
STUDIES 

0::\ 

STOCHASTIC DY:'\AMIC OPTI\UZATIO::\ 

\IIODELS WITH APPLICATIO'\S 

by 

KATSUSHIGE SAWAKI 

A THESIS SUBl\1ITTED ~ PARTIAL FULFILL:\1EI\"T OF 

TilE REQUIREME_ T FOR THE DEGREE OF 

DOCTOR OF ENGINEERING 

AT 

KYOTO U IVERSITY 

Kyoto, Japan 

JA_ UARY, 1997 



ABSTRACT 

This dissenation d<:velops wide c lasse~ of stochastic dynamic opumization models that 

arc characterized by many sl,ocha.stic processes and sen?ral fields of applications. Chapter 

2 studic~ a certain class of dynamic progran1s and its applications. Chapter 3 deals with 

in,·cnt.ory coutrol models. including the study of optimal policic::, with fixed im·entory 

holding costs and for price differential products with no carrying OYer of any remaining 

inventory to the next. day. In Chapter 4 airlin<' scat allocation models arc analy~.:ed to 

derive an optimal hooking policy. ln Chapter 5 we consider portfolio select10n problems 

related to allocating firms· or individuals· wealth (money) among available assets. ~loney 

is also able lo be treat<'d as inventory. In Chapter 6 we propose new software reliability 

growth models ba-;cd on counting processes for instruction exccmion in software. Chapter 

7 summarizes conclusions drawn from the pre,·ious chapters. 

u 



ACKNOWLEDGEMENT 

1 would like to express sincere gratitude to Professor ~lasao I·ukushima. Department 

of Applied .\llat.hemat.ics and Physics) Graduat.e School of Engineering. Kyoto University. 

for his invaluable comments and continuous encourag<'rnent.. in accomJ.>lishing this work. 

I wish to express my th<mks to Professor Toshihide Ibaraki and Professor Toshiharu 

Hasegawa for their helpful c·ornments and suggestions. 

1 would like lo thank Falher Hans-.litgen .\1arx. President of Xanzan l:niversity. for 

his constant. encouragement. Thanks also go to ~anzau liniversity for providing financial 

suJ.>pon and for allowing roC' the time to complete my work. I also would like w thank 

~Jr. lndra ~1alela for his word processing of my draft and overcoming difficult.ies of time. 

Last but not least. I must thank my wife. Erniko. and rny three children for their 

support and understanding during the period of completing this work 

ill 



Contents 

ABSTRACT 

ACKNOWLEDGEMENT 

List of Tables 

List of Figures 

1 Introduction 

2 Simple Dynamic Programs with Applicat ions 

2.1 Introduction . . . . . . . . . . . . . . . . . . . 

2.2 Generalized Policy Improvement. for Simple Dynamic Programs 

2.2.1 Simple Dynamic Programs ..... . 

2.2.2 Piecewise Linear Dynamic Programs 

11 

lll 

Vlll 

lX 

1 

4 

5 

6 

7 

2.2.3 The Generalized Policy Improvement Algorithm for Simple Dy

namic Programs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 

2.3 A ~lodification of Piecewise Linear Dyna'llllc Programs and Their Applica-

tions . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 

2.4 Optimal Control for Partially Observable Markov Decision Processes over 

an ]nfini te Horizon 23 

2.4.1 Statement of the Problem 24 

2.4.2 Finitely Transient Policies 27 

2.4.3 Properties of U11 and U. 30 

2.4..1 Algorithm .. . . 33 

iv 



•) . --i> 

2.6 

Part ia )1, Qh:-;t'tYable \larko' Decision Prorc~s<'~ wit.h Ahslrac t '>pa,c::. 

2.5.1 Parually Obsen·able ~larko,· and Scr ti - ~larkov Procc:;ses 

•) . ") _,,),_ Control i\lodel and Optimal Policies . . . . ...... . 

Trans format ion of Partially Obsen·ablc ~larko\' Decision Processes into 

Picccwbe Linear Ones . . . . . . . . . . . . . . . . 

2.6.1 PiC'cC'\\'ise Linear ~larkO\· Decision Proces~es 

2.6.2 Partialh Obser\'able ~larko\' Dectl'tion Process<'~" 

3 Optimal P olicies in Inventory Cont rol Problems 

3.1 lnt.roduclion .. . .... .. .......... . 

3.2 On the (s. S) Policy with Fixed Inventor} Co::.ts 

:1.2.1 

1.2.2 

l.)mgle-P~:!nod .\lodel 

~lult i-P<•riod ~ lode! . 

35 

36 

3 .. 

43 

44 

46 

50 

50 

52 

53 

56 

3.3 lmcntory Control for Price Differentiable Products with !\o Carrying O'er 60 

3.3.1 \lodcl Formulation and Optimal Policy . 

3.:1.2 Examples . . . . . . . . 

3.3.3 An Over booking :\1odel . 

3.3.'1 Conclusion ...... . 

4 Airline Seat Allocation Models 

4.1 lntrod uction . .. . . . . . . . . 

4.2 A Dynamjc Airlline Seat Allocation Model 

4.2.1 Dynamic Seat Allocation P roblems 

4.2.2 Optimal Seat Allocation Rules 

4.3 An Analysis of A1rline Seat Allocation 

·1.3.1 A Simple Seat. Allocation ~Iodel . 

4.3.2 Optimal Seat Allocation with Overbooking 

4.3.3 Spill Rates and Overbooking ........ . 

4A Allocation of Airline Seats between Stochastically Dependent Demands 

4.4.1 ,\ Seat Allocation Model 

4.4 .2 Specific Seat Allocation Problems 

1.'1.3 Full Fare P assenger Goodwill and the Spill Rate 

v 

62 

66 

6 

69 

70 

70 

72 

73 

77 

81 

81 

84 

88 

91 

93 

95 

100 

4.4.4 Upgrades 

1.4 ..:> <:iummary 

5 Optimal P ortfolio Selection Models 

.}.1 Introduction ............ . ... . ........ 

.;.2 An Asset Allocation .\fodel witlt Various Hi!'k .\Ieasure~ . 

.=).2.1 An .\sset Allocation i\lodcl with Pc·nalty Costs . 

5.2.2 \'arious Risk .\ Ieasure:-; . . ............ . 
5.3 Optimal Portfolio Selection and '\sset. Pricing .Vlodels for Serni-Mart.ingalc 

Processes 
• 0 •••• 0 •••• 

5.3.1 Asset Price Processes . 

106 

108 

10.., 

109 

110 

I 1 I 

117 

I 1 
5.3.2 

5.3.3 

The Optimal Control Problem and As:--ct Pricing ?\Iodel. 121 

:\ Consumption/Portfolto Sel<'ction "\lodcl under the HARA Type 

Utility Function . 

5.3.1 Conclusion .... 

5.4 Optimal Exercise Policie.5 for Call OptiOn!' and 'I heu \ amation 

5. Ll Formulation of a stock option model 

5A.2 An optimal exercise policy ..... . 

5.4.3 Properties of the optimal 'alue and optimal policy . 

An alternative derivation of th<> option pricing formula 

130 

131 

132 

13l 

137 

13 

6 Two Software Reliability Growth Models Based Upon Module St ruc-

iu res 

6.1 Introduction ........ . . . . . . . . . . . . . . . . . . . . . . 

140 

140 

6.2 A Software Reliability ~1odcl Based Upon .\lodule <:itructures and Error 

Detection Rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 

6 .. '3 

6..1 

A Comparison of Object Oncntcd Software with Functional Decomposition 

Software ........ . ........................... 

:\. \c\',· Software Reliabiht) Growth ~ lode! Predicated on Counting Pro· 

ccsses for Instruction Execution .. ............... . .. . ... 

6.4.1 Extension of the Basic i\.lodcl for .\1ulLiple Classes of Software In-

st.ructions . . . . . . . . . ........ . . .. . . . . . . . . . 

vi 

145 

149 

155 



6.4.2 Data Abstraction ,·crsus Functional Decomposition from the Per-

. f 0 '1 d 1 . . . . . .. 156 specttve o ur .,· o e . . . . . · · · · · · · · · · · · · 

6.4.3 

6.4.4 

Dat.a Abstraction Software and Functional Decomposition Software 156 

7 C onclus ion 

Bibliogra phy 

References . 

Validation of Our 1lodel .. · · · · · · · · · · · · · · · · · · · · l60 

0 ••••••• 
........ • • • • 0 •••• • 

vii 

• 0 •• • 0 ••••• 

162 

166 

. l66 

List of Tables 

2.1 

2.2 

3.1 

Dat.a for A Numerical Example .. . .. 

A List. of Optimal Values and Partitions 

Opt.imal allocation values. (J•, C- J•) . . 

22 

22 

. . . . . . 67 

4.1 Effect of Demand Dependency on Discount Seat Booking Limits . . . . . . 98 

5.1 A List for Optimal Values for HARA Type l;tilit) Functions . . 128 

6.1 Init ial Probability of Failuxe Occurrence and Probability of Instruction Ex-

ecution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..... 159 

vili 



List of Figures 

3.1 Inventory Fluctuat.ion (a= 1, X > I. Y < C- /) 

3.2 Inventory Fluctuation (n = 1. X < 1. Y < C- f) 

5.1 

5.2 

6.1 

A Pair of Optimal Values .. 

A Generalized Risk Measure 

Relationship between Inst.ruction Execution. Failure Occurrence, and 

Probability in Software 

6.2 Structure of Soflware . 

ix 

Its 

64 

64 

. 113 

115 

r" ,_ 
. 15i 

Chapter 1 

Introduction 

The combined theories of dynamic programming and Ylarko\ decision processes bave been 

applied to many managerial decision problems. including inventory resource allocation. 

portfolio manag~ment, and machine maintenance problems. 

\\'l.Jcn an informa~ion generating process is described by a :\1arkov process and a 

multi-stage dec1sion process is able to be applied t brough t.be techruque of dynamic pro 

gramming1 the possibility of handling the dynamic system in a multi-period model as well 

as the risk precautionary motive has been widely rt'cognized. However, two problems are 

often pointed out as the reasons why the combined theory of dynamic programming and 

~1arkov decision theory has been abandoned as a multi-st.age decision making process: 

first. it is practically correct that a dynamical system can be approximated by a ~Iarko\ 

process; secondly. Lhe larger the size of the problem becomes. the larger the computational 

burden of an algorithm based on dynamic programming. 

This thesis atms at overcoming t.he theoretical defects of Markov decision processes 

by considering many stochastic processes; in regard Lo dynamic programming we develop 

a ~heory for a general class of dynamic programs that. yield policies that are simple and 

£-optimal. The formulat.ion of our general class of dynamic programs is motivated by 

consideration of the special structure that the partially observable model possesses. 

In this thesis an important special class of stochastic dynamic models that requires a 

series of sequential decisions i!:i widely considered from various aspects. These decisions 

must be made sequentially over both discrete periods and cont.inous time. However. not 

all decisions need be made at the beginning of the period; instead, we have to choose a 

1 



'·policy" that determines what we should do in each period as a function of the information 

that. is theu available. 

Organization of the Dissertation 

It has been recognized that. st.ochastic dynan'ric optimization models arc primarily 

concerned with t.he aspect.s of problem solving related to formulating mult.i stage decision 

making processes. evaluating t.he predicted effects of ccn.ain risk environments and de

riving optimal policies. Each different mathematical model may focus on one or more of 

these aspects. Therefore. it is helpful to organize these models according ~o t.heir primal 

functions and applicable fields. 

Chapter 2 provides a formulat.ion of a general class of dynamic programs in which there 

are distinguished subsets of policies and value functions. An algorithm. called generalized 

policy improvement 1 is used to find £-optimal policies. Piecewise linear dynamic programs 

and partially observable ·Marko" decision processes treated in Sections 2.3 and 2.4 of 

Chapter 2 are special cases of such simple dynamic programs. ln Sect.ion 2.6 we show 

that partially observable ~larkov decision processes can be ~raosformed imo piecewise 

linear dynamic programs. 

In Chapter 3 we show how evaluative and predictive inventory models can be com

bined in certain special cases of dynamic sLocbastic models to derive optimal policies. 

In particular, Section 3.3 analyses an inventory control problem of allocating products 

between two types of prices. 

ln Chapt.er 4 we consider airline seat allocation models with stochastic demands over 

a discrete time horizon in Section 4.3 and a continous time horizon in Section 4.2, respec

tively. There is a strong similarity between ordinary inventory control and airline seat 

management. Airline seats are also inventory products which are perishable or can noL 

be carried over for future use, and the total amount of the products is fixed. 

ln Chapter 5 we consider the multi-asset version of the consumption and portfolio 

selection problem that is solved by using stochastic dynamic programming. The analysis 

begins with a static formulation of the intertemporal model with various risk measures in 

Section 5.2 and then derives the continous-Lime formulation for semi-martingale processes 

in Section 5.3. Since the Black-Scholes model in 1973 was a break through paper in the 

2 

field of modern llnance t.heor.v m th 1970 h e s, we s ow anoLhcr deri,·ation of the option 
pricing formula in Section 5.'1. 

Chapter 6 is a study of developing a new software reliability growth model focused 

on software module sLructures. II is shown in Section 6.2 that software developed by 

an object-oriented approach has a bett.er quality in terms of Lhe proposed measure of 

reliability compar<'d with one developed by funct.ional decomposition. ln SecLion 6.3 lhis 

model i!i extended Lo one predicated on counting processes of mstruction execuLions. 

In Chapter 7 we summar1zt> the results drawn from the previous chapters as conslusion. 

3 



Chapter 2 

Simple Dynamic Programs with 

Applications 

2.1 In trod uetion 

Blackwell(l i . Denardo [31 •. Strauch [11 et al. con~idcr a general class of monotone 

contracth·e dynamic programs. In this chapter we consider a sp<•cial class of Dcnardo·s 

dynamic programs which satisfies the monotone and conltaction assumpt.ion. Brumelle 

[19] and Brumellc and Putterman (20] develops a theory, as well as an algorithm for 

a state increment dynamic programming which is applied t.o t.hc continues t.ime model 

where the state dynamics is described by differcmial equations. The concepts of '·st.ate 

increment." is similiar t.o Lhe one of simple partition in t.his chapter in Lhe sense that a 

convex polyhedral cell of a simple partition corresponds Lo rectangular block of a st.ate 

increment dynamic programming. 

In Section 2.2, we consider a class of dynamic program~, based upon Sawaki (101~ , in 

which t.here arc distingujshed subsets of policies and \'aluc funcltons. respectively called 

simple policies and simple value functions. An algorithm called generalized policy im

pro\'ement is used to find £-optimal policies. 1 his algorithm has the property that only 

simple functions and policies are generated. \\'hen formulated as a dynamic program. it 

bas an uncountable state space. However, the sets of simple policies and simple ,-alue 

functions can be chosen so that they are easily represented in a computer. 

Section 2.3 considers a modmcation of dynamic programs which saLisfies the mono

tone and contraction assumptions (see Sawaki ll 01 )) . This class of dynamic programs is 

4 

characl<•rized by the piecewise linearity thai the cost. function is piccew1se linear whenever 

the terminal cost functon is piecewise linear. Sawaki and Ichikawa [lOij points ou t that 

partially obscnable :\larko\· decision proce se ... ha,·c t.hL property. 

An alf!,orithm based on policy improw•ment is dcvelopr.d to construct ~-optimal policies 

and e:·opt imal cosL functions. This algorithm has 1 he ad,·antage of im·olvina onh lineat 
0 • 

fum·t ions. A numerical example i~ also pre.sc•ntc>d. 

ln Sc>cl.ion 2.4 we consider an optimal control prohlem for partially obsen·able \larko\· 

d<)CJsion processes with finite states, signals and ad ions over an infinite horizon. J t. is 

shown that there are £-optimal piecewise! ltn<'ar valne functions and pjecewise-cont.ant 

polici<'s which are simple. Simple meaus that Lhcn~ arc only finitely many pieces. each 

of which is defined on a convex pol} hedral set. r\n algorithm based on the method of 

succc~sJ\<' approximation is de,·eloped to compute £·optimal policy and £-optimal cost. 

Furthermore, a spec1al class of ataLionary policies. called finitely transient. will be con

sidered. It \Vill be sho·wn that such policies have au racth·c properties which enable u:, to 

con\'crt. a part.ially observable ~larko,· deci:,ion chain into s usual finite state Markov one. 

Section 2.5 is related to theontcal de,·elovrnem for more general classes of partial1y 

obscn·aLlc ~farko\· and semi-~larkov decision processes with imperfect information struc

tures. The approach taken is to considere such processes with imperfect information states 

in terms of t.he probability distributions of those states. \\hich t.hemseh·es form ~larkov 

processes and are generated from a Daycs' rule. Those studies have possible applications 

ttl invemory control, queuing. machine maintcnancc problems, etc. 

Section 2.6 considers how partially obscn ahle ~larko\ decision processes may be 

t.rasformcd into piecewise linear oncs. which have many advantages in that they are easily 

repre::.cnted m a computer. Also we refer Sawaki !tOO) to specify how to find the products 

of simple partition~ on which cost functions are piecewise linear. 

2.2 Generalized Policy Improvement for Simple Dynamic Programs 

An algorithm for dynamic programs was developed in [11) and [20r This algorithm. 

called g<'neralized policy improvement, includes polic) 1mprovemenL (11 ]. (17j and succe

sivc approximation [11] as special cases. ln this paper we consider a class of dynamic 



program:.. called simplt•. with t.he property thaL the generalized polic.\' impro,·ement al

gorithm stays within a cet tain subset of value function~ and policit• . '-limple dynamic 

program!' arc defined in 5uhs<'ction 2.2.1. Condit ions that. ensure the exislell<:c of an 

!-opt irnal policy within the distinguished subset of policies and an algorithm for finding 

~ucb a policy are gi\'cn 11 '-,uhscction 2.2.3. 

Piecewise linear dynamic programs. discussed in Subsection 2.2.2 arc a ~pecial case of 

simple dynamic programs. In this type of dynamic program tb<' distinguished subsets of 

value functions and policte~ used by the algoriLhm arc easily stored iu a computer even 

for uncountable st.at<' space problems. Partially observable 1\larko\ decision processes [6L 

[•lG). [110). [114], arc piecewise linear dynamic programs. The piecewise lin('ar structure 

was first noted b\ Sondik [115). Sawaki [107] and (9 

2 .2.1 Simple Dyna mic Programs 

:\ stmple dynamic program is a spec1al case of a dynamic program which satisfies 

t.hc monotonicity and coot.raction assumptions of Denardo [31}. These assumptions and 

Dcnardo:s notation are now rev1ewed. The .•;/a/c .)pacl n is an arbitrary set. Let \f be the 

set of aJll bounded real value functions on n. An clement of \f is a value function. The 

norm defined by llv II = sup { jv( x) I : x E n) makes V a Banach space. For u and v in V 

we write u :::; v if u(x) :::; v(x) for each x E n. The norm of \/ is monotone in the sense 

t.hat. 0 :5 u :::; v implies llu ll $ llul[. 
For each X E n Lherc is a set D:r of decisiOTlS. Let b. be the Cartesian product X:renD:r. 

An clement 8 E b. is a policy. The return function h assigns a real number to each triplet 

(x.d,t·) E Uren{x} X Dr XV. In a ~1arkov decision process the return functton h(x.d,v) 

can be interpreted as the value of choosing decision d when in state x if a terminal 

reward v(z) is received whenever the pair (:r,d) causes a transition to the state z. The 

return function is assumed to satisfy the contractiOn and rnonotonicity assumptions. The 

contraction assumption is that for some (3 E [0, 1 ).lh(x. d, u) - h(:r.. d, v )I ~ {3 1u - vi for 

each u E V. v E V. x c n, and d E Dr· The monolontcity assumplron is that for each 

X En and d c Dr,h(x,d, u) ~ h(x. d.u) whenever u:::; v in \'. I·or h E b. define 

Hs: V-+ V b) (H6v)(x) = h(x,S(x),v) for v E V and x E f!. Assume for each v E V 

t.hcre is some 6 E 6. such t.hat. Hsv = sup{ J/5v; 8 E 6.}. {Denardo in Corollary 2 of 

6 

Theorem 1 [31 j gin!S a useful sufficient condition for this hold. ) Define H .. : \1 --· t · by 

If. v =sup{ ll6u : 5 E b.}. Here we deviate slightly from Denardo by using H~ instl"'ad of 

A. 

An operator H : \' ~ V is monotone. if u $ t: implies 1111 :5 II \r'. and is a con/rru:tion 

if for some B E [0. 1 ). II H u - H vii ~ fillu - vii for each u and v in \ ·. Denardo w'rifie.s 

that II. a11d II 6 are monotone couLractiou operators. 

Dy Banach's fixed point theorem for contractions. for each b E b. there is a unique 

U6 C \ such that lhvs = vs. Tbc functton 1r6 is called the t1a/uc of the policy 6. Stmilarh· 

ll'\ called the oplnnal value, is uniqtwl) defined by fl. uA = v". Denardo sho\rs that 

v· = stlJ.>{u.s : bE 6.}. 1f llv.s- v·ll $ e t.hcu 81s an e-opltmal policy. and if llv- r"'ll5 e 
then b is an e-oplimal value function. 

The objects defined so far and the assumptions that ha\·c been imposed arc collcc

tin~ly called a contractire monolont. dynamic program. A simple dynamic program is <t 

contract ivc monotone dynamic program which has a su bsct of value functions V' c v 

and a subset of policies 6.' ~ 6 which satisfy tbe following two conditions : 

1. lfc t· E \!' whenever 6 E 6' and t• E V'; 

·> if l' E V', tben there exists some 6 E 6.' sucb that H6r = If. v. 

Elements of \" and 6' are simplt value function and simph polictu>. respectively. 

