the next day and that any demand that is not filled is lost forever. Businesses
that deal in this kind of inventory items seek a control policy that will maximize expected
total revenue, something that will stir up demand by offering the goods at an early period
at low rates but without thereby missing out on the demand that produces high profit.
In this section we formulate this type of decision problem in general form, as a problem of
maximizing expected revenue. The information obtained in this way is desirable because
it enables one to establish the upper limit to the amount of inventory items to be allocated
to the lower-profitability early demand in cases where it is anticipated that the more highly
profitable late demand will arise at a later future time. This information is also applicable
to bargain sales held after the peak selling period of seasonal goods has been passed. A
sales strategy often used in bargain sales is that of setting an upper limit on the saleable
quantity (amount of inventory) and indicating that the goods can be purchased by the
first whatever number of customers. The idea behind this sales strategy can be seen as
one of arousing demand that has passed its peak but at the same time preventing those
customers who are willing to purchase similar goods at the normal prices from shifting to
the purchase of bargain goods.

Beckmann [9], Brumelle et. al. [21], Rothstein [92], and Sawaki [96] have developed

similar discussions in regard to airline seat management. Belobaba [12] and Sawaki [96]
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have provided overviews of airline seat management and yield management. Liberman
and Yechiali [62] have considered hotel room inventory control. In all these previous
models the authors assume the independence of two types of demands, but in this section
that kind of independence will not be assumed. Accordingly, it recognizes the possibility
that early demand that has been unable to purchase at a discount price will be willing to
purchase at the normal price and will shift to late demand.

In the following subsection a model formulation is followed by an analysis of what
the optimal inventory policy might be. We pay particular attention to what the suficient
conditions are for a simple optimal policy to exist. In the second subsection we discuss
in detail the optimal inventory policy of this model when demand distribution has been
specified. Then in the third subsection, we discuss an overbooking model, and then the
conclusion, we bring together the information obtained by the first model and then touch

upon the range of application of the model and directions for future expansion.

3.3.1 Model Formulation and Optimal Policy

Let us express the total capacity of presently saleable inventory items as C, let it be
a fixed and given value, and let it be expressed in the late demand units to be described
next. The two types of demands for this inventory items will be X and Y, which we
shall call, respectively, the early demand (demand that is realized early) and late demand
(demand that is realized at a late stage). At the beginning of the planning period both
X and Y are random variables, and we posit the distribution function of X to be F(z)
and posit the conditional distribution of ¥ when X = z is given as G(y|z). We posit
the decision variable to be I, which we assume to be the upper limit of the amount of
inventory to be allocated to early demand. In other words, the revenue from early demand
will be min{/, X}. Accordingly, when the allocation of inventory to late demand is Q(7),
then

QU) = C — emin{l, X} (3.18)

where a is the exchange rate of one early demand unit into late demand, 0 < a < 1. If
a = 1, then one early demand unit is equal to one late demand unit, and if 0 € a < 1,

then the case of returned goods or overbooking is hypothesized. In the case of passenger
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planes, if a change in the size of the seating is possible (taking early demand as group
tourist economy seats and late demand as individual passenger business seats), then for

example, o becomes 2/3. In addition, the following symbols are used:
p1 = lower price of early demand
P2 = normal price of late demand
h = unit holding cost of the product unsold

8y = unit shortage cost for early demand

Il

s, = unit shortage cost for late demand

Assumption 1 0 < p; + 81 < a(p; + 52)

It is possible to assume p; < pa,s; < s; in order to guarantee that the profitability
of early demand will be smaller than the profitability of later demand, but in order to
obtain the optional inventory control given below, Assumption 1 is sufficient.

If we assume T'(7) to be the expected total profit when an inventory level of I units

has been allocated to early demand, then T'(]) is given by the following equation:

(1) = p-E[min{X,1}] + ps - E [Eypx [min{Y, Q(I)}]
—h- E [Byjx [max{Q(1) - ¥, 0}]

—s1 - E [max{X — 1,0}] - s, E [Eyjx [max{Y — Q(D,0}]  (3.19)

The problem is to allocate €' amount of inventory between early and late demands so
as to maximize expected total profit under the condition 0 < al < C. Figure 3.1
shows the fluctuations in amount of inventory when @ = 1, X > I, V< =,
In the case described in Figure 3.1 the result was that the allocation of inventory to
carly demand was too little, and in consequence unsold inventory remained even after
late demand was satisfied. Figure 3.2, on the contrary, illustrates what happens when
a=1, X<I, Y >C -1 sothat the amount of inventory allocated to early demand
is too great and the more profitable late demand is lost. In order to find the optimal
allocation of inventory between the two demands, let us prepare the following assumption.

Assumption 2 P{Y > C—a-I|X > I} is increasing in /.
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Figure 3.1 Inventory Fluctuation (a=1,X > I,Y < C—=1)
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Figure 3.2 Inventory Fluctuation (a=1,X<I,Y <C-1)
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Lemma 3.3.1 Under Assumptions 1 and 2, T'(I) is unimodal in I.

Proof Taking the derivative of (3.19) we obtain

dT'(7)

o = F (451 +oh) ~alp+ s + P{Y > C—al | X 21}}  (3:20)

Since F(:) = 0 and the content of the bracket is decreasing in I, the sign of the bracket
is changed only once, that is, there exists I* such that d7(/)/dI = 0, and then T'(I) is
increasing in [ < I" and is decreasing in [ > I*, which implies that 7'(]) is unimodal in

L.

Theorem 3.3.1 Assume that F(I) <1 forall I, P[Y > C] < (p1+s1+ah)/a(p2+s:+h)
and PlY > (1 —a)C | X 2 C] > (p1 + 81 + ah)/a(p; +s; + k). Then, an optimal upper

limit I* for early demand is given by

I"=ma.x{0£a-—f§€|P[Y>C-—a-I|XZI]5 p’+‘”“+“'h} (3.21)
a(p; + 52+ h)

Remarks 2

(i) From Theorem 3.3.1 we conclude that when P[Y > C] > (p; + 8, + a- k)/a(p, +
83+ h), ' = 0. This implies that an optimal allocated value must be 0 when the
late demand is sufficiently larger, compared with the price ratio. Conversely, when

PIY > (1—a)C | X > C] < (p1+ 51 +a-h)/a(ps + 83+ h), then I" = C.

(ii) Note that an optimel upper limit for early demand depends only on the relative price

ratio, but does not specific values of prices.

Corollary If @ = 1 and X and Y are stochastically independent, then an optimal

upper limit /* of the product allocation for the early demand is given by

C if G(0)<r
P=3 -G if Gl€)<r<G(0) (3.22)
0 if r<G(C)

WhereC;':I-GandrE%.

Remarks 3
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(i) An optimal protection limit for late demand C — I* is equal to G™'(r), which does
nol depend on C and F.

(ii) I"/C 1is increasing in C.

(iii) I" depends only on G and r, and not on F.

3.3.2 Examples

This subsection is a discussion of special cases of the model presented in the preceding

subsection and cases in which the distribution function of demand is specified.

Example 1 Early demand is sufficient.

Let Pr(X >I)=1forall [ in whiche=1and I <C.
Then PrlY >C—I|X > Il =Pr[Y >C -1 =G(C-1).
When a = 1, T([) in Equation (3.19) becomes

T(I) = pi+1+p:- Emin{Y,C - I}]
—h - E [max{C — I — Y,0}]
—8; <E[X — 1] — 83 E [max{¥ ~ € — I, 0] (3.23)

It is easy to see that Equation (3.23) is concave in I. Taking the derivative of (3.23) we

have

dr(I)

7 = P—PPlY >C—I+hP[Y <C—1]+s —PlY >C -]

= (p+si+h)—(p2+s2+h)P[Y >C~1] (3.24)

Hence, an optimal upper limit for early demand is given by

- _ A p1+31+h
r=0c-@ (———--lﬂws2+ h) (3.25)

which is essentially the same equation as in Theorem 3.3.1, but does not require Assump-
tion 2.

Example 2 Demand follows bivariate normal distribution.

Let @ = 1 and X and Y are bivariately normally distributed. When X is positively

correlated with ¥, Assumption 2 holds. In this example we provide numerically optimally
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Table 3.1: Optimal allocation values, (I*,C — I*)

C

P 40 60 80 100 120 140

Independent || (13, 27) | (33, 27) | (53, 27) | (73, 27) | (93, 27) | (133, 27)

(p=10)
Dependent || (13, 27) | (32, 28) | (49, 31) | (65, 35) | (81, 39) | (97, 43)
(p=10.9)
I'/C(p=0)| 0.33 0.35 0.66 0.73 0.77 0.80
(p=09) 0.33 0.53 0.61 0.65 0.67 0.69

distributed values for early and late demands. The means and standard deviations are as

follows:

px =10, py=230, ox =265 oy=115,

(pr+s1+h)/(p2+s2+h) =06

Optimal allocation values for early and late demands are summarized in Table 3.1.
Note that when p = 0, C — I* is always equal to 27. In a case of p = 0 optimal upper

limits for early demand are bigger than ones in a case of p = 0.90.

Example 3 Demand is exponentially distributed.

In this example we assume that X is exponentially distributed with mean 1/ and
Y=X/B,8>0,a=1. 1/3 of early demand turns into late demand.
P{Y > C —1|X = I} = e P+ 5 increasing in [
- g (P] -+ 8y h) S
"= —C+log| —— ] <C. 3.26
T pr+sa+h) " {3:28)

If X and Y are independent, then we have
P{Y>C-1} = g~ AB(C=T)

(3.27)

1/(28)

p2t+s2+h
From the argument above, we obtain the finding that I* < I** for 3 > 0.

67



3.3.3 An Overbooking Model

Suppose that there is only one type of product, say a normal fare class. With each
fare booked we associate a random variable
1 if the i* fare booked confirms
{ 0 if the i* fare cancels
Assume that Zy,Z,--- are independent and identically distributed with EZ; = 8. If
I seats are booked, then N(I) = ¥ L, Z seats are confirmed. Then the expected total

revenue is
R(I) = p:E[N(I)] = (p2 + po) EIN(I) — C | N(I) > CIP{N(I) > C} (3.28)
where po is the penalty cost due to overbooking.

Theorem 3.8.2 If Z; is independent and identically distributed, then an optimal booking

limit is given by

I*(C) = max {1 | PIN(I) > C] < pg’_’:pﬂ} (3.29)

Proof Tt follows from the fact that the incremental expected revenue is given by
AR(I) = R(I+1)— R(I)
= B — (p2+po)BP{N(I) > C} (3.30)

and N(I) is increasing in I, which implies that R(I) is concave in (I).

Examples:

(i) Z; is Bernoulli random variable. Set po = p; and E(Z;) = f = 1/2. So I*(C) = 2C.

(ii) N(I) is normally distributed with mean I and variance I3(1 — 3).

C-pl
1(C) = max|I|P{N(I)2 L T
JIB1—8)) P2tmo
§+e-JEFP-GF <l
S4e+ETFF-GF it 2> 1
where z is defined by Pr {Z > z} = -2 for Z normally distributed and

2 I"B
Pt
2

B

(3.31)
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3.3.4 Conclusion

In this section we have analyzed the best way to allocate a fixed amount of inventory
to meet two types of demands differing in the times at which they arise. We have shown
that, when a higher-profitability late demand is expected to arise at a future stage, it
is possible to maximize expected revenue obtained from the allocation of total inventory
by establishing an upper limit on the amount of inventory allocated to lower-profitability
early demand. In those cases in which there is a stochastic dependency between early
demand and late demand, if there is a certain type of monotonicity in the conditional
distribution (Assumption 2), then the optimal allocation of inventory to early demand /*
is given by the equation

r==_c4 log (M) <c (3.32)
g-1 pa+ sy + h
If there is the possibility that customers who have been unable to purchase the inventory
items during the early demand period will purchase them as late demand items at higher
price, then setting an upper limit to the allocation of inventory items to lower-profitability
early demand agrees with our economic intuition.

The model dealt with here is a single-period static model; it is not a dynamic inventory
control model involving close observation of the process in which early demand is realized.
and revision of the upper limit of inventory allocation. A model for sequentially revising
the upper limit of inventory allocation while constantly monitoring the reduction in in-
ventory can probably be considered next. In addition, by way of extension of the model,
instead of discussing only two types of demands we could discuss an inventory allocation
policy for the more general case of N types of demands. In either of these later cases the
model would be more complex and more difficult than the model dealt with here, but it
definitely is an important and real problem for all businesses that sell goods of such a

nature that inventory cannot be carried over and total inventory capacity is fixed.
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Chapter 4

Airline Seat Allocation Models

4.1 Introduction

In an era of increasing pricing freedom, airline companies no longer offer seats for sale
at a single fare. Recognizing that different groups of consumers have different willingness
to pay for the same seat, airline companies offer seats at a wide range of air fares. However,
to prevent consumers willing to pay high fares from buying seats at low fares, the airlines
attach various restrictions to their tickets such as early time bookings, Saturday night
stayovers or reduced service without food to discount fares (see Belobaba [13], Sawaki
[104]).

The process of determining fares, associated restrictions and the number of seats to
offer at a given fare is referred to as “Airline Revenue Management” (see [12]). Within
this area of airline revenue management, the decision process determining the number of
seats to be protected for various classes of passengers is called the airline seat allocation
problem. The key idea of the seat allocation problemm is to limit the number of discounted
seats when there is a strong demand expected from high fare consumers, so as to maximize

the expected revenue per flight. Airline revenue management includes
(i) determination of high and low fare levels,
(ii) determination of restrictions associated with low fares, and

(iii) dynamic monitoring of seat for sale on a given flight and readjusting the allocation

of seats between high and low fares so as to maximize expected revenues.
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The purpose of this chapter is to analyze some of the first element (i), determination of the
initial allocation of seats between high and low fares. This static model with one period
is of great importance to airlines as the two classes of passengers have very different time
patterns of booking. High fare passengers tend to book in the last days or hours before a
departure time.

In Section 4.2 we consider a dynamic airline seat allocation problem for a single flight
with two fare classes, based upon Sawaki [104]. The problem is formulated as an N-step
dynamic problem and aims at deriving optimal policies. We also explore some analytical
properties of such an optimal seat allocation policy and the associated expected revenue.
The model also extends the existing literature in two ways. First, it is a dynamic version
with the cost of lost sales. Second, it is formulated under the setting of Markov decision
processes which explicitly take into account the periods remaining until departure and
permite reopening of fare classes.

In Section 4.3 we consider the airline seat allocation between high and low fares with
and without stochastic cancellations. We also analyze the problem of simultaneously
determining allocation and overbooking levels for two different classes of passengers, which
also extends the existing literature in three ways. First, the cost of lost sales, which has
been ignored in the existing literature. is explicitly incorporated into the model. Second,
the over booking phenomenon is also explicitly treated. Third, the concept of spill rate
is clarified into the passeger spill rate and the flight rate. It is found that the results
obtained here are in closer agreement with actual airline practice.

Section 4.4 examines the problem, treated in [21], of allocating airline seats between
two nested fare classes when the demands for the classes are stochastically dependent. The
well known simple seat allotment formula of Littlewood which requires the assumption of
statistical independence between demands is generalized to a formula which requires only
a much weaker monotonic association assumption. The model employed here is also used

to examine the problems of full fare passenger spillage and passenger upgrades from the

discount class.
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4.2 A Dynamic Airline Seat Allocation Model

The deregulation of the North America airlines allowed the airline industry to undergo
major changes in price competition, skillful dynamic pricing policies and seat allocation
management. These changes helped to stimulate the demand for air travelling. On the
other hand, the deregulation challenges airline companies with an important managerial
problem of determining an optimal booking policy which allocation optimally the seats
of an airline among the various fare classes.

It is in an airline company’s interest to control the booking process by selling the right
seats to the right passengers at the right prices and timing to maximize the total revenue
acquired from a single airplane.

This section addresses a dynamic airline seat allocation problem. This dynamic model
is very important because it allows us to monitor dynamicly available seats and readjust
the seat allocation among fare classes on a given flight. Another advantage of dynamic
models is of the dynamic reallocation of seats as time progresses, reflecting the actual
booking progress. Optimal seat allocation for a dynamic booking limit revision process
is in fact different from the allocations derived previously for a static case (see [21], [65],
[92], [96]).

In this respect, the section intends to make a significant contribution to the existing
literature by dealing with dynamic aspects of airline seat inventory control.

Liberman and Yechiali [62] presents a model for determining an overbooking policy for
a hotel with a single fare class. Rothstein [92], and [93] formulate an airline overbooking
model with a single fare class as a Markov decision process which allowed for dynamic
adjustment of overbooking levels as the day offlight departure approached, but lacks a
formal derivation and investigation into the properties of the associated optimal expected
revenue. The first significant result on the seat allocation problem was presented by
Littlewood [65] who proposed a simple seat allocation rule by using the marginal revenue
analysis. Richter [86] also proposed a seat allocation model in a simplified manner. More
recently, Belobaba [12] generalized the results above to more than two fare classes. None
of these works but [21] allowed both for the two fare classes. Belobaba [12] is also a recent

good survey article on airline seat management.
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These works of Belobaba [12], Sawaki [96], Brumelle et al [21], Rothstein [92], Little-

wood [65], Richter [86] are based on common assumptions as follows;
1. single flight leg : Bookings are made on the basis of a single departure and landing.

2. independent demand : The demands for the different fare classes are mutunally

independent.

3. low fare booking first : The lowest fare reservations requests arrive first, followed

by the next lowest, etc.

4. no cancellations : Cancellations,’no-show’and overbooking are not considered.

|
5. limited information ;: The decision to close a class is yased only on the number of

current bookings.

6. nested classes : Any fare class can be booked into seats not taken by bookings in

lower fare classes.

While assumption 6 is a common practice in airline reservation systems today, as-
sumptions 1 through 5 are restrictive. These sometimes overly restrictive assumptions
serve the purpose of making the problem tractable.

The purpose of this section is to deal with the problems above, that is, a fomal deriva-
tion for an optimal dynamic seat allocation rule and investigation into the properties of
the associated expected revenue. The impact of uncertain demand on the optimal policy
and associated revenue is also explored. In Subsection 4.2.1, we formulate a dynamic
seat allocation problem with no cancellation allowed. In Subsection 4.2.2, we show the

existence of an optimal policy and discuss properties of optimal policy and associated

revenue.

4.2.1 Dynamic Seat Allocation Problems

In this subsection, we consider dynamic models for airline seat management shere
there are N periods before the flight departure. Model is in discrete time t = 1,2,..., N.
We can time 1 the initial time and N the departure time. The time intervals need not be

evenly spaced. It might be best to space them widely at first when the demand for seats
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is relatively low, and then make the intervals smaller as the departure time nears. This
might be important for the following assumption (C) to hold.

Suppose that there are two fare classes, low and high fares.
Assumption (A) No passengers cancel their reservations.

Assumption (B) In each decision period, low fare booking occur earlier than the high

fa.res s

Assumption (C) High and low fare demands are both independent of demands in other

periods.

Assumption (D) The refused passengers are not picked up by other flights of the same

carrier.

Assumption (A) will be relaxed later. Assumption (B) is not so restrictive since we do
assume “early bird” in each period, but do not over the entire periods. Assumption (D)
is for making the flight revenue maximization criterion reasonable. In each period, after
observing the number of seats available, we determine the number of seats to allocate
for low fare demands, then accept for booking of low fare demands up to the number of
seats allocated and accept the high fare bookings as many as available. Our objective is
to maximize the expected total revenue obtained from the flight over the entire periods.

Indices ¢ and j denote low and high fare demands, respectively. We use the following

notations;
p1,p2 = high and low fares, respectively,
s; = the number of unbooked seats remaining at the beginning of period t,
Li(s) = the maximum number of seats to allocate for low fare demand in period ¢ out

of s seats available,

g*(t) = probability that i low fare bookings occur in period t,

qu(t) = probability that 7 high fare bookings occur in period ¢, given i low fare bookings

requested.

Note that high fare demand depends on low fare which allows the possibility of passengers

switching from low fare seats to high fare, so called “ grade up ”. We also use the notation
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aV b = max{a,b},a A b = min{e,b} and a* = max{a,0}. Any seats remaining at the
end of each period are passed on to the next period. Then we have the following seat

inventory identity:

See1 = [sp—1i A Ly(se) — It (4.1)

where t=1, 2, -, N-1 and i, j denote low and high fare demands. respectively. We wish
to determine L,(s) for each ¢ and s in a sequential order so as to maximize the expected
total revenue. Let Vi(s) be the maximum expected revenue obtained if there are s seats
remaining at the beginning of period ¢ and the flight departs at period N. Then, we

obtain the optimality equation from the principle of optimality

Vils) = max{pEi(i AL)+pEEj[j A(s—iAL) (4.2)
+E:EjiVaa([s —i A L —4]1)}

where L = Ly(s), t =1,2,--- N, Vj(0) =0 for all t and Viy41(-) = 0. Equation (4.3) can

explicitly be rewritten as follows;

Le(s)—1 2
Vils) = max{ps 3 i) +pale(s) 3o (1) (43)
i=0 i=Lq(s)
Le(s)-1 s—i—1 )
+p1( ;0 g ()] Z_% igi(t) +(s=1) 3 (1))
o s=Le(s)-1 =
ti( 2 ¢ X dgi()+(s—Lds) X ¢l
i=L¢(s) 2=0 i=8—Le(s)
Le(s)=1 s—1
+ g q?(i)gq.-’;(t)‘éﬂ(s-f—j)
oo a—Ly(s) -
+ 3 qG@ X Q.'lj(t)t"tn(s—ﬂt(s)“j)}
i=L¢(s) =0
= ogfgf?;?}iﬁs{-&(saﬂt(s))} (4.4)

where Ry(-,-) denotes the expression inside the braces of equation (4.3) or (4.4).