2.2.2 Piecewise Linear Dynamic Progra ms 

Let R v be X -dimensional Euclidean space. Any set of the form { x E R v : f( x < 

b. L.:r <:::; d} where /\ and L are X b~ X matric~ and b and d are in R.v is called a 

convex polyhfdron. Suppose A ~ R·". A collection P = {81, 8 2 •••• , Bm} of subsets of 

A is a pa7'itlion of .t1 if B1 n B3 = 0 for i :f: j and if U;:
1 

Bi = A. Each member B, of a 

part.ition P is a cell. Jf each ceU of a partition is a convex polyhedron. then the parlniou 

is snnplc. l'h<' product of two partition P1 and P2 is P1 . P2 = {B n D: BE P
1

• DE p
2

J. 
'1 he product of Pt · P2 ... Pm is defined inductively by Di::

1 
P. = P.,... fl~1 P,. Clearly, the 

finite product of simple partitions is simple .. \ partition P is finer than a partition p if 

each cell of P has a partition which ts a subset. of P. 

.. 
I 



Suppose thal n £;; R"' and let. \' be as defined in Lhc previous subsect,ion. A funct.ion 

v E \.is a pic.ccu·tst linear if there exists a simple partrtion {Bl./J2·····Bm} of S2 and a 

set of vectors { v1• v2 •.•. : vm} such that. v(x) = l'i • .1: for .1· E B,, 2 = 1. 2, ... , m. Picccwis( 

affiTie functions are defined analogously as funct.iom which are affine on each cell of a 

simple partition. :\ polic) h E 6. is piccnl'isE constant if there 1s a simple partition 

{B1.fl2, .... Bm} of nand a set of dcci::,ions {d1,ci2, .... dm} such t.hat 6(J·) = di for 

X E B and d; E n.reB. Dr.l = ] . 2 . ...• m. A p?ecewisc. ltnear dynamtc program is a simple 

dynam1c program with V' as t.hc sel of all piecewise linear functions in \' and !::::.' as the 

set of all piecewise constant policies in 6.. 

Although the cannonical example for the rest of our paper is a piecewise linear dynamic 

program and the particular case of a partially obsen·able ~larkm· decision process, ot.her 

simple dynamic programs are also of interest.. The paper by Denardo and RoLbblum [3~] 

discusses simple dynamic programs with V' as the set of affine functions in 1' and !::::.' as 

the set of cons tam policies in 1::::.. An example of 1.heoretical (rather than computational) 

interest arises when Dz = D for x E n where D is a measul'ahl<> space. V' is t.he S<'t 

of Borel measurable function in \ ·, and !::::.' is the set of measurable policies in ~- An 

economic model motivated by Walras [130j provides still another example. Let. n be Lhc 

set of possibleprice vectors of N securities (or .V commodities). Assume that there ill 

a finite set D of decisions, ea.cb of which can be implemented at any x E n. F'or each 

d E D there is a corresponding stochastic matrix Pa. If the price of vector is x in one 

period. then it is Pdx in the next period if decision d is chosen. The return function is 

h(:r.d.v) =rd. X- ~d + {3v(Pdx) for X E n,d E D.v E \'.0 < 13 ~ 1. and vect.or 7'd ERn 

and e E R. The term rd. X - ~ is the immediate reward if decision dis chosen while in 

the state x. Since h(x. d. v) is piecewise affine in x whenever v is piecewise affine. it can 

be shown by an argument analogous to that in Theorem 2.2.1 which follows t,hat this is 

a simple dynamic program wiLh V' as the set of piecewise affine functions and !::::.' as the 

set of piecewise constant policies. 

Our motivation for studying piecewise linear and piecewise constant functions is tbaL 

they can be conveniently represented in a computer. This properLy is shared by some 

other possible choices of V' such as piecewise affine or even piecew1se plynominal. For 

example, a simple partition {B1 .B2 , ... , Bm} can easily be stored in computer. Each cell 

8 

of B, of Lhe partition is characterized by a list of inequal1'• 1
es A · l' · 

• .., • · t1 mequa lLV consists 

of a vector, a number which is the righihand side. and an indication of th.e t.ype of 

inequality. A piecewise lin<>ar funct.ion 1: requires in addition to t. · 
· par 1t1on. a vector t•, 

for ('ach c.c•ll of partition. Affine, piecewise affine. and piecewise constant functions (e.g. 

polic:ws) can similarly be stored in a computer. Tbe intersecton of l\\'O cells can he 

performed by combining the corresponding lists of inequalities. Thus it is easy LO form 

product partitions. To avoid rcplicat.ing a list of inequalities wbich is in se\'eral cells, it 

is comenient to address t.he lists indirectly. Emptyness of a cell can be checked using a 

Phase I linear program. Since t.hc number of variables ( N if n ~ RN). 't\'e act.ually check 

the dual problem for unboundedness. 

The next theorem proYicles a sufficient. condition for a monotone contracti\'e dynamic 

program io be a piecewise linear dynamic program. The proof is conLructive and pro,idcs 

an algorithm for computinu H~t· foro E !::::.' and v E l '' d 1 · hm r · 
o an an a gor1t tOr computmg 

H.t' and finding 6 E 6' such that H6v = !1 t' for v E V' In d d h 1 · 
• . or er to co e t ese a gon thms, 

a subroutine compuLing h(·,d,v) fordED and piecewise unear vis needed. Au example 

of an algorithm evaluating a return function is described in Subsec1.ion 2.2.3. 

Theorem 2.2.1 5 th l • uppose a a monolon e contractive dynamic program has the property 

that n ~ RN and that for each X E n. Dr is the same finite set D = {1 2 } L l 
1 , .... p. e 

V' be the set of piecetL'ise linear value funclwns and let D.' be the " t .r · · 
.,e o1 ptecewzsc contant 

polictcs. If h(·, d, v) E V' for each dE D and v E V then the dynamic program is piecewise 
lmear. 

Proof Choose v E \1' and 8 E !::::.'. Suppose 8( .x) = di for x E Bi where {Ell B
2

, . •• • Bm} 

is a simple partit.ion of n. For i = 1. 2 .... , m the ret.urn function h(· d v) t·s . .· 
, , , p1ecew1se 

linear say h(x,d v)+w· ·x for E C h {C c · 
' '' '' :r lJ w ere 11' i2, ..• , Gin} IS a simple partition of 

n. LeL P: = { C~ capB·· j - 1 ? } ~ t th P. · · 
' • '' - 1 .... • • • 'n · ~ o c at. i IS a s1mple partition of Bi aud that 

p = u~l P, is a simple partiLion of n ln addit.ion. (Hsv}(x) = W,j. :r for X E 8, n C,J 

which is a cell in P. Thus Hsv E \ ''. 

Let. ?1 E V
1

• We next. show how to find " E A' 
u w such that. Hsv = H.t'. For d E 

D. h(·, d, v) is piecewise linear, say h(x.d, v) = r
3
d-x for x in thej-th cell of a simple parti-

tion Pd. F'orm t.he product partition x:=1 pd = P. Let. the cellls of p = {B B B } 
1, 2m ... , m 
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d I t - ~ 'tf [] is a subset of the ;'-th cell of Pa. For each d E [). Pis finer t.han Pd so an c a;d - t1tl • • 

t.hat. h(x. d. t·) = o,a · J: for x E Bi. i = 1. 2 ....• m. For i = I.:! ..... 111 aud j = 1. 2 ... · · P 

define th<' convex polyhedrons 

and 

a;1.r > a;a.r fot cl = j + l. ... ·I'}. 

Then Qi = { (7;
1 

: j = 1. 2 ..... p} is a simple partition of /Ji aud Q U" 1 Q, is a simple 

partition of n with t.hc property that 

(II )( ) ·r x E G which is a cell of Q . .. v .?' = OIJ . X 1 . I) 

The polic) bE 6.' defined by 8(x) = j for x E G.1 satisfies ll6t' = ll.l'. 

2.2.3 The Generalized Policy Improvement Algorithm for Simple Dynamic Pro-

grams 

first we 1e\·iew some properties of iterate~ of operator!' from Denardo [31]. If H is a 

contraction oJ,>erator in V wilh contraction coefficieut (3. then for each :tl E \ ·.IIH"t'-vll ~ 
0 as n _. 00 where v 1s the unique fixed point of H . 1.'hi~ algorithm for approximating 

the fixed point ii of If is called successive aproximation. A termination criterion is given 

by 

llv- Hvll $ (1- {3)c: implies llv- vii $ t (2.1) 

An upper bound on t.hc number of iterations starting from v required i.o obatin an ~

approximation t.ov can be derived from 111•- Hull < (1 - P)-/Bn implies II Hnv- vii< c:. 

Restating this implication explicitly in terms of n. we have 

(1 - J)2 
1 

IIH"'v- vii $ £ for n > log 2PIIu _ ll vll (log a) (2.2) 

if His a monotone operator and v $ Hv. then Hn v $ f1 "+1r for n = 0.1:2 .... So in this 

case succcssiYe approximation generates a monotone sequence of functions which co,·erge 

to the fixed poiDL of H. 

]n a simple dynamic program successive approximation provides a means of approxi 

mating eit.her v. or v"by iterating H6 or H •. respectively. until (2.1) is sat.isfied. If v E V', 

then 1/"'v E V' for each n. If in addition S E 6.', lhen 116v E: V' for each ~{ Thus Lhe 

"'/"\. 
10 

e 
following algorithm. called generalized policy improvement hy Brumllle [19J. only involves 

fuuctions in V' and policies in 6.'. 

tl/.qorilhm 

Sitp 0 Start with 'L'o E F' satisfying t·0 $ /Lt•0 • SN" = 0. 

Step 2 If llun- 116.,vnl $ (1 -{3)=: t.hcn go to ~tcp 1. 

Stf'7J 3 0Lhcrwisc choose some positive itHcg<'r kn and evaluate Vn+J := Htnv,. . Increment 

11 by 1 and go Lo St.ep l. 

Step I 6" is an ;-optimal policy and the value funct,ions Vn and ILv,.. are ~-opt1maJ \ ''n < 
1/.l'n $ ,.~). 

As uot<'d above. v.,. can be approximated by iterating "•n· 

Provided that a v0 with the properties :>pccified in the ~tep 0 can be found. the other 

steps can be performed by the deftnition of a simple dynamic program. \\"e next argue 
1.. 

t.h~t the termination criterion in Step 2 will eventually be sat.isfied and that lJ and Vn+l 

have the properties stated in the Step 4. Since r · is the umque fixed point. of Hw. iL follows 

by T heorem 2.2.2 of Brumelle [19] that. Vn is increasing and sup
11 

Vn $ v"; by Theorem 

3.2 [19J ll~vo $ Vn $ v"'; since Hkis a contraction operator, lim,1 IJ.¥v0 = v"'; and since the 

norm of V is monotone, limn Vn = 1)·. Consequently. the t.crmination criterion in Step 2 

will eventually be satisfied. and b) (2.1 )it ensures that v ... is an ~-optimal value funct.ion. 

Hy Theorem 2.2.2 [19]. 

tin < lh,l'n $ Hi,. t'n :5 ... < v· . But Hfn Vn _. V6.,. Thus l'n $ L'6,. $ v· and t:sn is 

an e-optimal policy. In addition to showing that the algorithm com·erges. this argument 

\'Crifies the following theorem. 

Theorem 2.2.2 t szmple dynamic program has :,implc ~-optimal value functions and 

Brmplc e-opltmal policies. provided that there c.rzsfs some v0 E V'' such that v0 $ H.t·
0

. 

If <>acb l..·n = 1. then the algorithm reduces lo successive approximation and Step 

becomes: cvaluat.c ll,.vn. lf in St.ep 2 limk ~oo Hgn Vn = Vn+t can be evaluated, then 
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_ d the method is policy improvement. lt is for this reason that tbc met.hod 
Vn+l - U6n an 

15 
called generalized policy improvement.. However. '.,' is not nccessarilly clos(•d in V. and 

· ·11 . · V' even for 6 E b.'. Thus kn must be finite in order lo invoh·e v6 ts not necessan ) m 

only functions in \ ''. 

The question of how best to establish t.be approprialc values of the parameters kn 

in the algorithm is succesivc approximation which converges linearly by {2.1 ). However. 

ff · · · mall If each k = oo then the pol1cy improvement is known the e orl per tteratwn lS s . n , 

Lo converge quadratically in some situations {20J, {85]. Ilowevcr, kn = oo might take us 

outside of F'. It seems reasonable to take kn. small. perhaps even 1, in the early iterations, 

d h 1 · ease k so that Uk"v approximates V6 in order to lake ad vantage an t en to ater 1U cr n · 6 N n n 

of the super-linear canvesgence. 

In the remainder of the paper we discuss the implimentation of the algorithm for picce-

. 1· !!Tams and for part.iallv observable ~larko\' decision processes. Prov1ded WJse mear proo · . 

l.he return function can be computed. Theorem 2.2.1 provides algorithm~ for performing 

Steps 1 and 3. 

II II Let Pn and Pn+ 1 be simple partitions We ne)l.i. show how to compute Vn- Vn+l · 

corresponding to the piecewise linear functions Vn and Vn+l· Then each function is piece

wise linear with respect to {BJ, Bz .... · Bm} := Pn X Pn+l· Let Vn(x) = w, · X and 

Vn+
1
(x) = w~. x for x E B;. The quantities "M, = max{lwi · x- wi · xl: x E B,} can be 

computed by linear programming. Thus llvn- v"+lll =sup JHi can be computed. Step 

2 need not be performed each iteration. Since (2.2) provides an upper bound on the 

number o[ remaining iterations in terms of llvn- Vn+Ill, a reasonable procedure would be 

to compute this upper bound and then do some fraction. say 10%, of t.hird number of 

iterations before next checking the termination criterion in Step 2. 

1n Step 0 a suitable vo must be found. For a partially observable ~larkov decision 

process one can choose v0(x) = -lvf /(1- {3) for each x E n, where M = max{jr(d, i)l : 

dED,iES}. 
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2.3 A .Modification of P iecewise Linear Dynamic Programs and Their Appli

cations 

First., we shall formulate a general dynamic programming problem under the setting 

of Denardo [:31]. Secondly, a piecewise linear dynarrric program will be dc•flned. lt is a 

spC'cial class of general dynarruc programs \'..'bich satisfies Lhe monot.oniciLy and cont radion 

assuptions. 

The st.ate space n is an arbitrary set of a real linear space. for each X E n there is 

a set Ar of actions. Let 6 be the Cartesian product. XrenAr. An element 6 E 6 is a 

policy. There is alwa.\ s an optimal s~ationar} policy among a general class of policies in 

a contractive monotone dynamic program by Denardo (31) or BlackwelllJ7}. It suffices 

Lo consider only t.he class of stationary poUcies. Let V be the set of all bounded real 

valued functions on n. An element. of V is a cost funcLion. V is a Banach space with 

thE> norm llllll = sup.ren lv(x)!. For u, u E V if u(x) ~ v(:r) for aU x E n. The loss 

function h is defined to be a mapping from U.renx X Az x F to a real number. Our 

objecti\'C function to be minimized is somehow ambigous. unless that the loss function h 

is specified. ln a ~1arkov decision process. however. h(xt a. v) can be written as h(x, a, u) = 
c(.r. a)+ 8 Jn u(y)q(dylx, a) where c(x. a) is the immediate cost, p the discount factor and 

q(·lx,a) the transition probability 00 n given X and a. Therefore. note that the system 

dynamics as well as the objective function is concealed behind our formulation. Assume 

Lhat the loss funct.ion satisfies the monotonicity and contrction assumptions. that is for 

each x E n and a E A.rh(x. a. u) $ h(x. a. u) whenever u $ v in V . and for some 

{3 E (O,l):!h(x. a.u)- h(x,a,v)l $/1llu -vii for each u,v E V.x En and a E Ax. For 

8 E b. define U6 * V-+ V by (Usv)(x) = h(x .8(x),v) for vEl' and x En. Assume 

that there is some G E 6 such that Usv = inf.seD. U.sv. Also, define U* : V -+ \1 by 

U .. v = infseA Fsv. If 8(x) = a for each a E n. then we write r_,·rl = U.s. Denardo !3lj 

verifies that U~ and fh are monotone contraction operators. By Bancb 's fixed point 

theorem, for each 6 E 6 there is a unique v E ~ · such that U6v5 = v 6• Similarly there is 

v"' E V such that. U .. v" = ,.. . Such v 5 and u* are called the cost of the policy 8 and the 

op~irnal cost, respectively. Denardo [31] shows that. lJa = infseA v"'. If llv6 - va II $ f:. then 

8 is au c-optimal policy, and if llv- v"'ll < e, then vis an e-optimal cost function. Our 
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purpose is t.o find such e:-optimal policy and c:-optimal cost. function. 

Any set of the form {x E S1: fii(x) <(or ~)d3 ,j = l,2 .... ,ni},i = 1.2 .... ,rn, 

where eiJ is a linear funct.ional and di a real number is called a convex polyhedron a 

collection P = { £ 1 . E2 , .... Em} of subsets of S1 is a partition if Et n E1 = 0 for i =f:. j and 

U~1 Ei = n. Each member of a part.ition is a cell. m is t.he number of cells in partition. 

If each cell of a partition is a convex polyhedron, then the partition is called simple. The 

product of two partitionP1 and P2 is P1 · P2 = {£ nD: E E P1 • DE P2}. The product of 

P1 · P2 · · · Pm is defined by TI~1 Pi = Pm · I1~11 Pi. Plainly, the finite product of simple 

partitions is again simple. A vector ,·alued function v on n is piecewise linearif there 

exists a simple partition {Et:E2 ••.• ,Em} of S1 and m linear functions v1 .v2 , ..• , Vm such 

that v(x) = vi(x) for all x E Ei,i = 1,2, .... m. A piecewise linear contanL policy is 

simple and easily reprensented in computer. For example a a bang bang control is such 

piecev.rise contant policy. The paper Denardo and Rothblum [32] discusses affine (but not 

piecewise) dynamic programs. 

Although v" is not necessarily piecewise linear and 8" is not necessarily piecewise 

constant, we will show for a class of dynamic program having Lhe structure described 

in the following assumption that there are f:-optimal piecewise linear cost function and 

piecev.rise contant policies. 

Assumptions I For each a, (Uav)(x) is piecewise linear on n, provided that vis piece

wise linear on n. 

The following theorem shows that the structure in Assumption I implies how Uw and 

u6 preserve the pieecewise linearity of loss functions and the piecewise contant of policies. 

Assume from now on that Ax = A= { ab a2, 0 0 0 'ap} for aU X E n is finite. 

Theorem 2.3.1 Suppose that Assumption I holds that v is piecewise linear-. Then 

(i) Usv is pievewise linear whenever 8 is piecewise contant; 

{ii) U. v is piecewise linear)· and 

(iii) there exists a piecewise constant policy 5 such that U6 = U.v. 
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Proof 

(i) s up pose Lhat 6 is piecewise constant wi tb respect 1.0 a simple part.i tion { E,}. Let 

Ei be an arbitrary but fixed cell from t.he partition and suppose that 6(x) = a for 

a: E Et. t.ben 

(Ucv)(:r) = (Uav)(x) .forx E £;. 

From Assumption l, Ua.v is piecewise linear for each a. Hence Usv is piecewise linear 

on each cell bi, and is consequcnLly piecewise linear on n. 

(ii)-(iii) The functions Uav are piecewise linear by Assumption I. Suppose t.hat Uav is piece

wise linear with respect. to the simple partition p Let p - I1 p Th p · 
a· - aEA a· en IS 

finer than each Pa. and also each Uav is piecewise linear with respect toP. For each 

FE P and a E A. there is some linear functional a'} such thai 

(Uav)(x) = af.(x) for x E F. 

For each F E P. define the sets G~. bE A = {1. 2, ... ,pL by G} = {x : a~x < 

aj;.x.a = 1,2, .... b-1 and a}x ~ aj:.x,a = b+l. ... ,p}. Then {Gj;.: a E A} =Pp 

is a partition ofF and p = I1FeP Pp is a partition of n with the property that 

(U*v)(x) = aF(x) if x E G'} E P. 

The policy 6 defined by 5( x) = a for x E Gj:. E f> satisfies Usv = U .. v. 

Corollary Suppose that Assumption I holds and that v0 E Vis piecewise linear. 

(i) Define vn(x) = (U6vn-I )(x), n = 1. 2, ... , for piecewise constant 8. 

(ii) De£ne vn(x) = (UKvn-l )(x ), n = 1, 2, .. .. 

Then vn is piecewise linear and there exists a piecewise constant stationay policy 6
11 

satisfying Us" vn-1 . 

We next consider the effects of iterating monotone contraction mappings such as UK 

and Us, citing some resulLs of Denardo [31]. 
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Lemma 2.3.1 '>uppo,r. that ll i ... a contraction mapping on V with ronlmction rocfficienl 

{:J < 1. Let t•0 E \' be git•c11 and define. the function . ., ,.n. n = 1. 2 .... by 

v"(x) = (Uv"- 1 )(.r). 

Tht 11 

(i} { ,.n} corwcrgc.c; in norm to the fixed point fr of U; i.e., Ui; = i·. 
1\'ou· assume that U is a/,.;o monotone 

(it) fj1'1 :::; p 0 , /hen {v"} is monotomcally dtcrwsin,q to i'·. 

Remarks 1 'fhcfi.u.d point i· need nollo be piccc.wi . .,~ linear since the a/Is in the limiting 

partition art not necr."-"<l1'ily finite in number nor polyhedral. 

Examples 

Model 1. A markov decision process (Blackwell (17]) 

Let n be a bounded com·ex polyhedron in H·'· and the loss function h(x. a.v) = 

c{.r. a)+p In v(x')q(dx'l:r. a) as mentioned in the preceding section. Assume that c(2.·: a)= 

c'! . x. which may be interpreted to be t.he expecLalion of c4 if J' is a probability vector. 