Assumption (E) Ly(s) is nondecreasing in s for each t.

o0 o0
Assumption (F)Foreacht 3  ¢}(t)gl,_p1(t) 2 ¢ 4y(t) 3 ghiyy(t) forallL <s.
1=L+1 J=s8-L-1
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To establish the existence of a simple optimal seat allocation policy under assumptions

(E), (D) we need the following lemma.

Lemma 4.2.1
(i) Ri(s,L(s)) is concave in L for each t and s, and nonincreasing in s for each t.

(ii) Vi(s) is nondecreasing and concave in s for each t, and nonincreasing in t for each s.

Proof Let ARy(L) = Ry(s, L(s) + 1) — Ri(s, Li(s)). We wish to establish the concavity
of Ry(+,-) in Ly(s) for fixed s and t. It will be sufficient to demonstrate that AR,(L) is
nonincreasing in L to establish concavity. Let Sy(L) = py Bi(i AL)+py EiEji[j A(s—iA L))
and T;(L) = E;E;;;Vas1([s—2AL—j]*). Then, Ry(s,L) = Si(L)+T,(L). Letting AS,(L) =
S«(L+1)=Si(L) and AT,(L) = Ti(L+1)—Tu(L), we have AR(L) = ASi(L)+AT,(L). We
will examine AS,(L) and AT,(L) separately. After calculating and rearranging AS,(L)

term by term, we have

AS(L) = pe Y, q(®)—m D gi(t) X g;t). (4.5)
i=l+1 i=L+1 j=s—-L
ﬁ’S,(L) = S{L+1)-AS5(L)
= —quiﬂ(t)"l’l[ Z Q‘? Q|3-L-—l(t "?1:.+1(’E qL+1: (1))
=141 j=8s—L—-1

< 0 ( by assumption (F))

which implies that S;(L) is concave in L. Collecting terms and noting that V;(0) = 0, we

have
o0 s—L—1
= Y ¢ Y gi@®Mnls—L-1—j)=Vepa(s = L—j)].
i=L+1 7=0

Combining equation (4.5) and (4.6) we have

SR = 5 ot —p 0

i=L+1 j=8-L
s—L~1
+ 2 q}j(t)[léﬂfs —L—-1-=j)=Via(s—L—j)l}-
1=0

For an inductive argument letting t = N, we have

Ry(s, Ln(s)) = Sn(Ln(s))
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which has been shown to be concave in L. Then
Vorte) = , onx. {Sx(IA8)))

Since Sy(L(s)) is strictly concave in L, there exists a unique solution L* such that

S r s% L5,
i { n(s) for s< i

Sy(L™) for s> L7,
which is certainly concave and nondecreasing in s. Suppose that Viyi(s) is concave and
nondecreasing in s, and consider ATy(L) given by (4.6). By the induction step, A?T,(L) =
AT(L + 1) — AT(L) is negative, and hence T;(L) is concave in L. So is Ri(s.L). By

assumption (E) Ry(s, L(s)) is nondecreasing in s. Hence, we have

Vi(s) = Otgfét {Ri(s, L(s))}

which is concave and nondecreasing in s for each {. It is obvious from the definition that

Vi(s) is nonincreasing in ¢ for each s. 0

4.2.2 Optimal Seat Allocation Rules

In this subsection we show under assumptions (C), (D) that there exists a simple
optimal policy-a control limit type of seat allocation for low fares. Under rather restrictive
conditions some analytical properties of the optimal policy are explored. Also, a special

case with sufficient low fare demands is analyzed.

Theorem 4.2.1 There exists a sequence of optimal seat allocations for low fares at each
period (Li(s), Lv—r()s -, L3(s), Lj(s)) such that

a—~L—-1

Li(s) = max{L<s: % g ()l Z q,, )+ 3 ah(Vinls ~ L - 5))48)
- s—L—1
< Z q?(i)[pg-t- Z Q.'lj(t)""’t+1(3—L"1—j)]}= 4 [ D |
i=L+1 j=0

Proof For t = N we have shown by equation (4.7) in Lemma 4.2.]1 that Vy(s) is maxi-

mized at L} given by

L) =max{L<s:m 3 @) 3 &M <m > V)

i=L+1 j=s=L-1 i=L41
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For t < N we have
Vi(s) = max{Rﬂ(-‘i L(S))}

From Lemma 4.2.1, R,(-, L) is concave in L and

AR(L) = Y ¢Gt{pa—m Y q;(t)
i=1L+1 j=s—L
s—~L—1
+ ¥ @@®MVale =5 —1=3) = Vipals — L= )}
=0

Then, by the same argument used with Ry (s, L), we see that Ry(s, L(s)) is maximized at
L;(s) = max{L : ARy(s,L) 2 0}.

Hence, we obtained the sequence of optimal decision rules {L;(s)}N,. O
Corollary Suppose that ¢};(t) = ¢} for all ¢ and ¢ and N = 1. The one-period optimal
seat allocation rule can be reduced to as follows :

L*(s) = max{L:py/p: > i q; (4.9)

j=s=L+1

where L*(s) = 0 if the above set is empty. This is a discrete version of a simple seat
allocation model studied by many authors [12], [34], [45], [58], [62]. Equations (4.8) and
(4.9) can be interpreted as follows ; if once the expected marginal revenue from high fares
is larger than or equal to the one from low fares, we should stop allocating seats to low

fare demands.

Theorem 4.2.2 Assume that ¢} (t) = ¢}.q};(t) = q; for all 1,j,t and AV,(L) = Vi(L) -

Vi(L — 1) is non-increasing in t for each L. Then L}(s) is non-decreasing in t for each s.

Proof Under the assumptions canceling the ¥ ¢7 terms L}(s) simplifies to

o0 s=L-1
L) = max{L<s:p 3 g+ 3 @Vir(s—L—3j)

y=s—L+41 =0

s—L-1
<p+ Y gViul(s—L—-1-j)}

=0

00 s—L~1

= max{L<s:p D, q;-+ 3 q}AVQH(S——L—j)Epg}
j=8-L+1 J=0

00 s—L-1
max{L<s:p1 Y, ¢ D @iAVea(s—L—j)<ps)

g=s—L+1 1=0

IA
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e s=L—1
= max{L < s:p Z q; + Z q_}lﬂ‘;n(s—[,—j)
j=s—L+1 =0
s—L~1
Spat Y g Vigals—L—1-j)}

1=0

L:+ 1 (.3)

It

quadt

Remarks 1 Theorem 4.2.2 implies that as the time becomes closer to the flight departure,
we should allocate more seats to low fare demands whenever there are still s seats avail-
able. The assumption that AV(s) is non-increasing in t is intuitively reasonable since

an additional seat available in some period is more likely to be utilized than one made

available in the next period.

A special case : low fare demands are large enough

We shall consider a special case in which low fare demands are large enough to sell as
many as we desire up to the maximum level allocated for low fares, and in which demand

distributions are independent of time ¢, that is

gt)=q¢, qi(t)=¢ and Y. ¢#=1 for all L<s.
=L

Let V,(s) be the maximum revenue corresponding to the special case. Then, equation

(4.3) can simplify to

Vi(s) = nax {ng + Ejiwlp(G A (s = L)) + Vea((s = L= 5)N)]}

s—L—1
= max{pL+p Y igt+pi(s—1L Z g
=0 j=s-L
s—L -
+> ¢ Via(s —L—j)}
3=0

In

max{R(s, L)}

where

~L-1
E(S,L)"PQL‘FPQ Z .?qj +P13— 2 QJ+ZQJV¢+1 s— L — j).

1=0 y=s~L

Lemma 4.2.2 V(s) is quasi-concave in s.
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Proof The proof is again by induction on ¢. Fort = N, we have Bn(s. L) = poL+p E[JA
(s — L)] which is clearly concave in L. Assume for ¢ + 1 that V() is quasi-concave.
(s — L — j)* is monotone decreasing in L which is quasi-concave. Venlls = L = 1)*]
is quasi-concave. Hence, Ri(s,L) = p» + mE(j A (s — L)) + EVial(s = L =)t is
quasi-concave. S0 18 Vi(s). B

It is important to note that Lemma 4.2.2 holds without assumption (F). In this case,
the optimal allocation for low fares is as follows :

< a=L
Ti(s)=max{L <s:p; 3. ¢+ Zﬂq}[vm(s ~L—=j)=Viu(s—L-1-j)] <p}
1=s—L I=

Finaly, we shall investigate the impact of uncertainty on high fare demands. Let E

and E be the expectations with respect to the probabilities ¢} and g respectively. To

empbhasize the dependence on ¢;, we write
Vi(s,q) = max{psL + p E[j A (s = L) + EVia((s — L = 7)1 9)}

and

Vi(s,9) = max{poL + prE[j A (s = L)] + EVia((s = L = )" )}-

Theorem 4.2.3 If E[j] = E[j] and T}—q Z?:o g < <o ZLDE} for all 1, then we have
Vi(s,q) = Vi(s,7) for allt and s.

ﬂ
Proof Since (j A(s— L)) is concave in j and Vi41(s,¢) is also concave in s, we have from (

the second degree of stochastic dominace

E(jA(s=L))ZE(GA(s—L))

and
S—L ) 3—L 1 e
Z q}VH_,(s - L - J,Q) = Z‘q‘j‘/t-l-l(‘g o J$Q)'
7=0 =0

Hence, we obtain

Vi(s,q) = max{p:L + mE[A(s— L)+ EViga(s — L —j,9)}
> max{p:L + pE[(j A (s — L)] + EVigr(s = L - 1,9)}
‘/*(Siq)'
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Remarks 2 Since E[j] = Elj] and Tjoo T5o0 6} < Theo Z—07} implies that variance of
the probability q; is smaller than of 6}, Theorem 4.2.3 asserts that increasing the riskiness
of demand distribution is sacrificial to the airline’s expected revenue. As a result of this,
the airline company turns out to set the higher fare price for increased uncertainty of the

fare demand to protect the revenue.

This section shows that there is a simple optimal seat allocation policy which is com-
putationally feasible. In comparison to static models, our dynamic model takes the time
periods remaining until departure and allows fare classes to reopen after closing.

Prior work on this problem falls into one of two categories and there are two different
approaches to the problem. First, mathematical programming has been applied into those
works together incorporated with network optimization. (See Ladany [58]).

Second, those works are based upon some restrictive assumptions (Rothstein [93],
Littlewood [65], Belobaba [12], Curry [28], Brumelle et al. [21]). We follow this latter
approach. We formulate the problem as a Markovian sequential decision problem with
discrete time. The discretization is practical but makes it difficult to keep track of the
booking process of passengers. Possible future research is to incorporate explicity the

overbooking phenomenon into the model.

4.3 An Analysis of Airline Seat Allocation

In this section we simultaneously consider the seat allocation between high and low
fares passengers and the overbooking problem, which also extends the existing literature
in three ways. First, the cost of lost sales which has been ignored in the existing liter-
ature (see [2],[5],[8]) is explicitly incorporated into the model. Second, the overbooking
phenomenon is also explicitly treated. Third, the concept of spill rate is clarified into the
passenger spill rate and the flight spill rate. It is found that the results obtained here are

in more close agreement with actual airline practice.

4.3.1 A Simple Seat Allocation Model

In this subsection, we consider a rather simple seat allocation model in which there

are two class of passengers, low and high fares passengers. Assume that they do not both
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cancel their booking reservations. So, in this case the airline company does not have to

overbook to hold out against the cancellations of their passengers’ bookings. We make

three assumptions as follows :
Assumption (A) The low fare and high fare demand are independent to each other.

Assumption (B) Demand for low fares occurs earlier than for high fares, e.g. low fare

demand has a minimum advance booking requirement.
Assumption (C) The refused passengers do not pick up other flights of the same carrier
(called the total loss of the spilled sales).

Assumption (B) is known as early birds. Assumption (C) excludes the possibility
that the denied low fare passengers may then purchase a high fare ticket, which is called
“grade up”. Define X and Y the random variable of the number of high fare demand
with distribution function F(z) and Y the random variable of the number of high fare

demand with distribution function G(y), respectively. We use the following notations :
p; = the high fare,
p2 = the low fare,
= the airplane capacity,
71 = the cost of goodwill loss per high fare passenger due to the shortage of the capacity,

L = the number of seats allocated to low fare passengers, so at least (C' — L) seats are
available to high fare passengers,
a A b = min(a,b),at = max(a,0), and E= expectation operator. All variables are
treated as continuous.

Defining ER(L) the expected total revenue per flight when L seats are allocated to

the low fare demand, ER(L) can be written as follows ;
ER(L) = Eylp(Y AL+ EyExy[pi(X A(C—Y AL))—m(X —C+Y A LH]}0)
which can be rewritten as

L —
ER(L) = pl[ ydG(y)+ LG(L)

+EW)m [ adF @)+ [ (€ = L) = m(z = C + L)dF(e)p.11)

82

where F(-) = 1 — F(-) and G(:) = 1 — G(-). The problem is of chosing L to maximize
ER(L) subject to 0 < L < C. Let f and g be density functions of X and Y, respectively.
f(-) and g(-) are assumed to be positive on (0, C).

Proposition 1 1If g(L)/G(L) < f(C — L)/F(C - L) for all L, then an optimal number
of seats to allocate to low fare demand L* is given by

0, il pa < (py +m)F(C
LI = { C-F (=2, if (g +7m) }“(C)g < (g +=)F(0), (412
= otherwise.

Proof ER(L)is differentiable. We shall show that ER(L) is strictly concave with respect
to L under the condition that g(L)/G(L) < f(C — L)/F(C - L). Hence, if it possensses

a maximum, it is a unique one. Differentiating ER(L) results in

dER(L = =
=i = B~ (o + 5)F(C - L) (113)

Differentiating ER(L) twice. we have

d*ER(L)

- = —9(L)pa + (e + m)lg(L)F(C - L) - f(C - L)T(L)] < 0.

Note that F(C' — L) is monoton increasing in L and then the inverse of F(-) exists. Since

g(:) > O implies G(-) > 0, letting dER(L)/dL = 0 with condition 0 < L < C yields
equation (4.12).

Remarks 3 Note that the optimal allocation to low fare demand L* is independent of the
distribution of low fare demand, provided G(-) > 0. L* is decreasing as inereases, and

depends only on the relative low fare py[(py + 7).

It is difficult to provide an economic interpretation on the condition for Proposition
1, g(L)/G(L) € f(C — L)/F(C — L), which looks like a failure rate often appearing in
reliability theory. Insted of doing that, we consider a special case where there is strong
demand from low fare passengers, that is, G(C ) = 1. For instance, the peak season may
have the demand distribution satisfying G(C) = 1.

Assume that we can sell as many low fare seats as we desire up to the capacity C of

the plane. Let R(L,X) be the revenue obtained if L seats are to low fare demand and
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C — L to high fare demand and a demand for high fare X is realized. Then, for0 < L < C

we have
R(L.X) = pL+m(C-LAX —m(X —C+L)*. (4.14)

Note that for each X, R(L, X) is concave in L without any condition. So, the expected
revenue ER(L) = E[R(L, X )] is also concave in L. Because of the concavity, the optimal
number of low fares L* to maximize the expected revenue can be determined by looking
at the incremental expected revenue from selling an additional low fare and stop selling
when this becomes negative. The following corollary immediately follows from the fact
that the assumption of Proposition 1 is satisfied if G(C) = 1 for all C > 0.

Corollary If there is an unlimited low fare demand, one should sell only L™ low fares
and protect C — L* seats for high fares, where L™ is given by

[ =min{lL>0 : —2— <TF(C - L)}
Pt

4.3.2 Optimal Seat Allocation with Overbooking

In this subsection we treat with an optimal seat allocation model allowing overbooking
and cancellations. Assume that high fare passengers may cancel their reservations but low
fare ones can not. Hence, only high fare demands are overbooked. We must determine
both the maximum level to accept the reservations from low fare passengers and the
overbooking ratio for high fare passengers. A sequence of operations is as follows ; (i)
choose the number of low fare seats to reserve, (ii) observe the number of realized booking
progress of low fare passengers, and them (iii) determine the number of high fare seats to
protect.

In addition to the notations listed in Subsection 4.3.1, we use the following:
Z = the number of cancellations of high fare reservations, Z < X,
7 = the cost per denied boarding due to overbooking,
K(y) = the number of seats allowed to book for high fare passengers when Y =y,

which is assumed to satisfy K(y) =(C —yAL)(1+4+a), 0<a< 1.
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Remembering L as the seat allocation for low fares, a pair of (L, a) is called a booking

strategy and set B = (L, ). We may possibly have L + K(y) > C but L < C.
Remarks 4

(1) If high fare passengers do not cancel their reservations, so that the airline does not
necessarily overbook, then the booking strateqy can be written as B = (L,0), which

is reduced to K(y) = C —y A L as same as in Subsection 4.3.1.

(it) a can be interpreted as an overbooking ratio for high fare passengers because

yAL+(C—yAL](1+a)-—C_a(C—yAL)_ |
C—yAL ~ C=yAlL oy

So. a(C —y A L) seats are overbooked for high fares. a = 0 corresponds to no

overbooking with which cases are treated in Subsection 4.3.1.

Assumption(D) High fare passengers may cancel their reservations independently

with the equal probability (1 — 8).

It is well known under assumption (D) that the probability distribution of the number
of cancellations Z, given the number of reservations z is binomial with the mean z(1 — ),
that is, H(z |2) = P{Z <z | X =z} = Ti .(5)1 - 8)*6=*, 2 =0,1, --+,z. So, a
passenger may board on with probability . Put § = (1 + a) and B = (L, ) in stead
of (L,a). Define ER(L,S) the expected profit obtained from a flight when a booking
strategy B = (L, 3) is used. Then, we obtain

ER(L,B)

I

P1EyExiy Ezix|X A((C=Y)A L) — Z] + p,E[Y A L] (4.15)
—m By Exy[X —((C-Y) A L)S]*

—(p1 + m) By ExiyEzix[Y AL+ X A((C—-Y)AL)B)— Z-C]*

= plE[X -2 | X <(C-Y)BP[X < (C-Y)B]

+E[(C-Y)B-Z|X >(C-Y)BIPIX > (C-Y)BI}P[Y < L]
+p{E[X - Z | X < (C - L)BIP[X < (C - L)B]

+E((C—-L)8-Z|X > (C~-L)BIPIX > (C - L)} PIY > L]

+p{E[Y | Y < LIPY < L]+ E[L | Y > L)PY > L]}

85



—m{E|X —(C=Y)B|Y < L]*P[Y < L]

+E[X - (C-L)8|Y > LI*PlY > L]}

—(p+mEY + X = Z—=C | X <(C=Y)BIP[X < (C -Y)B]

+E[Y 4 (C-Y)B—-Z~C| X >(C~Y)B|P|X > (C-Y)A}PY < L)

(s +)EIL+ X - Z—C | X <(C - L)AIPX < (C - L)]

+E[L+(C-L)B—Z—-C|X >(C-L)8|PIX > (C - L)B}PY > L]
= pO@UI[ #dF()+F(C - DFC - L)f)

+ [ @)+ F(© - 9)B)(C - 1)BldGw))
0 0

L =5
+p2 [ ¥dG() + P LT(L)
—m{G(L) [ (e~ (C—L)B)dF()

L proo
& fu ftc_yw(x — (€ = y)B)dF(2)dG(y)}

. - (Cc-L)8
~(+ =G (L 40~ C)F()
+F((C ~ L)B)(L )1 - 80)]

+ [ +0.~ 01 (@) + F(C - )y ~ O)(1 - B0)4G).

The first two terms are the revenues for the high and low fares, respectively. The third
one is the cost of lost sales due to the booking limit. The last one is the cost of denied
booking which occurs whenever the sum of the numbers of low fares and of confirmed high
fares is larger than the capacity of the plane. Since the number of cancelled booking is
binomially distributed, E[X—Z] = EzEx[X—-E(Z | X) | Z] = E|X-X(1-0) = 6 E[X]].
The problem is to find an optimal booking strategy (L, 3") so as to maximize ER(L, 3).
After taking and rearranging the partial derivatives with respect to L and 5, we have”

pr—mH x F((C - L)B*) = F((C—L")B")B (p0 +m) (4.16)
t+amH(a(C ~ L) | (C - L)B)],

GUF(C - LR 8) = [ F(C-f)QwA)cl),  (117)
where

QL,B) = (C=L)pif+m1 —mH(a(C — L) | (C — L)B)), (4.18)
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Qy:8) = (C=y)lpif +m —mH(a(C —y) | (C—y)B)], (4.19)

and
HaPlu) = fo H(L 4z~ C | 2)dF(z). (4.20)

An optimal booking strategy, seat allocation for low fares and overbooking ratio for
high fares, must jointly satisfy equations (4.16) and (4.17). Note that such an optimal
booking strategy is no longer independent of G(-), the probability distribution of low
fare demands. Equations (4.18) and (4.19) are the net profits obtained from high fare
passengers when Z < (C —y A L)B. Equation {4.17) can, therefore, be interpreted as
follows ; under the optimal booking strategy the expected profit from high fare demands
when Y > L should be equal to the one when ¥ < L. It seems to us that finding a
closed form of an optimal booking strategy jointly satisfying equations (4.16) and (4.17)
is almost impossible. For this reason we consider a special case of overbooking problems

where there is only one class of fares, say high fares.

A special case of overbooking problems

Suppose that there is only one class of fares, say a high fare class. With each fare

booked we associate a random variable

D; =

1 if the i-th fare booked confirms,
0 if the i-th fare cancels.

Assume that {D;, D,,---} are independent and identically distributed with mean ED; =
0. If B seats are booked, then N(B) = "8, D; seats are confirmed and the distribution
of N(B) is binomial with mean B#. The revenue as a function of the number of seats

available, L, and the number of fares booked, B, is assumed to be
R(L,B) = piN(B) — (p1 + 72)[N(B) — L]* — m(X — B)*.
Since E[N(B)] = 0B, the expected revenue function is
ER(L, B) = ;0B — (p1 + m) E[N(B) — LI* — mE[X — BJ*.
We first compute the incremental revenue from an additional booking
AR(L,B) = R(L,B+1)- R(L,B)

87



= p[N(B+1) = N(B) = (pr + m)[(N(B+1) = L)* — (N(B) — LY)]
-m|(X —(B+1))* — (X - B)"]

= pDpy — (P +7)Zp+™Zp

where
Dpyy if N(B)> L,
Zp =
0 if N(B)<L,
and
Tt X =iy
JB =
O X<H

Now, the incremental expected revenue can be obtained.

AER(L,B) = BER(L,B+1)— ER(L,B)= EAR(L, B)
= pE(Dp1) — (4 ®)EZs - mEZ
= pd—(p +m)0P{N(B) > L} + P{X > B}.

Since N(B) is increasing in B, so is P{N(B) > L}. P{X > B} is also decreasing in
B. Therefore, AER(L, B) is decreasing in B, which implies that £R(L, B) is concave in
B. So, we should book fares so long as ER(L, B + 1) — ER(L, B) is positive. Hence, we

arrive at the following theorem.

Theorem 4.3.1 If we have L seats protected for high fares, it is optimal to book up to
B*(L) where

B(L) = min{B> Li; p8 < (;1 +72)0P{N(B) > L} + mF(B)}. (4.21)

Since P{N(B) > L} can be evaluated from a table of binomial distributions and F(B)
is given, B*(L) can easily be calculated. Note that P{N(B) > L} and F(B) in equation

(4.21) is strictly decreasing in B. So, there exists a unique solution satisfying (4.21).

4.3.3 Spill Rates and Overbooking

If passengers may cancel their reservations without any penalties, airline companies

tend to overbook. However, such overbookings cause them compensation costs. If a small

88

number of seats are allocated to each fare class to prevent them from overbooking, they
also lose refused boarding passengers resulting in a cost of goodwill lost, which is called
spilling passengers of the airline. Hence, a booking strategy must be balanced between
overbooking and spilling passengers. In this subsection we discuss the concepts of spill
rates and the expected number of overbookings when you must obtain a certain number
of * confirmed " seats, say the number of seats equal to the airplane capacity.

There are two possible interpretations of the term “ spill rate ” in the airline context.
The first is that the spill rate is the expected proportion of flights on which some high fare
reservations must be refused because of prior low fare bookings, which is often used in *
Airline Yield Management " articles. (For Example, see [6], [62].) The second is that the
spill rate is the expected proportion of high fare reservations that must be refused out of
the total number of such reservations, which seems to be more meaningful since it relates
more closely to the amount of high fare revenues lost. We provide formulae for calculating
the spill rate under either interpretation and consider such spill rates associated with use
of the revenue maximizing seat allocation rule.

The proportion of flights refusing high-fare reservations, called the flight spill rate,

can be expressed as

Ry = PIX4+LAY >C} (4.22)
= G(LYF(C-L)+ fu g F(C - y)dG(y).

It is easy to show that when S seats are available for high-fare passengers the expected
proportion of reservations refused will be F(S)E[X — S | X > S]/E[X]. Thus we have
for the expected proportion of high fare reservations refused R; called the passenger spill

rate ;

, [ ——— G=8 -
B = grCUFSer+ [ FC -yhuodGly)}  (423)

where

u = [(1/F(S)) fs " 2dF(2)] =S,

Consider the simple seat allocation model discussed in Subsection 4.3.1 where the
revenue maximizing rule is used to determine L”, the number of low fare seats to protect.

Let S* be the number of high fare seats to allocate. In this case we have $* =C — L* =
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'F_i(pg/(pl + 1)) from equation (4.12). F(S*) = pa/(pi + 71). In the extreme case that
low fare demand always exceeds the allocation of low fare seats, we have G(L*) = 1, and

the above formulae become :
Ry =p/(py + 7). and

Ry = [paf (pr + m1)](us: / E[X]).
Now, further assume that p,/(p;+7;) = 0.4 ( a typical ratio ) and that high fare demand is
approximately normally distributed with mean 100 seats and standard deviation 20 seats.
This will yield a spill rate (expressed as a percentage) of 40 %, if the first interpretation
(R;) is used. It seems to us that this figure is abnormally too high. However, if the second
interpretation is used, we get ug. = 32 and then R, ~ (0.4)(32)/100=0.128. A spill rate
of 12.8 % seems in closer agreement with actual airline practice.

Given the probability distribution for high fare demands, the problem of determining
the seat allocation for each fare class is also of determining either spill rate. The more
seats are protected, the smaller spill rate we have. However, the more bookings we accept,
the higher probability of overbookings we have, while at that time the spill rate is close
to zero. So, the seat allocation problem is of trade off between a loss spill rate and a high
overbooking ratio. Let us consider the following probability. What is the probability that
we must accept a certain number of bookings, say B, in order to obtain the number of
confirmed seats which is naturally equal to the capacity of airline seats C, B > C. Let
g(B;C) be such probabilities. It is easy to see that such a random variable follows a
negative binomial distribution, that is,

B-1
C-1

¢B;C) = 0%(1 =8y*-°. (4.24)

with mean C/# and variance C(1 — 8)/6*. Note that variance rapidly increases as § —
0. This suggests that airline companies should make effort of reducing the cancellation
probability. For example, the restriction on tickets or on booking procedures must be
imposed. Equation (4.24) can be expressed in terms of binomial distribution b(n,c), that
is,

g(B;C) =0b(B—1,C —1).

which can be evaluated from a table of binomial distributions.
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4.4  Allocation of Airline Seats between Stochastically Dependent Demands

This section deals with the problem of setting a limit for bookings of airline seats in
a * discount " fare class when there is stochastic dependency between demands for the

discount seats and demands for * full fare ” seats. Specifically, the problem is examined

as follows;

Groen probability distributions of forecasted demand for discount and full fare
passengers for a given leg of a future flight, determine the stopping rule for

discount booking that maximizes the expected total flight revenue.

The main accomplishment of the present section is the introduction of a seat allocation
model that allows for demand dependency between fare classes. Also presented here are
an extension of the model to allow for control of the full fare passenger spillage (the
rejection of full fare reservation requests when a flight is fully booked), consideration of
the impact on passenger gooduwill of seat allocation decisions, and a rigorous proof of a
formula for optimal seat allocations in the special case that dependency arises because of
upgrades.

A useful approach to the seat allocation problem was suggested in 1972 by Littlewood

[65]. He proposed that an airline should continue to sell discount seats as long as the

following condition held :

pe 2 pyPlY > & —nq], (4.25)

where pg is average revenue from discount passengers. P|[:| denotes probability, ¥ is full
fare demand, & is the number of seats available for the two fare classes, and n is the
number of discount seats sold. The intuition here is cleat — sell an additional discount
seat as long as the discount revenue equals or exceeds the ezpected full fare revenue from
the seat.

A second interpretation of (4.25) will prove useful in the sequel. If discount fare
demand reaches the limit  on every flight, the probability PIY > k — ] is the expected
proportion of flights on which full fare demands is turned away, or spilled. The actual
proportion of flights on which such spillage occurs is termed the flight spill rate, thus the

probability above represents the highest possible flight spill rate given the distribution of
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Y demand, or mazimum flight spill rate ( maximum because discount bookings might not
reach the limit  on every flight ). When discount and full fare demands are independent,
the maximum spill rate will increase as 7 increases. Littlewood’s rule specifies that the
optimal booking limit is the largest value of 7 for which this maximal rate does not exceed
the ratio of discount to full fare. With discount fares in the range of 30 % to 60 % of full
fares, the rule implies turning away one or more full fare booking requests on 30 % to
60 % of all flights when discount demands are high — proportions that seem higher than
most airline managers would accept.

A continuous version of Littlewood's rule was derived by Bhata and Parekh [14] in
1973. Ritcher [86] in 1982 gave a marginal analysis which proved that (4.25) gives an
optimal allocation. Note of this early work allowed for the possibility of dependencies
between classes of demand.

More recently, Belobaba [13] proposed a generalization of the marginal analysis ap-
proach to more than two fare classes, In the same work [pp. 143-150], Belobaba discussed
the possible impact of demand dependencies on booking limits and showed with numerical
examples that, in a three fare class problem, the booking limit for the lowest fare class will
be reduced as the correlation between demands for the two upper fare classes increases.
He did not attempt to directly analyze that problem nor to examine the problem of de-
termining the booking limit between two dependent classes (the problem examined here).
Belobaba also proposed a seat allocation formula for the case that demand dependency
arises because of upgrades.

Before proceeding with a detailed analysis of the dependent demand case, we offer
the following brief intuitive argument. The case considered fare is much the same as that
considered in deriving Littlewood’s rule except that, here, the full fare demand distribution
must be modified as each discount demand occurs because of the dependency between
the demands. That is, after observing B > 7 the full fare demand distribution becomes
PlY > k—n | B 2 7). It seems reasonable to conjecture that the optimal booking
limit will be obtained simply by replacing the probability in Littlewood’s formula with
this conjecture is valid as long as the discount and full fare demands are monotonically

associated — a condition that will be precisely defined later.
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The section is organized as follows. Subection 4.4.1 describes a general seat allocation
model that will form the basis for later analyses. In Subsection 4.4.2, the allocation model

is used to derive the above generalization of Littlewood’s rule for the dependent demand

case.

Notation

Our notation will follow the convention that capital letters are random variables or
functions, and Greek letters are paramenters in the model. We will use the notation
aV b= max(a,b),a A b= min(a,b), and a* = a V0. The indicator operator  is defined

for logical propositions as 1 if the proposition is true and 0 otherwise. For example,
1, fa<§,. _
fa<sl = _ (4.26)
0, fa>8.

The operator E denotes stochastic expectation.

4.4.1 A Seat Allocation Model

This subsection presents a general model for the seat allocation problem that will serve
as a basis for the specific analyses of later subsections. It is similar in structure to optimal
stopping models described in Chow, Robbins and Siegmund (25, and Derman and Sacks
[34] and this correspondence will be used to characterize instances of the problem for
which a simple rule yield an optimal solution - the so-called monotone class of problems.

As discussed in the introduction, the following restrictions are placed on the demand
and decision processes. There is an initial demand for discount seats which is followed
by demand for full fare seats. Once the decision is made to stop satisfying requests for
discount seats, no further requests will be accepted.

It is assumed that the decision to close discount sales is made knowing only the number
of requests currently accepted. The decision cannot for example, involve any observations
of the times at which the demands occur or the arrival rate of demands. Also, the decision
cannot use any observations of full fare sales.

Note that one way of relaxing the static nature of this restricted model would be
to simply re-apply the model as demand forecasts are updated or other changes occur.

Empirical work by Mayer [68] showed that such a heuristic application of Littlewood’s rule
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results in only slight losses in revenues relative to more complex dynamic optimization
methods. Also, simulation work by Titze and Greisshaber [121] shows that, in practice,
the strict booking sequence assumption can be relaxed somewhat.

Let pp and py denote the average revenues per discount and full fare booking, re-
spectively. The revenue resulting from booking (B A 5) discount passengers will be
pe(B A n). Define F(n) to be the seats remaining after discount bookings are closed,
so that Fi(n) = k — (g A B). It is assumed that there is now an additional demand for
a total of Y(7) full fare demand might depend on the decision variable 7, as is the case
when a proportion of customers denied discount bookings elect to upgrade to full fare
bookings. Moreover, it is not assumed that B and Y (7) are independent.

By accepting as much of the demand Y () as possible, an additional revenue of py(Y A
F(n)) will be generated. In the case that a goodwill cost or penalty is incurred for turning
away full fare demands, the unsatisfied portion of this demand will incur a total cost of
pc(Y — F(n))* : where pg is the goodwill cost per rejected full fare passenger.

Combining the above revenues and costs gives the net revenue function

R(n) = pe(BAn)+py(Y(n)AF(n)) (4.27)
—pc(Y(n) — F(n))*,

whose expectation is to be maximized as a function of 7. Since it is not possible to allocate

more than the available capacity, R(n) is only defined for  such that
0 <pn < K (4.28)

Now suppose 7 — 1 requests have been accepted from the discount demand, and an
additional discount request is received ; (i.e., B > ). If bookings stop at  — 1, then the
expected revenue is E[R(n — 1) | B 2 n]. If the additional request is accepted, expected
revenue will be E[R(n) | B = n]. 1t is useful to write the expected incremental gain, G(n),
of accepting an additional request. It follows from (4.27) that

G(n) = E[R(n)|B=n—E[R(n—1)|B2n] (4.29)
= pp+poyElY(M)A(k—n)=Y(n—-1)A(k—5+1)| B >1q]
+ocE((Y(n) = (s —n)* = (Y(n—1)—(k—n+1))* | B > 1],
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provided P[B = n] > 0 so that the conditional expectations are defined. If B is less than
n then the decision to accept or reject the nth request can never arise and G(n) is not,
defined. The domain of G is also limited to that of R(n), as specified by condition (4.28),
above.

The gain function G(7) is just the first difference of the expected revenue function.
Clearly, a booking limit of 5 will be preferred to 7 — 1 whenever G(n) is positive.
Furthermore, if G(7) is nonnegative for all 71 up to some 71", and nonpositive thereafter.
then n* will be optimal.

The seat allocation problem belongs to a class of stochastic optimization problems
known as optimal stopping problems. Within that class of problems, those defined as

monotone have particularly simple solutions. The seat allocation problem is monotone

if the following conditions are satisfied :

L. There is some 7~ such that the gain G(n) is nonnegative ( and defied ) for n < 5~

and nonpositive (or not defined ) for > 5* ; and
2. |Y(n) =Y(n—1)|is bounded in 1.

If the model is monotone, then the expected revenue will be maximized by accepting
up to 7" requests from the B demand; that is, by protecting k — n™ seats for full fare
customers. The expected revenue is maximized in the sense that no policy which only
uses the information obtained by observing IiB>y) can do better.

The following subsections will consider applications of the above model to specific

allocation problems which are monotone.

4.4.2 Specific Seat Allocation Problems

This subsection specializes the above model to three variants of the seat allocation
problem with dependent demands. In the first variant, it is assumed that there are no
penalties for refused bookings and that there are no penalties for refused bookings and
that full fare demand is not influenced by the discount booking level . The second
considers the loss of goodwill associated with full fare passenger spillage by introducing
a penalty for refused bookings. The third deals with the upgrades case in which ultimate

full fare demand is influenced by the discount booking level.
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A Simple Seat Allocation Model with Dependent Demand

The model analyzed here is the usual seat allocation model except that the demands
of the two fare classes, Y and B are allowed to be stochastically dependent.

With reference to the general revenue model (4.27), assume no penalty costs, so pg = 0,
and assume that full fare demand is not influenced by the booking limit assigned to
discount fares, so that Y () = Y, for n = 1,...,x. Note that since demand is an integer,
Y >k—nisthesameas Y >k —n+1

Using these properties, the gain associated with increasing the discount booking limit

from 7 — 1 to 7, given by (4.29), can be simplified to

G(n) = pe+evE[(Y Alx—n)) (4.30)
—YA(k—7n+1)|Y>k—n,B2n-PlY> k—n|B2nl
= pp—pyPlY >r—n|B 27
This expression has a familiar interpretation : when an additional seat is sold to a discount
customer, there will be a certain gain of one discount fare, and if full fare demand exceeds

the new lower protection level, there will be a loss of one full fare.

The expected gain is positive whenever G(n) > 0, or equivalently whenever
PY >x-n|B2n< 2, (4.31)
PY
If it is the case that
PlY > k—n| B >7] is nondecreasing in 1, (4.32)

then G(n) is nonincreasing in 7, and the problem is monotone.

Henceforth, property (4.32) will be referred to as the monotonic association property.
Loosely speaking, this property specifies that as the discount booking limit increases, the
full fare spill rate tends to increase.

A suitable 7 to satisfy the definition of an optimal solution in a monotone problem is

7" = max{n : G(g)> 0} (4.33)

ma.x{ﬂﬁngx : P[Y>N—'?|BZW]<%}»
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where we will adopt the convention that 5™ = 0if PY > k] > pg/py so that the maximum
is over the empty set. ( Recall that the domain of G consists of those n between 0 and
& such that P[B > 5] > 0. ) It is thus optimal to sell at most 1 seats to customers
requesting discount fares.

Note that the probability P[Y > k —n | B > n] can be interpreted as the mazimal
flight spill rate as was the analogous term in Littlewood’s rule (4.25). But then (4.33) is
just a generalization of the fact that this rate should be just less than the discount/full
fare ratio.

If the demands are independent, then (4.32) clearly holds, and the optimality condition

becomes
- . o - pB 3
o= max{USan:P[} >a—n]<-—-—-}. (4.34)
py
In this case there is not a unique 7™ which is optimal. The 5~ defined by (4.33) is the

smallest. The largest optimal discount booking limit is obtained by permitting equality

in (4.33) :

o= ma.x{()gngx:P[Y)rc—nlBZ?ﬂ'(E'g}. (4.35)
Py

This is just Littlewood’s rule (1) except that now dependency between discount and
full fare demands is allowed, subject to the monotonic association property (4.32). The

following subsection illustrates the effect of such dependency.

4.4.2.1 Example : Seat Allocation with Dependent Demands

Table 4.1 presents an example of optimal discount seat booking limits for a range of
cabin capacities and for both independent and dependent demands. For this example, the
discount fare was fixed at 60 % of the full fare, and discrete approximations to bivariate
normal distributions were used to model the discount/full joint probability functions. (
Recall that monotonic association condition is satisfied by positively correlated bivariate
normal random variables. ) The mean combined demand was 100 seats in all calculations.
In the dependent demand case, a high correlation ( p = 0.9 between discount and full fare
demands was used in order to obtain approximate upper bounds on the revenue increases

that result from taking dependency into account.
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Table 4.1: Effect of Demand Dependency on Discount Seat Booking Limits

Cabin Capacity
46 60 80 100 120 140

Booking

Discount booking limit: 19 33 53 73 93 113

n(p=0)*
Full fare protection: of o 27 21 2 N
K—n

Discount booking limit: 19 32

(p=10.9)
Full fare protection: 27 28 31 35 39 43
Percent revenue 0 008 054 125 127 0.71
increase’

o Independent: correlation = 0. For all calculations, mean demands were 70 discount
and 30 full, and standard deviations were nominally 26.5 discount and 11.5 full.
The standard deviations varied slightly between cases because of the discretization

procedure.
b Dependent: correlation = 0.9.
¢ Revenue increase achieved by allowing for dependency.

With reference to Table 4.1, note that in the independent case, the optimal discount
booking limits correspond to a fixed protection level of 27 seats for full fare passengers at
all cabin capacities. The discount booking limits are increased as capacity increases in
order to keep the maximum flight spill rate for full fares in balance with the discount/full
fare ratio, as discussed earlier. Since the mean demands are being held constant for
all cabin capacities, it appears that increased capacity is being allocated exclusively to

discount demands. Recall, however, that unsold discount seats can be sold to full fare
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passengers. In the capacity = 140 case, for example, the majority of flights will have
discount. demands of less than 113 seats, and full fare seating capacity will be accordingly
larger than 27 seats most of the time. It is only when discount demands reach 113 seats
that the marginal revenue considerations expressed by equation (4.34) dictate closing
down discount sales.