Also assume that for each convex polyhedron fJ C n 

JS ptccewtse linear in x with respect to a simple partition P 0 ( B) = {Ej(a.B).j = 

1. 2, .... mo..B} for each a where the integral of the vector x' is defined component wise. 

These two assumptions imply Assumption I. 

\\'e e:>.:plicitly check t.hat Assumption I is satisfied. Let a E A be arbtt rary but fixed and 

suppose that v is piecewise linear with respect to a simple partition {E., i = 1. 2 . .... m}. 

Let po = TI~1 P 0 (£1) = {Ej:j = 1. 2 ..... r }. the product partttion, which is again 

simple. 

(Uav)(x) = ca · x + !3fo v(x')q(d:l:'lx,a) 
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= rf · .r. + 3 ~ h. ( v;:r')q( d:r' lx. a) 

- C
11 .r+J'£,. ({ .r'q(d.r.'j.r..a)) 

_
1 

}F 
m 

= ca · .r + 3L t qa(E;. .. r.) 

where .\fJ · .r. = qa(f~i· .1:) for x E LJ(a. Ei ) and tbe index j d<.>J.H"nds on i for each a EA. 

The third cqua li t,~r is obtained from the fact t.hat. the integral of Cbc inner product is equal 

to t.hc innrt' producl of the integral if ''• does not depend on .t. a and eacb componcntwise 

integral is well defined. Uav is linear on each E;. Hence Lav is piecewise linear with 

resp<'ct to tlw simple partition p-:1 = {'E;.j = 1.2 .... :r}. which satisfies Assumptiou I. 

:VIodel 2. A partially observable ~1arkov Decision Process (Sawaki and Ichikawa 

[lOlL Dynkin (39j) 

\\c will show that a partially obsen·ablc :-.tarkov decision process is a special case 

of model 1. Consider a :\[arko,· decisiou process with state space {1. 2 ..... .Y}. with 

finite action set A. with the probability transition matricc..-; pa. and with immediate cost 

,·ectors rf. Lf'l Zn be the state at the n-th transition. ,\ssume t.hat the process {Z .n = 
0, 1. 2, ... } cannot be observed. bm at. each transition a stgnal () is transmitted to Lhe 

decision maker. The set of possible :;ignals 0 is assumed to be finite. For each n. given 

Lbat Zn = j and Lhal action a is to be implemented, the signal On is independent of the 

his tor) of l he signals and actions { Bo, ao. 01. a1 , •••• On-!· an-1} prior to the n-th transition 

and bas conditional probability denoted by 1j6 = P[O, = OIZn = j,an-l = aj. 

Let n = {x = (Xt.X2 ..... .r.v): L~lx; = l.x ~ O,Vi} c R· ... -. Define the i-th 

componC'nt of X,. l he random variable of x. to be 

It can be shown (see Dynk.in [39]) that 

Thus X n represents a sufficient statistics for the complete past hist.ory { 00 , a0 , ... , an. 
1

, en}. 

1t follows t.hat {.Yn: n = 0,1,2, ... } ib a. Markov process (sc<' Dynkin [39}). caUed the 
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observed process. It.s immC'diate cost ts c(x.a) = ca · .1·. its probability tntnsition function 

is determined by the followmg calculation. For each measurable subs~t B ~ n. X E n. 

and a EA. 

q(Hj.r,a) - PIXn+l E B.\,= x.a" =a 

= L P[.\" 1 E BIOn+l = 0 . .\,. = :r:. an= a) 
0 

L P[On+1 = () Zn.l.) = j. Xn = .l', a]. P[Zn+l = jl.\ = x. a,\ = aJ 
) 

- L P(Xn+l E BIOn+J = 0, Xn = J'.On = aJ 
li 

. I: ..,.;o L P[Zn+l = JIZn = i. Xn = .f.lln = a]PIZn = 71Xn = 3'. an .;; al 
) 

- L P(Xnll E BIOn+l = O.Xn = x,an = a]L1~oL P,~xi 
c ) 

- l:P[Xn-11 E BIOn+l = O,X = X.On = a] l Pa(O)x 

where 1 = (1. 1. .... 1) and P!l(O 1 = P~ta)1 = (P;o:sl· 

Define the vector T(xlO. a) by 

P~tO)x 
T(xjO. a)= l Po(O)r. 

:\ote that T(Xn.IO, a)= Xn+l, and that 

{ 

1. 
P[Xn+l E BIOn+J = (). Xn = x, On.= aj = 

0. 

1f 1 (.riO. a) E 8 

if oLhcrwisc 

So, 

6E~4(8,x) 

where <h0 (B,x) = {0: 1 (xiO,a) E B}. 

Finally. we show that the observed process {Xn} is a special case of ~1 odel 1; i.e .. 

q11 (B,x) = f
8

:r'q(dx'jx.a) is piece·wisc linear in x for each convex polyhedral set B C n 
and action a EA. Using the previously computed q(Bjx.a) we have 

- j
8 

x'q(dx'j.r.a) 

L T[xlO: a l P"(O);r 
9EC.4 (B,.s:) 

= L pa(O)x l Pfl(O)x 
6E41 .. (B,z) l Pa(O)x 

L pa(O)x 
9E</14 (8,:r,) 
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which ran b<~ shown to be piecewise linear (sec Brurncllc· and '-iawaki [22}). 

T h eorem 2.3.2 For each ilcralion. n = 0. 1. 2 ..... in the algo,·ithm: 

n > U n > u·2 n > > ljkn n n+ 1 Y _ 6" Y - ~r. Y - · · · - 6" Y = 'Y · 

/11 ollu r rcord~. {yn} i.<. o dccnasing sfqu£.TICL 

Proof First. it is trne for n = 0. Sine<' y0 > U6ou0 and since U6o is monoloue. it 

follows that ,r/ ~ u~oy0 > l rloY0 ~ ... ~ u:~y0 = y1 ~ L ~oy 1 . Dr definiLiou 61 sat.isfie!' 

L 6 1 y 1 = U.y 1
• However. V~y 1 ~ U6oy 1 ~ y 1

• and so not. only is the theorem established 

ror n = 0, but. we have also shown LhaL U61 y 1 =::; y 1 • 

'\m-.· suppose l 6nYn =::; y". 1 he same argument as in the first paragraph est.ablishcs the 

Lheorcm for 1l and also that Usn ... 1 yn+ 1 =::; yn *' 1. lienee the proof is completed by induction. 

Corolla r y y" ~ l' • for n = L 2 ..... 

Proof For an arbitrary n, yn ~ U~ .. y" ~ U.yr. ~mcc CJ. is monotone. y" ~ U!.y" for 

each j. By Lemma 2.3.1. C!yn decreases monotonically and com·crges to v· as j - :x:: 

Consequendy. yn ~ v· and the proof is complete. 

\\'c next show that if the algorithm terminates then it will pro\ide an e--optimal cost 

function and an ~-optimal policy. 

Theore m 2.3.3 If llY"- y"+1 11 =::; (1- p)c. then llYn- u·11 =::; c:, t.e .. yn is c:-optimal. 

1'\tforcovrr, sn 1:-> also £-optimal and l'. $ v6" $ y . 

Proof \ ote thaL ['6" y" = U. yn and that b) t be prev10us corollary y" ~ vk. 

because 

Thus 

IIY"- v"'ll < IIY"- [I_y"ll + ll[., . yn- U. t~- 11 

< IIY"- U6nY"ll + PIIYn- v"'ll 

< llYn- ( ;,!y"ll + PIIY"- t~"ll for m = 1. 2 ..... 

]I ~ C6~Yn ~ L';,!y" for m = I. 2..... (Theorem 2.3.2.) 

(1- .3)1 y"- v·ll $llYn- Ucf.!ynll = IIY"- Yn+lll =::; (1- .8):::, 

and so llYn- v·11 ~e. 
The last staLcment in Lhe theor<'m follows h} rheorem 2.3.2 and Corollary. 
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Theorem 2.3.4 Suppose that {yn} is a sequencr of cost~ genera led by the nlgo1'ilhm. 

(i} y" i.s converges pointwise lo y E F. 

(ii} y = lf~y , i.e., y ts optimal. 

fn other words, the algorithm converges. 

Proof 

(i) Firsl of all we shall show Lhat {yn} is bounded below. By Theorem 2.3.2 we have 

yn ~ Uf:>y" for each m = 1. 2, .... It is well known (sec (17] and l31]) that. Uf:>yn.--+ 

vE" as m --+ 00. Therefore yn ~ t.F. From r:6" ~ v" E \' , there exists an j\1 

such thaL llv.sn ll ::; ,\t} . Hence y"(x) ;:::: -M for all x. From Theorem 2.3.2 y" is a 

decreasing sequence. Hence y" conYE>rges pointwise. 

(ii) By a choice of y0 and Theorem 2.3.2 we know that. 

l. yn ~ Uf?'yn ~ U.yn 

To show The other way we have 

2. 

y" - urn n-l sn- tY 

< U n-1 sn-lY 

- U n-1 .. y 

T hen from (1) and (2) . we obtain 

(B) definition of yn) 

(U;'y 5 Uy. Vy E V) 

(By dcfiniLion of 6n-l ). 

From Lhe statement (i) yn -t y . Since a contraction mapping U. is continuous. 

U .. yn -t UvY· Therefore, we must have 

U .. y=y 

which completes the proof. D 
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A Numerical Example 

This subsection prc~enLs a numerical example for :\lodel 2: partially observable ~larkO\' 

decision processes. especially in the case of two dimensions. n = {(x 1.x2 )lx1 + x2 = 
I , x1 , x2 ~ 0}, A = { 1 , 2} and 0 = { 1. 2}. The necessary data are shown in '1 able 2.1. To 

spccif) the stoppmg rule W<· choose tl = 0.8 and ~ = 0.01. Therefore. if llYn - yn - l II ;:::: 
0.002. then the algorithm stops and yn is ~optimal. 

Set x 1 = x. To start lhe algorithm an init1a1 piecewise constant policy 6° and au 

initial piecewise linear function y0 sat.isfying y0 > U6)y0 must be found. Choose a policy 

6° minimizing c(J. x; thus 6°(x) = 1 if X 5 ~· 8°(x) = 2 if X > ~· Set an initial cost 

function y0 (.1:) = (O,O)(.t .l -x)T with the partition {[0.1]} . which is piecewise linear and 

satisfies y0 ~ C6oy0 . Also se1. kn = 1 for all n.. The computational results programmed in 

FORTRA:\ are shown in Table 2.2. \\'e may observe from Table 2.2 l.bat the algontbm 

converges aL period n = 35. and an :-optimal cost is -15.166 - 3.826x if x 5 0.5 71 and 

-16.732- L086x if x > 0.571. An e:-optimal policy 830(x) = 1 if x ::; 0.571 and 830(x) = 2 

if x > 0.571. Table 2.2 also shows that ao :-optimal policy converges (at n = 10) much 

faster than an c--optimal cost does. 

The goal of this section is to generate and construct e-optimal cost and e-optimal 

policies in a sequential fashion for a general class of dynamic programs. Toward this end 

we have taken advantage of the pmperties of piecewise linear cost functions and piecewise 

constant policies. These propenies guarantee that the algorithm involves only piecewise 

linear and constant functions which belong t.o the class of linear programs. Finally we 

should also emphasis the importance of the algorithm capable for solving cont.inuous sLaLe 

dynamic programs. Many sequential decision problems under uncertainty often turn out 

t.o have a probability vector as Lheir state space, which is no longer finite nor countably 

infinite, but continuous. Therefore. the algorithm developed in this section will become 

more important in the field of sequential decision problem under uncertainty. 
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Table 2.1: Data for A Xumcri<'al E:xampl~ 

acl.ioo!' ca pfJ ~a 
1 

a = 1 (-5.-1) O.i o.:~ 0.75 0 .,-.. \) 
0.9 0.1 0.60 0..10 

a=2 (-4.-3) 0.5 0.5 0.30 0.70 

I OA 0.6 0.10 0.60 

Table 2.2: A List of Optimal \'aJut>s and Partitions 

Periods u cost function yn Policie::; and Partitions 

1 -1-4x 1 [0.00.0.666] 

-3-x •) (0.666.1.00) 

2 -4.12 3. 4x 1 (0.00.0.579] 

-5.179· 1.08x 2 (0.579.1 .00] 

3 -6.35 3.827x 1 [0.00.0.572) 

-7 .92-1.086x 2 (0.572,1.00] 

5 -9.53-3 .826x 1 [0.00,0.571] 

-11.095-1.086x 2 (0.571.1.00 

10 -13.324 3.826x 1 [0.00,0.571) 

-14.889-1.086x 2 (0.571.1.00 

20 -14.975 3.826x 1 [0.00:0 .. 571] 

-16.540-1.086x 2 (0.571 :1.00) 

30 -15.152 3.826x 1 [0.00.0.571) 

-16. 717-l.086x 2 (0.571).001 

35 -15.166-3.826x l [0 .00,0.571 J 

-16.732-1.086x 2 (0.571 ,1.00] 
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llYn- yn-111 

5.00 

2.96 

2.22 

1.411 

0.462 

0.05 

0.005 

0.001 

2.4 Optimal Control for P artially Observable Markov Decision Processes 

over an Infinite Horizon 

The· partially observable ~larkov pron•ss, intoducc•d bv Dvnkin 39:. consists of t.wo 

stochastic proce~scs. the core process { Xn.n = l. 2, ... }. which cannot directly oberved. 

and tlw "ignal procc.ss {.).,. n = 1. 2 .... } which becomes known at each decision epoch 

n = 11 2 ..... Tile core process is a \1arkov chain and the signal process is probabilisticaJiy 

related to the core process by the conditional probability ~tio of observing a signal 0 giYen 

that t.lw core process is in slate i. Oynkin shows t.ha t. the state occupancy probability 

reprcsc•nt!i a sufficient sLatislic for the complete past hist.ory. ; lstrom [5] also consid 

cn~d a similar model wtth finite st.at.es and fioit.e actions o\·er a finite horizon. using the 

mNhod of successive> approximation to find ~ optimal cost \'ecrors. howe\·er. iL 1s onl) ap 

plicablc to problem~ in two dimensions. Smallwood and Sondik [ll•l} haYe independently 

obtained similar results. Later So~:dik [ 116] extended thi::. model to r.he infinite horizon 

and inuoduced the class of finitely transient polic1e:-. \\ hne [131 bas considered a par

tially ob!-er\·able scmJ ::\larko\· process with a finite horizon where the comroler konow~ 

t..he time:- of the core process transition. 5awaragi and ) osbikawa [llO. also studied the 

partially obsen·able control problem wiLh countable states. uncountable action sets and 

10finitc horizon. where they bave explicitly showed that. such partially observable models 

can be transformed into an ordinary complete observable one. 

In Lhis section, under the selling of [114 ]. we shall consider an opt.imal control problem 

with discounted cost over an infinite horizon. \\'e introduce three concepts of simple 

partitions. simple policies. and piecewise lmear functions. Csing only these coocepLs we 

present an algorithm to find an approximation to the optimal cost function. \\'e also show 

that we can construct an £-optimal simple stationary policy. \\'e are guaranteed to obtain 

an ~-approximation of Lhe optimal cost funcLion in fiuite steps. and each step we only 

need LO find a finite number of \'ectors by hncar programming. Also. an application to a 

macbinc maintenance model will be discussed. 

Furthermore. io t.his section a special clas!>.called finiLc transient, of stationary policies 

will be considered. \\'c shall show that such policies have very attractive properties and 

arc us<'fnl for approximating an optimal polic). If policies are finitely transient., partially 
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observable 11arkov decision processes ca.u be reduced vlithouL loss of generality into finite 

sLat-es ).larkov decision processes with complete observation. 

Sondik [116] bas onginally introduced t.h<• concept. of finit.e t.rausictltness of policies for 

t.be model ''vith finit.c sets of states, signals and actions over infinite borir-on. However. 

many patrs of his paper are unclear. These wtll be revised and clarified by giving a 

different definit.ions of finitely transient polic1es. 1 he same notations and symbols as io 

Sondik's paper are adopted here except. where confusion accurs. 

2.4 .1 Statement of the Problem 

Consider a :\1arkov decision process (called the core process) with s~ate set n = 
{1. 2, ... . • V}, wilb finite action set A with probability transition mat.riccs { pa, a E A}, 

and with immediate cost vectors {qa . a E .4}. Let Xn be the sial<' at the n-tb tran

sition. Assume that. t.he process {Xn~ n = 0. 1. 2, ... } cannot be observed. but in each 

transition a signal is transmitted to the decision maker. The seL of possible signals 

S = {1, 2, . .. ,0} is assumed to be finit.e. For cacb n, given that Xn = j and that action a 

is to be implement.ed. the signal Bn is independent of the hist.ory of th<' signals and action~ 

{Oo. ao,8ba1 . ... :Bn-l·an-tl prior to the n -t;h transition and has conditional probability 

denoted by 1·; 8 = PIOn = BIXn = j. a]. At time n = 0. 1. 2 •... ,let r. = {r.;) be the 

state probability (N-vector). For a transition probability pa = (Ptj) and an information 

Structure rG = diag(/j/J) put Q~ = p4f~. 

If the current state information vector is 1i, a signal 8 is observed and action a has 

been chosen . then the next state informaLioo is given by 

-QG 
II 8 

T(1r!8,a) = {Ojr..a} (2.3) 

where 

{8l7i, a} = 1rQ6I. 1 = (1. ... ,ll. 

Let 
N 

rr = {n ERN: L r., = 1. n, > 0 for all i} 
l=l 

We define ~ as the family of mappings 8 : T X n ~ A where T = lO. 00 ). Each element 

of !:::. is called a policy. Given an initial distribution 1r(O) and a policy 8. Lhe subsequent 

24 

information vectors r.(n ) form a ~1arkov process. Our discounted control problem for an 

initial distribution 1r(O) is desnibcd by 

where /~ is I be expectation with respect t.o the signal. B. 0 ~ tJ < 1. is the discount factor 

and the cost at. Lime Tl is given by the inner product r.qa with action a. Let C (r.j6 ) be a 

<·osl of a stationary policy fJ at an initial value ii. Then it is well known (see [17]. [31]) 

that C'( r.lb) satisfies 

C(r.l6) = 1rq6 + liL{OI7i.8}C(T(nlb,6)18). 
0 

(2. ·1) 

Let ('• (iT) be the optzmal cost. then the following is true (see [17). (29]). 

The orem 2 .4.1 There cxisb an optimal stationay policy 6· 1J.!ith C(r.l6 = c~(,. ). Al:;o, 

C"'(ii) ~alzsfie8 

(2.5 ) 

for any 11' E 11. 

An E· opllmal cost function C is one satisfying 

(2.6) 

A policy 6 such Lhat C = C(·IS) satisfying (2.6) is an e-optimal policy and its cost function 

we define simple partitions. simple pilicies and piecewise linear functions. 

Definition 1 A partition {' ;)~ 1 of all 7i is called simple if each v; is a convex polyhedral 

set. where a convex pol) hedral set is the solution set of a finite system of linear inequalities. 

Le., 

where Vii E RN and v,3r. is the inner product of Vii and n. 

Remarks 2 i nequalities of the form vr. < 0 contains those of the form vr. <a. a scaLar. 

In fact V1!' <a IS equivalent to (v- a 1)'ii < 0. 

Lemma 2.4.1 Let P = {"'i} and P-z = {lif'J} be two simple partitions of1!'. Then, the 

product partition P1 • P2 = {Vi n \A j} is again simple. 
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Proof Here we omit. \< n Hj if 1/- in H 1 = 0. The sets '· n ll\~ are disjoint and are 

convex polihedral sets. lienee P1 • Pz IS simple. 

Definition 2 A stationary polic) 6 is called simple with respect to a :-,implc part.ition 

{F} if 6(r.) =a on \'.1 = 1.2 ..... m. 

Definition 3 A real valued function .f on r. is called piecewise linear if .f(rr) = .fiir on 

\li.i = 1.2 ..... m. where {\1} is a simple partition Ji E Rv. 

Example: Define an inforrnat.ion structure as a mapping from the set of states (unob 

servable) of the core process to the set. of distinctiYe signals~· The decision maker cbooscs 
17 

an information structure from t.he set of available structures decides upon an action for 

the system. 

Let. a = (a1 • a 2 ) be the pair of actions. a1 for the system control and a2 for information 

acquisition. More precisely, we have 

e 
PCl(C) _ p-1~ Cl2 

IJ O - IJ f;8 

iiq0 = Lii, LP~1 L l;;q(i.j.al.a2) 
t=l ;=1 0=1 

where q(i,j,O,aha2 ) is the immediate cost of the core process when a sLate of the core 

process moves from i to j and a signal 0 observed under actions a1 for the system and 

a2 for the information structure, and "= (ii1 •.•.• 1.1\·) is tbe probabilit.y vector ,,;tb au 

interpretation 1r, is the probability that the core process IS in state i. 

Consider a machine maintenance and repair model (e.g. Smallwood and Sondik [114]) 

as an application of partially observable models. But this model is a modification of 

Smallwood and Sondik's. The machine consists of two internal components. The states 

of the core process Xn = i, i = 1, 2,3, have the following interpretation. If i = 1, t.ben 

both components are broken down, if i = 2 either one is broken down and if i = 3 both of 

them are working. Assume that the machine produces M finished product.s at each period 

and the machine cannot be inspect.ed. The actions a1 for the machine cont.rol are to repair 

and to repair the machine. The actions a2 for informaLion acquisition a re the numbers 

of a sample to choose out of the !vf finished producLs. The signals 6 arc the number 

of defect.ivc products in the sample, which forms the signal process {OI'l,n = 1,2 .... }. 

The core process {Xn, n = 1,2, ... } is the unknown states of the components of the 

machine. Let. 'iii= P{Xn = i},i = 1,2,3 and put 1r = (7rll 7rz,7r3). Thcu, the process 
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{(.\'n,On).n = 1,2, ... } becomes a partially observable machir1e maintenace and repair 

model with actions a= (a 1, a2 ) and irrunediatc cost. ;rq0 • 

2.4.2 FiniteJy Transient Policies 

In this sub~ect.ion a special dass of simple stationary policies, called finitely t.ransicnL. 

will be studied. The class of such policies has very attractive properties even though all 

stationary policies do not belong t.o such a class. 

Define, for a simple policy o. 

(2.7) 

where 

D0 = c D? = z:; { 1r E n : V,j I< = 0} 
I 1,) 

which forms the boundary set. of the partition {\~} corresponding to a simple policy 6. 

Let vk = P.~/}~1 be the collections of sets whose boundaries are ut=o DL and then Fk 

is a refinement of vk-I. k ~ 1, where V0 = { \~}. 

Definition 4 A simple policy 8 is called fimtely transient if there is an integer k < oc 

such lhat 

T( \~k jO, 6) C \ ;:(;,B) for all 0 

where T(VjO.h) = {T(r.j0.6) : r. E \ .} and v(j.O) is the index of the set containing 

T( 'ii 10 . 8) for 1r E l'f. 

Lemma 2.4.2 Lei k6 be the smallest such integer. Dk = 0 for all k ~ k.s if only 1j 6 is 

finitely transient with the index k. 

Proof Suppose that fJ is finitely transient. with t.he index ks, that. is, 

T( \lk6 j0 8) c Vk for all 0. ) ) 11(;,6) 

D"6 = 0 because T(l-~/'6 !0.8) is the set of all possible state information at the k,s-t.h period 

and D~ is open in I1 for all i. k. Let . .l.s be the set function defined as £ 6(B) = u
6

{iT : 

T(ir j0 ,6) E B} 

~{1r: T(iij0,6) E D"-1
} 

= .Ls(Dk-1) 
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Hence. by induction JJk = 0 for all k ;:::: ks. 

ConYerscly. D': = 0 for all k ~ k6 and t.bat. 

'1'( \'}~ 10. 8) r/.. \ :C;.s) for some 0. 

c;0 • there exists r. 1,r.2 E v: such that. for some 0. 1 (1.'10.6) and I (~o'liO.S) do not belong 

to tue same set v~to). 

Then. there is a constant A, 0 < >. < 1. such t.hat >.'7 (r. 110,8)+(1- .A')T(r.2 IO.S) E J)k 

and .A' i~ gi\'Cn by 

.>.' = 
'-'Qa AI• 8 

-QO ,, s 
= T(>.~o 1 + (1 - ,\)~o:!jO . S). 

By letting r. = .Ar.1 + (1- ,\)r.2. we obt.ain 

which is contradiction. 

Lemma 2.4.3 Let Q~; Q~ · · · Q:Z = (QO)k and 0 be a zero rou· vector. A szrnplt poltcy 6 

is finitely transient t/ there exists an integer k < oo such that 

Proof 

Dk = u { 71' : T( 7r 10' 6) E f)k I } 
6 

U (f { il' : ViJ( Q8 )kr. = 0} · 
6 t,) 

Since r.i ~ 0 and L:, T.'i = 1. Dk = 0 if v,3 (Q~)k > 0 or 0 for all O.a,1.j. By Lerruna 2.4.2. 

this completes the proof. D 

Remarks 3 In Lemmas 2.4.2 and 2.4 .3, the assumption concerning 8 being simple IS 

crucial. A counter example ts presented as .follows: 
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supposr that there ar~; only lrt'O .states N = 2 and ~o2 = 1 - ~o2 ;:::: 0. 

Define. 

if r. 1 i., rational; 

olhr.r1risc 

which i:- ... talwnary but not simple then D5 is the urztounlabif. discountinuou.<: ,<;(/ u·hich 

never btcornc:, rmpty. Thcr£1/ore. f1 finildy many partition f\i} docs not exists. 

Theorem 2.4.2 Lei 8 br a simple poltcy. I hen. the. fo/lou·ing arc cquit:alcnt. 

{i) 8 1.'> finitely transtenl wtth the indc:r k6. 

(il) C(1.l6) is pzccc:r.cisf linear. 

Proof 

(i)-.(it) C.,uppose t.bat. we ha\'e a finitely many partition \'k = {\·'f} fork~ k6 . Let C(~olh) = 
i.'Oj. ~o E \~k and a1 = q41 + PL Q~1 Gv(J.~) · Tbeu 

-Q6 
6 "' II 0 

r.q + J ~ { ~ojO, S} { ~oiO . S} 0 11( 1,8) 

~oq~ + JL::{~oiO.S}7 (r.j0,S)av(1,o) 
8 

- 1.l + J l: {~.jO.b}C(f'(~.jO.S)I6) 
8 

- (l..'6C(r.) 

Smce C(·IS) is unique solution of L'.5.C(·!S) = C(·IS). 

for 6 finitely transient. 

(ii)-+(i) from piecewise linearity of C(·IS). we bave C(1.IS) = a1.1 for r. E V/ with the 

partition {\~.1:} for k ~ A·aelta and 8(1.) = a1 • r. E v;. So 

C(T(~.jO.S)IS) = 7'(~oj0.8)av(J.6l for r. E VJ. 

Tlwn' we must ba vc T( 7r IO. S) E vvto) for all 7r E ' ~k and all 0. 

So 
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Cor ollary H a policy S is finitely transient with t.be simple partition { \-j }: lben its cost. 

C(;rlo) can be computed by soh-ing the foUowing equations. 

C'(1riS) - 7rOj for all1r E \ j . j = 1,2, ... ,m 

O J t J + Bl:Q:Jav(J,O)· j = 1,2 ..... m. 
6 

(2.8) 

(2.9) 

The proof immediately follows from Theorem 2.4 .1. ~ote that the set of equations (2.9) 

has a unique bounded solution and that m need uo~ be equal t.o the number of acLions. 

2.4.3 Properties of U(l a nd U,. 

This subsection is a study of the propertiec; of Ca and U •. 1lost of Lbese properties 

will be used later in the development of the algorithm to find c-optimal approximations 

to c· and [)'•·. 

Let. F the space of real valued fucntions on il with sup norm. Then F is a Banach 

space (B-space). Let n be equipped with Euclidean norm, and let. C be the subset of 

continuous functions in F'. Tben Cis a closed linear subspace (hence is itself a B-space) 

of F. Define operators Uo.. U. on F by 

(Uaf)(;; ) = r.q0 -1- a L {91;.. a}f(T(;riO. a)) . f E F. 
DES 

(U.!)(;r) = rruo{1rq0 + (3 L {011l'.a}f(T(1rl0,a)}. 
a.EA tiES 

Lemma 2.4.4 

(i) Ua 1 U. are contraction mappings with contraction coefficient fJ. 

(ii} U0 .U .. are monotone, i.e .. if f.g E F with f $g. then U.f $ U,g and Uaf < L'ag. 

{iii} They map C into it.selfJ thus fixed points of these operators are continuous functions. 

Proof The properties (i), (ii) are standard. (Sec [17] 1 (90]) . (iii) Uo clearly maps C into 

self. U.f)(r.) is the minimum of finite number of cont.inuous1 henre it, also continuous, 

provided f is continuous. 

From Lemma 2.4.4 we get. some information on C" and o~. 

Lemma 2.4.5 The fixed point of U .. exists and is the optimal cost function C'", which is 

continuous. 
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Before stating our main results. we need two lemmas. 

Lemm a 2.4.6 Lei f be a p1ccewise ltnear fanction w.r.l. {V.} on IT. Define a statiOnary 

pofi,.y o1 by U.f, namely1 61(11) =a, if a, minimizes (Uaf)(;r). Then 51 is simplr. 

Proof Let { \~ } be the simple partition for f. Define 

Vi(a.O) = {ii E Il: T(ii O.a ) E '-'i}. 

Then for each a. 0. {\ ;(a. 0)} is a simple partition. In fact. V.(a. 0) is given b.} 

;rQ~11'3 0 · 2 
{01 } < , J = 1' . .... n,: 

'ii.Q 

or equivalenLiy. 

where t';J characterizes 1··. Let {\~~6 } be a simple partition defined by ni,o t:(o.O ) (Rce 

Lemma 2.::1.1}: then UrJ is linear on (>acl1 vi~e· 

~v1ore precisely, 

where 

-Eva 
II ,,{1 

{ 

1. if 
.X,·a (;r) = 

'
9 

0. other'.\ise. 

and fi is a. vector defining f. 

Since c5 is defined by minimizing finite number of piecewise linear functions, it is simple. 

Lemma 2.4.7 

(i) If J 1s p1ecewise linear. then C .. F is piecewise linear. 

(ii} Iff t.'> concave, then C.J is also concave. 

Proof Uof bas tbe same properly as .f' s. By the definition of U .. f, the desired results 

are obtaine<i. 

The orem 2.4.3 Let .fo E F, and define 

Let On be the decision rule at stage n defined by U. fn-!· 
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(i) J,, converge lo c>. 

(ii) If .fo is piecewise linear, then so is fn for any n. Furthermore On is simple. 

(iii) if fo is concave, theu fn ts concave. 

(iv) if .rl ~ .fo. then Jr. l c·. if ft ~ fo, then fn 1 c·. 

Proof The assertions follow from Lemma:, 2.-1.4 2.4. 7 

R em arks 4 If we take fo(1i) = C(1il6) for some stationary policy s, then In l c·. In 

particular. if we take b(ii) = a for all rr. thus C(rrlb = fo(r.) = rr(l - Jpo) 1qo. then 

fn is continuous concav' and piecewise linear and .fn ~ c·. Hence C" is continuous and 

concave. 

Remarks 5 Let f 0 ( 1r) = min(leA r.q4 , then fo is piecewise linear, concav( and conlin uous. 

/fence (ii) and (iit) hold. Since f n corresponds to the optimal cost for the 11-period problem 

with dtscounling, this case is essentially equivalent to the results in [116}. If u·c further 

assume qa ~ 0 for any a E A , then fn i c·. 

Kext we shall discuss the rate on convergence. 

Lemma 2.4.8 Let f E F. If III- U .. f!l ~ (1- {3)~: then IJC"- !II~ e. 

Proof 

IIC'"- Jll < !IU.c"- Uwfll f IIU.j- fll 
< PIIC"'- !II+ I!Uwf- Ill· 

After arranging. the result is obtained. 

Theorem 2.4.4 If 811 11/o- U .. foll ~ (1- {3)E:, then IIC" - !n.ll <E. 

Proof Since we have 

llfn- U. fr.ll < IIU ... fn-1- u;fn-dl 

~ f3llfn-1- U,.fn-111 

the Lheorem follows clirecily from Lemma 2.4.8. 
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R emarks 6 If we calculate lifo- C./oil. then Theorem 2.4A fells us 1chcn to .stop. Fur

thcrmon, at each .'>lcp n we know from ll.fn - U .. fn.ll how many steps (at most) 111e have 

to go after slt-p n. 

2.4.4 Algorit hm 

Sine€'! il is uncounLablc. it is far from trivial t.o calculate ( (Tol6) which may not be a 

piecewise linear function of To. except the case that. 6 is finitely transient. In this subsect.ion 

we shall a!Jproximate C(1rjS) by nsing the method of successive approximation. 

fbe met.hod of successive approximation is a wellknown and popular method for solv

ing equation~>. The met.hod is to st.art with a cost function f0 . and to iterate U ... con

structing a sequence of cosl functions fn = [./ .. fn-l· n = l, 2, .... By Lemma 2.4.4. £'_ is a 

contraction mapping with fixed point c· and by Theorem 2.1.~. {fn} converge to c· . By 

Theorem 2.4.1. n can be chosen sufficient.ly large. so that fn is an e:-optimal cost function. 

In facl by taking logarithms of the expression in 1 beorem 2.4.4, 

{1 - (3)e: 
n > log( lifo - .ftll /log ,3 

is adequate. 

The next t.heorem provides a means of constructing an c:-opl.imal policy from an c::

optimal cost function and specifies the relationship between e: and e: '. The algorit.hm will 

first construct an :·optimal cost function. From tbis cost function, an ~-optimal policy 

is constructed. 

Let fo be piecewise linear. and Jet 011 be defined by U~fn-l · i.e., b11 (r.) = a1 if a1 

minimizes (U11.fn-1)(rr). Then 6n is simple. and satisfies U,.fn- 1 = U6nfn_1 , where r;" for 

a stationary policy S is defined by 

(Usf)(r.) = r.c/(rc) + {3 L {8jr.. S(r.)}f(T(Tol8. S(r.))). 
6ES 

Theorem 2.4 .5 If IIC·- fn-1!1 ~ 1;:. then IIC·- C(·ISn)ll ~:. 

Proof H is easy to show thai Cs for any stationary policy S is contraction mapping and 

t.hat the fixed point is C(-IS). i.e., C(1rjS) = U6C(-jt5)(rr). 

We obtain 
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< IIU.s"C(·I6n)- U.snC,..II + IIV.snC .. - U.snfn-111 + IIV • .fn-1 -l'.c·11 
< BI]C(·Ibn)- c~Jl + PIIC. - fn-111 + t3llfn-1- c·u. 

Here we used ~he equality U.fn-l = Us,Jn-l· Rearranging Lhe above inequali~y we· obt.a1n 

Hence IIC(·J6n)- C'"ll ~ e:. 

II the state space is uncountable. or even countably infinite. Lhen this procedure i~ 

difficult to implement on a computer. HoweYer, since the partially observable ~larkov 

decision process has the structure or piecewise linearity and fo is piecewise linear, then 

each fn is piecewise linear and each Sn cousLrudcd as in Lhe previous lhcorem is simple 

(by Lemma 2.•1.6). In this case, the cost functions and policies can be specified by a 

finite number of items - the inequalities describing each ceU of a simple partition and the 

corresponding action or linear function. 

Algorithm to Find an e-optimal Simple Policy: 

(i) SlarL with any piecewise linear function fo. 

(ii) Compute / 1 = U .. fo· 

(iii) Choose an integer n such that 

where e' = (1 - (J)e:/2/3. I.e. ~ choose n larger than 

(1 - {3)2e 
log[2.BIIFo- J1IIJ/ log {3. 

(iv) Compute fn = u· fn-t successively until n = n. 

(v) Consequently~ we obtain fn. such that 

U.dn.ll <c'. 

(vi) Construct a policy 8 satisfying 
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Then 6 is !"-optimal. 

R emarks 7 'J'hc algorithm can be started wilh fa= 0. 

R emarks 8 1 he termination criterion. n := n. in the algorithm ha., thr- advantage thai 

lllo- fill is computf'd only On('(. However. il has the disadvantage /hal n will probably be 

larger than ncce.c;sary1 C(Lusmg unnecessary iterations. 

An ah,crna~ive would be to compute llfn - fn -1 11 al each iteration and stop whenever 

llfn- fn dl ~ (1- f3)c:' / )3. Theorem 2.4.2 guarant.ecs that. f.,. is an e:'-optimal cost funct.ion. 

llowc,·cr. the comput.at.ion of llfn- fn-1!1 will, in general. be expensive. 

The best procednre is undoubted!.} to check llfn- fn dl at some. but not all, i~erations. 

For example. f1 might be computed based on ll.fn- fn-lll· Then at some i~eration n near 

~· recompute n based on llfn- ln.-til· 

2.5 P artially Observable Markov D ecision Processes with Abstract Spaces 

A number of chapters have resulted from the marrjage between lhe areas of dynamic 

programrn.ing and ~Iarkov decision processes. In developing a theor.} for optimal control it. 

was nat ural to rely on 11arkoY decision theory b: making the assumption that t.he system 

can be observed at each stage. In other words. the observer of the system is assumed 

to have complete information about ~he staLe of ~be sys~em a1. the Lime when t.ransitions 

occur. Such a system is said to be observed under certainty or a complete (perfect) state 

information. 

Since it may be difficult and expensive to obtain such a complete state information, 

it. is more practical to consider a system wi~;h an incomplete information state. This, 

for instance, is how problems of statistics~ reliability. relevancy. etc. are described in 

accounting repor!,s. One interpretation of a Markov decision process under uncertainly is 

as follows: 

Suppose there is an information structure which is a mapping from the set of states of 

the unobservable system to the set of distinctive signals available. where the states of the 

system form a Markov process. lf the information structure is perfect, there is a one to one 

and ont.o mapping which provides an ordinary :\1arkoY decision process under certainly. 
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i.e., additional information about the state of the system 1s not needed. However. if the 

set of signals is singleton. a completely uncertain situat.ion results. 

In this chapter more general classes of iucomplet.c (imperfect) information structures, 

called partially observable Markov decision processes, will be considered and these will be 

extended into semi \[arkO\ decision processes. These studies haYe possible applications in 

in\·entory conLrol, q11euing. machine maintenance problems. etc. The approach taken is to 

consider ~1arkov and semi-~1arkov processes witb incomplete informa~ion states in terms 

of the probabilit~ dtslribut.ions of those st.ates1 which t.bemsclvcs form fvlarkov processes 

and are generaled from a Bayesian formula. The problem on dynamic programming side 

is to select an action lo be performed. observe lbe signal generated from the information 

structure and revise the state informaL ion as a result of transitions. in a sequential fashion. 

They are generally based on a Bayesian formula. 

This model formulation is t.he "best .. that can be expect,ed in the sense t.bat no futher 

information is avaHable about the state of t.hc system. 

In this section we shall extend these inlo semi Markov decision proccsse1,. These areal 

least two approaches, that is. the discounted approach due to dynamic programming and 

the nondiscounted one due to average cost criteria. The semi-.Markov decision processes 

are mainly studted using t.he second approach (~ iller [75], Ross [88j, Lippman (63]). Ross 

2.5.1 Partially Observable Markov and Semi-Markov Processes 

Consider a conLrol process, referred t.o as a partially observable Markov process, which 

is described by a pair of random sequences {Xt. St} where the process {Xt} is not able to 

be observed bu t. the signal process { St} becomes known to the observer at each decision 

epoch t. The decision maker chooses an information st,ructure from a set of available 

st.ructures and decises upon an action for the system. 

Policies for information acquisition and system control are sought to minimize expecled 

costs over an infini te horizon . 

Model Formulation 

Let {S1,F , P ) be a probability space on wbicb a semi-Markov jump process {Xt, 0 ~ 

t < oo} mapping from S1 to X a separable metric space is defined, where n is a non-empty 
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Borel subs<>t of a complete separable space and F is the u -field with respect to n. Let s. 
b<> a random variable mapping from S1 to a signal space S whicb jg assumed to b<• a Borel 

subset of a compleLe separable me~ric space. Let ( S, S , J.") be Lhc probability signal space 

where S is au field of S aucl for <>ach 1\t[ E S , J.J,( J\1) = P{S t(M)}. 

ft. is of interest to interpret lbe signal space S in such a wa) that if s = (0. r ) for f) 

outpul and r t.imc between lransiLions, then S = 0 x R+ where 0 is the set of outpms and 

R+ is a non-negati,·c real line. and furthermore J." = p 1 x 11 2 where J.J,1 is the same mcasutc 

as in H. and 11-2 is the count.ing measure for a Markov chain and a Lebesgue measure for 

(continuous time) semi-Markov processes. The process is described by the pair of random 

variables {X" St. 0 ~ l < oo} where t.he process { Xt} cannot be observed buL Lbe process 

{St} becomes known to the observer at each timet . 0 ~ l < oo. 

Let D be the set of probability distributions of X"' and lln be a random variable of 

the dist.ribuLion of Xn at. the n-th epoch. Let A be the set of actions a which is assumed 

to be finit~. Let. H n = {Xo,ao,So, .... Xn.an,Sn} and lin= {Sn = s,a" = a.ll"' I} . 

n = l. 2, · · · where Ho is given. 1'\oLe that Hn C H n. Assume Lhat t.here is some decision 

rule o"' such that on(Hn-d=a,.. for each n=l.2.· · ·. A sequcnc<:> R = {on}~=l is called a 

policy and f = { oJ~=l ]s called a stationary policy. It is assumed that for every :r E .n. 
a E Ather~ is a known probability measure Qa.(·. ·lxJ on F x S such that Pr{Xn+l E 

r . Sn+J E J\/ IXn = x . an =a. st'l = S, H n-1 = Qa(r .• Vjx) for C\·ery [X .11 E F X sand 

all hisLories II n-1· Also. assume that. Qa(r, ·lx) is absolutely continuous wit.h respect to 

the measur<> Jl.. T hen. by the Radon-:\ikodym's Theorem, there exists qa(r. ·l:r) such that 

Qa(f.1\1jx) = f Q0 (f,s!x)IJ.(ds). .x,r E F ,1\J E S. }~, 

Lemma 2.5.1 For each f E F and s E S 

Proof 

P{X E flll - co } fnqa(f,s!.v)ll(dx) 
n n-1- 1r, vn == s,a" =a = = Tr{llls a} 

fnqet(f2,slx)IT(dx) ' 

P{Xn E fllln-1 = r. , Sn = s,a" =a} 

_ P{Xn E f, Sn = ~llln-t = r.,a" =a} 

- P{Sn = sliln- 1 = r.,an =a} 

=In P{Xt'l E rsn = si.Xn-1 = x ,an == a}P{dxllln 1 = 11'. an- a} 
fn P{D, Sn- siX n-1 = x',an = a}P{dx'IITn-J = 1r.an =a} 
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= ln qa(r. s(x )7r(dx) = Tr{ r.l.:>,a} 
fn q0 (S1. slx')r.(dx') 

because Xn-t is independent of On due to t.hc fact, that 6n(Tin-d =On 

Remarks 9 Suppose thai n is countable.~., =(On. Tn) for Tn the time betwwn lmnsttwns 

and P{ 0., = Ola:n = irn = I. On =a. Hn-d = 'Yfs· 

Then it follows thai 

2:':, iTiPi~fi;(th;o 
P{XTI = illln 1 =it, On= 0, Tn = t.a,\ =a}="" pa f!l.(f) ll 

L...,.,1 "• ,3 ; ,3 "'f;e 

where P,~ arc transition probabilities of{Xn}· 

and J~ f;~(t)dt = P{rn :5 t!Xn. 1 = i. XTI = j,an. =a} 

Lemma 2.5.2 Let Hn = [Sn = s,a,. =a. lin-d· n = 1.2,·· · 

Then 

P{.X,.. E fiHn} = P{X,. E f'IIIn-t = iin-1· Sn = s.an =a} 

Proof Let r.n(f) = P{Xn E fiH.J. 