In this example, the optimal full fare protection level increases with capacity when
discount and full fare demands are dependent (the p = 0.9 case). The same spill rate bal-
ancing considerations are acting here ; however, because of the positive correlation between
demands. the discount booking limits are not increased as much as in the independent
case. (The information that discount demand has exceeded some value should imply an
increased probability of higher full fare demand and should lead to higher protection levels
for full fare seats.) In fact, it has been shown by Mcgill [69] that, with bivariate normal
demand distributions, the optimal discount booking limit always decreases as correlation
increases.

With small cabin capacities relative to demand (capacities of 46 seats or fewer), the
booking limits in the dependent case are the same as those in the independent case,
as there is no revenue benefit from taking dependency into account. This i because with
small capacities the discount demand is almost certain to exceed the discount seat booking
limit, and so P[Y > s =5 | B 2 5] 2 P[Y > k —y]. For large capacities relative to
demand (somewhat greater than 140 seats), the optimal discount booking limit in the
independent case will be substantially lower than that in the dependent case ; however,

the corresponding revenue benefits will be negligible as there is ample space for both fare

classes under most realizations of the demand process.

Implementation

The optimal booking rule for the dependent demand case (4.33) is simple to implement
as a planning tool if some joint distribution such as the bivariate normal is assumed to hold
for the demands. In this case it is straightforward to calculate the conditional distribution
PlY > k —n | B = n] for enough values of 7 to solve the optimality condition. It is then
possible to study the impact of hypothesized shifts in the demand distribution or in other

parameters in much the same way as in the example above.
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Implementation of the dependent demand booking rule as a control tool in a reser-
vations system is also possible, but less straightforward. Estimation of the conditional
demand distributions can be done, as above, by using a joint demand distribution. In
this case, however the parameters of the distribution must be obtained by fitting to his-
torical data and, possibly, by adjusting for anticipated market conditions. This fitting
process is not straightforward since 1) demand data from a history of previous flights
will be censored whenever demand reaches a booking limit or the capacity of the aircraft,
and 2) the parameters of the demand distribution depend on external factors like fares,
competition and time fo year. The same problems with the estimation problem in the
dependent demand case.

The spill rate interpretation of the optimal allocation rules suggests a second, simpler,
application. Over a series of flights for which the underlying demand distributions are
considered stable (e.g., within one season, mid-week flights) the optimal allocation rule
in either the independent or dependent demand cases specifies that the mazimal spill
rate should be as close as possible to, without exceeding, the discount/full fare ratio.
An observed proportion that is too high would indicate that the discount booking limits
have generally been too high. Similarly, a proportion that is too low would indicate that
booking limits have been too low. This approach has two significant advantages. First,
there is no requirement for modeling the demand distribution, and second, there is little
computational difference between the independent and dependent demnad cases. To see
the second point note that the observed maximal spill rate in the independent case will
simply be the proportion of flights on which full fare demand exceeded the protection
level k — 7. In the dependent case, it will be the proportion of those flights on which the
discount booking limit was also exceeded. This technique does not provide a practical
way of controlling bookings on individual flights since airlines perform such control based
on individual forecasts of demand and other factors ; however, it does provide a simple

way of monitoring past performance relative to theoretically optimal booking limits.

4.4.3 Full Fare Passenger Goodwill and the Spill Rate

Airlines are justifiably concerned about the impact of discount seat allocation policies

on the number of full fare reservation requests that must be returned away. This number
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expressed as a proportion of total full fare demand is the passenger spill rate, or simply
spill rate. The related, but different. proportion of fli ghts on which one or more reservation
requests are turned away, or the flight spill rate has been discussed earlier.

With monotonically associated demands, full fare spill rates are most severe when
discount demands are sufficiently high that the discount booking limit is always reached.
Under these circumstances, the mazimal flight spill rate and the actual flight spill rate
will be the same. If an optimal seat allocation rule is used (in either the independent or
dependent demand case), the flight spill rate will be close to the discount /full fare ratio.

For example, consider the independent demand case with a plane capacity of 100 seats
in Table 4.1. If mean low fare demand is significantly higher than 70 seats so that the
discount booking limit of 73 seats is reached most the time, and full fare mean demand
remains at 30 seats. then the flight spill rate is approximately 60%, since ps/py = 0.60.

In this example, the full fare passengers are essentially being booked into a fixed
allocation of 27 seats. In a report prepared by Boeing Computer Services, Harmer [42]
gives a simple formula relating passenger and flight spill rates under these circumstances,
when the full fare class has a normal demand distribution.

Let o denote the fixed allocation of seats, and let rp andrp denote the passenger and

flight spill rates respectively. Then

rp = (ov/py)(#(2a) = zarr); (4.36)

where uy and o, are the mean and standard deviation respectively of the demand dis-
tribution, ®(-) is the standard normal probability density, and 2, is the standardized
allocation (a — py)/oy. Upon applying this formula to the example above, it is found
that the passenger spill rate corresponding to the 60% flight spill rate is 21%.

It is difficult to obtain reliable data on actual airline passenger spill rates, but it is
hard to imagine that airline managers would tolerate turning away 21% of their best
customers, even given the high demand for discount fares assumed in the example.

There thus appears to be a substantial discrepancy between spill rates corresponding
to optimal booking limits and the spill rates that would be tolerated by airlines. Possible

explanations for this discrepancy include the following:
1. Optimal allocation rules may simply not be used by many airlines.
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2. The airlines may be compensating for demand dependencied, either deliberately or
on a trial-and-error basis, by lowering discount booking limits below those specified

by the simple allotment rule.

3. The discount and full fare demands may overlap in time to a sufficient degree, that

the observed full fare demand can be used to adjust the discount booking limit.

4. Voluntary “bumping” of discount passengers may be used to permit high overbook-

ing levels for full fare passengers, thus reducing the effective full fare spill rate.

5. The discount booking limits may be adjusted downward in an ad hoc fashion to
compensate for the perceived extra value of full fare passengers above and beyond
thier higher fares. (Full fare passengers are predominantly composed of business
travelers who can be expected to travel more frequently than the discount, predom-
inantly leisure, travelers. Low spill rates can be seen then as a way of promoting

future earnings from these customers by maintaining passenger goodwill.)

The latter case, which recognizes the goodwill benefits associated with serving the full
fare passenger, i1s now examined.

The effect of not being able to accommodate a full fare passenger can be viewed in two
ways. First, a goodwill premium of pg can be included in the full fare.Alternatively, the
revenue derived from a full fare can be kept at py, and a loss of goodwill can be incurred
for each full fare customer not accommodated. The argument used in Subection 4.4.2 can

be applied to this version of the revenue model to derive the optimality condition.

nx = max{n>0:G(n) >0}
= max{0<p<k:

PB "
=B e 2R 4.37)
PY >k n]B_q]<pY+pG} (

It is clear from (4.33) with py replaced by py + pg, and from (4.37), that the optimal
allocation will be identical with either interpretation of goodwill. That is, the same
number of seats should be protected whether a loss of goodwill is incurred worth pg per
full fare customer denied a booking or whether a gain of goodwill is accrued worth pg
per full fare customer booked. In either case, the incorporation of goodwill considerations

will increase the full fare protection level and reduce the full fare spill rate.
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To illustrate one implication of (4.37), consider an airline that wishes to limit its
passenger spill rate to 3%. From formula (4.36), using the same assumptions as the
example given above, a passenger spill rate of 3% corresponds to a flight spill rate of
15%. And this in turn corresponds to a goodwill premium of P = 3py (the solution to:
0.15 = 0.6py /(py + pc)). Thus a goodwill premium of three times the full fare would be
required to justify restricting the spill rate to 3% (assuming none of the other spill rate
control methods, mentioned previously, are being used). It is not clear whether such a high
premium is justified. Such a justification would depend upon an airline’s assessment of
the proportion of thier full fare customers who might be lost permanently to competitors
after failing to obtain a booking.

Perhaps one of the chief uses of Equation (4.37) would be, as in this example, to

impute the goodwill premium implied by a particular spill rate policy.
4.4.4 Upgrades

We now examine the case in which the dependency between discount and full fare
demands arises because of a tendency for some discount fare customers to upgrade to full
fares if denied a discount reservation, If this context, it will be assumed that the upgrading
tendency is the only source of dependency and that the initial B and ¥ demands (i.e.,
before upgrading) are independent. Under these circumstances, the ultimate ¥ demand
will depend both on the B demand and on the booking limit set for the B demand. It
is this dependency on the booking limit that necessitates an analysis separate from and
more involved than that for the dependent demand case discussed in Subsection 4.4.2.
Note that the optimality condition derived here was previously proposed without formal
proof by Belobaba [12, p. 130, equation 5.53] and that a similar result has been obtained
independently by Pfeifer [84] using different methods.

The purpose here is to provide a formal proof of the result within the context of a
general model for the seat allocation problem.

To model the upgrading, define

(4.38)

B 1 if the ith customer would upgrade if denied a discount fare,
: 0 otherwise.
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Assume that {D;,D;,---} are independent and identically distributed with ED; = 5
being the probability that a customer denied a discount fare will upgrade. Also assume
independence of the process {D;, Dy, -} of upgrades, the demand B for discount fares,
and the demand Y for fares exclusive of the upgrades. Let U(n) denote the total number

of upgrades when the discount booking limit is n: that is,
=0
U= Y D (4.39)
1=n+1
This quantity is, of course, zero if B < 7. Identification of this model with the general

revenue model (4.27) is the same as in Subsection 4.4.2 except that now
Y(n)=Y +U(n) (4.40)

is the sum of the full fare demand and upgrades.

To motivate the optimality condition, marginal analysis can be used as in Belobaba.
If a discount fare customer is booked, then the revenue is pg. If a discount fare customer
cannot be booked, then with probability v there is an upgrade generating revenue py,
and with probability 1 — 4 there is no upgrade. In the later case, the booking decision
will have no impact on revenue if B < 5. However, if B > 7, then additional revenue py
will be obtained if the seat being considered is used either by some other upgrade or by
a full fare customer. This analysis leads one to conjecture that it is optimal to book a

discount fare customer if
pe > qpy + (1 —7)P((Y +U(n)) > k—n|B = 7). (4.41)

To verify this optimality condition, compute G(7) from (4.29). LetH(y) = [Y(n) A
(k=n)]—=[Y(n—=1)A (k=175 +1)]. To evaluate H consider two cases. First suppose
that Y(7) > k—n. Then Y(p—1) > k—n+1 and H(n) = —1. Second, suppose that
Y(n)<k—n. Then Y(n—1) < k—n+1and H(y) =Y(y) =Y(y—1) = —D,. Thus (5)

reduces to

G(n) = pe—pyPY(n)>k—n|B2n|-pyP[Y(n) < k—n|B 2 n]E[De

= pp—(1=7)pyP[Y(n) > k —n|B > 1] —7pv, (4.42)

I

where the assumption that D, is independent of B and of Y is used to obtain the first

equation.
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It remains to be shown that the problem is monotone by establishing that G(y) is
nonincreasing in 7. Using the fact that D; < 1 gives

=B
P¥(n=1)>k-n+1|B2n-1] = P(Y + Y D;)>k-n+1|B>n-1]

i=n

i=B
S P[(Y+ Y D)>k—nlB>p-1]
1=n+1
= PY(n)>k-n|B>n- 1. (4.43)

By conditioning on whether B = p — 1 or B > n, and manipulating the conditional

probabilities, P[Y () > k —5|B > 5 — 1] can be written as
PlY(n)>k—nlB2n] + P[B=n-1|B>y-1]
(PlY(n)>k—n|B=n- 1] = P[Y(n)> k—1n|B > find)

The difference in the last term cannot be positive since

PY(n)>k—-n|B2n] > PIY >k—n|B>n
= P[Y(n)>k—n|B=9-1], (4.45)

where the assumption that ¥ andB are independent and the observation that U(y) = 0

if B =n—1 are used to obtain the last equation. Replacing the difference in (4.44) by 0,
and using the inequality (4.43), shows that

PY(n—1)>k—n+1|B>n-1]< P[¥(n) > k—n|B > 7], (4.46)

and so G(n) is nonincreasing. Then, from (4.39) and (4.42), G(n) will be positive as long
as

L4 PB = VPy
P[(Y +U(n)) > k—n|B > n] < i (4.47)

which is equivalent to (4.41). Define  to be the largest 7(0 < n < k) satisfying (4.47).
As with optimality condition (4.33), set n* = 0 if no n can satisfy (4.47). This will be
the case, for example, when 7 is sufficiently large that the right hand side of (4.33) is
nonpositive. This nx satisfies the condition in the definition of a2 monotone problem and

[¥(n) =Y (n—1)| < 1. Hence the problem is monotone and it is optimal to book discount
fares up to n.



Implementation

The comments made earlier regarding implementation of the dependent demand so-
lution apply again here. In the present case estimation of the joint distribution of
Y + U(n)and B will be somewhat easier aince Y and B can be estimated independently
and then Y adjusted by the binomial distribution U(n) for each n. Altenatively, spill
rate control approach could be applied with no change except for adjustment of the dis-
count /full fare ratio as indicated in (4.47).

A numerical example of the use of the upgrades formula is provided in Belobaba [13,

pp. 138-139].

4.4.5 Summary

This subsection has presented a simple resource allocation model and applied it to

airline seat allocation problems. For ease of reference. the main results are summarized

below:

1. When discount and full fare demands are bivariate normal with positive correlation,
optimal discount seat booking limit will be less than or equal to that specified by
Littlewood’s rule (independent demand). The optimal limit will decrease as the

correlation increases.

9. With monotonically associated discount and full fare demands B and Y, respec-
tively, cabin capacity k, discount fare pp, full fare py, and full fare goodwill premium

pe; it is optimal to lomit discount fare bookings to n* seats, where:

PR
7}*:!]3&)({057}5k'P[Y)k—ﬂ]BZI?](m}

Again, this will result in a lower discount seat booking limit.

3. When the discount and initial full fare demands are independent but the presence
of upgrades creates a dependency between discount andultimate full fare demand,
results (4.37) and (4.47) can be combined to obtain the following optimal discount

seat allocation:

ps—'r(mf+pa)}1

n*=m&x{0 Sos bR ST =h=aB2 < (1 =)y + rc)

106

where + is the upgrade probability, and U(5) is the total number of upgrades given

discount allocation 7.

Once again, this implies lower discount seat booking limits.

It has been shown that these conditions are optimal among all policies that use only
the information B > 5. Given stable fares, the only possible justification for changing an
optimal booking limit is a perceived shift in the joint demand distribution for discount
and full fares. Thus, for example, the occurrence of a sudden “flurry” of discount demand
at some point in the booking process cannot in itself justify a change in the booking limit
unless it can be validly associated with a change in the joint demand distribution. If it is
decided that such a change has occured, a reasonable response is to simply recalculate the
optimal booking limit on the basis of the new joint demand distribution and seat capacity
remaining for the flight. More sophisticated dynamic modeling is required to optimally
account for the possibility of periodic revision of the joint demand distribution on the
basis of more information than B > 7.

The three variants of optimal booking conditions given above all suggest lower discount
booking limits than those implied by Littlewood’s rule for independent demands. This is
important since these results are more easily reconciled with the low full fare passenger
spill rates actually observed in practice. Numerical examples suggest that the revenue
gains from application of these conditions may be modest (e.g.. 1.3% in the extreme (.9
correlation case in Table 4.1). However, given the largely fixed cost, low margin nature of
airline operations in competitive markets, such revenue gains represent almost pure profit
and thus are greatly magnified in terms of profit impact.

With the exception of independent demands, this paper has retained many of the
strong assumptions required in earlier work on the two-fare allocation problem. One
direction for further work is in developing the type of dynamic policy mentioned above,
while another is in estimating joint demand distributions on the basis of data that has

been censored by the presence of booking limits. The authors are currently pursuing both

of these topics.
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Chapter 5

Optimal Portfolio Selection Models

5.1 Introduction

In this chapter we demonstrate that when there are more than two assets, we show
how to derive an optimal portfolio so as Lo maximize the expected utility function defined
on the wealth of an investor. The key idea is a trade off between return and risk. This
observation is one of the motivation to characterize optimal portfolios which have the
minimum risk for the various levels of expected rate of return.

In Section 5.2 we develop an asset allocation model with various risk measures which
is quite different from the mean-variance porfolio models. From institutional investors’
perspective the purpose of investing is to achieve a target level of rate of return to meet
the cash flows of the business. A situation unfavorable to this purpose is penalized as a
risk. The model developed here is in closer agreement with actual practice in Japanese
financial institutions. (Refer to Sawaki [105])

In Section 5.3 we treat with a systematic approach of optimal consumption and port-
folio selection models under the setting of stochastic optimal control. Stochastic processes
for the asset prices are semi-martingale. Main results obtained for the model are an opti-
mal policy for consumption and portfolio selection, an equation that the expected excess
return of each asset should satisfy, and the closed solution for a special class of risk-averse
utility functions. Those results are driven by Sawaki and Lin [108].

In Section 5.4 we discuss optimal exercise policies for a discrete time option model in
which state of the economy follows a Markov chain and stock prices fluctuate according to

the distribution of the product of independent positive random variables. We show under
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some specific assumptions that there exist a simple optimal exercise policy which depends
only on the stock price and the state of economy. Furthermore, a simple alternative
derivation of the Black and Scholes’ option pricing formula is presented by the means of

an analysis developed by Sawaki [103].

5.2 An Asset Allocation Model with Various Risk Measures

For the majority of institutional investors the main objective of asset allocation is
achieving sufficient return to satisfy the demand for cash that is generated by the business
activities of the enterprise. What is the risk to intitutional investors in the light of this
objective ? Previous analysis have measured risk in the terms of mean and variance types
(Markowitz 1959), safety-first criterion types (Kataoka 1963 ; Pyle and Turnovsky 1970),
absolute-deviation types (Konno and Yamazaki 1991), and, more generally, by the shape
of utility function. The problems pointed out by these measures of risk were, one, the need
for an enormous amount of computation and an enormous amount of data input labor for
large-scale problems, and two, the difficulty of identifying investors risk preferences and
the discrepancy between investment behavior among institutional investors.

In this section risk is defined as an allocation performance that falls short of the tar-
get return of asset allocation made on the assumption of institutional investors, and a
new asset allocation model is developed that imposes a penalty when such unfavourable
situations have been generated. The advantages of this approuch are, one. it avoids the
problems mentioned above, and two, it becomes possible to avoid handling expressly the
utility function that is the risk preference of investors. Recognizing as a risk a situation
that falls short of the target return seems to be an approach that agrees more closely
with actual practice in the investment arena by institutional investors in Japan. This
sort of formulation is an optimization problem that belongs to the class of stochastic
programmings with recourse and the actual problem is one of large-scale mathematical
programming. The most essential characteristic of an asset allocation mode] is that, to
counter the fact that there is uncertainty about asset returns, the optimization technique
based on mathematical programming basically assumes the handling of a deterministic

amount. Hence, the computational algorithm for the asset allocation model also involves
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a development of the procedures on how to transform a stochastic quantity into a deter-
ministic quantity.

In Subsection 5.2.2 an asset allocation model that maximizes terminal wealth under
the constraint that short of the target return is formulated as an asset allocation model
with penalty costs, and we lay down the conditions that must be satisfied by optimal
allocation. This is followed by a more detailed analysis of cases in which there are two
types os asset class and cases in which the distribution of the rate of return is normal
distribution. In Subsection 5.2.3 we propose more general risk measures that embrace
the various risk measures that have been suggested in the past, and we formulate an
optimization problem that deals with a trade off between risk and return. We touch upon
the possibility of constructing, by making the optimization problem the parameter and
creating a return-and-risk set, a new efficient frontier and a capital asset pricing model.
In Subsection 5.2.4, by way of conclusion we shall list the advantages of the new asset
allocation model that is proposed here the differences between it and other models. In
addition, we shall look at this asset allocation model from the perspective of performance

assesment of asset allocation.

5.2.1 An Asset Allocation Model with Penalty Costs

In this subsection we wish to formulate an asset allocation model that assumes intitu-
tional investors. In the Markowitz-type mean-variance model, risk was measured by the
variance of portfolio returns. Institutional investors do not necessarily have such votality
as their main concern. Rather, they see as a risk an insufficiency of returns that would act
as an obstacle to business activities, or circumstances that would necessitate a transfer of
funds among several accounts that should be managed independently, and they consider
the principle aim of asset, allocation to be ensuring of a sufficient cash flow to avoid such
an undesirable situation. In conformity with the actual practice of asset allocation by
institutional investors, let us define as risk situation in which the asset allocation per-
formance of institutional investors falls short of the target return in advance, and let us
assume that, when this undesirable situation has arisen, the institutional investors impose
a penalty cost on their own objective function.