- P{Xn E fiH,J = P{Xn E f!Sn = s . an = a,Hn-d 
P{Xn E f. Sn =sian= a. Hn-1} 

P{Sn = sjan =a, Hn-d 
fo P{X,.. E f,Sn = s!Xn-1 = x.an = a.Hn-dP{dxla,.. = a,Hn-d 

J0 P{S1,Sn = sjX,.._1 = x')a,. = a, Hn.-dP{dx'lan = a,Hn-d 

_ f0 q
11(f .slx)?rn-1(dx) = Tr{r.ls. a} 

In q11(n, slx')7rn-l (dx') 
- P{Xn E fllln-1 = ?l"n-1) Sn = s. an= a} 

due to Lemma 2.5.1. Therefore. the distribution ?rn is a sufficient st.al.istic v.it.h respect. to 

H ... in the sense that. lin represents all tbe informations on the past. history of observat.ions 

of the Markov process. It is important to note that {fin} itself forms a Marlwv chain 

because it depends only on one step transition probabilities and 1in-J. 

2.5.2 Control Model and Optimal Policies 

If t.he process is in x E n, action a is chosen and a signal s is observed, then two t.hings 

occur: 
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(i) we incur a cost c(:r. a) which is a bounded I3orcl measurable function on n x A. 

where if one allows the cost. to depend also on !.he next st.al.e visited and t.he signal 

observed. then c(x,o) should be tnterpreted as an rxpected cosl as 

c(x. a)= 1 k c(x. o, x'. 8 )Q0 (dx', .,lx )!l(d.s ). 

(ii) t.llC' next. ~tate of t.be process is chosen according to lhe transition probability 

Since the sLal.es of the system cannot be observed and distributions 1in which them

selves form a ~larkov chain represent. all the available mformation about !.he his1.ory of 

the system. r. n are used as stat<>s of dynamic programming. 

For any policy R. define 

00 

Cn(~t) = ERIL n~,;11 ~(5 )r(X,. . a .. )lll, = ;.-] 
n::l 

and 

C * (r.) = infCR(i.),~t E IT 
R 

where Jl ~= 1P(Si) = 1 for n > 1 and 0 :5 8(Sn) < 1 for all Sn, n = 1,2. · · ·. Accordingly; 

P(Sn) is called a discounL factor which depends on a signal Sn received at 1.he nth epoch. 

It. is of interest to note that we have fJ(-'n) = ;3 for :\-1ark0\· decision processes and 

(:J(Sn) = e-IJTn for semi-Markov decision processes with S,.. = (On . rn) for rn the time 

bet. v1·een transil.ions. 

Condition 1 For a given ! > 0 there exists 6 E S and 80 (6) such that 

0 ~ P(s) ~ Po(8) < 1 for all s E S\8 

and 

Lemm a 2.5.3 For any policy R CR(r.) is bounded for allr. E ll 

Proof There exists a constant K such that !c(x. a)l ~I< for all x E n 
00 

CR(7r) ~ 1\EnlL: rr~l1 P(Si)ITI] = rr] 
n;l 
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00 

- A :L rR[n~;-,1 .J(Sd!IIt = r.J 
=1 
:xl 

- A' L n:~.· En[p(S;)I lli-1 = 7r] 
=1 

because •) ts conditionally independent for a gi,·cn .\ , 

En[3(S )llli-t = r.) - In ER{~(-; )IXs-t = x]Pr{dxl ll,_t = r.} 

- Jn fs 3(S)Q~(n. ·'lx)tJ(ds)r.(d.r.) 

where the poLic) R is assumed to assign an action a at the (n - 1 )-lh epoch . 

Therefore 

_ 1- fnfs(t-p( .... ))Q''(H .... I.r.)JL(ds)r.(d.?:) 

= 1 - f f (1- p(~))Q"(H. -"lx)p(d.s)r.(dx) 
Jn Js;s 

-in h(l- J(s))Qa(n,slx)tJ(ds)rr(d.r) 

< 1 -(I - p0(S)) f f Q!l(n. s!J')JL(d.-.)r.(dx) 
Jn Js/6 

- 1- (1- Jo(S)) fnll- Qa(n:61x)7r(dJ·) 

< 1 - €(1- ~o(S)) 

00 

CR(1r) < I< 2:[1- €(1- Po(6))r-• = K/{1- f3o(6))€ 
n=l 

for E. > 0 and ~3o(6) < 1. 

\\'e have the following generalized form of Be!Jman's dynamic equation. 

Theorem 2.5.1 C · (;;)=min{ f [c(x .a)+ { 9(s)C · ('l'{r.js . o})Qa(n . slx)JL(d$)J~<{dx)}. 
a Jn Js 

The proof is omitted. 

For a stat.ionary policy f mapping from ll to A. define 

and 
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Let, U(II) denote the :,et. of all bounded function~ with respect to tLe sup norm. Then 

Cn(n-) E JJ(II ) for all R. 

f\otc• t.hat B(Il) is complete. 

Lemma 2 .5.4 /·o1 ct•ery u.t· l B(JJ) and ... talionary policy f 

(i) 11 5 t' implic.., T,u ~ 1jv 

(iii) Ij'u umformly corn·nyes lo C1 for nil u ( IJ(ll). 

The proof is very easy and tbet is omitted. 

Lemma 2.5.5 Let Bra r.) be lht probabllify of choo:sing action a when tht state informa-

lion is r.. 

Thw 

L p(a!r.)~TaC n)(r.) ~ Cn(r.) for any p(·l·). 

Theorem 2.5.2 For every u.l' E B(ll) and the sup norm II ·II 

u·hu·( ;3' = 1- c(l- 80{6)) for c > 0.;30 (8) < 1 of Condilton I. 

Theorem 2.5 .3 A stattonary pohcy f .. -;c./ecting the action mmimi=ing the right hand 

side of Thcor·cm 2.5.1. is optimal. 

Theorem 2.5.4 For any statwnary policy f, lei f' be a policy selecting the action mini

mizing TaCf. Then 

PaT'ilcularly, rf Cf'(r.) = C1(ii), then f i~ optmwl. 

Lemma 2.5.6 For 1r' E ll, i = 1:2 ... . . tn and L::~ 1 ).i = 1, ).i ~ 0 for all i. 

Then 
m m 

T {L A,r.'ls: a} =L X { r.'!s. a }for et.1ery .s, a 

where 
).' = >.,f0 qa(n ,s!x)r.'(dx) 
' J0 qa(n. sl:r)r.(dx) 

anll 
m m 

" i "" ' r. = ~ A(r. E D .L_. >., = l. 
1;;;1 i=l 
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The proof is eas} and is omitt.ed. 

T h eorem 2.5.5 Lrl (1J'O)(ii) = cn(1r) for all E II. Then cn(1r) is ptccewtsc-lincar nnd 

concave zn 1r and then C"' (;r) i.'> concave in 1r as n -+ oo. 

Proof The proof is trivial for n = 1. Assume for 11 - 1. 

Let (T30) = mJn(1!lC" -1 )(r.). Let. 1r
1,ii2 E l1 and,\, 0 ~.X 5 l. 

Let ii = A7r1 + ( 1 - .X )rr2 

(TaC'n-1)(1.) = .X h c(x.a)1r1(dx) + (l- .X) h c(:r,a)1r
2 (dx) 

+ fnfsB(s)cn- 11 {,\1r1 + (l- ,\)7r2 l.s,a})Qo.(n,sl:l:)J.'(ds)(dx) 

,\ h c(s. a);r1 (d.T) + (1 - ,\) k c(x, a )r.2 (dx) + h k j3(~)C'l-l ,\' {1'1r1ls. a} 

+(1- .X')1 {r. 1(s.a)}Q0 (fLs!x)J.t(ds)ii(dx) 

- ,\( r c(x.a)rr1(dx)+ r r f3(s)C" 1 (T{Ii1 ls,a})Q0 (n.s~.r)J.l(ds )r. 1 (d:r)J Jo JnJs 
+(1- .A)[h c(x, a)r.2 (dl·) + k h 3(s)cn-1(T{r.2 ls. a} )Q!l(n. ,o;!x)t-t(ds)t.1 (d.r )! 

- ,\Tacn-1(7r1
) + (1- A)Tacn-1 (r.2

). 

Since en= minT(lcn-1 (r.) and A is finite. C71 (~<) is piecewise-linear and concave in r. and 
(lEA 

so c·(r.) is concave as n- oo. 

Bounds for opt imal expected costs 

Let us consider two extreme cases, (1) the states of the syst.em are observable (complete 

state information)~ (ii) the state of the system are not observable at. all (no observation). 

(i) Complete state information 

Defme 
00 

C'(x) = inf ER[L {3(S,)c(xn· an)IX1 = x] 
R n=1 

and let 

C' ( 1i) = k C' ( x) 1r ( dx) 

where 1r is the distribution of X1 for the partially observable model. 

(ii) ~o observation 

Define 
00 

C"(u) = inf ER[ L ef3(T1 + · · · + Tn-t)c(Xn,an)llll = rr] 
R n:::l 
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where control policy is based only on a prior stat.e information and so no a posterior 

stale inforrnat1on is obtainable. 

T heorem 2.5.6 C'(1r) ~ C * (r.) ~ C''(r.) for allr. E II. 

Proof Let Il~ = {r.0 ,X0 .a0 .···.Xn.Sn.ar.} for the comple~e state information case and 

il~ = {1io.ao. ···.an} fo1 the no obsen·ation case. 

Then. for the action space A define as follows; 

ht : If~ -> A for the complete infonnat.ion 

hn : H,. -. A for the parttal ob!'ervat.ion, and 

h" : Jf: -+ A for no observation. 

Obviously 

Then 

C'(r. ) ~ C * {rr) ~ C"(r.) for all rr E II 

R emarks 10 Under Condition I C"(r.) is again bounded by K/dl - 30(6)). Hence. 

C:(r.) :5 C * (r.) < C"(r.) :5 F</€(1- .80 (8)). It ts of interest to note that C'(r.) is lin

£ar in t.. C"(r.)- C'(r.) 7'epre.'~ents a val-ue of complete infonnation and C"(r.)- C * (r.) 
is a value of partial mforma.tion. 

2.6 Transfor mat ion of P a r t ially Observable Markov D ecis ion Processes into 

Piecewise Linear Ones 

It. is well known (see Sawaragi and Yoshikawa {llOL Dynk.in (39}) that partially observ

able :\1arkov decision processes (abbreviated by PO~IP) with finite (or at most countable) 

slates can be transformed inlo completely observable :\Iarkov decision processes (abbre

viated by ~J P) with continuous stales. Bul the state space of transformed ~1P becomes 

t.hc set of probability vect.ors which is no longer finite nor countable but continuous (con 

tinuum) . Then it is almost impossible Lo compute an optimal cost and its corresponding 

policy of conLinuous state MP in the form of dynamic programming. Sawaki (96] recently 

discusses piecewise linear i\1P. In t.his section it is shown that such POMP are actually 
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piecewise• linear ~1 P with complete ::;tate obsen·ations. Since• pi<'ccwisc linear ~lP haH! 

many ad,·antage ..... for applications and implemcntatiou in a computer. it. i!' important. and 

of interc5l· to provide a justification of the tran!:'formatiou of PO~IP to completely oh

scr\'abl~ ~lP. which enables us to handle uncountabl<' (contirmous) stalt> spac<' ~IP and 

lighteus a computational burdens. Abo it will he shown how to find the coefficient!' of 

pit•ccwise linear function:o aud to handle the product of simple partitions fot I he purpose• 

of computer implemcntat ion. 

2.6.1 Piecewise Linear Markov Decision P rocesses 

Piecewise linear :\1P arc special cases of the general \ I P with llnitc actions which satisfy 

the monotone conl radict ion mapping assumption of Denardo [:H ]. Under the setlmg 

of Blackwell [17] the general ~1P wiLh finite actions arc drfined by lhc four subjecLs 

(H. A. q. c). where n is a linear \'ector state span. A is the finite $el of action ... a E 

A.q(·lx.a) IS the one step transition probability on n for each pair (x.a) E: n X A. and 

c(·. ·)is Lhe bounded immediate cost on (n. A). D<!linc a policy 8: n -t. \. Our expected 

discounted total cost \'6 (x) at an initial state x under a staLinary policy cS i:. written a~ 

V'(x) = E {f, p•-'c(X •. 6(.\,))jA, = .r}. 

wbere {Xn: n = 1:2: ... } is a ~l arko\' chain wi~h transition prohabilit) q(·l.1:.8(x)) and 

(3, 0 $ ,3 < 1, is the discount factor. Define the opt1mal cost v· by 

,, .. (x) = inf V6(x) for all X En, 
6E6 

where 6 is a family of stationary policie!). It is wdl known that there always exists an 

optimal policy o· which is stationary. and v6• = v- satisfies v· = c .. vk. where 

for v E B(n) the set of bounded functions on n. Also. define ( ,,. : B(n)- B(n) by 

(U6v)(x) = c(x, o(x)) + [3 fo v(.r')q(dx'lx,o(x)). 

We wrile u6 = Ua if 6(x) =a for X En. 

A collecL10n P = {E1 , E2, .... Em} of subsets of n is a parlttion of n if E; n Ei = 0 for 

i # J aod if U~ 1 Ei = n. Each member of partition P is a cell. If each cell of a parLilion 
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is a convex polyhedron then the panition is called simple. A function r· is piu:ewisr: linem· 

if thcr~ <"~'Xists a $imple partition P = { b 1 • £ 2 ••••• / :.',.} such that v(x) = ~·.(x ) for all 

.r. ( I . i = 1. 2 ..... m and each r·- i is Lhc restriction to E, of a linear functions on n. 

A polin 6 E 6. i:-; piecewise conslrml if thc·re is a simple partition {E1 .£.~ ..... Em} of n 
such t.hat 8(:r ) = a i for all .r. E 8 1 • 

D e fin itio n MP are called pirccwi.-,r. linear if there is exists a simple partitiou p 

{ 81. I 2 ••••• t,.} of D such that ( U6r~ )(.r) is pieccwi~c linear for u piece"ise linear and b 

picc(•wis<· constant. 

Lemma 2.6 .1 If MP is piecewtse lmcar. !hen l'.t· l.'i piecewis( linear and there r:.xisls a 

prcccwi.-,c constant policy 6 such thai U6u =U.n. 

Proof Suppos~ that Usv is piec~\'v'ise linear with a simple partition {£1 • £ 2 ••••• Em} and 

that {J6l' = Uat' for x E B. an arbitrary but. fixed cell. Therefore. there exists a simple 

partition P" for each a E A. Then we may suppose that c; r is piecewise linear with 

respect, to the simple partition po. Let. p = n<lEA p(l which is the product of the simple 

panit.ions. Smce t.he product. of simple partitions is again simple. P is simple aud finer 

than each P". and so each U(lt' is piecewise linear with respect to P. For Lhis refined 

partition P. there is some linear functional a;. such that for each F E P and a E .4 

(C.:av)(x)=af-(x) for xEF. 

Fot each FE P. define the sets G}: bE A. by G} = {x E F: a}~·= mi~ a}x}. Then 

{Gf-: a E A}= pF' is a partition of F. Put p = UFePPF and then pis a partition of n 
wiLh lh<' property that 

(U. V)(x) = aF{:r.) if x E Gf- E P. 

The polic) 6 defined by 6(x) = a for X E Gj: E p satisfies [J6 v = u_ \1. 

Cor ollary Suppose that ~IP is piecewise linear with contraction mapping U which is 

either L' - 6 or U •. Let un = U v"-1 for 11 = 1, 2, ... , and v" be ptece\\·ise linear. Then 

v" is pircewise linear and the sLaLionarj policy On. defined by U6,. = U.v"-1 • is piecewise 

constant. Furthermore vn cozl\'ergcs in norm lo the fixed point. F· or \15 corresponding 

to U .. or ('6, respectively. 



Remarks 11 The fi:r.cd points l '· or V6 need not to br piecewise linear and 5· need not to 

be piecrwist constant since the number of cells zn the limiting partition is no/ necessarily 

finite. 

2.6.2 Partially Observable .Markov Decision Processes 

First. we shall introduce PO~IP and provide a lemma to be used for t.ransfonnation 

of PO~IP iulo piecewise linear ~IP. 

Consider ~larkov decision process {called the core process) with state set { l. 2, .... A}, 

with action set A, with probability transition matrices {P·j} and wit.h immedia.te cost vec

tors h11
• Let Zn be the state at the n-lh transition. Assume that the process {Zn.n = 

0.1. 2 .... } cannot be obsen ed. but at each transition a signal is transmit ted t.o the deci

sion maker. The set of possible signal 0 is assumed to be finite. For each n. given that. 

Z,.. = j and that action a is to be implemented, l.he signal On is independent of the history 

of the signals and actions {B0.a0.0~,a1 .... . 8.,_1.an-d prior to the n-th transition and 

bas conditional probability denoted by -y<J0 = P{On = OIZ = j, aj. 

Let n = {x = (xi. X2: ... I XN} : I:t~l x. = l. Xj > 0, Vi}. Define I. be i t.h component. of 

X". the random variable of x, t.o be 

P[Zn = iiOo.ao.fh:···,On-t•On-1,0n]· i = 1,2, ... ,X. 

It can be shown (see Dynkin (39]) that 

Thus X .. represent a sufficient statistic for the complete past bistory { Oo, ao, ... , an-h 0,,.}. 

It follows that {X,..: n = 0,1,2, ... } is Markov decision process (see Dynkin [39]), called 

the observed process. It.s immediate cost. is c(x.a) = h0 .r. Its action set is A. Its prob 

ability transition funct.ion is determined by the following calculation: For each measure 

subset B ~ n,x En. and a E A, 

q(B!x, a) - P[Xn+l E BIXn = x, an= a] 

- ,LP[Xn+1 EBIBn+l =B.X71 =X.an=a] LIJoLPi~Xi 
6 1 

- I:P[Xn+l E BIOn.tl = B,Xn = x,an = a] l Pa(O):r 
0 
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where 1 = (1: 1. ... , 1) and P0 (0) = [P.:j";;0JY. Define the vector T(xl8. a) b) 

r P0 (0)x 
1 (:riO: a)= l PG(O)l·· 

~ole tba~ T(.l.niOn+l,a.n) = Xn+J· and that. 

{ 

1. if T(x!O, a) E B. 
PlXnll E BIOn+l = O .. x.·n = x.an =a]= 

0. otherwise. 

So. 

q(!Jix. a)= L lPa(O)x. 
0E4>11(R,r) 

where <P4 (B. x) = {0: T(xjO. a) ( 8}. 

~ext.. we show that qa(B,x) = f8 x'q(dx' x.a) is piecewise linear in x for each con\'ex 

polyhedral set R ~ n and art.ion a E A. Using the previously computed q( Bl.r. a) we 

- 1x'q(dx'lx. a) = L T(xjO. a)lPa(O).r 
B 6E4>"(8.x) 

(2.10) 

L pa(O)x l ]>(l(O)x = L pa(O)x. 
0E<b 11 (B.x) l Pa(8)x 8E4>11(8,x) 

(2.11) 

Thus it is sufficient to verify that the set valued function <1> 11(B, ·) : n _, 2° is piecewise 

constant on n. where 2° is the power set of 0. To this we need 

Lemma 2.6.2 for each signal 0, action a. and stt BEn) define 

Ef'4 = {x En: T(x!O. a) E B}. 

Then for any subset of signals v ~ e. we have 

~a(B,x) = '¢; if and only if X E n Ef·a n n (EB,a)c. 
Be11.· oe,p• 

Proof Note tbat Ef·a = {x : 0 E q,a(B, x)}. Thus if x E E:.a for 8 E w, lhen 8 E 

<P
0 (B, x). On tbe other hand. is x E (Ef-11

)' for 8 E 'lj)c. then 0 E <Pa(B,x ). Consequently, 

~,.c ~ (~0(B.x)Y, H follows that t/J = <Pa(B!x). 

Conversely. suppose that <1> 0 (B, x) ='if;. Then x E Bf'a for each 0 E '1/; and x E (Ef·a)c 

for each 0 E '1/•c, which completes the proof. 0 

The next. theorem shows that. PO).IP is actually piecewise linear MP and provides a 

formuJa for computing tbe cost function which is convinienl for comput.er implemen~ation. 
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T h e orem 2 .6.1 Suppo ... c v(:r) = v,(J') for:r E £, with a simple partition Pv = { Et. E2 ••••• Em} 

of n. Then 

(Uav)(.r) = {ho + PL u, L P0 (0) } .t for J' E n:,1 E8,(¢i)1 
Ge~o·, 

when• G.B('~·) = {.r E S1: i.Pr:t(B.x) = '1/J} and n~ 1 E.8,(d:i) is a cell in the partition P ofO. 

defined by 
m 

p = II { EIJ. ( lL') : ~. E ~8 } 

That 1s. C:av is pieceurt;;c.lmcar with lht partition P. 

Proof First observed from equation (2.11) and Lemma 2.6.2. 

L T(.r 10. a)P"(O)a 

- L P 0 (0)x for x E EB('t/;). 
8Etf· 

Therefore we ha Ye 

(Ur:tv)(x) hax + (3 k v(x')q(dx'lx,a) 

- h0 x+(jtv,h x'q(dx'lx,a) 
•=1 B. 