Consider the case of n types of risk assets and one type of riskless asset. there is,
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therefor, an asset class of (n 4+ 1) types, and the institutional investor makes a decision

regarding asset allocation under this class. We make use of this following notation :

Il

r; = the rate of return of risky asset i, = £ SN

T'o

the rate of return of riskless asset.
r; = the fraction of the asset allocation invested in asset i.
Ry = the target rate of return of an asset allocation.

C(:) = the penalty function defined on the set of rates of return.

#i = the expected rate of return of risky asset 2,7 = 1,2,...,n.
Let 2 = (29,2,...,2,) be an asset allocation where Y ) = 1 and short sales are
allowed. We assume that R > r°. Define Ri=ri—ro,Ri = pi—rg,i=1.2 n, and

2= R0 — .,

The objective function is to choose an asset allocation of maximizing the total rate
of return 37 riz, subject to S0 riz; > R® and Yi-0%i = 1. However, the objective
function contains random variables and so does the constraint. Therefore, by using the

relation xg = 1 — 3%  ;, this conditional optimization problem may be transformed to

the unconditional problem as follows -
max E[) " Rz, — C((X_ Rizi — RO))), (5.1)
1=1 1=1
where (2)~ = min{z,0} and E denotes the expectation operator.

Assumption. C(z) is decreasing in z for z < 0 and C(z) = 0for z > 0, and is continuously

differentiable,

From the first condition of optimality we have
Ri— E[C'((3. Ria} —ROR] =0, i=1.2,....n.
=1

By multiplying z; and summing up with respect to 7, an optimal asset allocation z* shoul
satisfy

3. Rl ~ BIC'((Rr; — B)) 3. Raaf] = 0. (5.2)
Note that C’(:) < 0. &
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When there are two asset classes

We assume that there are only two asset classes, risky asset and riskless asset. Let p

be the expected rate of return of the risky asset and z the associated fraction of the asset

allocation. The penalty cost is assumed to be piecewise linear as follows : for some p > 0

0, y=20 "
Cly) = (5.3)
—p-y, y<0

Under this assumption equation (5.1) can be rewritten as
max{(y = ro)x + o+ pE[(rz + ro(1 —z) — R°)7 1} (5.4)

Let K(t) be the realization of the portfolio rate return rz +ro(l — 2) which value is

just equal to R’, that is,
Kie) =—— 2, (5.5)

The equality of the bracket of equation (5.4) can be reduced to
K(z) LR 3
(p—rojzr+T0t+P ((r = ro)z +10) — R°)dF () (5.6)

where F(r) is the distribution function of the rate of return of risky asset. By taking the
derivative of equation (5.6) an optimal allocation to the risky asset z* must satisfy

K(z*) ! .

(u=mo)+p | rdF(r) = proF(K(27)). (5.7)

To explore the existence of a solution in equation (5.7), we put y = K(z). It is easily

seen that

_ po
K'{z)= 4 zR 0 forR® >ro
z
and
" 2(R0 = rO)
K= —-——33——"

The inverse function z = K ~(y) exists for all y except y = To.

K (z) is decreasing in z, convex for z > 0 and concave for z < 0. If no short sales are
allowed, R® < K(z) < oo for 0 < z < 1, and if short sales are allowed, —oc < K(z) < o0.

Equation (5.7) can be rewritten as
v
p—rotp [ rdF(r)=proF(y). (5.8)
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Figure 5.1: A Pair of Optimal Values

Next, we shall investigate whether or not a solution of equation (5.8) exists. It can be
shown that the limit of the left hand side of equation (5.8) goes to (1+p)u—rg as y — oo
and u —rg as y — —oo. On the other hand the limit of the right hand side goes to pry as
y — oo and ) as y — —oo. Note that we have (1 + p)u — rq > pro and pro > p — rg for
p large enough. If solution of equation (5.8) exist, then there exist at least two solutions,
say y;.¥s. (See Figure 5.1). If no short sales are allowed, the solution is unique. So we
reach to the following proposition.

Proposition 1 If no sales are allowed and u—ro+p [ rdF(r) < pro holds, then there
exists an optimal solution. If short sales are allowed, then there exist at least two optimal

allocations.

The Case of the Rate of Return Normally Distributed

Suppose that the rate of return is normally distributed with mean u and variance o?,
Putting u = (r — u)/o,u is normally distributd with mean 0 and varaince 1. Then we
obtain

[ riFe) = [“‘"“"’(Hau)qs(u)du

— L
P‘I’y—'u --o'rﬁy_"1
o o
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where ®(-) is the normal standard distribution and ¢(-) its density function. Hence,

equation (5.8) turns out to be

u—rotp{u0tt - o9t =t} = pripl =t (5.9)
Putting z = (y — p)/o, we have
(1 =70)(1 + p®(2)) = poé(z). (5.10)

If pav27 > (p — ro)(1 + p/2), then from Proposition 1 there exists a pair (27,2;) of
solutions satisfying equation (5.10). So, y7 = p + 027,72 = 1,2. Hence, the associated

optimal asset allocation for the risky asset is given by

R —r .
T = ——— oy 12 (5.11)
B —r+ o

Note: When you look at (5.11) carefully, you can see that z7 depends on penalty cost p
when the target return R° has not been met. When z; > 0,25 < 0, if o increases the
allocation ratio to risky assets, z] decreases and 23 increases. The higher you set the
target return, the more 2} increases. If you set target return at u, you get 0 < z] < 1,

but z3 depends on the size of 2j.

5.2.2 Various Risk Measures

In this subsection we propose more general risk measures that can embrace the various
risk measures put forward in the past, and we formulate the problem of a trade off between
risk and return. Let us define the function m of such risk measures as the following :

ar+ U‘—;ﬁ —-ak, r<k”
m(r;a”,a*, k", k") = .'21‘ k-~ <r <kt (5.12)

atr+ (%E—cr‘*k‘*, r >kt
where the parameter a—,at,k~ and &kt must satisfy o= < k= < kt < at, the risk
measure m(-;a~,a", k™, k") is a convec and piecewise quadratic function. The existing

risk measures are the special cases of our risk measure. (See Figure 5.2)
(i) If &~ — oo and k™ — oo, m(-;-) is the variance which is Markowitz type.

(ii) f = = k™ and ot = k*,m(-;-) reduces to the risk measure introduced by King

[56].
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Figure 5.2: A Generalized Risk Measure

(iii) If k£~ and k* both converge to 0, a= = —1, a* =1, then m(-;-) turns out to be

equal to the risk measure proposed by Konno and Yamazaki [59].

a . == + 1l .
(iv) if k= — oo and k* — 0, then m(:; -) becomes the lower semi-variances risk measure.

(v) fa™ =p,k~ = R% and k* = a* = R°, then m(+;-) come to be equal to the penalty

function p(-).

Next, let us define the risk measures by defining the probability of ralling short of the

target return. Thus, if we take the risk measure m when R = X oTiT; as
_ 1 Pr{R < R°}
m R, Ro = —_—
Sy e ) [:18)

then, when the target return has been definitely achieved, m(+;-) = 1, and when the
probability of achieving the target return approaches 0, m(-;-) becomes infinitely large.
Also, m has the desirable characteristic that a monotone increasing function of R°. In
regard to such a variety of risk measures and the target return R, let us define the
following conditional optimization problem.
n n
min E[m(g riT; — g,u,-:r:,-; a0k, k)] (5.14)
subject to

n n
bz 2R, Yxi=1,

1=0 =0
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To solve this problem, if we take R® as the parameter, then we can draw the efficient
frontier on the (K% m) plane. As there is a CAPM model for when m is the standard
deviation. so it is also theoritically possible to discuss a capital asset pricing model on the
(R°,m) plane. It is especially to be noted that the optimization problem of m defined in

equation (5.12) still remains within the range of quadratic programming.

By Way of Conclusion

We have proposed, in regard to asset allocation models (portfolio selection models),
an approach different from previous ones. We analyzed in particular a model by means of
measures different from the standard deviation as a risk measure related to an investor’s
return. As a result we have not defined the investor’s risk preference as information on
utility function. We have also derived an equation that an optimal asset allocation ought
to satisfy under a framework different from a mean-variance type of model. There are at
least two points in which there is an important difference between our model and mean-
variance models. The first point is that, whereas the previous types of models are trade
off between the average value or return and standard deviation, in our model we have a
trade off between target return and the penalty costs for a shortage in it. The second
point is that it uses all information concerning the probability distribution of the rate of
return of assets. This is an especially important point when the probability distribution
of return does not follow normal distribution.

A method that acknowledges as a risk a situation that falls short of target return and
imposes penalty costs on such a risk is known as stochastic programming with recourse.
Problems based to a realistically meaningful extent on large-scale stochastic programming
require an enormous amount of computation to obtain an optimalsolution. For this reason
we have prepared numerical examples based on the computational algorithm of Rockafellar
and Wets, which splits stochastic programming by means of the scenario method into
subproblems based on normal mathematical programs.

An optimization problem that takes into account a trade off between target return
and penalty costs for a shortage in it would seem to be closer to the invesment environ-
ment of institutional investors in Japan, and more faithful to the risk measures of people

who are not allocating their own funds. Also, target return does not differ widely from
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institutional investor to institutional investor ; rather, it is strongly regulated by the term
structure of the bond market and such security-market benchmarks as the Tokyo Stock
Index and the Nikkei average. Mindful that these are business indicators common to
institutional investors, and that our model is independent of the utility function that is
the risk preference of investors, we present in our model, we believe, a more objective
norm form the perspective of performance evaluation of asset allocation. Assuming that
utility function varies with each investor makes it possible to carry out a comparison of
performance evaluation in reliance upon the information that is more commonly shared

among investors, that of the probability distribution of return.

5.3 Optimal Portfolio Selection and Asset Pricing Models for Semi-Martingale

Processes

The study of an individual investor’s optimal consumption and portfolio selection was
one of the principal themes in finance theory. The chief problem was the question of
whether an optimal policy exists in regard to consumption and portfolio selection when a
utility function and an asset price process in continuous time have been given. One had
to prepare an answer to the question: If it does exist, what properties does that optimal
policy possess? (See Merton [70] and Cox and Huang [26]) Just as the static model
CAPM depends on the mean-variance type of portfolio selection, so the dynamic asset
pricing model (the Intertemporal Capital Asset Pricing Model) presupposes consumption
and portfolio selection in continuous time. Stochastic processes of asset prices almost
all assume geometric Brownian motion. But two problems are often pointed out as the
reasons why geometric Brownian motion is abandoned as a stochastic process of asset
prices: first, while it has been empirically tested that there is a time series correlation in
asset return, Brownian motion does not have such a time series correlation; and secondly,
volatility does not depend on asset price and time.

This study aims at overcoming the theoretical defects of the geometric Brownian mo-
tion by considering the semi-martingale as a stochastic process of asset pricing and, also in
regard to utility function, it examines a consumption and portfolio selection model under

a general class. An intertemporal model that takes Merton [70] as its starting point has
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been developed by means of specification and generalization with regard to the asset price
process and the utility function of the investor. (See Aase [1], Back [7], Cox, Ingersoll and
Ross [27], and Ingersoll [48]) In our study we develop an intertemporal asset pricing model
in a semi-martingale. In particular we derive an equation that the value for the expected
excess return should satisfy, and we indicate that this equation represents a modification
of the accepted CAPM formula. There are two benefits in examining a consumption and
portfolio selection model for occasions in which asset prices follow a semi-martingale. The
first benefit is that an optimal policy for consumption and portfolio selection possesses
robust properties from the asset price process. The second benefit is that, when investors
in the market are all using this optimal policy, an asset pricing formula that is derived
from the demand-supply conditions of the market is similar to the CAPM formula.

This study is made up of four subsections. In the first subsection we explain asset price
processes and give examples of semi-martingales. In the second subsection we formulate a
consumption and portfolio selection model as the optimal control problem, and we discuss
the optimal policy for consumption and portfolio selection. We follow this by deriving
an equation that the expected excess return for each asset should satisfy from demand-
supply conditions, and we go into its economic implications. In the third subsection we
express in concrete fashion the results obtained in Subsection 5.3.2, restricting the utility
functions to a special class of risk-averse utility functions and assuming asset prices follow
a geometric Brownian motion. Finally, in Subsection 5.3.4 we draw the conclusions of

this study and at the same time touch upon directions future research might take.

5.3.1 Asset Price Processes

It is well known that the geometric Brownian motion is not always supported as an
asset price process. If asset prices are not described by means of geometric Brownian
motion, the derivation of an optimal policy for consumption and portfolio selection be-
comes extremely difficult. Still, it is possible to investigate the analytical properties of an
optimal policy in even more general stochastic processes, say semi-martingale. From the
point of view of explaining the Black Monday of October 1987 and of constructing a model
that includes actual cases in which asset prices jump as a result of public announcement

of information, the semi-martingale has definite theoretical advantages.
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Let us take time ¢ continuously and assume it to be an element of a closed interval

[0,T]. ¢t € [0,T]. There are n types of risky assets, indicated by subscript .

following symbols:

We use the

Pi(t) = the price of asset i at time ¢

zi(t) = the investment ratio of asset i at time
W(t) = the wealth of the investor at time t

C(t) = the instantaneous consumption rate at time ¢

The price processes are described by the stochastic differential equation as follows:

dP;(t
Y D e 15850,

Be) (5.15)

where M;(t) is a semi-martingale process and P(%_) denotes the left-hand limit at time ¢.

For the riskless asset, indicated by subscript 0, with instantaneous rate of return r we
have
dPy(t)
0 =rdt. (5.16)

The closed solution of equation (5.15) is known (see [74])

and given by
Fi(t) = P0)eMild—<MiMeiag (1 + AM;(s))e2Mils), (5.17)

where < M7, Mf > is the bounded variation process for the continuous part of M; and

AM;(s) denotes the size of the jump of the process M;(-) at time t. Thus, in this case,
P(t) > 0 with probability 1 if and only if AM; > —1.

The change in wealth at time ¢ when the investor follows a consumption and portfolio

selection policy z(t) = (2o(t),21(t), -+, za(2))T satisfies

AW (t) = éx;(t)W(t_)dMg(t)-C(t)dt (5.18)

n

AW + (e (1 = 3 50) - )] a

=1

Whenever the stochastic process M (t) can be decomposed as the sum of a local mar-

tingale and a bounded variation process denoted by < M, M >,, then M (t) is called a

semi-martingale. Let us consider four examples of semi-martingale processes.
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Example 1 (geometric Brownian motion)
We replace equation (1) by
dM;(1) = pidt + aid Zi(t), (5.19)
where Z;(t) is a Wiener process (Brownian motion) with mean 0 and variance t. Then,
the price of asset i follows geometric Brownian motion with mean u;t and variance oft,
that is,
dPi(t) = pPi(t)dt + o P;(1)dZi(1).
Putting dPM(t) = o Pi(t)dZi(t) and dPB(t) = u;Pi(t)dt, we obtain the decomposition as
follows:
P,(t) = P.(0) + PM(t) + PP(t),
where PM is the martingale and PB the bounded variation which is denoted by <

1

M;, M; >;.

Example 2 (sub-martingale)
Denote the wealth of the investor at time ¢ by W(t), which satisfies
W(t) = cZ(t) (5.20)
where Z(t) is the Weiner process with the mean 0 and variance t. Since W (t) is martingale,
W?2(t) is a sub-martingale. Put M(t) = W(t) — ot and < M. M >= o?t, and then we
have the decomposition as follows:
W2(t) = (W3(t)—o*t)+c’t
= M(t)+ < MM >,

where M (t) is the martingale and < M, M >, the bounded variation process.

Example 3 (Poisson process)
Let N(t)be a the Poisson process and put M(t) = N(t)— X and < M, M >= At.
The Poisson process has the following decomposition.
N(t) = (N(t)—At)+ M
= M)+ < M,M >, (5.21)
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which implies that the Poisson process is also a semi-martingale.

Example 4 (geometric Brownian motion with jumps)

Consider an example of a semi-martingale that is a composite of examples 1 and 2.
Such a stochastic process for the asset price is convenient to describe practical situations
that can occur when information on a new technology becomes public.

Let N;(t) be the number of price changes of jump size 3 at time ¢ which fol-
lows a Poisson process with the intensity Ai(t). We assume that 3z are given for
k=%41,42,---,+m, and fy > 0 stands for the jump up and 8;; < 0 the jump down. In
connection with equation (1) set

-:?T(f)) = dM(t) = pidt + o;dZ;(t) + f: BixdNix(1). (5.22)

=-—m
The continuous part of the asset price follows geometric Brownian motion and the
discrete part follows Poisson jump process. From examples 1 and 3, the continuous and
discrete parts are both semi-martingales and so the sum of them is also a semi-martingale

whose decomposition becomes M;(t) = M;(t)+ < M;, M; >,. where

dMi(t) = Pi(t_)oidZi(t) + Pi(t-) i Bit [dNi(t) — Mil(t)dt],  (5.23)

k=-=—m
d< My, M; >, = P(t-) (p.,-dt - Z B;;,A;;,(t)dt) / (5.24)
k=—m
The martingale part consists of the continuous part Pi(t)o;dZ;(t) and discrete parts
P(t) e o Gk
[dNik(t) — \ix(t)dt], respectively. Note that Pr{Nu(t) = 1} = [3 dix(s)ds + ot), the
probability that the asset ¢ makes a jump is Ay(2)dt, and E[dN;(t)] = Aix(t)dt.

5.3.2 The Optimal Control Problem and Asset Pricing Model

As mentioned in Subsection 5.3.1, a semi-martingale can be represented by the sum of a
local martingale and a bounded variation. Consider a portfolio z(t) = (zo(t), z1(t), - - -, 2 (t))T

consisting of n risky assets and one riskless asset. The wealth generated by this portfolio

is given by

W) = W(0)+ j:ilmgW(s_)dM;(s)+ /0’ [W(s_)r(l—fjm,-)—c:(s) ds

=1
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W(0)+ WM(t) + WB(1)

= W(0) + WMe(t) + WMI(t) + WB(t) (5.25)
with
WM@) = WMe(t) + WMe(r)
1 T
WH(t) = [ 32 W (s )M ()
3=1
“,er(t) = ‘/fzxi‘,‘z‘(s_)dﬂl’f’(!) (526)

WB(t) = jz:rﬂ _)d < M, M; >,+f[ I—ZJ‘, )| ds,

i=1
where WMe(t) and WM4(¢) are the continuous and discrete parts of the local martingale,
respectively.

Our problem is to find an optimal policy with respect to consumption and portfolio
selection so as to maximize the expected utility. We need the generalized Ito lemma. We
get the bounded variation of the continuous part of the wealth

< WMe e >-/ 35z, W2(s_)d < Mg, M: >
i=1 j=1

Let u(C(t),t) be a utility function defined on the consumption and B(W(T)) the
bequest function defined on the wealth. Given the dynamics of the wealth changes, we

define an optimal control problem as follows:

sup F[ u(C(t),t)dt+B(W(T))]. (5.27)
C(1)z(t)

To solve this problem, define the derived utility function J(W,1)
s =sup | [ uc(e)opds + BWT) W =w|. )
Applying the generalized Ito lemma, we obtain
J(Wit) = J(Wp,0)+ j Tw(W s)+ j

- j Jww(W(s_),8)d < WMe wMe >
+ Y {I(W(s),8) — J(W(s_),s) — Jw(W(s_),s) AW(s)}

0<a<t

= J(Wo,0)+ [ L(W(s.),s)ds
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+f Jw (W(s-),s) [ZJ:,W WM + dM{) + W(s_ 1-23:)—

/ Jww (W (s S)ZZ.‘B 2 W(s.)d < M{, M§ >

t=] =1

+ 2 {J(W(s)s) = I(W(s_).8)} = 3 Jw(W(s_),s)AW(s).  (5.29)

0<a<t 0<s<t
Note that W(1)-W(t_) = W(t_)Tx, z:dM?, and let 7;; be the length of the sub-interval
with the partition of the interval [0, 1),

n |
u(Z( Jw(W(s.).s)AW(s) = :_MZZ Z Tw (W (1), $)(W (r3) — W)
<s<t =1 3=175<t
= /0Jw(W(s-),s')zﬂ:W(s_).r‘.dM‘ﬁ_'
=1

which equals the third term to cancel to each other, The fifth term can be rewritten

> {I(W(s),8) = J(W(s.),s)}

0<s<t

n

!
= Bm> 3 > {IW(ra) + W(ra)ai AM;) — J(W (7))} dM

=1 3=17;<t

t.n
=" 3 (I () + W(s_ )eiAM) = (W (s.),5)} dME(s).

Hence, upon taking expectations, we are left with

BJ(W,1) = J(W,t)+ Jw(W,0W S 2idM? + oy (Wr(1 — ") - C)dt

=1 =1

-l- Jww Hﬂzzz .'B_,d( Mc .f‘m{c

i=1 j=
+ ; E{[hw(W(L+ 2. AM),6) — I (W(0),0]dME)},  (5.30)

where Jy(-), Jw(-), and Jyw () present the first and the second partial derivatives, re-

spectively. The Bellman’s optimal equation associated with problem (5.27) now turns out
to be

0 = sup E{u(C(t),t)dt+dJ
0 {u(C(t),1) 1

= sup F {u(C(t), t)dt + Jydt + JwW Y a;dM?
C(t),=(1) i=1 ‘

+Jw [W?‘(I—Z.‘r;)—— }dﬁ-}- waW sz:r,d<Mf,M‘>¢

=1 i=1j=1

=1

+Z [(J(W(1 + 2:AM;), ) — J(W, 1)) dM“(t)}
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The first order condition that an optimal policy must satisfy is
0 = u.—Jw; (5.31)
0 = Jw-W( E[dM“] — rdt)
+Jww - sz z;Eld < M{, M >

J_.

+WE[Jpy AMdME(t)] i=1,2,---,n, (5.32)

where u. = du/dc, and W = W(1 + 2;AM,). Let I' = [[;;] be the n x n matrix with an

element E[d < M7, M{ >,|. Then, solving equation (5.32) we obtain an optimal portfolio

1 Sl d £ qa
» ] — - L E[Jy AMdAME(L)].  (5.33)
oFe wawgru {BldM;) — rdt} waW,,Z::l i ElJy AM;dM;
When the discrete part of the asset price process vanishes, the equation (5.33) above
reduces to
T = — ;'L E[dMS] — rdt (5.34)
z; qu“ ,2—; S {El }-

Now, suppose that all the investors in the market have chosen the portfolio satisfying
3

equation (5.33) as well as (5.32) with respect to the consumption. What relation does

the expected excess return of the risky asset satisfy under the market equilibrium? Let

D! be the demand of asset i investor | wishes to possess. Then, the amount of demand of

asset 1 18
L
D; = Y D
B
= ZI{-W‘
I=
L Sl 3 v
=Y = E[dM]] — rdt I E[Jh AMdM(t)]
- 21 Wz;rv{ r } EwaZ g
= Air‘u' {E[dM‘]—rdt}+ZI‘ 1B;, (5.35)
=1 =1

where A = — 3 Jly/Jiyw and B; = E;E(J%AdeMf(t))/J{Vw. Let z; be the per-
centage of asset 7 among the total asset volume, called market portfolio. The amount of
supply for asset 7, S; must equal §; = 2,S.
S,‘ = J:l'S = D;’
= AT I {BldM;] —rdt} + ZI""B i=1,2,---,n. (5.36)

g=1
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Rearranging equation (5.36) with respect to the expected excess return of asset i. we

obtain

E[dM‘J —rdl = ZS Ed < M:, ch >4 '—% (5.37]

A5
Note that even if E[AM;dME(t)] is positive, the jump up of asset price does not mean an
increase in the expected excess return of the asset.
Using equation (5.32) we obtain the following for A:

=JY up 1 ,
A=) ——==) ———— 50 for Gu/dW > 0.
; S Z;: uge OufOW /

It is possible to give the following economic interpretation with regard to equation
(5.37).

1) Since A is the inverse of risk averse function (risk tolerance) resulting from derived
utility, risk tolerance decreases as A increases. When this happens, expected excess return

also decreases.

2) If we assume the risk measure of asset i to be d < M, M? >, then the excess rate

of return increases as risk increases.

3) Equation (5.37) tells us that an increase in money supply for asset 7 pushes up the
excess rate of return of that asset in the equilibrium.

The conclusion that has been arrived at here is similar in many respects to the con-
clusion arrived at in geometric Brownain motion. For example, from equations (5.32)
and (5,33), optimal decisions on consumption and portfolio selection are dependent only
through derived utility functions and, formally at least, are independent. Also, as long
as the parameters in equation (5.34) do not depend on time ¢, the optimal portfolio is
also time independent. In this sense, optimal consumption and portfolio selection can be

described as structurally robust after the asset price process.

5.3.3 A Consumption/Portfolio Selection Model under the HARA Type Utility
Function

In this subsection we shall specify the class of utility function and explain in fuller detail
a consumption/portfolio selection model when asset prices follow a geometric Brownian

motion. The optimal policy regarding consumption and portfolio selection derived in the
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preceding subsection depends on the unknown derived utility function J (W.,1), and it is
not a closed solution. In order to obtain a closed solution we must substitute equations
(5.32) and (5.34) for equation (5.31), and solve the second degree partial differential
equation regarding J(W.t) in order to find J(W,t). But unless the utility function is
specified and the asset price process is also something simple, it is almost impossible to
find a closed solution. In this subsection, therefore, we shall give a concrete form to
the class of utility function and derive a closed solution to the problem of an optimal
consumption and portfolio selection when asset prices follow geometric Brownian motion.
Consider a continuous time stochastic model in which an individual decides on the
optimal consumption rule and portfolio selection that would maximize the expected utility
within consumption and portfolio selection consisting of n types of risky assets and one
type of safe asset. We assume that changes in the rate of return of the ith risky asset will
follow geometric Brownian motion:
dPi(t)
F0)
We define E[dZ;(1)dZ;(t)] = pi;dt.

= pdt + 0:dZ; (1), 1=1,2,---,n, (5.38)

Using the Ito lemma and Bellman equation, we then get

0= &% u(c(tt) + dw(Wot) ()f? zi(O)W(pi —r) +rW - c(z))
+%JWW(W t zn: ix,(t Wz (t)Way; + J(W, t)] (5.39)
=13=1

Here, subscription denotes the partial derivative for the variables, and o;; is the (i — j)th
element of the variance-covariance matrix.

The boundary condition is
J(W(T),T) = B(W(T),T).

The first order condition that an optimal consumption and portfolio must satisfy is

U(C™(t),t) = Jw(W,t); (5.40)
N

0 = (w—r)w(W,t)+ Jww(W,t) > 23(t)Woy,. (5.41)
=1

The decision making on consumption is independent of the portfolio selection. They
indirectly depend on each other only through the derived utility function J(W,1).
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Define the HARA type of utility function as follows:

i s 1— B8 _
Lr[C(f),f]:—‘Y—I (T__{C(”-}"”T*‘C Pt

(5.42)
The parameters are restricted to take their values in the following intervals:
— LY <00, 7#£1, B8>0. —3—C+q>0.
1=37
Also, define the bequest function for the finite planning horizon model as
B(W —_ 1) +C| e
(WAT), T) = o ( w (T)+ 4y + (| e (5.43)
with
k>0, —oco<y<oo, 7#1, ;5‘>0, l—£—W+ﬁ>0.
=Y
An optimal consumption rule is given by
] 1= (Jw(W,t)ert\ O 1 _
C(t) = ( b A, ==l
B 5 g 544}
T 1= | [ Jw (W, t)ert\ VO
U = W )
(C*(1),1) g [( 3 ) +¢| e, (5.45)

Substituting (5.44) and (5.45) into (5.39), we are left with the partial differential
equations

- (1_7)2 Jw(W,.t)e“" ¥/ {(v=1) L - L.
0 = ST [EGE]T e () eomrow s Cta o

A o BWY
5= r1'S = 1) U ), (5.46)

where p = [u1, pa, -+, pn) 7.

In order to solve (5.46), let us try separation of variables and so assume that
J(Wt) = e " [A(W + B)" + D],

where all parameters A, B, and D are unknown. For the infinite planning horizon the

partial differential equation (5.46) can be rewritten as follows:

" (1"7)2 ‘B R ¥/ (v—
i _Tr_"(?) AT SN - +——c+( W+(1,3 Do)y AW + By

+———A(,u —r1)’E7 (u — r1)(W + BY — pP(A(W +B) + D). (5.47)
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Table 5.1: A List for Optimal Values for HARA Type Utility Functions

Horizon [nﬁnite T = o0) Finite(T < o;:)

HARA TypelU(-) [(—-—-C(t) +n) + (] ol s.ame- as left side :
Bequest B(+) none r= [(%‘-i‘l”'(f') +10)" + Cl e
Derived Uti. Func.J(-) |  [A(W + B)" + Dje~** [A()(W + B(t))" + Dl(_tl}e“"
Aor A() = () ()

B or B(t) iz Loy 4 i,

D or D(t) _‘_:.1% —T£+c‘-;

Portfolio z3(t)W M3 Elsn oty —r) ‘“‘{j‘j*”’ " o —r)

As in (5.46), we assume that the derived utility function has the form
J(W,t) = e [A()(W + B(t))" + D(t)]. (5.48)

where A(t), B(t) and D(t) are time dependent unknown parameters. Then, we obtain

from (5.47)
0 = (1 = ,_,,)2 (E) s A(t)'v/('r—lj(w ' B(f))‘f
| ¥
+—c+( w1 s Doy AW + B())
+l—A( ) —r1)T7 (u—r1)(W + B(t))" — p(A(t)(W + B(t))” + D(t))
21— i
+A' (t)(W + B(t))” + YA(#)B'(t)(W + B(t))"' + D'(¢). (5.49)

Table 5.1 is a list of optimal consumption, portfolio, and derived utility function for
HARA type utility functions.

Here, we define the parameters as follows:

5 |@ o
= e e p—r1)E Y (u—r1)|;
- 1—7[7 i 2(1 )(
2\ /(=)
: .-L(ﬁ) 1] a7,
o = aKi= E - :
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Cy = Avy (,\f - 5) ePIT=1).
7 P

Coefficient a is a constant that is a time independent; we can see that coefficients €1, €2,
and ¢; are dependent on the planned period. Hence , since C"(t) and W must be positive
n regard to a finite planned period, we end up with
w > E (l - r) .
T a

Note, however, that when B/r >0, then 1/a < r, and contrariwise, when B/r <0, then
1/a > r.

For cases in which the planned period is finite, we get
W (1 - ) [C(I e~alT=1)) _ .E“ — @y 4 e (g)ﬁ“_ﬂe—aﬁ-n = gée"{?“’ _

From Table 5.1 the following is clear. In regard to an infinite planning horizon (T —
oc), (1) the individual’s derived utility J(W.t) is the result of multiplying the linear of
wealth A(W + B)” 4+ D by the discount rate e " (2) the parameters A, B, and D are
constants that are not time dependent; (3) the optimal consumption C*(t) is one in which
wealth W is proportional to a, after wealth W has been added to the coefficient B; (4)
the optimal consumption is not time dependent; and (5) optimal consumption and the
decision making on asset allocation are separated.

Setting

W+ 512 + )]
A=- 1'6_‘ > .

for the case of a finite period, the optimal sum invested in a risky asset is given by
zW=A Z ai}(yj -r) (5.50)
1=1
In this case, putting

A= Z{W”‘FH“%]

! - for investor ,

equation (5.37) can be reduced to

A Z"u 3

=1

which is an equation that the expected excess return should satisfy for each asset.
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When a Bequest Utility Function Does Not Depend on the Amount of the Bequest

Here we shall see what happens when we seek the derived utility function that cor-
responds to the HARA type utility function, in those cases in which a bequest utility
function regarding a finite planned period does not depend on the amount of the bequest.
At such times. the conditions that guarantee that the bequest amount W is not negative
and that from equation (5.43) the utility function of the bequest B(W,T') does not depend
on the amount of the bequest, are 1j = 0 and & = 0. Under these conditions the derived
utility function of the HARA type utility function when the amount of the bequest does
not depend on the bequest utility function becomes

1 =7

= —r(T- = — e—P(T-1)
1 —e s\ B W+ r;-———l =% ﬂ)) +¢ (}—E—)] e (5.51)
T e I—-7 ¥ i

When this happens, the optimal consumption rule C*(t) in a finite planned becomes

lim J(W, 1) |gm0=

a py 1=y (1=eTON] Q—a)n  gen
lim () = ——r [w = ( - e
The optimal sum to be invested in risky asset i is given in
o _ S
ey S0 (ui =) (A—vn (1—e )] (5.53)
}“J-ng'(t)W= 2 7 = W+ 3 = :

From this it is easily seen that the utility of the bequest, regardless of the amount of the

bequest, is

lim BW(T),T) ly=6=0.

5.3.4 Conclusion

In this section we have discussed an optimal policy regarding consumption and port-
folio selection when asset prices follow a semi-martingale. Then we derived an equation
that the expected rate of return should satisfy when investors in the market have identical
utility functions and agree on the parameters of stochastic processes that describe asset
prices. Finally, when we gave utility function classes in concrete, we derived a closed so-
lution for an optimal consumption and portfolio as well as the derived utility. What was

learned from this study is that the analytical properties of the optimal policy regarding
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consumption and portfolio selection are 1) it is robust after an asset price stochastic pro-
cess; and 2) it takes the form of an addition of a discrete part to past results. We gave an
equation similar to the intertemporal capital asset pricing model of Merton [73]. Instead
of introducing, as Merton does. a state variable, we have expressed it as the supply of
each asset.

Future research should derive a closed solution for an optimal policy regarding con-
sumption and portfolio selection as an example of semi-martingale, but using examples
other than those of geometric Brownian motion and similar stochastic processes, and
develop an intertemporal capital asset pricing model in those cases. Also, even in the
case of well-known stochastic processes, it would probably be interesting to carry out the
same kind of analysis in regard to other classes of utility functions. Other future research
tasks would include studying what happens when variables besides wealth are introduced
as state variables in derived utility functions, or analyzing utility functions that are not
additive in regard to time. Just so long as we rely on methods of dynamic programring
in continuous times, we shall probably encounter the problem of a trade-off between the
generalization of utility functions and asset prices, and the richness of conclusions that

have been obtained in that area.

5.4 Optimal Exercise Policies for Call Options and Their Valuation

An American call option, simply called an option, is a right to buy a share of stock at
any time during a stated interval for a stated price, the exercise price. Suppose that you
own an option to buy one share of stock at a fixed exercise price, say ¢ and you have n
days to the maturity date. If you exercise the option on a day when the stock price is s
and sell it in the open market, then your profit is s-¢. The problem here is to find which
strategy maximizes your expected profit. In other words, how should we choose a stopping
rule in order to maximize our expected profit? Ross [89] and Taylor [119] study the stock
option model under the setting of an optimal stopping problem in which price changes
are independent identically distributed, that is, a random walk, and consequently the
model has a single state. The model proposed by them leads to the unrealistic conclusion

that for a fixed time the stock price is negative with a positive probability. To avoid this
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defect we modify their model so that stock prices are assumed to change according to
the distribution of the product of independent positive random variables, which excludes
the possibility of stock prices becoming negative. We also assume that the distribution
of stock prices depends on the state of the economy which follows a Markov chain. In
subection 5.4.1 we formulate the stock option model with multiple states as an optimal
stopping problem. In subection 5.4.2 we show under some assumptions that there exists
a simple optimal exercise policy which depends only on the current stock price and the
state of the economy.Furthermore. properties of the optimal policy and its bounds are
investigated in Subsection 5.4.3. Most results are distribution-free under the assumption
that both the distribution of price changes and the state transition probability have a
monotone property with respect to a state of the economy.

Finally, in Subsection 5.4.4 we propose a new, but simple, derivation of the Black and

Scholes’ option pricing formula with some concluding remarks.

5.4.1 Formulation of a stock option model

Let {1,2,---,N} be the set of states of the economy and i or j denote one of these
states. The economy changes according to a discrete time finite state Markov chain with

a one step transition matrix {P;}. Let S; be the stock price on the day ¢ and suppose
St41 =5 - Xgiq-l = -gl:l)(lh)q2 =4 X:+1

provided that the states of the economy from day 1 through t+1,(,i,-- -, ) are observed,

where X;, X3, -+, are independent, positive random variables with finite means.

Remarks 1 If we have Sy = S¢ + Xesy and X, are independent and identically dis-
tributed, then the process S, is a random walk which reduces to be the case of [89]. This
random walk hypothesis leacs to the unrealistic conclusion that for a fized day the stock

price can be negative with a positive probability.

Note that our model avoids this defect and that the price process in our model is a
martingale if E(X,;) = 1 for all £, where E stands for the expectation operator. Consider
now an option that entitles the holder to buy the stock at any time before the maturity

date at a fixed exercise price, say ¢, regardless of what the market price might be. Let
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T be the maturity date of the option. Suppose that we have already bought an option

on day 1. If S, > ¢ on day t, the option holder may exercise his option, buy the stock at

the stated exercise price, and resell it in the market at the market price 5,, which gives
him the profit S, —c. I S; < ¢, no one exercises his option and no such profit is possible.
Thus the expected profit ti the option holder is E{max(S,—¢,0)}. The problem is to find
a stopping time {= to maximize £{max(S, — ¢,0)} with respect t, 1 <t < 7. LetFi(-)

be the probability distribution of X If we let Vj(s,i) denote the maximum profit when

the stock price is s, the state of the economy is ¢ on day ¢, and the option has (T — t)

additional days to go , then from the principle of optimality V(- ) must satisfy

N 4
Vi(s,i) = max {s — c,g P;J-/O V;.,.l(s:c,j)df*_,-(:t:)} (5.54)

with the boundary condition

Vz(s,t) = max{s—¢,0} (5.55)
on the maturity date. To establish an optimal exercise

* policy we need the following
assumption. Assumption

(i) Fi(z) 2 Fy(z) = -+ > Fa(z) for all z.
(it) For each k, =X, P is increasing in i.

Lemma 5.4.1 (i) Vi(s,i) is inereasing, conver and continuous in s for each i.t.

(ii) Vi(s,i) is increasing in i and decreasing in t for each s.

Proof The proof is by induction on £. For t = Tthe statements (i) and (ji) certainly

hold. N s ;
old. Assume that Vii(s,7) is mcreasing, convex and aontinuous in s for each 7 and is

increasing i i ) 18 i i
asing in ¢ for each s. Since Viy,(sz,7) is ncreasing, convex and continuous in s for

each z > 0, s0 is T, B; [ Vis1(sz, j)dFi(x). Hence, Vi(z,i) is increasing, convex and

continuous in s for each i. On the other hand,

N

,;Pu/ Vira(sz,j)dFy(z) = /0 kz_:[l’u-!(sx k) — Vigr(sz, bk — 1)]dF(a _EI:‘PU
J=

N

/ gmﬂ(sx,k) ~Vis(sz,k = 1)]dFips(2) 3 P,

1=K

IA
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s0 N _ N
< [T S Wnr(sz,k) = Vaga(sz,k = D]dFea(2) 3 Pasay
0 k=1

j:k

N o0
= Z P,‘.p.”/o ‘f‘;+1(sx,j)dFi+l($)9
=]

where the first and second inequalities follow from Assumption (i), (ii), respectively, and

Vi(st,0) = 0. Therefore, we obtain
m .
Vi(s,i) = max{s—¢ 3 P,,/O Vi (s2,5)dFi(z)
3

< max {s — C,Z/om Vt+1(5-’5:j)dFi+l(37)}
3

= Ws,i+1)

which asserts that Vi(s,i) is increasing in 7 for each s,t. That Vi(s,?) is decreasing in

t is immediately apparent from the fact that a higher value of ¢ has the less chance of

exercising options.

5.4.2 An optimal exercise policy

In this subsection we shall show under certain conditions that there is a simple optimal
exercise policy which can be specified by the single value s,(z) at each day  with the state
i, which in words says, do exercise the option if s < s4(7), do not exercise, otherwise. To

establish this result we need the following lemma in addition to Lemma 5.4.1.
Lemma 5.4.2 If uy = [;° 2dFx(z) €1, then Vi(s,i) — s is decreasing in s for each 1,1.

Proof The proof is again by induction ont. Fort = T we have Vi (s,i)—s = max{—c¢, —s}

which is plainly decreasing in s. Assume the assertion for £ 4+ 1. Then, for ¢ we have
Vi(s,i) — s = max {—c,z Py || Wana(s2,5) = saldFi(e) + (i - 1)} :
7

where p; is the mean of X!. By the induction assumption for t 4 1, Viyy(sz,j) — sz is
decreasing in s for each z > 0. Assumption (i) implies that gy < pp < -+ < unx. I
pn <1, then p; <1 for all i. Therefore, s(u; — 1) is decreasing in s. This completes the

induction arguments.
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For each t and i define

si(t) = inf{s:Vi(s,i) — s € —¢}, (o

o
o
(o
il

where we take s,(i) to equal oc when this set is empty.

Theorem 5.4.1 If uy < 1, then there ezits an optimal exercise policy as follows: If the

stock price is s on day t and s > s,(i), then ezercise the option, otherwise do not erercise.
Proof U the stock price is s and the state is in i on day 1, it is optimal to exercise
the option if V(s,7) < s — ¢ because Vi(s,i) > s - ¢ from equation (1). Since for
kN < 1,V(s,7) — s is decreasing in s for each i by Lemma 5.4.2, it follows that for all
s > 84(1)Vi(s,1) — s < Vi(s4(),7) — 8,(2) < ¢, which asserts that it is optimal to exercise

the option when at price s and in state 7 on day t s > s4(i).