- { ha + rrf, v, L P 0 (8) } X for X E E1J.('t/J ). 
•=1 8E1/> 

Lemma 2.6.2 gives an explicit representation of EB(t/;) and q0 (B,x) is piecewise linear 

with respect to the partition {EB('Ib): 't/; __. 29 L where it is assumed that q0 (l3,x) = 0 i{ 

E8('Y) = 0 for all 7p. Although this partition is not simple, it. can easily be refined to a 

simple partition as in the next paragraph. 

Suppose that B ~ n is a convex polyhedral set. Since for X E n = {X : I: x, = ] ~ x, ;::: 

0 Vi} an inequality lx S b can be rewrit.ten as lx- b = (l- bl )x 50, we can without 

loss of generality assume that B has the representation 

B = {X E n : K X < 0 , Lx s 0 } 

for some matrices I< and L. where 0 = (0,0, . .. ,Of. With this representation of B, 

48 

- {x E n : A' PG(O)x < 0. L pa(o).r < o} 
1P 4 ( 0 )x 1 pa.( 0 )J' -

- {x En: K P0 (0)x < 0. LPa(O)x 50} 

- {x c n: l\"0 (0)x < 0 . L0 (0) ~ 0 }. 

wl.lere K0 (0) = [( P0 (0) and L6a(O) = DP0 (0 ). SO each Ef·o is a convex polyhedral set. 

Each (I~:·(ly can be represented as a union of disjoint convex polyhedral sets. It, follov. s 

tbal EB(l/)) i:> a union disjoint polyhedral sets. sa) E8(~·) = u;~ 1 {EB(v;)J. Thus q11(B .. r) 

is piecewise linear 'Nith respect to the simple partition {E;(lf;): j = 1.2 .... . n11.,.?j· E 29 }. 

Our motivation for studying piecewise linear MP which include P0~1P as special cases 

is that t.her are easily represented in a computer in terms of piecewise linear costs and 

ptecewise constant policies as well as simple partitions. For example, a simple partition 

P = {81. £2 . .... En} can easily be stored in a computer as: 

£, = {x: K'x < bi .L':r 5 cf}. i = 1.2 .... . n. 

where each b; and d' is an \'-dimensional vector and each f{' and L is a matrix with •\" 

dimensional rows. A piecewise cost function f( x) = f x and a piecewise constant policy 

6(x) =a, on £,. This situation will be denoted by 

o,....., {(a,;K',b';L'.d'), i = 1.2 .... ,n}, 

Ei"' (K'.b';L'.d'). 

Our ~1P requires a performance of product of simple partitions. This can be performed 

by combining the corresponding lists of inequalities as the intersection of two cells. Thus 

it is easy to form product partitions. 
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Chapter 3 

Optimal Policies in Inventory 

Control Problems 

3 .1 Introductio n 

In this chapter we consider two types of dynamic inventory control problems. The 

first.. t\ p<' is of a classical inventory control problem with fixed ordering costs. The second 

one is of products which can not carried o\·cr to the future demand. 

ln Section 3.2 we consider a dynamic stochastic inventor) model with fixed inventof) 

holding and shortage costs in addition to a fixed ordering cost. \\'e discuss a sufficient 

conditton for the (.s, 5) policy t.o be optimal in t.hc class of such stochastic im·entory 

models. Furthermore, we explore bow such a sufficient condit.ion can be rcwritt.en when 

the demand distribution is specified. Several examples like uniform. exponent1al. normal 

and gamma d istribution functions are treated. 

The main result of this paper is to show on the basis of lsbigaki and Sawaki [49) that 

the (s. S) policy is still optimal under a stmple condition even if the fixed inventory costs 

are involved. Even though Aneja nd Xoori (3] constdcr a sirrular model only wiLb fixed 

inventor} shortage cost. our proof fo r the optimality of an (s. S) policy in the multi

period model is different from and much simpler than theirs. It. is well known (see Scarf 

II 11 ]. and Veinott. [124), [125], [126)) that t.he (s, S) policy is optimal for the stochastic 

invent.ory control problem with fixed and proportional production costs. As to dynamic 

stochastic inventory control the concept of K -convextty is crucial t.o the extsteoce of an 

opLimal policy which is (s: S) type. However, if the inventory cost includes a fixed cost, 
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t.hc (.o;, S) policy is no longer optimal. For example. Anc:ja and ~oori [:3] discuss a sufficient 

condition for the ( '· S') policy to be optimal if the in,·c·ntory shortage cost has a fixed part 

but inventory holdiug cost does not. have such a fixed one. 

In ~f'c tion 3.:l W<' deal with t be problem of selling a fixed number of unit5 of Cf'rtain 

products that cannot. be carried over and arc not. storable for consumers. Hotel rooms. 

airplane sc•ats; and concert !>cats arc examples of such products that are sold at multiple• 

prices under ccnain restrictions (see Sa\\aki IJ06
1
;. 

This chapter analyses the problem of allocation products uet\vecn two t) pes of. prices 

wlw11 the' demands for the types of product. arc sLocbastically dependent. \Vc derive a 

simple formula for determining how many products to sell at. each pnce. In addition. we 

pro\ Jd<' three interesting examplE>.s of cas£"s in which demand distribut ton is specified. 

\ acant hot.cl rooms. seaLs in passenger planes. and :.eats in concert halls are cxample:o; 

of wbat are referred to as ~·invcDLOTJ;· iu their respecti,·e busines::. c1rcles. '1 he special 

feature of such im·emory items is that the saleable total capacity is fixed in ad\·anc~ 

and it is impossible to carry O\'CI any remaining im·entory to the next da\. In order to 

counteract.. this physical property of im·entory that is incapable of being carried over to the 

next day. businesses with such inYentol') aim at. guaranteeing demand by setting multiple 

prices on inventor) items of identical quality and issuing a variety of discount tickets aL a 

rclali,·ely early stage. Csers. on t..he other hand. also have different preferences in regard to 

inventory items of ident.ical quality. T hus, for example, people who use passenger planes 

for tourism purposes generally make reservations at a comparati,·ely early t1me and at the 

cheapest discount. fare possible. as opposed to t.hose who use passenger planes for business 

trips. 

In Section 3.3 we hypothesize a case in which. when the amount of saleable inventory 

is fixed in ad,·ance. two type, of demand for such ioYentory i terns occur as a result of 

differc>nccs in the time that demand arises and in profitability. \\'e consider the problem 

of deciding how to distribute lhc inventory items between these t'wo tvpes of demands. 
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3.2 On the (-> . S) Policy with Fixed Inventory Costs 

In thib scct.ion we cons1dcr a ~nite dynamic stochastic iuventory problem witb a single 

item. \Ye need the following assumptions and notations: 

• The unsatisfied demand is lost. 

• If the demand is less than stock level. then holding cost. incurrs at. the end of each 

period. This holding cost consists of two parts. the fixed holding cost lBd and the 

proportional holding cost [h]. 

• If the demand is bigger than the st.ock level. then shorlage cost incurrs. This short. 

age cost again consists of two parts, t.he fixed shortage cost. [B2J and the proport.ional 

shortage cost [p]. 

• If an order is taken, t.ben t.he ordering cost incurrs. This ordering cost. consists of 

the fixed ordering cost [I<] and the proportional cost [c] . 

• Demand of each period is given by the random variable which has lhe probability 

density function (p.d.f.) 4>(~). \V<• assume that p.d.f. ct>(O is differentiable. 

• Both cost functions and p.d.f. of demand are identical over the periods. 

Let us assume lhat. the planning horizon is discrete. finite and consists of.\· periods. At 

flrst we consider the expected cost over n periods (n s; N). If the stock level immediately 

after an ordering is y, then t.he sum of the expected holding and shortage costs t.o be 

charged during a period is given by 

L(y) = h loy (y- Oc!J(Od~ + Bl loll c/J(Od~ 
+p ~oo (~- y)d>(()d~ + B21oo ¢(0d~ (3.1) 

where we assume ~hat B2 is not equal to B1 • Tf B1 = B2, then i~ is easy to see from 

equation (3.1) that the sum of the fixed holding and shortage cost is independent of y. 

Therefore, this model reduces to the classical stochastic inventory model only with a fixed 

cost. Let Cn(x) be the minimum of the expected total discount cost over n-periods when 

x is the starting inventory level before an ordering at the beginning of period n. Then we 
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have from the principle of the optimality. 

Cn(x) = ~~{JJ(y- x) + L(y) + p fooo Cn 1([y- t:~+)<D(~)d0 (3.2) 

(y- ~J+ = { 0. 
y -(. 

if y:::; ( 
otherwis('. 

v.here n = 1. 2 ..... 1\, pis the discount factor. 0 < p s; 1. C0(:r) = 0 for all ,J: and H(·) is 

defined as follows: 

{ 

0. 
f!(y-:r.)= 

K -1- c · (y - x ). otherwise. 

if y- X$ 0; 

The objective of this section is Lo find an OTHimal invemory policy \\'hich minimizes 

Lhe cxpecLed tot.al discount<>d cost. To prove the oplimality of au (s . S) policy for the 

multi-period modeL we firs( consider the single· period model of t.his problem. 

3.2.1 Single-Period Model 

\~'e discuss the optimality of the (s, S) policy iu a single period model. N = 1, equation 

(3.2) reduces to 

C'1(x) = min{H(y- ~r) + L(y)}. 
y~r 

(3.3) 

Theorem 3.2.1 For all noninceasing demand density functions, a necessary and suffi

cient condition for the optimality of an (s. S) policy for lh£ single-pe1'iod problem is thai 

Condition (A) 

where~+ = {YIY > 0}. 

Proof (~ecessit)) It suffices Lo prove for the case B2 - B 1 < 0 because t-he proof of the 

case B2- D, > 0 can be applied to Aneja and );oOl·i's result as B = B2 - B1 • Let F1(ylx) 

be the quanLity inside the braces of tht> right hand side of equation (3.3) and put G1 (y) 

as follows. If y >~·,then we have G1 (y) = fl.(ylx)- J( +ex 

53 



In this case the first aud second dcri\'ati\'es of function G 1 (y) are as follows: 

c;(y) = c+ h fay ¢(0d~ + Bto(y)- p fvoo <P(Od<- Bz¢(y) 

G~(y) = h<h(y) + 8 1 <b'(y) + pc/>(y)- H29'(y) = (h + p)~(y)- (B2- Bt )¢'(y). (3.4) 

From t.he Condition (A). 

(h + p)¢(y)- ( 8 2 - B, )c/(y) ~ 0. 

That is 

G~(y) ~ 0 

so G1(y) is convex in y. 

If y = x: then we ha\·e G 1(y)- cy = Ft(Y) 

G1 (x) = ex+ h lox (x- {)d>(~)dt. + ll, lor o({)dt. 

+p 100 

({- x)o({)de + B21
00 

o(Odt. 

The first. and second derivatives of equation (3.5) are as follows: 

G'1(x} - c+h fox q>(e)d(+Bt<;>(x)-p leo a>({)d~- B2¢(x) 

c;'(x) - hd>(x) T Bl e>'(x) + pa>(.r)- B26'(x) 

(3.5) 

- (h+p)o(x)-(B2-B1)o'(x) (3.6) 

Since this equation is identical with the equat.ion (3.4): equation (3. 1) and equation (3.6) 

implies t.haL G1 (y) is a convex function of y > x. 

Therefore. 

and 

where 

y > x; 

y= x, 

S = arg{inf { G1 (y)}}, 

s = min{ziG1(5) + K = G1(z)}. 

x < s; 

X~ S, 

Consequently, under the condition (A) an optimal inventory policy is as follows: 
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(3 .7) 

(I) ir x < s. order S- .r. 

(II) if X > $. do DOl ordf'J. 

Such a policy is called the (s, S) policy. 

(Sufficiency) We shaH show that the following statement.. Sttppose thal the condition 

(A) does not hold. i.hal b. there exists y E :R+ such that 

Lhen there are values of parameters 1\ and c for which any (s, S) polic) cannot be optimal. 

We prove it for the case of 8 2 - B1 > 0. The proof for the case B2 - B1 < 0 is similar 

and is hence omitted. From assumption. we can find y· such that 

<i>'(y) < 0 for all y > y·. 

·where <i>(y) is assumed to be continuously differentiable. Since ¢'(y) is continuous and 

negattve for sufficiently large y. there exists y0 such that 

dl(y) h + p 
¢>(y) = B2-B1 

Let y0 salisf);ng (3.8). For all y with y ~ y0 an inequality 

dl(y) < h + p 
¢(y) - B2- B1 

holds. which impHes Lhat 

G~(y) ~ 0. 

On Lhe other hand. in Lhe left neighbourhood of y0 • we have 

G~(y) ~ 0 for y E (Yo- b,yo): 6 > 0. 

Kow consider the function f(y) = G~(y)- (c- p). Thus, 

.f(y) = (h + p)<I>(y)- (B2- B1)c/>(y), 

(3.8) 

(3.9) 

(3.10) 

where <I> is tbc cumulative dist,ribution function (c.d.f.) of d>. Since f(y) = G~(y). it 

foUows from (3.9) and (3.10) Lhat f(y) aUains a local minimum at y0 , where we assume 

Lhal lhis minimum is also global. 
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By an appropriate choice of c. we can ensure that G'(y) = f(y) + (c- p) = 0 at y1 and 

y2 such that G~(yd < 0 and G~(Y2) > 0. Thus. lhc flmction G~ (y) has at l<>ast Lwo 

consecut.i\'e zeros. one at y1 where il is concaYe and the other at Y2 where G1(y) is con,ex 

and there are no zeros at y2• So we can choo:>c an appropriate /( < G 1 (y 1) - G1 (y2 ). 

Summing up the above argument we obLain the optimal invenwr~· policy as follows. 

(i) order (y2 - x): if a < :r ~ b 

(ii) not oder. otherwise 

which is no longer an (s, S) policy. Thus condition (A) is necessary for the (.s. S) policy 

to be optimal. 

Remarks 1 Theorem 9.2.1 concludes that conditwn (A) is necessary an .<~ufficicni COJI

dition for the (s~ S) policy to be optimal. If the_ rigthand side of condition (A) is positivr., 

the condition (A) holds for all nondecreasing p.d.f.. Furthemtore, note that pur model 

includes Aneja and Noori {9} type (B2 = B, B 1 = O) and Scarf {111} type (B2 = U2 = 0). 

3.2.2 Multi-Period Model 

In this subsection we shall showw Lhat condition (A) is also sufficient.. for the (s. S) 

policy to be optimal in the multi-period model. This is not true in Aneja and 'oori [3] 

because our proof is difficult from theirs. 

Define Gn(Y) by 

where n = 1. 2, ... , N. This definition is corresponding to G1 in We prove Theorem 3.2.2 

by using properties of a f( -convex function which is defined as follows. 

Definition [K-convexity [I ll]] Let [( > O,andlet Gn(x) beadi.ITcrenLiablefunct.ion. 

We say that Gn(x) is I< -convex if 

K + Gn(a + x)- Gn(x)- aG~(x) 2:. 0, x > 0, Vx'r/n 

Before presenting 'I'heorem 3.2.2 we prepare Proposition 1 and 2 which proofs can be 

found in their references. 

Proposition 1 ( Scarf [111]) 
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1. 0-convex funct.ion is ordinar~ convex. 

:2. If f(:r:) is J<-convex. then f(~· +h) is f( convex for all h. 

3. lf f and g are l\'1-convcx and K2 -convcx. respecti,·ely. then (a] +Bg) i~ (aK1 +/3K2 )

<-onvex for all a and 3 positive. 

4. If 9n(:t·) is 1\ convex. so 15 J;-'- 9n(x0<t>(E.)d{. 

Proposition 2 (Denardo [31]) LC'l h(y) be convex and nondecreasing on Y. Let C(.r.) 

bel\. -convex on a set X 2 { h(y)lY ( Y}. If all elements a< c of X have C(a) ~ C(c)+ /\". 

then C[h(y )] is K convex on }'. 

Theorem 3.2.2 If condition (A) holds, then Cn is/( -convex. 

Proof Tbc )JTOof is by induction on n. For n = 1. C1 is K-convex because equation (3.7) 

satisfies tbc definition of A -convexity (from convexity of G1 ). For n = k. we assume that 

Ck is !\'-convex. From equa~ion (3.2), C,~;+ 1 (x) is 

(3.11) 

Let. Fk+1 (ylx) be the quanlity inside the braces of the rightband side of equation (3.11) 

and put Gk+ 1 (y) as follows. 

( ) 
{ 

Fk+1(y!x) + f{- ex. if y > x; 
Gk+l y = 

Fk+I(xlx)- ex, if y = x. 

For y 2:. x, 

Since the first term plus the second term is G1 (y ). so it is 0-convex. The ]{-convexity of 

the t.hird term derived from Proposition 1 and 2. Because we can Lake h(y) = [y- ~]+ 

and C(x) = Ck(x), rcspecLively, in Proposition 2. and t..ake 9n(x) = Ck(x) in Proposition 

1. Thus Gk+1 (y) is a combination of a convex and a I< -convex function and is, therefore, 

K -convex. So is Ck+ 1(:r.). 

Theorem 3.2.3 If the p.d.f. of demand, 4>(0, satisfies condition (A). then a (a" . Sn) 

policy is optimal for 01tr multi-period invent01-y problem. 
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Proof From Theorem 3.2.2. we established G'n(.r) is /\'-convex for all n and hence. the 

optimal policy (or then period problem is (.sn, Sn) where: 

This policy states that. when in,·emor) on hand is equal or below t.he rcordet point .. sn . 

sufficient stock is ordered t.o raise tbe inventory level to th<' order-UjJ to-lc\'el Sn. The 

minimum expected total cost of following such a polic) would be: 

Cn(l')= { 
J\ + c(S"- x) + C'PI(Sn) = [{- c:r + Gn(Sn). if .r < Sn: 

-c:t + Gn(x)~ if l' > s,l, 

which is a (.sfl. S'~) policy. 

Examples 

In this subsection we explore the condition (A) when p.d.f. is spccifled. If p.d.f. is 

uniform. exponential. normal or gamma. the condilion (A) can be rewritten as in We 

discuss two cases. 

Case 1 

~f:] $ 8~ ~ ~ 1 
for all y E ~+. 82 - B 1 > 0. 

If sup0<y<oo ~{i] $ e::h
1 

holds. then tbe condition (A) is immediately satisfied. Therefore 

any uniform and exponential distributions satisfy the conrution (A). 

On t.he other band if </>is a normal distribution with the mean J.L and variance u 2
• lhen 

the condition (A) reduce to 
> (h + p)u2 0 

y_J.L- B B >. 
'2- 1 

Since Pr{ -4u + J.L < y < 4u + J.L} ~ 1 and Pr{ 0 $ y < oo} ~ 1 in our model. the condition 

(A) satisfies 

4u $ J1. and (3.12) 

If (h+p) is large enough compared with jB2 -B1 j, then the inequality (3.12) may possibly 

hold. 

For a gamma distribution with parameter (0!) v) condition (A) reduces to 

(v -1)(B2- Bt) 
y > o::(B2- B1) + h + p. 

(3.13) 
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Therefore if 

O<u<l (3.14) 

holds, then the condition (A) holds. Furthermore, if (3.14) does not hold hut (h + p) is 

large enough compared wil h B2 - /311. then 1.he inequality (3.13) may possibly hold. 

Case 2 

d/(.y) h+p . t-
-(-) ~ B B fot all y E ~ , B2 - 81 < 0, 
q> y '2- I 

1f Eo<y<oo ~/:J > 8~~h1 holds. then a uniform distribution immediately satisfies t.he 

condition (A). 

For the exponential distribution with mean 1/cr. the condition (A) redLtccs to 

(3.15) 

ln this case. if (h + 71) is large enough compared \\-ith IB2 - B11. then the inequalit~ (3.1 5) 

may possibly bold. 

For the normal distribut-ion the condit10n (A) reduce to 

< (h+p)u
2

( ) 
y_JJ.-B B <Ji. . 

2- 1 

Since Pr{ -4u +J.L < y < 4u+ J1.} = 1 and Pr{O < y < oo} = 1 in our model. the condition 

(A) satisfies 

1u $ J1. and _ (h + p)u > 
4

. 
Bz-Bl 

(3.16) 

If (h+p) is large enough compared with IB2 -B1 I. then the inequality (3.16) may possibly 

hold. 

For the gamma distribution the condition (A) reduces to 

< ( v - 1 )(Bz- B1) 
y - o:(B2 - Bt) + h + p. 

(3.17) 

Therefore if 

then the inequality (3.17) may possibly hold. Summing up the above discussion, we have 

the following proposition which is also summarized in 

P rop osit ion 3 
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Case 1 For any uniform ditributron or exponential distribuLion. Lhe condition (A) holds. 

If o is a normal di::.tribution wiLh (3.12). or a gamma distribution with (3.13). t.thc 

condition (A) holds. 

Case 2 For an~ 1.miform distribution~ the condition (A) holds. 

If¢ is an exponential distribution with (3.15). a normal distribution with (3.16). or 

a gamma distribution with (3.17). then the condition (A) holds. 

Conclusion 

ln this section we have shown under the condition (A) Lhat the (s. S) policy is optimal 

for finite period st.ochastic im·entory models with fixed inventory holding and shortage 

costs in addition to a fixed ordering cost. Tt is found that ou1 proof of t.his res\llt is 

diifereut from and much simpler than Aueja and '\oori [:3]. This section also provides 

an answer to the question of how robust the class of (s. S) policies is for the stochastic 

inventor~ models with fixed costs. 

Furthermore. we ba ve demonstrated thal the condi t.ion (A) is necessary and su fficicnt 

for t.he (s. S) policy to be optimal. Ilowever1 this condition may rest.rict on the class 

o( probability density functions of demands. \\'hen the probability density fundion of 

demand is specified like uniform, exponential, normal or gamma. we have discussed in 

how the condition (A) can be rewritten to and whether it holds or not. 

3.3 Invent ory Cont r ol for Price Different iable Producls with No Carrying 

Over 

Vacant hotel rooms, seats in passenger planes. and seats in concert balls are examples 

of what arc referred to as '·inventori' in their respective business circles. The special 

feature of such inventory items is that the saleable total capacity is fixed in advance 

and it is impossible to carry over any remaining inventory to the next day. In order to 

counteract this physical property of inventory that is incapable of being carried over to the 

next day. businesses with such inventory aim at guaranteeing demand by setting mulliple 

prices on inventory items of identical quality and issuing a variety of discount tickets at. a 

relatively early stage. t;sers, on the other hand, also have different preferences iu regard to 
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inventory items of idcntici\.1 quality. Thus. for example, people who use passenger planes 

for tounsm purposes generally make reservations at a comparatively early tune and at. the 

cheapest discount fare possible. as opposed to those who use passenger planes for business 

trips. 

fn Lhis sect ion we hypothesize a case in which. '''hen the amount of saleable inYcntory 

is fixed in advance. t.wo lypes of demands for such inventory items occur as a rcsull of 

differences in the time that demand arises and in profitability. \Ve consider the problem 

of deciding bow to distribute! the inventory it.ems between these two types of demands. 

W<' define the two types oi demands for invemory items Lhat we are dealing 'VIith in 

t.his st.udy as follows. The demand t.hat arises at an early period we refer to as .. early 

demand.'' and its profitability is low. The demand that arises at a late s1..age we refer to 

as '·late demand:· and its profitability is high. Since what we are dealing with her<.' is the 

sale of space. two special features of the5e inventory it.ems arc that they cannot be carried 

over to Lhe ocxt day and that any demand that is not tilled is lost forever. Businesser; 

that deal in this kind of inventory items seek a control policy that will maximize expected 

total revenue, something that will stir up demand by offering 1.he goods at an early period 

at low rates but without thereby missing out on the demand that produces high profit. 

In this section we formulate this t.ype of decision problem in general form, as a problem of 

maximizing expected revenue. The information obtained in this way is desirable because 

it enables one t.o establish the upper limit to the amount of inventory items to be allocated 

to the lower·pro:fhability early demand in cases where it is anticipated lhat the more highly 

profhable late demand will arise at a later future Lime. This information is also applicable 

to bargain sales held after the peak selling period of seasonal goods has been passed. A 

sales strategy often used in bargain sales is that of setLing an upper limit on the saleable 

quantity (an1ouut of inventory) aud indicating that the goods can be purchased by the 

first whatever number of cusLomers. The idea behind this sales strategy can be seen as 

one of arousing demand that has passed its peak but al the same time preventing those 

customers who are willing to purchase similar goods at. the normal prices from shifting to 

t.he purchase of bargain goods. 

Beckmann [9]. Brumelle ei.. al. [21L Rothstein [92], and Sawaki [96] have developed 

similar discussions in regard to airline seat management. Belobaba [12] and Sawaki [96] 
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have provided overviews of airline seat management and yield management. Liberman 

and Yeclllali I62J have considered hotel room inventory control. Jn all these previous 

models the authors assume the independence of two types of demands. but in this section 

that kind of independence will uot be assumed. Accordingly. it recognizes the possibilit.y 

LhaL early demand that. has been unable to purchase at a discount. price will be willing lo 

purchase at the normal price and will shift to lat.e demand. 

ln t.he following subsection a model formulation is followed by an analysis of what 

the optimal inventory policy might be. \\'e pay part1cular attention Lo what the suficient 

coudit.ions are for a simple optimal polic) to exist.. In the second subsecLion Wf' discuss 

in detail the optimal inventory policy of this model when demand distribution has been 

specified. Then in t.be t.hird subsection. we disruss an overbooking model. and then t.hc 

conclusion, we bring together the information obtained by the first model and then touch 

upon the range of application of the model and directions for future expansion. 

3.3.1 Model Formulation and Optimal Policy 

Let us express Lhe total capacity of presently saleable inventory items as C. let. it be 

a fixed and given value, and let it be expressed in the late demand unit.s to be described 

next . The two types of demands for this inventory items will be X and Y, which we 

shall call. respect.ively. the early demand (demand that is realized early) and late demand 

(demand that is realized at a late stage). At the beginning of the planning period boLh 

X andY are random variables. and we posit the distribution function of X to be F(x) 

and posit t.he conditional distribution of Y when X = x is given as G(yjx). V·/e posit 

the decision variable to be I, which we assume t.o be the upper limit. of the amounl of 

inventory to be allocated to early demand. In other words, the revenue from early demand 

will be min {1 ~ X}. Accordingly, when the allocation of inventory Lo late demand is Q(J), 

then 

(3.18) 

where a is the exchange rate of one early demand unit. in to late demand, 0 5 a ~ 1. If 

a = l, then one early demand unit is equal LO one late demand unit, and if 0 ~ a < l, 

then the case of returned goods or overbooking is hypothesized. In the case of passenger 
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planes. if a change in the size of the seating is possible (Laking early demand as group 

tourisL econom} seats and lat.e demaud as individual passenger business seats). theu for 

cxampl<'. c~ becomes 2/3. In addition. t.be following symbols are used: 

Th = lower price of early demand 

]Jl = normal price or late demand 

h = unit holding cosL of the product. unsold 

.St =unit shortage cost for early demand 

-"2 = unit. shortage cost for late demand 

Assumption 1 0 < P1 + s1 < a:(p2 + .s2) 

It is possible to assume Pl < P2· s 1 < s 2 in order Lo guarant.ee that. t.he profit.ability 

of carl.v demand will be smaller Lhan t.he profitability of larer demand. but. in order to 

obtain the optional m\·cnt.ory control given below, Assumphon 1 is sufficient. 

If we assume T( f) to be the expected total profit. whe1l an inventory lC\ el of I uo its 

bas been allocaLed to early demand. then T(I) is gjYen by the following equation: 

T(I) = P1 · E [min{ X. I}}+ P2 · E [Ev1~ [min{Y. Q(J)};) 

-h · E [Ev1x [rnax{Q(I)- Y,O}J] 

-s1 · E [max{X- I. 0}]- s2 · E [El'IX lmax{Y- Q(J), O}J] (3.19) 

The problem is to allocate C amount. of inventory between early and late demands so 

as to maximize expected total profit under t.he condition 0 ~ a[ ~ C. Figure 3.1 

shows the fluctuations in amount of in\'entory when a = 1, X > I, Y < C - 1. 

Jn the case described in Figure 3.1 the result was that t.be allocation of im·entory to 

early demand was too little. and in consequence unsold inventory remained even after 

lat.c• demand was satisfied. Figure 3.2. on the contrary, illustrates what happens when 

cr = 1, X < ! , Y > C- 1 so t.hat the amount. of inventory allocated to early demand 

is too great and the more profitable late demand is lost. In order to find the optimal 

allocation of inventory between t.he two demands. let us prepare the following assumption. 

A ssumption 2 P{Y ~ C- a· I 1..-Y. ~I} is increasing in ]. 
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c -----------f 
I 

Figure 3.1 Inventory Fluctuation (a= 1, X > I, Y < C- I) 

c - -- ----------------1 
X 

e-x ---------1 
.... ....... 

Figure 3.2 Inventory Fluctuation (a= 1, X < I , Y < C- I) 
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Lemma 3.3.1 Undrr Assumptions 1 and 2, T( I) is unimodal in I. 

P1'0of 'l aking Lhe d<>rivat.ive of (3.19) we obtain 

Since F( ·) > 0 and Lhc conLenL of t.he bracket. is decreasing in 1, the sign of the hracket. 

is changed on I) onc.e. that is. there exists ) ... such that dT(I)/ dl = 0. and then T(J) is 

increasing in I < r and is decreasing in 1 > r , which implies that T(I) is unimodal in 

I. 

Theorem 3.3.1 A~sume that F(J) < l for all!, P[Y > Cj < (p1+s1 +ah)ja(p2+s2+h) 

and P(Y > (l - a)C I X > C] > (p1 ..L s 1 + o:h)/a(p2 + s2 +h). Thm; an optimal upper 

limit r for early demand is given by 

I"= max {o $a· I :SCI P [Y > C - a· II X~ I ]::; Pl + 51 + a· h} (3.21) 
a(p2 + s2 +h) 

Remarks 2 

(i) From Theorem 3.3.1 we conclude that when P[Y > C] ~ (p1 + s1 +a· h)/o:(p2 + 
s2 + h). r = 0. This implies that an optimal allocated value must be 0 when the 

late demand is sufficiently larger1 compa1·ed with the price ratio. Conversely, when 

P[Y > (1- a)C I X~ C] ~ (p1 + ~1 +a· h)/a(p2 + s2 +h). then r =C. 

(ii} Note that an optimal upper limit for early demand depends only on the relative price 

ratio, but does not specific values of prices. 

Corollary If o: = 1 and X and Y are stochastically independent, then an optimal 

upper limit r of t.be product allocat.ion for the early demand is given by 

R emarks 3 

c 
r· = c- c-l (r) 

0 

if G(O) ~ r 

if G(C) < r < G(O) 

if r::; G(C) 
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(i) An optimal pmtcclion limit for /ale demartd C - r- is equal to c-1 
( r), which does 

nol depend on C' and F. 

(ii) r /C is increasing in C. 

(iiz) r depends only on G and r. and nol on P. 

3.3.2 Examples 

Thi:, subsection is a discussion of special cases of Lhc model presenLed in the preceding 

subsection and cases in which the distribution function of demand is speci f1ed . 

Example 1 E arly d ema nd is s ufficient . 

Let. Pr(X >I) = 1 for all I in which a= 1 and I ~ C. 

Then Pr[Y > C - IIX > I ] = Pr[l . > C- 1] = G( C- ! ). 

When o = 1, T(J) in Equation (3.19) becomes 

T(I ) = p1 · f + P2 · E [min{ Y. C- I}] 

- h · E [max{C- I- Y,O}] 

-s1 • E (X- J) - s2 · E [max{Y- C' -1, 0}] (3.23) 

It is easy to see that Equation (3.23) is concave in I. Taking the derivative of (3.23) we 

have 

dT(I) 
dl 

PI - P2P[Y > C - J] + hP[Y < C - J) + s1 - s2P[Y > C - 1 ~ 

- (PI+ s1 +h)- (P2 + s2 + h)P[Y > C - I] 

Hence, an optimal upper limit for early demand is given by 

r = C _ c-1 (P1 + s1 +h) 
P2 + s2 + h 

(3.24) 

(3.25) 

which is essentially the same equation as in Theorem 3.3.1. bul does not require Assump-

tion 2. 

Example 2 Demand follows b ivariate normal distribution. 

Let a = J and X and Y are bivariately normally distribut.ed. When X is positively 

correlated wiLb Y, Assumption 2 holds . In this example we provide numerically optimally 
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Table 3.1 : Optimal allocation values, (J- .C- !") 

c 
p 

40 60 80 100 120 140 

Inde!Jendent (13, 27) (:33. 27) (53. 27) (73. 27) (93 . 27) (133. 27) 

(p = 0) 

Dependent (13, 27) (32 . 28) ( 49, 31 ) (65. 35) (81, 39) (97. 43) 

(p = 0.9) 

rjC(p=O) 0.33 0.55 0.66 0.73 0.77 0.80 

(p=0 .9 ) 0.33 0.53 0.61 0.65 0.67 0.69 

distribulC'd \·alues for early and late demands. The means and standard deviations are as 

follows: 

Ji.X = 70. Jl.Y = 30. ax = 26.5. ay = 11..5. 

Opt.imal allocation values for early and late demands arc summarized in Table 3.1. 

\'"ote Lhat when p = 0, C- r is always equal to 27. In a case of p = 0 optimal upper 

limit.s for early demand are bigger than ones in a case of p = 0.90. 

Example 3 Demand is expone ntially distributed. 

ln this example we assume that X is exponentially distributed \Vith mean 1/). and 

Y = X/{3. B > 0, a= 1. 1/{3 of early demand turns into late demand. 

P{Y > C - 1 I X 2::: I} = e-tJ>.C e>-<tJ+I)I is increasing in I 

/"' = _ f3_C +Jog (Pt + sl +h) <C. 
fJ - 1 P2 + S2 + h -

If X and }. arc independent, then we have 

P {Y > C- T} - e -.>.P(C-l) 

r · - C +log (Pl + St + h) l/(M3) 

P2 + .s2 + h 

From the argument. above, we obtain the finding that r < r · ror {J > 0. 
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3.3.3 An Overbooking :Model 

Suppose that there is only one type of product. say a normal farC' class. With each 

fare booked we associate a random variable 

z. = { ~ if t.he itl• farE> booked confirms 

if t.he iu fare cancels 

Assume that Z1 • Z2 ... • are independent. and identically distribut.ed with LZi ::::: /3. If 

I seats are booked. then .\'(!) = "L!=l z, seats are confirmed. Then the expected total 

revenue 1s 

R(l) = p2E[N(I)]- (p2 + Po)E(.Y(J)- C l 1\' (J) > C]P{ N(J) > C} (3.28) 

where Po is the penally cost. due Lo overbooking. 

Theorem 3.3.2 If Zi is independent and idcntirally distributed, then an opllmal booking 

limit i.s given by 

r(c) =rna.'<{/ I P[ . ..V(/) > C] < Po } 
P2 +Po 

Proof It follows from t,he fact l.hat t.he incremental ex:peded revenue' is gi\'en by 

D.R(l) - R(I + l)- R(I) 

- P2f3- (P2 + Po)f3P {N(J) > C} 

and .\'(J) is increasing in I, which implies that R(l) is concave in (J). 

Examples: 

(3.29) 

(3.30) 

(i) z, is Bernoulli random variable. Set Po= P2 and E(Zi) = {3 = 1/2. So f"'(C) = 2C. 

(ii) N(I) is normally distributed with mean I /3 and variance 1 /3(1- (3). 

I*(C) = max[JIP { N(J)?. C-{3! }< Pol 
JI/3(1-/3) P2+Po 

_ { % + {- J<{ + %? - <%)2 if~<~ (3.31) 

% + ~ + J(~ + ~yz _ (%)2 if~> t 
where z is defined by Pr { Z > z} = ~ for Z normally distributed and 

z2 J - (3 
~=2·-{3-
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3.3.4 Conclusion 

ln ~his section we have analyzed the best way to allocate a fixed amount, of in,•entory 

to met"!. two types of demands differing in the times aL wbJch they arise. We have shown 

tbat, wher1 a higher-profiLabillt.y late demand is expected t.o arise at a fut.ure stage. it 

is possible t.o maximtZ<' expected revenue obl.aincd from the alJocation of tot.al invent.orv 

br establishing an upper limit on the amount of mYent.ory allocated to lower profitability 

C'arl.) demand. ln those cases in which there is a stochastic dependency between early 

demand and laL<' demand, if there is a certain type of monotonicity in tbc conditional 

distribut.ion (AsstLmption 2), then the optimal allocation of inventory Lo early demand lw 

is gi\'en by 1.he cquat.ion 

r=_!!__C+Iog(Pl+sl+h) <C 
B - 1 P2 + b2 T h -

(3.32) 

[f there is the possibiHly that, customers who have been unable Lo purchase t.be itl\'entory 

items during t.he early demand period will purchase them as late demand items at. higher 

IJrlCe, then setting an upper limit to the allocation of inventory il.ems to lower-pro.fiLabilit.y 

carl} demand agrees with our economic intuition. 

The model dealt with here is a single-period static model~ jt is not a dynamic invenwry 

control model in,·olving dose observation of t.he process in which early demand is realized, 

and revision of the upper limit of inventory allocation. A model for sequentially revising 

the upper limit of inventory allocation while constant.ly monitoring the reduction in in

ventory can probably be considered next. In addition. by way of extension of the model) 

instead of discussing only t.wo types of demands we could discuss an inventory allocation 

policy for the more general case of A types of demands. In either of these lat.er cases the 

model would be more complex and more difficult than l.he model dealL with here, but it 

definitely is an importanL and real problem for all businesses that sell goods of such a 

naLurc thaL inventory cannot be carried over and total inventory capacity is fixed. 
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Chapter 4 

Airline Seat Allocation Models 

4 .1 Int r oduction 

In an era of increasing pricing freedom, airline companies no longer offer scats for salf' 

at a single fare. Recognizing that different groups of consumers have different. willingness 

to pay for the same seat, airline companies offer seats at a wide range of air fares. llowevcr. 

to prevent consumers willing to pay high fares from buying seats at. low fares. the airlines 

attach various restrictions to their tickets such as early Lime bookings. Saturday night 

stayoYers or reduced sen·ice without food Lo discount fares (see Belobaba [13], Sawaki 

[l 04]). 

The process of determining fares, associated restrictions and the number of seals to 

offer at a given fare is referred t.o as ''Airline Revenue Management'" (see [12]). Within 

this area of airline revenue management. the decision process determining the number of 

seats to be protected for various classes of passengers is called tbe airline seat allocation 

problem. The key idea of the seat allocation problemm is to limit the number of discounted 

seats when there is a strong demand expected from high fare consumers, so as to maximize 

the expected revenue per flight. Airline revenue management includes 

(i) determination of high and low fare levels, 

(ii) determination of restrictions associated with low fares, and 

(iii) dynamic monitoring of seat for sale on a given flight. and readjusting the allocaLion 

of seats between high and low fares so as to maximize expecLed revenues. 
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The purpose of t.his chapter ts to analyze some of the nrst. element. (i). determination of r.hc 

initial allocaLion of seals bclween high and low fares. This stat.ic model with one period 

is of grcaL importance to airlines as the t.wo classes of passengers have very different. time 

patterns of booking. lligh fare passengers tend to book m the last. da_ys or hours before a 

departure time. 

In Section 1.2 we considet a dynami<' airline scat. allocat.ion problem for a single flight 

\Vith t.wo fare classes, based upon Sawalo [104). The problem is formulated as an \-step 

dynamic problem and aims at deriving optimal policies. \\'e also explore some analytical 

properties of such an optimal seat. allocation policy and t,be associated expected revenue. 

The model also extends the existing literature in two wa~'s. First. it is a dynamic version 

with the cost of lost sales. Second, il is formulated under the setting of ~1arkov decision 

processes which explicitly t.ake inLo account the periods remaining unt.il departure and 

permite reopening of fare classes. 

In Section 1.3 we consider the airline seat aUocation between higb and low fares with 

and witboul stochastic cancellations. \\'e also analyze the problem of simultaneously 

determining allocation and overbooking levels for two different classes of passengers. which 

also extends the existing lit.crature in three ways. First. the cost. of lost sales, which has 

been ignored in the existing literature. is e>.']>licitly incorporated into the model. Second. 

the over booking phenomenon is also explicitly treated. Third, the concepl of spiU rate 

is clanfied into the passeger spill rate and the flight rate. ll is found r.hat. the results 

obtained here are in closer agreement with actual airline practice. 

Section 4.4 examines the problem, t reated in [21}, of allocating airline scats between 

two nested fare classes when the demands for the classes are stochastically dependent. The 

well known simple seat allotment formula of Littlewood which requires the assumption of 

statistical independence bet.ween demands is generalized Lo a formula whicb requires only 

a much weaker monotonic association assumption. The model employed here is also used 

to examine the problems of fuU fare passenger spillage and passenger upgrades from the 

discount class. 
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4.2 A Dynamic Airline Seat Allocation 'Vlodel 

The deregulat.ion of the Xortb America airlines allowed the airline industry lo undergo 

major changes in price competition. skillful dynamic pricing policies and seat allocat.ion 

management. L'hese changes helped to st.imulalc the demand for air t.ravelling. On the 

ot.ber band, the deregulation challenge::; airlin<' companies with an important managerial 

problem of deterrninmg an optimal booking policy which allocation optimally the seats 

of an airline among the various fare classes. 

It is in an airline company's interest to control the booking process by selling the right 

seats to the right passengers at the right prices and timing to maximizr the lolal revenue 

acquired from a single airplane. 

This section addresses a dynamic airline seat allocation problem. This dynamic model 

is very important because it. allows us to monitor dynamicly available seals and readjust 

t.he seat allocation among fare classes on a given flight. Another advantage of dynamic 

models is of the dynamic reallocation or seaLs as time progresses, reAecLing t.he actual 

booking progress. Optimal seat allocation for a dynamic booking limit re\;sion process 

is in fact different. from t.he allocations derived previously for a static case (see [21}, [65) 1 

[92), [96]). 

In this respect, the section imends to make a significant contribution to the existing 

literature by dealing with dynamic aspects of airline seaL inven~ory cont.rol. 

Liberman and Yechiali [62] presents a model for determining an overbooking policy for 

a hotel with a single fare class. Rothstein [92]. and [93] formulate an airline overbooking 

model with a single fare class as a Markov decision process which allowed for dynamic 

adjustment of overbooking levels as Lhe day o.fllight departure approached: but lacks a 

formal derivation and investigation into the properties of the associated optimal expected 

revenue. The first significant result on the scat allocation problem was presented by 

Littlewood (65] who proposed a simple seat allocation rule by using the marginal revenue 

analysis. Richter (86) also proposed a seat allocation model in a simplified manner. More 

recently, Belobaba [12] generalized the results above t.o more than two fare classes. Kone 

of these works but [21] allowed both for the two fare classes. Belobaba [L2] is also a recent 

good survey article on airline seat management.. 
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These works of 13clobaba [12~. Sawaki [96 •. Brumelle et al [21], Rothstein (92J. Lit.tle

wood [65]. Hicht.er [8Gj are based on common assumptions as follows; 

1. singl<' flight leg : Bookings arc made on the basis of a single departure and landing. 