Theorem 5.4.2 If uy < 1, then $¢(1) is increasing in i for each t and decreasing in t for

each 1.

Proof From Lemma 5.4.1 (ii) Vi(s,1) is increasing in i and from Lemma 5.4.2 Vi(s,i)—s

is decreasing in s. Hence, for each ¢

si(i) = inf{s:Vi(s,i)—s< c}
< inf{s: Vi(s,i+1) - s < —¢}
= 3;(i‘+‘ 1).

Furthermore, from Lemma 5.4.1 (i1) Vi(s,?) is decreasing in ¢, which implies that

'St(i_)

inf{s: Vi(s,7) — s < —¢}
2 inf{s: Vi(s,i) —s < —¢}
= 5t+1(i)

Theorem 5.4.3 If (c/s)Fi(e/s) > 1 — s 2dF;(z) for each i and s, then it is never

optimal to erercise the option before the maturity.
Proof At the maturity we have
sr(i) = inf{s:Vp(s,i)—s< —c}
= inf{s:max{s —¢,0} —s < —¢}
= c¢< oo foreach .
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Therefore, the set {s : Vr(s,i) — s € —¢} never becomes empty. Since s;(2) is decreasing
in t from Theorem 5.4.2. we only have to show that sy_,(7) = oo for each i. Fort =T ~1

we have

Vr_i(s,i) = max {3 - C‘-Z £ ]:G V}(sz,j)dﬂ(r)}
J

= max{s—c._sfc:mdﬁ(:c)-c[] - F (E)]}
= s—c+max{0,s(£frdﬂ(m)—1) + ¢F; (E—)}

Since the quantity of the backet is positive, we obtain Vy_y(s,7) > s — ¢, which implies

that s7_,(#) = oc for each 2.

Remarks 2

(i) Note that

5 (j;” zdFi(z) — 1) +cF; (—E)

s (‘[:0 zdF(z) — ]) - sj:b zdFy(z)
+eh ()

su=1)=s [7 (£) drfa)
()

s(pi —1)

> s(pi—1)>0, forpu; >1.

Vv

I

This implies that uy > 1 is a sufficient condition for Theorem 5.4.3.

(ii) It is of interesi from an investor's point of view to mention an implication of the
optimal exercise policy established in Theorem 5.4.2 and 5.4.3. If an investor infers
that the price of stock is expected to increase in the mean py > 1, he should do
nothing until the day of maturity. On that day he should make a purchase at the
lower of the call price or the market price. If he expects uy < 1, follows the optimal
exercise policy in Theorem 5.4.2 may give him the expecied value Vi(s,i). In words,
should the price rise on the day with the stock prices s < s4(i1) and the state 2, he

should exercise the option to buy at the stated price and immediately resell in the
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open stock market so as to receive a capital gain. Interpreting Vi(s,i) as the value
of the option at the begining of the first day when the stock price is s and the state
ts in 1 and also denoting the purchasing price of the option by V', we should buy the

option when Vi(s,i) >V, and should not buy it, otherwise.

5.4.3 Properties of the optimal value and optimal policy

In this subsection we explore some analytical properties of an optimal exercise policy

and its value. We write P! > P? whenever Bl 2 N ¢ P2 for all k. To present the

dependency of P = [P;] on V(-,-), we define

Vi(s,i, P) = { $— ¢, ZP., " Viga sz, 4, P}dF(w)}
and
8:(2, P) = inf{s : Vi(s,4,P) — s < —c}.
Property 1 If P > P?, then we have
(i) Vi(s,2, P') > Vi(s,i, P?) for each s.i,t.
(i) s¢(2, P* > (2, P?) for each g 1.

Proof The proof is by induction on . For t = T'Vi(s,1) is constant with respect to
P = [P,]. So assertion (i) holds with equation. Assume for ¢ + 1 that Viyy(s.2, P') >

t1(8.2, P?) for P' > P2, Since Vi(s,i) is increasing in 7, by the first degree of stochastic

dominance we can easily show that
1 0 » .
SRy [ Visalomsi PE =B || Visalow, s, P)dR(e)

which implies that Vi(s,i,P') > V(s,i, P ) for each s,i,¢. Assertion (ii) immediately
follows from assertion (i) because
se(i, P') = inf{s:V(s,i,P)—s< —c}
2 inf{s: Viu(s,i, P —s < —c}

sy(t, P?)

Similarly, we use the notation Vi(-, -, F') for emphasising the dependency on Fi(-).

Property 2 1If u! = p? for all i and each i [* Fly)dy < J§ F2(y)dy for all z, then we

have
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(i) Vi(s,i, F') < Vi(s,i. F?) for each s,i,t.
(ii) sz, F') < s4(2, F?) for each 7,t.

Proof The proof is again by induction on n. Fort = TVr(-,-) and s7(-) are both constant
with respect to F. Since from Lemma 5.4.1 (i) Vi(s,7,F) is increasing and convex in

s. it can be shown that the second degree of stochastic dominance and the induction

assumption for ¢ + 1 imply
[ Visa(s2,5, F1)dF} (x) < ] Vi (52,5, F2)dFA(z)
0
Therefore, we have Vi(s,i, F') < Vi(s,i, F?). Then,
si(i, FY) = inf{s: Vi(s,i,F')—s £ —¢}
< inf{s : Vigi(s,i, F?) — s £ —c}

= gyi, F?).

5.4.4 An alternative derivation of the option pricing formula

In Subsection 5.4.3 we demonstrate in Theorem 5.4.3 that it is never optimal to exercise
the option before maturity, provided that (c/s)Fi(c/s) > 1 — [, dFi(z) for each i and
s. Using this fact, we propose an alternative derivation of the Black and Scholes’ option
pricing formula.

Suppose that there is only one state, which allows us to eliminate the state variable 2
from our notation. Also, suppose that In X, is independently normally distributed with
the mean p and variance o?, that is, the stock price follows a geometric random walk.
E[X] > 1 implies exp(z+ ¢*/2) > 1, which can be rewritten as p > —o?/2. If E[X] > 1,
it. has been shown from remarks for Theorem 5.4.3 that it is optimal never to exercise the

option before maturity. Therefore, we have the maximum expected gain V(sle, T, p, o) as

follows:

V(3|c, T, p, U) 3 E[max{s'f -, 0}]
i j ” 2dFs (z) = ¢ jc ~ dFs.(z), (5.57)

where Fys..(-) is the probability distribution of Sy = s+ X, « X5 --- X7. Note that
FST(:C) = PT{S 'Xl 'Xg"'X'r S .’B}
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= Peiln X; +---+111XTSID§}

) Inz/s — uT
- o2 ).

where ®(-) is the standard normal distribution. So, Equation (4) can be rewritten as

follows:
V(sle,T,p,0) = / T seVTotuT L —spas | [ dd(z)
S (Ine/s—uT))a/T V27 (Inc/s—uT)/e/T
lnc/s+(;z+02)T) Ine/s+ uT
= (pto? [2)T o
= s¢ ¢ —cP ’ 08
( i Nl 9:58)
. av 17)% av oV av
It is easy Lo see that *‘6? >01'§c— < U,B—T' >0,E > 0, and -50_— > 0.

Now, we are ready to derive the Black and Scholes’ option pricing formula [3]. Let r
be the riskless rate of interest. Since each In X is normally distributed with mean x and
variance o2, the expected value of the maturity price of the stock with the initial price
s 1s s-exp{p + 0% /2}T. On the other hand. if we invest z dollars today with the rate
of interest r, we can expect to receive s -exp{rT'} at the maturity date T. For any risk
neutral investor or from the no arbitrage condition, these two investment opportunities

must be equivalent, that is,

.s-exp{,u-!-g:;}T = s-exp{rT}. (5.59)

Hence, we obtain a relation

i ==y = T (060)
Substituting (7) into (3) we have

: o lnc/s+(r+02/2)T)  oneT (lnc/s+(r:i2/2)i"‘)
V(sle,T,p,0) = @( oy ® o IT g

which is exactly the same equation as the Black and Scholes’ option pricing formula.

This implies that the model presented here includes the Black and Scholes’ model as a
special case which can be derived from a framework of optimal stopping problems. It
is worthwhile to note that the expected value derived from an optimal exercise policy is
coincident with the option pricing formula under the condition that the underlying stock
has no divided with the mean rate of return E [X] > 1. This approach gives us a deeper
understanding of the Black and Scholes’ model.
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Chapter 6

Two Software Reliability Growth
Models Based Upon Module

Structures

6.1 Introduction

There have proposed quite a few Software Reliability Growth Models (hereafter ab-
breviated by SRGM) to estimate, interpret and monitor failure behavior of large-scale
software systems [41], [51], [132]. Those traditional models are formulated in a way of
birds eye watch of target software. That is, the models handle the software as a black-
box entity and interpret its defect behavior in the manner of macro. In other words, the
traditional SRGM studied so far assumes failure occurrence and detection process as a
stochastic or deterministic process.

Those traditional SRGM’s have been applied to large-scale software developed through
life-cycle processes. The SRGM’s, however, have never applied to software developed in
a modern process which is based on, for example, the object-oriented paradigm or data
abstraction concept. In other words, it is an open question that the application of SRGM’s

to such type of software would success or fail (see [79], [82]).

The purpose of this chapter is to provide an approach of formulating a new SRGM by
emphasizing module structure of software and to answer this open question. To consider
the module structure, in this context, means to divide types of instruction in software

into several types according to inter or intra module decomposition. In concrete, in the
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process of model formulation, we first categorized instructions into multiple types such as
data access, subprogram call, data flow via global data, etc, we, then, assume that the
number of instruction executions is a stochastic counting process as well as the number
of failures occurred. For the last decade, theoretical achievements in SRGM have been
applied to the practice of software development. Data abstraction technique [64] and
object-oriented design methods [18] are such example to provide some theoretical bases
of the quality and measurement of software.

In this chapter we formulate a new SRGM which is much more general than the one
appeared in the existing literatures and explains detect behavior of software. We also
show that software developed by data abstraction techniques is more reliable than one
developed by functional decomposition in terms of failure rates as well as the variance
of the number of failure occurred. Those results are in closer agreements with actual
software development practice. In Section 6.2 we formulate new SRGM by considering
module structures of software and detection rate of failures. In Section 6.3 we discuss a
comparison of data abstraction software with functional decomposition one. Section 6.4
follows with some concluding remarks.

We have developed a new software reliability growth model based on a counting pro-
cesses for instruction execution in a software. Through the analysis using the proposed
model, we conclude that higher software reliability can be achieved with data abstraction
techniques than with functional decomposition, under reasonable assumptions. We note
also that the exponential NHPP model, which was developed through experience, is a
special case of our theoretical model, and that the results of our model therefore agree

with that of NHPP,

6.2 A Software Reliability Model Based Upon Module Structures and Error
Detection Rates

In this section we formulate a new SRGM which explains detect behavior of software.
Before doing so we need some notations and assumptions. The set of operations consists
of functions and instructions in software. A set of operations or data is called a module,

A software is defined as a set of such decomposed modules. Object-oriented software’s

141



modules consists of data and operations. On the other hand, functionally decomposed
software consists only of operations. Any software carrys out jobs to communicate each
other among modules .

Failure of software can occur either in communications between modules or in executing
internal instructions within modules. Failure occurred within modules can be classified
into two types due to access to either local or global data. We assume that multiple faults
never turn out to be one failure.

We use the following notations :

tt

) ! instruction
EXCy =

1 if inter module communication occurs at n
0. otherwise.

th

. { 1 if accessed to local data at n** instruction
n —aq

0, otherwise,

h

1 if accessed to global data at n'™ instruction

e
0, otherwise.
N(t) = the number of instructions executed by time t.
Let t be a continuous time in a real line. So, N(t) is a counting process whose sample
path is non-decreasing in . Let X(t) be the number of intermodule communications by
t. Let Y(t) be the number of accesses to local data and Z(t) the number of accesses to

global data by ¢, respectively. Then, we have

N(t) N(t) N(t)
X(t)=3 X, Y(y)=3 Y and Z(t) = . Z.
=1 i=1

=1
Assumption I {X,}, and {Y,} and {Z,} are independently and identically distributed
and also independent of N (), that is, N(t) is a stopping time with respect to { X, }, and
{Yn} and {Z,.}.
Let p be the probability of intermodule communication, ¢ the probability of access-
ing to local data and r the probability of accessing to global data at each instruction,

respectively. So, we have
BX;] = Pr{Xqa=1l=p
E[Yn] = Pr{Y,=1}=¢
BlZ,)] = PriZ, =1}=v.
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Define

S(t)=X()+Y(t)+ 2(t) (6.1)

which presents the total sum of number of inter-communications and intra-instructions

on the module decomposed software. Under Assumption I, applying Wald’s formula into
equation (6.1), we obtain
BISW)] = EIX(8)+EY()] + E[2(0)] (6.2)
= (p+q+r)E[N(1)).

To count the number of failures on the software we define the following random variables

ot — { 1 if a failure is observed at the jth inter module communication

0, otherwise,

o? — 1 if a failure is observed at the jth local data access
0, otherwise,

and

0 — 1 if a failure is observed at the jth global data access
]
0, otherwise.

Define

Pr{0} =1} = q
Pr{sz 1} = oy
Pr{Oj-i = 1}

g,

Assumption Il {O}}, {O}} and {O?} are independently and identically distributed and

also independent of S(t), that is, S (t) is a stopping time with respect to 0}, 0 and 02
respectively. J J

Denote O(t) the total number of failures observed by time t, which is given by
S(2) 5(1) 5(t)

om=2@+gﬁ+§®. (6.3)

=1
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Let H(t) be the mean value function of O(f). Applying Wald’s formula into equation
(6.3), again, we obtain
H(t) = E[O(t)] (6.4)
= EIS()]{E(0}) + E(0}) + E(0})}
= (p+q+r)E[N@B)(aq + a3 +as)
= alp+q+r)E[N(1)l,
where a = a; + a3 + as.

Defining A(t) a failure rate at time ¢, we have

dH(t)/dt  a(p+q+r)dE[N(1)]/dt 6}
b e e a— H(t)

where a = lim_... H(t) > 0 the total number of faults embedded in the software.

To distinguish where the observed failures come from we put

520 (t. %”02 d 0%(t) %03
oNt)=) 0}, Ot)= iy an = 7
( ) g =1 ==l

Let H'(t) be the mean value function of failures caused by inter-module communications,

H?(t) the mean value function of failures by local data access and H(t) by global data
access.

H'(t) = aa(p+q+T)E[N(t)]

H*(t) = aa(p+q+7)E[N(1)]

H3(t) = as(p+q+r)E[N(t)].
Let A'(t), A*(t) and )\%(t) be the failure rate corresponding to H'(t), H(t) and H3(t),

respectively.

dH'(t)/dt
a—H(t)’
where H(t) the reliability function of the entire software is given by H(t) = H'(t) +

Al(i) = Z = ].,2, 3.

H?(t) + H?(t). The failure rate of the entire software is given by
dH(t)/dt
M) = mEm
dH(O)/dt | dH(0)/dt | dH(0)]dt
a—HO) =B =~ e=HQ
= M)+ Xa(t) + As(t)-
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Let 73, Ty and T3 be the inter failure times due to inter module communications, local data
and global data accesses, respectively. Let R(t) be the reliability function of the entire
software, R'(t), R*(t) and R3(t) the reliability functions for T}, T; and 75, respectively.
We have the relation of the reliability function and failure rates At), A(t), Aalt), Asl(t)

as follows :

R(t) = Pr{min(Ty,T,,Ts) > t}
= PriTi > .1, > 1,75 > t}
= Pr{T;>t}-Pr{T2>1}-Pr{T3>z}
= R'(t)- R*(t)- R%(t)

= exp{—/: Alfr)df}-exp {—/ot Ag(‘r)dr} -exp{—/ot,\g(r)dr}

= en{- /;P\l(f}'i'f\z(?‘)+f\3(7)]d‘?}

= wio {—/ot)t('r)d'r}. (6.6)

Note that the software reliability function based on module structure is of series system.

The reliability function is uniquely determined by and non-increasing in the failure rate.

6.3 A Comparison of Object Oriented Software with Functional Decomposi-

tion Software

In this section we describe functional decomposition and object oriented softwares.
Defining their reliability functions or failure rates, we discuss a comparison between two
softwares. It can be shown under some well-accepted assumptions that object-oriented
software is better than functional decomposition one in a sence of software reliability
growth models.

A functional decomposition software consists of the set of modules and global data,
where each module shares global data with each other, and jobs can be carried out through
intermodule communications and accesses to global data. Each module has no local
data. On the other hand, a object oriented software consists only of the set of modules
where each module posesses a sequence of operations and local data but does not have
global data. Each module carries out instructions or statements within the module and

communicates with other modules. Note that each module in the object-oriented software
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has a similar structure with a functional decomposition software. However, global data
of functional decomposition software are not decomposed but shared with all modules.
One advantage of module partition in software design process can reduce the possibility
of putting faults by partitioning modules in smaller size. Access to data in codes of intra-
module in object-oriented software has a smaller probability of putting faults than in

functional decomposition software. Under those considerations we assume that

(1) the object-oriented and functional decomposition software have both the same prob-

ability of putting a fault in the inter module communications,

(2) the object-oriented software has the smaller probability of putting a fault at the

data access instruction,

(3) the functional decomposition software has a higher probability of accessing the

global data and
(4) the objected-oriented software has a higher probability of inter module communica-
tions.
We use hereafter the subscripts o'and f to present the object-oriented and functional

decomposition softwares, respectively. Hence, H,(t) and H;(t) are the mean value func-

tions for object-oriented and functional decomposition softwares. From equation (6.4) we
have
H(t) = ao(ps+q0+T10.)E[N(t)]

Hy(t) as(ps + g7 +r7)E[N(2)].

Similarly, we have the corresponding failure rates

dH,(t)/dt
a— H,(t)
)\f(t) = —-—-—-——ili‘fgl/(f; g

A(t) =

Proposition 1 If a,/ay < (ps + g5 +74)/(po + @ + 72), then A (1) < Ag(t) for all .

Object-oriented software’s reliability is higher than functional decomposition’s.
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Proof Taking the difference of the failure rates between two softwares, we obtain
dH,(t)/di _ dHy(t)/dt
a—Hy(t) a—Ht)
e [“o(ﬁ'a T +re) appr+q+ ff)} dE[N(t)]

a— H,(t) a— Hy(t) dt
- [ ﬂa(Pf + Go + 1) - af(p! +qs+ry) dE[ﬁ»"(f)f
=Pt gotrs) a—aylpy+qr+ry)| di
g AT AT
= 'E' [ao(po o s + ro) g a,f(pf e qr + rf)] ﬂé\;—(—tﬂ'

< 0

where K is the common denominator appeared in the calculation and K > 0. Since N(t)

1s a counting process, dE[N(t)|/dt > 0. By definition of reliability function Ao(t) < Ag(2)
implies R, (1) > R(t).

(Q-E.D.)

5BNext, we shall compute the variance of the number of faults observed by time ¢, which is

the risk measure of the reliability of software system. From equation (6.3) and Assumption
11 we obtain

.I=]

[S(¢)
Var[O(t)] = Var Z(O,' + O.? + O?)]

[S(¢) S(t) S{t)
= Var Z; 0,1:' + Var [Z OfJ + Var [Z O?}
= E[S()Var(0}) + (B[O} Varls()]
+E[S(t)]Var(02) + (E[O)*Var|S(1)]
+E[S()]Var(0?) + (E[O3])Var[S(1)]
= E[S(t)]{Var(0} + 07 + 03)}
+Var[S){(EIO}])? + (E[03))* + (E[03))?}
From Assumption I, I we have for m = 1:2.3
Ver(O") = E[(O"))] - E[O]"]?
= m— (am)? = an(l - an).
Hence,
E[S@®)] = (p+q+r)E[N()]
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Var[S(t)] = Var[X(t)+Y(t)+ Z(1)]

N(t) N(t) N(z)
Z X{I + Var [Z Y;| +Var Z Z;
=1 =1

i=1

— VGT

= E[N(t)]Var(X:) + (B(X;))*Var[N(t)]
+E[N(t)[Var(Y;) + (E(Y:))*Var[N(t)]
+E[N()|Var(Z;) + (E(Z))*Var|N(1)]
= E[N(t)]{Var(X;)+ Var(Y;) + Var(Z;)}
+Var[N ()] {(BIX:])* + (E[V])* + (E[2])*}
= EINW{p-p"+q—-q" +r—r*}
+Var[N(t) {* +¢* + 1}
So, the variance of O(t) can be written as
Var[O(t)] = (p+q+r)EN()]{ea(1—a1)+as(l —az) +as(l —as)}
H{EN@H{p(1 - p) +4(1 —g) +7(1 —1)}
+ Var[N@)]{p* + ¢ +r*}} - {ad + o} + af}
Putting A= ol +ai +a3, B=p+q+r,C=p*+¢*+r* and a = a1 + a; + as, the
equation above can be rewritten as
Var[O(t)] = (aB — Ac) - E[N(t)] + AC - Var[N(t)].

For each m and 7 0 < & < 1, 0 < p,gq,r < 1 and aB > AC, which guarantees
Var[O(t)] > 0.
Assumption IIl Var[N(t)] > E[N(t)]

Under Assumption III we obtain the following proposition which insists that object ori-
ented software is better than functional decomposition software in a sense of the variance
of the number of faults observed by time .

Proposition 2 [fa,/ay < (ps+as+rs)/(potga.+7,) and (afj+a3,+af;)(pF+qi+r3) <
(af, + @3, + a3, )(P} + ¢; +17) then

Var,[O(t)] < Vars[O(t)]
Proof Taking the difference of the variances between two softwares, we have
Var,[O(t)] = Vars[O(t)] = E[N(t)|(e,B, — a;By)
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+{Var{O(t)] - EIN(t)]} (4,C; - A,0,)

< 0

where A = of+aj+a}, B=p+q+r,C=p*+¢*+r?and a,B; < ayBy, A;Cy < A,C,

from the assumption.

(Q.E.D.)

Remarks 1 If the testing procedure has been done by the equally qualified engineers, Cy
almost equals to C,. Then Proposition 2 holds for A, > As.

Remarks 2 In this section software is treated as the set of decomposed modules and is
classified to object-oriented and functional decomposition softwares. Erecuted instructions
on the softwares can be considered to be carried out by inter module communications or
accesses to data. Under those considerations we Jormulate a new software reliability growth

model emphasizing upon its module structures.

It has been shown under some assumptions that object-oriented software is better than
functional decomposition software in the sense of their reliability functions as well as the
variance of the number of faults observed. This result obtained here is in closer agreement
with actual practice in software design and development processes. So, our model can

provide some theoretical base to software engineers who have intuitively recognized this

practical fact.

6.4 A New Software Reliability Growth Model Predicated on Counting Pro-

cesses for Instruction Execution

If we develop an SRGM which represents internal structure of the software in detail, the
values of various parameters estimated from the defect behavior naturally give measures
of the goodness of structure of target software and even causes and types of faults can be
estimated. With such a model, we can have not only the estimation of the total number
of faults but also quantitative measure for the goodness of software structure with such

a model. Therefore the model can be actively used to control the software development.

process [8].
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Following the discussion above, we propose a new SRGM which represents structure

of target software. Our model has, in concrete, the following features:

1. Execution of instruction is assumed to be a counting process.

. Instructions in software are classified into several classes.

N

A set of parameters for instruction classes represents the structue of a target soft-

o

ware.
In case instruction execution obeys Poisson process, let us preview the formula obtained

in the next section for reliability of software at time ¢, R(f):

Pi
i e —_/\ |'t
R0 = [Tessi-7 200
where

S = {G,L.C,0}, G, L, C, O denotes global, local, communication, and others, re-

spectively,
a is the total number of faults,

p; is the probability that failure occurs at the first execution of a class ¢ instruction,
’ .
proportional to the number of faults in class ¢ instructions (we call p; the initial

probability of failure),
A is the rate of instruction execution,
g; is the probability that an instruction execution is of class i,

B is a constant which denotes failure detection probability.

In this section, we develop an SRGM for sequential-processing software in two steps:

e We derive a reliability function of the given time ¢ for a single class of instructions,
as in traditional models.

o We categorize the instructions into several classes to represent the structure of the
code, and then extend the model to the general case.

Throughout this section, we assume that a single failure is always caused by a single

fault.

That is, a failure never be caused by a combination of multiple faults.
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The Basic Model

In general, an SRGM yields a continuous-time formula. Since failure can take place at
any moment of time, it is natural to build our SRGM as a continuous-time model. First

we focus on the series of time instants of instruction execution and derive a discrete-time

formula. Then the discrete-time formula is translated into the corresponding continuous-

time formula in the case that instruction execution is randomly distributed according to

Poisson process,

Instruction Execution and Failure

Figure 6.1 illustrates the basic assumptions of the relationships between instruction

execution, occurrence of failures, and detection of failure. Let us define random variables,

M; and O; as the following:

o 1 if a failure occurs at the epoch i;

0 otherwise

M 1 if a failure is detected at the epoch i;

0 otherwise

where the epoch 7 is the time instance of the i-th instruction execution. @; represents
the probability of failure occurrence at the epoch 7, and its decreases when the reliability
grows. [ is assumed to be a constant independent of time and represents failure-detection

probability. The probability of failure occurrence is assumed only depends on time through

the number of remaining failures.

The figure assumes the following scenario:

1. At epoch 2 and 3, failures occurred, (My; = M3 = 1) but were not detected (0; =
03 = O).

2. At epoch 3, a failure also occurred (M; = 1) and was detected (Os =1). The fault

caused the failure was fixed and the total number of faults was reduced by
Then ag reduced.

one.

3. At epoch 6, a failure occurred and was detected (same as above).
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o IK

Figure 6.1: Relationship between Instruction Execution, Failure Occurrence, and Its Probability

in Software

The Mean Value Function for Failures in Discrete Time

Let p be the initial probability of failure occurrence, that is,

p = Pr{One of faults in the code is executed}
(the total number of faults)

_ . X (constant).
(the total number of instructions) ( )

Then, a; is defined as:

p- 1%, Pr{the total number of faults = m}
(the total number of faults)
p - E[the number of remaining faults|
(the total number of faults)
(e (6.7)

a

Q;

where a is the total number of faults in software. The mean value function, H;, is

H; = E [the number of faults detected at 2-th event (fixed til (i — 1)-th event)]

To derive H;, let Q;(k) be a probability mass function:

Q:(k) = Pr{the number of faults detected til (i — 1)-th event = k}.

Then, the expectation of k£ becomes H;:

o0
H;= Z k-Q:(k) (the mean value with respect to k).
k=0
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Note that we have the following recurrent equation, Q;(k):

Qi(k) = Pr{(k at (i — 1)-th event) A (no new failure are detected at (2 —1)-th event)}

+Pr{(k — 1 at (i — 1)-th event) A (a new failure is detected at (2 — 1)-th event) }

= Pr{no new failure are detected at (i — 1)-th event |k at (i —1)-th event}
X Qi-1(k)
+ Pr{[a new failure is detected at (i — 1)-th event| A [k —1 at (i — 1)-th event]}
XQi1(k—1)
= {(1—ai)+ai(l1-p8)}-Qi_y(k) +a;iBQi-1(k—1), (6.8)
where i = 1,2,3,..., k=0, 1,2,...,aA(i—1), and Q;(k) = 0 otherwise. Let @:(z) be

a probability-generating function of Qi(k). That is,

oG

Qi(2) = Z kai(k).

k=0

Equation (6.8) becomes
Qi) = (1-a)Qr,(2) + 2@y (2)
= {(1 — )+ a;2}Q7_,(2)
1:12{('1 = @n) + anz}Qi(2).

Note that @1(0) =1 and Q}(z) = 1, then,

lz) = i
Qi(z) = Ii[(l—cxn+a,,z).
We have H, in terms of a,: .
i =90
% = e
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From equation (6.7),

gy = p
a— H'
a; =
a.
p Z Qp
= A =9
p g (
Now we take the difference as:
Qi — @ = ——Q441
1
Qipg = —5 Q.
1+2
Hence,
o 2
S+
From (6.7), again: 1
Hi=a-{1- =1 (122)
{ (1+2)"
Since £ > 0,
Iima; =0
11—
lim H; = a.

The derivation so far does not depend on any specific probability distribution of consec-

utive instruction executions.

The Continuous-Time Formula

If we assume that the executions of software instructions are carried out according
to a Poisson process with intensity A, we have a quite simple form for the reliability
function. Since a Poisson process is known to represent random arrival of customers at a
service facility in terms of queuing theory, this assumption is reasonable in most cases of

instruction executions in software.

_ - u . _a MY
Pr{the number of instructions executed in time interval t =i} = 7 -
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Thus, mean value function of failures at a given time { is

i

H(t)=3 Hiyy 2L
=0 E
Hence,
H(t) = a(1 —-exp[—;;f;/\tjj.

The failure rate defined by

dH (1
(g
(#) a— H(t)
can be obtained:
P
d(t) = A
(t) i

Finally, we have the reliability, R(t) = exp[— [l d(7)dr];

R(t) =exp[—uf_p,\z].

6.4.1 Extension of the Basic Model for Multiple Classes of Software Instructions
We now classify instructions into the following four categories:

e Global data access.
e local data access.

e Inter-module communication.

o Others.

Here, a module is defined as a set of subprograms (procedures or functions) and/or

data definitions. A software system consists of multiple number of modules. Inter-module

communication is defined as follows:

When an instruction in module M; is a call to a subprogram p in module M,
inter-module communication occurs between M, and M,, and is defined to be

the set of actions that are the parameter passings of p's invocation, along with

the return value in the case of a function call.

Let p; be the initial probability of failure occurrence, and ¢; be the probability of

instruction execution, and suffixes such as G, L,C,0 mean global data access, local data
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access, inter-module communication, and others, respectively. Say pg denotes the initial
probability of failure occurrence in global data access. If we assume that executions of

the different types of instructions is independent of one another, the failure rate can be

obtained:
P
d t = '\ 3
( ) ;GZS a + Pi 4
where
S = {G- L', C! O}

Reliability is defined as:

Pi
R(t) = [] exp[-———Aqit].
(0= ewl- 2t

6.4.2 Data Abstraction versus Functional Decomposition from the Perspective of
Our Model

This section discusses the reliability of data abstraction software and functional de-
composition software. Data abstraction software is the one which is designed by abstract
data type technique [64] or an object-oriented design method such as Booch’s [18]. Soft-
ware developed by the design method of functional decomposition is called functional
decomposition software. Sets of parameters for both types of software are defined accord-
ing to the SRGM proposed in the previous section. Then, their reliabilities are compared

with each other under several well-accepted assumptions.

6.4.3 Data Abstraction Software and Functional Decomposition Software

Structure of functional decomposition software and data abstraction software is il-
lustrated in Figures 6.2 (a) and (b), respectively. As shown in the figure, functional
decomposition software consists of a set of global data and modules that are sets of sub-
programs. Data abstraction software, on the other hand, is composed of modules which
have internal local data and operations (procedures and functions) to access the internal

data. No global data exist in data abstraction software.

Which is More Reliable?

Let p! be the initial probability of failure occurrence and ¢! be the probability of
instruction execution, where : € S = {G,L,C,0} and j € T = {d,f}. G,L,C, and
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(a) Functional Decomposition Software (b) Data Abstraction Software

Figure 6.2: Structure of Software

O denote global, local, communication and others, respectively. d denotes data abstrac-

tion software and f denote functional decomposition software. For example, pé is the

iitial probability of failure occurrence at the time of global data access in functional

decomposition software.

Let d4(t) and d;(t) mean failure rates of data abstraction software and functional

decomposition software at time ¢. That is,

) = ¥ g
ety i

PORES v
ies @+ p;

Assumptions Made for Comparison

The following assumptions are made for comparison of these two types of software:

1. Assumptions on the probability of instruction execution
la) Data abstraction software does not have global data in its components, which are

accessed by multiple number of modules.

It is assumed that the data structure is completely hidden in data ab-

straction software.
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1b) There is global data in functional decomposition software.

Since we assume that data abstraction is done only in a limited way in

functional decomposition software, it has global data accessed by multiple

number of modules.

lc) In functional decomposition software, a part of inter-module communication in data

abstraction software is realized as data flow via global data. n

Global data in functional decomposition software, thus, can be categorized

into two types: one because of incomplete abstraction; and and the other

data for data flow via the data.
2. Assumptions on initial probability of failure occurrence.
2a) Initial probability is 0 if it is for instructions never executed (p& = 0 as ¢& = 0.)

2b) Initial probabilities of failure occurrences in local data access, inter module commu-

nication, and others are the same.

We assume that both types of software are designed and coded by pro-
grammers with the same level of skill. Hence, there is an equal chance to
introduce faults in codes for those three types of instructions. As a result,

all of their initial probabilities are equal.

Table 6.1 summarizes, based on the assumptions above, initial probability of failure
occurrence and probability of each instruction. ¢. in the table represents probability of
flowing data via global data, g1, represents probability of accessing global data which are
declared as a result of incomplete data abstraction in functional decomposition software.

Let Ad be the difference between the failure rates of data abstraction software and

functional decomposition software, that is,

Ad = da(t)—dy(t)

Pé d P"f f
- —tXgi — ) ———¢;
g% a+ pf % a+ pf
d d f
Pr — P{; Po— Pg
alqr, + aAgc. (6.9)
(a+p})(a+pk) (a+pé)(a+pk)
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Table 6.1: Initial Probability of Failure Occurrence and Probability of Instruction Execution

Global data | Local data Communication | Others
access access
Initial probability of || pZ =0 7 =pl ph =gk pd = pl
o ="Po
failure occurrence P ph = pd pt = pi. ph = pd
2 o ="Pb
aga g d

Probability of g =0 G=at+daf [dt=gc+al |¢=4
instruction execution | ¢f = gc + gz, | ¢f gl 9 = qd
0 =40

The denominator of each term of equation (6.9) is positive and the parameters a, A qr,
and go also take positive value. Numerators, therefore, determine the sign of Ad. Due to

the following reasons, the value of Ad is always negative.

18 pé > p? because the possibility to introduce faults into instructions which access
local data is smaller compared with codes for global data access. That is, abstracted
data is decomposed into fine chunks compared with global data, and they are pro-
tected from illegal access from outside by operations. Hence, faults can be easily

introduced into instructions which concern global data.

O : e
2. pg > pg because faults introduction 15, compared with inter-module communication.

easier in codes for data flow via global data, which makes use of side-effects.
Based on the discussion above, we can objectively conclude

Data abstraction technique contributes to achieve highly reliable software.
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6.4.4 Validation of Our Model 3. Validate the estimated total number of faults with the value which is set at the first

step.
Our Model and the NHPP Model

Our SRGM can be coneived as a refinement of the exponential NHPP model [41] whose

mean value function of failures is represented as:
H(t) = a(1 — ™)
when we define b as:

TR,
a-+p

That is, our SRGM explains failure behavior of software more precisely than the expo-
nential NHPP model does. The exponential NHPP model is, from experience, from its
application to real project, said to explain failure behavior of large-scale software. We

can conclude, from this fact, and the discussion in Section 6.4.3, that:

Data abstraction is a useful technique to enhance reliability of large-scale

software.

How Can We Demonstrate Usefulness of Our Model?

The next questiob is that how we can demonstrate the usefulness os our SRGM other than

the formal proof above. The most common and popular way to demonstrate usefulness

of SRGM’s is to
1. gather failure data in a real project,
2. estimate parameters of the SRGM, and

3. validate the difference between the estimated value of parameters (particularly the

total number of faults) and an actual set of value observed.

So far, data from real projects (preferably from third party) detailed enough to be
utilize in our SRGM is not available. Instead, we are now validating model by simulation.

The steps in our simulation experiment is as follows:
1. Generate pseudon failure data based on Gonpertz curve.
2. Estimate parameters of our SRGM, using the data generated.
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Chapter 7

Conclusion

This dissertation develops many stochastic dynamic optimization models involving se-
quential decisions. Some of these models require a special structure in order to be anal-
ysed by means of dynamic programming. In cases where this structure exists, dynamic
programming is a very useful and practical technique for solving problems. In cases where
uncertainty is involved in a control system described by a Markov process, we can apply
dynamic programming to the control system. In earlier chapters, especially in cha.pter.s
3, 4, and 5, we present examples of stochastic dynamic models that analyse .the dynamic
aspect of system behaviour. However, the dynamic programming approach is both Tnore
difficult and at the same time simpler than other optimization approaches such as linear
and non-linear optimization techniques. It is difficult to formulate certain optimizing mod-
els involving many decision variables and state descriptions because the computational
requirements increase even though computer-aided search methods may be a-vai.la.blc.a.

In Chapter 2 we consider a class of dyamic programs in which there are distinguished
subsets of policies and value functions, respectively called simple policies and simple value
functions. An algorithm called generalized policy improvement is used to find z-optimal
policies. This algorithm has the property that only simple functions and policies are
generated. When formulated as a dynamic program, it has an uncountable state space.
However, the sets of simple policies and simple value functions can be chosen so that
they are easily represented in a computer. As a special class of these simple dynamic
programs we analyse piecewise linear dynamic programs and partially observable Markov

decision processes. We also demonstrate how partially observable Markov processes may
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be transformed into piecewise linear ones. Moreover, we specify how to find the simple
policies and simple value functions.

In Chapter 3 we deal with problems of how many units of a particular product to
produce each period and how to allocate price differentiable products between two types
of demands. The main result of this chapter is to show the existence of a simple optimal
policy even if fixed inventory costs are involved and even when the demands for the types
of products are stochastically dependent. In addition, we provide several interesting
examples in which demand distribution is specified. This inventory control model is one
example of a sequentially interrelated decision that must be made over time.

In Chapter 4 we consider airline seat allocation between high and low fares with and
without stochastic cancellations. Here we consider a dynamic airline seat allocation prob-
lem for a single flight with two fare classes. The problem is formulated as an N-step
dynamic problem and aims at deriving optimal policies. We also explore some analytical
properties of such an optimal seat allocation policy and the associated expected revenue.
The model also extends the existing literature in two ways. First, it is a dynamic version
with the cost of lost sales. Second, it is formulated under a setting of Markov decision
processes which explicitly take into account the periods remaining until departure and
permit reopening of fare classes. We also examine the problem of allocating airline seats
between two nested fare classes when the demands for the classes are stochastically depen-

dent. The well-known simple seat formula of Littlewood, which requires the assumption
of statistical independence between demands, is generalized to a formula that requires
only a much weaker monotonic association assumption. The model employed here is also
used to examine the problems of full-fare passenger spillage and passenger upgrades from
the discount class.

Chapter 5 develops an asset allocation model with various risk measures that is quite
different from the mean-variance portfolio models. From the perspective of institutional
investors the purpose of investing is to achieve a target level of rate of return that meets
the cash flows of the business. A situation unfavorable to this aim is penalized as a risk.
The model developed here is in closer agreement with actual practice in Japanese financial
institutions. We discuss an optimal policy regarding consumption and portfolio selection

when asset prices follow semi-martingales. Then we derive an equation that the expected
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rate of returns should satisfy when investors in the market have identical utility functions
and agree on the parameters of stochastic processes that describe asset prices. Future
research should derive a closed solution for an optimal policy regarding consumption and
portfolio selection, but using examples other than those of geometric Brownian motion and
similar stochastic processes, and developing an intertemporal capital asset pricing model
in those cases. Other future research tasks would include studying what happens when
variables besides wealth are introduced as state variables in derived utility functions. So
long as we rely on methods of dynamic programming in continuous time, we shall probably
encounter the problem of a trade-off between the wide perspectives gained by generalizing
on utility functions and asset prices, and the richness of conclusions that can be obtained
by a more specific model.

In Chapter 6 we develop a new SRGM by representing execution of software instruc-
tions as a counting process. Using the SRGM, we discuss whether or not the data ab-
straction technique contributes to enhance the reliability of software. The conclusion
that it really does is formally drawn under well-accepted assumptions on software devel-
opment. That is, we have objectively supported an instinctive apprehension good software
developers have.

Future research includes the following topics: (1) Generalization of the model (in the
process of our model formulation, described in Section 6.4, we assume that instruction
execution is a Poisson process). A more generalized process such as a non-homogeneous
Poisson process can be used to formulate a more generalized model. (2) Deriving a family
of models (in the current form of our SRGM, ¢; is to result a family of models based on
our model formulation framework). This fact is a kind that various NHPP models can be
derived by defining the mean value function of failures from one to another. Thus, our
SRGM is a meta model whose parameter is ¢;. (3) Demonstration of the usefulness of
our SRGM by real project data.

This dissertation has been developed on the basis of an algorithmic method of dy-
namic programming in Chapter 2 and four areas of applications in chapters 3,4,5 and 6
using stochastic dynamic optimizing models. These applications are formulated in a form
amenable to dynamic programming techniques. The formulation is used to derive certain

simple properties of the expected value function, which then motivate the construction of
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the computational algorithm.

Most of the applications in which these dynamic programming techniques are used are
examples of a sequential decision problem in which the optimal policy has a special struc-
tural property that simplifies the procedure for constructing simple stationary policies. Of
course, we should not emphasize only the analytical results discussed in this dissertation,

but also the fact that we have developed the computational requirement of an algorithm

that is solvable in practical applications. Finally, a most important area for future re-

search should include the estimation of parameters for the stochastic dynamic models and
should extend to include uncertainty about the stochastic process itself. The problem be-
comes more difficult, but it nevertheless remains important, when the stochastic process

and the system dynamics come to include mutual interdependence and uncertainty in the

process parameters.
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