2. inde]Jendent demand : The demands for the differcm fare classes arc mutually 

indeprnden l. 

3. low fare booking first. : The lowest fare rescrvMions requests arrive first. follo"''ed 

by the next. lowest. etc. 

4. no cancellations : Cancellations~'no-show'and overbooking are not considered. 

5. limited informaLion : The decision to close a class is vased only on t.hc number of 

current bookmgs. 

6. nested classes : Any fare class can be booked into seats not taken bj bookings in 

lower fare cla"ses. 

\\ hile assumpt.ion 6 is a common pracl ice in a1rline reservation systems today, as

sumptions 1 through 5 arc restrictive. These sometimes overly restrictive assumptions 

serve the purpose of making the problem tract.able. 

The purpose of this section is to deal witb the problems above. that is. a fornal deriva

tion for an optimal dynamic seat allocation rule and investigation into the properties of 

the associated e.'<pccted revenue. The impact of uncertain demand on the optimal policy 

and associated revenue is also explored. ln Subsection 4.2.1, we formulate a dynamic 

seat allocation problem with no cancellation allowed. In Subsection 4.2.2, we show the 

existence of an optimal polic) and discuss propert.ies of optimal policy and associated 

revenue. 

4.2.1 D ynamic Seat Allocation Problems 

In this subsecLion, we consider dynamic models for airline seat management. shere 

there are N periods before ~he flight deparLure. ~Iodel is in discrete Lime t = l. 2, .. . , N. 

We can time 1 the initial t.irne and N the departure time. The time intervals need not be 

evenly spaced. It m.igh~ be best. to space them widely at first. when the demand for seats 
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is relatively low. and then make the imcrYals smaller as the depart.ure time nears. This 

mjght be important ror lhe follO\\ring assumption (C) to bold. 

Suppose that t.herC' are two fare classes, low and high fares. 

Assumption (A) Xo passengers cancel their rescn at ions. 

Assumption (B) In each decision period. low fare booking occur earlier than the high 

fares. 

Assumptioll (C) High and low fare demands are both independent of demands in other 

periods. 

Assumption (D) The refused passengers are not.. picked up by other flights of the same 

carrier. 

Assumption (A) will be rela.xed laler. Assumption (B) is not so rc!strictive since we do 

assume "early bird'' in each period. but do not over the ent.ire periods. AssumpLion (D) 

is for making the flight revenue maximization criterion reasonable. Tn each period, after· 

observing the number of seaLs available, we det.ermine the number of seats to aUocate 

for low fare demands. then accept for booking of low fare demands up to the number of 

seats allocated and accept Lhe high fare bookings as many a.s available. Our objective is 

to maximize the expecLed total revenue obtained from the flight over the enLire periods. 

Indices i and j denote low and high fare demands, respect.ively. We use t.he following 

notations; 

Pt, P2 - high and low fares, respectively, 

St - t.he number of unhooked seats remaining at the beginning of period t, 

Lt(s) - the maximum number of seats Lo allocate for low fare demand in period tout 

of s seats available. 

q?(t) - probability that i low fare bookings occur in period t, 

qt(t) - probability that j high fare bookings occur in period t, given i low fare bookings 

requested. 

.\oLe that. high fare demand depends on low fare which allows the possibility of passengers 

switching from low fare seats to high fare, so called '' grade up , . We also use t.he notation 
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o V b = max{a.bLa 1\ b = min{a.b} and a+= max{a,O}. Any seats remaining at. the 

end of each period are passed on to the next period. Then we have the following seat 

invent.ory identity: 

( •1.1) 

where 1=1. 2. ·. N-1 and i. j denote low and htgh fare demands. respectively. \Ve wish 

to det.enninc Lt(s) for each t and sin a sequemial order so as Lo maximize the expected 

total revenue. Let. \'t(s) be the maximum expected revenue obtained if there are s scats 

r<'maining at the beginrung of period t and t.hc BighL departs at period 1\'. Then, we 

obtain the optimality equation from Lhe principle of opLimalit.y 

yt(.r;) = max {p2Ei(i 1\ L) + p1EtE3Ji[j 1\ (s- i 1\ L )] 
05L$~ 

+L,£11, \~+t(!s- i 1\ L- j}+)} 

( L2) 

where L = Lt(s), t = 1.2. · · ·.S. lti(O) = 0 for all t and ~\·+ 1 (-) = 0. Equation {4.3) can 

explicit 1.> be rewritten as follows; 

\'t ( s) 
L,(•)-1 oo 

- max{p2 L iqf(t) + P2Lt(8) L q~(t) 
i=O 

L,(,)-1 .t-1-1 oo 

+p1( L q2(t)[ L jq~1 (i) + (s- 1) I: qJ1(t)j) 
j:;:Q J=O J=s-t 

oo s-Lc($)-l oo 

+P1 ( L ql(t)[ L jq~1 (t) + (s- Lt(s )) L q]
1
(t)D 

i:;:Lr(") J=O J=,-L,(s) 

C,t(s)-1 s-i 

+ I: q[(t) 'L q:1 (t) ~+1 (s- 1- j) 
i=O J=O 

oo .f-Lt{s) 

+ L ql(t) I: q[J(t)vt+1(s- Lt(S)- j)} 
i=L,(s) .1=0 

max {Rt(s.L1(s))} 
O$Lr(.s)$s 

where Rt(-, ·) denoi.<>S Lhe expression inside the braces of equation (4.3) or (4.4). 

Assumption (E) Lt(s) is nondecreasing ins for each t. 
00 00 

(4.3) 

(4.4) 

Assumption (F) For each t I: ql(t)qf..-L-t(t) ~ 9L+I(t) I: ql+I)t) for all L ~ ,~. 
•=L+l J=s-L-1 
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To establish the existence of a simple optimal seat allocation policy under assumptions 

(E): (D) we need t.be following lemma. 

Lemma 4.2.1 

(11 Rt(->. L1(.:-)) ts concarc in 1 for each I and·'· and nonincrwswg in ·"for wch l. 

(ii) v;($) ?s nondecrea.~ing and concat•c ins fo1· each l. and nonincreasing in l fo1· each .s. 

Proof Let D.Rt(~) = R1(s, L1(s) + l)- Rt(s. Lt(~)). \\ c wish io establish the conca\·ity 

of Rt( · .. ) in [J1(s) for fixed s and t. It will bC' sufficient lo demonstrale that ~Rt(L) is 

nonincrcasing in L to establish concavity. Let S,(L) = P2Ei(i A L) +ptEiE_,Ii[j A (s- i 1\L )] 

and 1,(L) = E,E}li~+ 1 ([s-ii\L-j]+ ). Then. Rr(.s.L) = St(L)+1,(L). Letting fiSt(L) = 

St(L+l)-St(L) and t::.Tt(L) = Tt(L+l)-Tt(L). wehaveD.Rt(L) = 6St(L)+D.Tt(L). We 

will examine fiSt(L) and .6.T1(L) separatel) .. \fter calculating and rearranging .6.St(L) 

t.erm by term. we have 

00 00 00 

fiSt(L) - P2 I: q?(t)- Pt I: q?(t) I: qMt). (·1.5) 
t=L+l •=L+l J:=8-L 

~2 St(L) - St(L + 1)- .6.St(L) 
00 0;:> 

- -p2q£+1 ( t) - Ptl I: qJ(t)q!,6-L-l (t)- qt+l (l) 2: ql+t)t)J 
•=L+l j=s-l,-1 

< 0 ( by assumption (F)) 

which implies that S-t(L) is concave in L. Collecting terms and noting t.hat Vt(O) = 0. we 

have 

D.Tt(L) - Tt(L + 1)- Tt(L) ( 4.6) 
oo 6-L-1 
L q?(t) L q:1(t)[Vt+1 (s- L- 1 - j)- Vt+l (s- L- j)] . 

•=L+l J=O 

Combining equation (4.5) and (4.6) '.•;e have 

00 00 

D.Rt(L) = L q?(t){P2- Pl L qf,(t) 
i:=L+l j=s-L 

6-L-1 

+ L qf3(t)[vt+t(s- L- 1- j) - Vt+t(s- L- j)]}. 
]=0 

For an inductive argument letting t = N . we have 
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which has beeu shown to be concave in L. Then 

l~v(.;) = max {Sv(/ (s))}. 
O$L(.t)$s 

Since 81(L(.o;; )) is slrict.ly concave in L, t.hcre cxist.s a unique solution L • such that 

{ 
SN(s) jot s ~ L·, 

VtV(s) = 
S.v(L*) for s > J•. 

( 4.7) 

which is ccrlainly concave and nondecreasing ins. Suppose that \ltt-1(s) is concave and 

nondecreasiug ins. and consider 61t(L) given by (4.6). By the induction step. tl2T1(L) = 

flTt(L + 1)- !:::.T1(L) is negative. and hence Tt(L) is concave in L. So is R,(s.L). B) 

assumption (C) R1 (~. L(s)) is nondecreasing ins. llence, we bave 

l't(s) = max {R,(.o;.L(s))} 
O$L$-' 

which is concave and nondccreasing in s for each l. lt is obvious from the definition t.hat 

\'t($) is nonincreasing in i for each s. D 

4 .2.2 Optima] Seat Alloca tion Rules 

In t.his subsection we show under assumptions (C), (D) Lhat lhere exists a simple 

opLimal policy-a control limit. type of seat allocation for low fares. Under rather restrictive 

conditions :,ome aualyt.ical properties of the optimal policy are explored. Also. a special 

case witb sufficient low fare demands is analyzed. 

Theorem 4.2.1 There exists a sequence of optimal seat allocations for low fares at each 

period (L:V(s),LN_ 1(s) . · · · ,L;(s).Li(s)) such that 

oo oo s-L-1 
L((s) = max{L ~ s: L q?(t)[pl L qfj(t) + L q;J(l)'Vt+t(s- L - j)J(4.8) 

t=L+l :1=1-L-l )=0 

~ s-L-1 

~ L qf(t)[p2 + L qf
3
(l) \'t+1 (s- L- 1 - j)}}: t = 1:2 ... .. N. 

i=L+l J=O 

Proof Fort= N we have shown by equation (4..7) in Lemma 4.2.1 that VN(s) is maxi

mized at L ;v given b) 

00 00 00 

L;\r(s) =max{£~ s: Pl I: qHN) I: qJ,(N) ~ P2 L qz(_\ )} 
i=L+l J:=$-L-1 i=L+ 1 
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For I < N we Lave 

\i(s) = max{Rt(s,L(s))}. 
L 

From Lemma 4.2.1, ~( ·. L) is concave in L and 

00 00 

~Rt(L) = L q~(l){p2- Pt L q:j(f) 
l=L-t I :1=11-L 

s L-1 

+ I: qfj ( t )[ \'t.; I ( .c; - L - I - j) - \It -I I ( .'i - L - j)]} 
;=0 

Then. by the same argument. used with Rl\·(s. L). we !lee that Rt($, J..,(s)) is maximized at 

L;(s) = max{L: D.Rt(:;.L) > 0} . 

Hence~ we obtained t.he sequence of optimal decision rules {L;(s)}~ 1 . D 

Corollary Suppose that. q]j(l) = q; for aU i and t and J\' = 1. The one period opLimal 

seat allocation rule can be reduced &o as follows : 

00 

L"(s ) = rnax{L:p2/P1~ L q~} 
;=s-L+l 

where Lx(s) = 0 if the above set is empty. This is a discrete ,·ersion of a simple seat 

allocation model studied by many authors [12}, [34]. (-15], [58), [62]. Equations (4.8) and 

( 4.9) can be interpreted as follows ; if once the expecled marginal revenue from high fares 

is larger than or equal to the one from low fares. we should stop allocating seats to low 

fare demands. 

Theorem 4.2.2 Assume that q?(t) = q?,qt
1
(t) = q~ for all i.j.t and .6.'~(L) = \~(L)

l't(L -1) is non-increasing in t for each L. Then L;(s) is non-decreasing in l for each s. 

Proof "Gnder the assumptions canceling the 'L, Qf Lcrms L;(s) simplifies to 

oo .t-L-1 

L;(s) = max{L 5 s : p1 L q} + L q;\'t+1(s- L- j) 
j=.t-L+L ;=0 

a-L-1 

5 P2 + L q} vt+ 1 ( s - L - 1 - j)} 
J=O 

oo "-L-1 

- max{L 5 s: P1 L q~ + L qJ.6.l't+l(s- L- j) 5 P2} 
3=.t- L+l J=O 

oo .t-L-1 

< max{L 5 s: P1 L qj L q]6.Yt+2(s- L- j) 5 P2} 
J=.t-L+l i=O 
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oo .t-D-1 

- max{L5s:pl L qJ+ L q;Vf+2(s-L-j) 
J=.t-L+I ;=0 

II L-1 

5P2+ L q]"t+2(.s-L-l-j)} 

quadD 

Remarks 1 Theorem 4.2.2 nnplzcs that as the timr becomes closer to the flight departure, 

we ~hould allocatf.. more seats lo low fare demands whenever lhcr·c are stills seats avail

able. The assumption lhal 6. Vt(s) is non-increasing m I is intuiti11e/y reasonable since 

an addllwnal seal available in some pen.od is more likely to be utilized than one made 

available in !.he next period. 

A sp ecial case : low fare demands ar e large enoug h 

We shall consider a special case in which low fare demands are large enough to sell as 

many as we desire up to the maximum level allocated for low fares. and in which demand 

distributions are independent of r.ime t. that is 

oc 

qr(t) = qf, q,~(t) = q] aud L, qf = 1 for ail L 5 s. 
t=L 

Let \/t(s) be the maximum revenue corresponding to the special case. Then, equation 

(4.3) can simplify Lo 

Vt(s) = olff?$ {p2L + EiiL!PtU 1\ (s- L)) + 1~+J((s- L- j)+)J} 

s-L-1 oc 

= max{p2L + Pt L jq} + Pl(s- L) L qJ 
J=O ;=.t-L 

s-L 

+ L q; \1 t+ 1 ( s - L - j)} 
i=O 

- max{Rt(s, L)} 

where 

s-L-1 oo a-L 

!it,(s,L) = P2L + P2 I: jqJ + Pt(s- L) L q; +I: q;Vt+1(s- L- J). 
;=0 J=$-L j=O 

Lemma 4.2.2 rt(S) is quasl-concave in s. 
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Proof The proof is again by induction on t. Fort= N, we have RN(s. L) = P2L+pt£UI\ 

(s- L)] which is clearly concav<" 1n L. Assume fort+ 1 rbat. Vn-t(·) is quasi-concave. 

(s - L - j)+ i~ monotone decreasing in L which is quasi-concave. VH,[(s - L - 1)+] 

is quasi-concave. lienee. Rt(s. L) = P2 + JltEU 1\ (s- L)) + b \'t+d(s- L- j)+] is 

quasi-concave. So is Vt(.c;). D 

It is important to not.c LbaL Lemma 4.2.2 holds withom assumption (F). In Lhis case, 

the optimal allocation for low fares is as follo·ws : 

oo s-T. 

£;(s) = max{L ~ s: p1 L q.! + L q~(' 't+ t(.s- L- j)- \'t+1(s- L- 1- j)] ~ P2}-
J=3-L J=O 

Finaly. we shall investigate the impact of uncertaint~ on high fare demands. Let E 

and E be the expectations with respect to the probabilities qJ and 9! .respectively. To 

emphasize the dependence on q1 • we write 

aod 

Theorem 4.2.3 If E[j] = E[j] and 2:::~0 E;=O q] ::; L:~=O E;=O 9} for all{, then we have 

Vt(s,q) ~ \'t(.:>,q) for alii and s. 

Proof Since (j 1\ (s -L)) is concave in j and vt+1(s,q) is also concave ins, we have from 

the second degree of stochastic dominace 

and 

Hence, we obtain 

vt(s. q) 

E(j 1\ (s- L)) ~ E(J 1\ (s- L)) 

-L -L 
2:: q~vt+t(S- L- j,q) ~ L 9}l't+t(S- L- j,q). 
3=0 ~0 

max{P2L + p1£[j 1\ (s- £)] + EVt+t (s- L- j,q)} 

> max {pzL + PtE [ (j 1\ ( s - L)} + E vt+ 1 ( s - L - j, 7i)} 

Vt(s, q). 
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R emarks 2 Swce JiUJ = E[j] and Et=o L:J-""0 q] ~ L:~=O L:j=0 qj implies !hat variance of 

thf pmbabtlity q~ is smaller than ofq}, Theorem 4.2 .. 9 asserts that increasing the riskiness 

of demand di:;lrtbulJOrl is sacrificial to the airline:, expc.ctcd revenue. As a result of this. 

lhf airline company turns out to set the higher fan price. for increased unccrtamty of the 

fan. de rna nd to prolr.cl th c reven·uc. 

Tbis section shows t.hat there is a simple optimal sea~ aUocalion policy which is com

put.at.ioually f<>asiblc. In comparison 1.0 stati<' models . our dynamic model takes t.be time 

periods remaining until departure and allows fare classes to reopen after closing. 

Prior work on this problem falls into one of two categories and there are two different 

approaches to the problem. First, ma1.hematical programming has been applied into those 

works tog<>ther incorporated with network opLimization. (See Ladan~ [58J). 

Second. those works are ba..o;ed upon some restrictive assumptions (Rothstein [93]. 

Littlewood [65], Belobaba p 2], Curry [28], Brumelle et al. [21]). We follow this latter 

approach. \\'c formulate the problem as a :\larko\ian sequential decision problem w1tb 

discrete ttme. The discrel1zation is practical but makes it difficult. to keep track of the 

booking process of passengers. Possible future research is to incorporate explicity the 

overbooking phenomenon into the model. 

4.3 An Analysis of Airline Seat Allocation 

In lhis sect.ion we simultaneously consider the seat allocation between high and low 

fares passengers and the overbooking problem. which also extends the existing literature 

in three ways. First. the cost of lost sales which bas been ignored in the existing lit.er

ature (see [2~.[5),[8J is explicitly incorporat.ed into the model. Second. the overboolcing 

plteuomcnon is also explicitly treated. Third, the concept of spill rate is clarified into the 

passenger spill rat.e and th<> flight spill rate. It. is found that the results obtained here are 

in more close agreement. with actual airline prac1.ice. 

4.3.1 A Simple Seat Allocation Model 

ln this subsection, we consider a rather simple seat allocation model in which there 

are t.wo class of passengers. low and high fares passengers. Assume that they do noL both 
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cancel their booking resen·at.ions. So. in this case t.be airline compan) does not. have l.to 

overbook to bold ou t against. t.he cancellations of their passengers' bookings. We make 

three assumptions as fol1ows : 

Assumption (A) The lov. fare and high fare demand are independent t.o each ot.her. 

Assumplzon (B) Demand for low fares occurs earlier t.han for high fares, e.g. low fare 

demand bas a minimum advance booking requirement.. 

Assumption (C) The refused passengers do not pick 11p other flights of Lhc same carrier 

(caLled t.hc total loss of the spilled sales). 

Assumption (B) is known as early birds. Assurnpt.ion (C) excludes t.be possibility 

t.bat t.he denied low fare passengers may then purchase a high fare Licket . which is called 

"grade up". Define X and Y the random variable of the number of high fare demand 

with dist.ribut.ion function F(x) and Y l.he random variable of the nurnhcr of high fare 

demand with distribution function G(y), respect.J\'ely. \\'e use t.he follo.,.ving notations : 

P1 = the high fare: 

p2 = the low fare, 

C = the airplane capacity, 

1r1 = t.he cost of goodwill loss per high fare passenger due to the shortage of the capacit.y: 

L = the number of seats allocated to low fare passengers, so at least ( C - L) seats are 

available to h.igh fare passengers, 

a A b = min(a. b),a+ = max(a,O), and E= expectation operator. All variables are 

treated as continuous. 

Defining E R( L) the expected total revenue per .flight w ben L seats are allocated to 

the low fare demand, E R( L) can be written as follows ; 

which can be rewritten as 

ER(L) = p2 [foL ydG(y) + LG(L)) 

+G(L){p1 ( G-L xdF(x) + rx- [p1(C- L)- 7rt(x- C + L)]dF(xX}-1.11) 
Jo lc-L 
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where F(·) = 1 - P(·) and G'(·) = I - G(·). The problem is of chosing L to maximize 

J:JH(L) subject to 0 < L $ C. LcL f and 9 be density func~ions of X and Y, respectively. 

f( ·) and g( ·) are assumed to be positive on (0. C). 

P r oposit io n 1 Jf g(L )/G( L) 5 f( C- L )(F( C:- L) for alJ L. then an optimal number 

of scat.s t.o allocate to low fare demand L • is given by 

0. if P2 <(PI+ r.t)F(C). 

c - C- F-1 (~), il (p1 + r.I)F(C) $ P2 $ (Pt-+- ilt}F(O). (4.12) 

C, otherwise. 

Proof ER(L) is differemiablc. WeshaU show t.hat ER(L) is stl'ictly concave with respect 

to Lunder the <·ondition that g(L)/G(L) $ f(C'- L)/F(C- L). Bence. if it possensses 

a maximum, it is a unique one. Differentiating ER(L) results in 

dER(L) - -
dL = G(L)[p2-(p1 t~T,)F(C'-L)]. 

Differentiating CR(L) Lwice. we have 

cf2ER(L) - -
_ ____:_2 ...:.. = -g(L)p2 + (Pt + r.1)[g(L)F(C- L)- f(C- L)G(L)] < 0. 

dL 

(4.13) 

~ot.e that F(C- L) is monoton increasing inLand then the inverse ofF(·) e>..-ists. Since 

g(·) > 0 implies G(·) > 0, letting dER(L)/dL = 0 with cooclitton 0 $ L ~ C yields 

equation (4.12) . 

R e marks 3 Note that the optimal allocation to low fare demand L"' is independent of the 

distnbution of lou· fare demand, provided G( ·) > 0. L' is decreasing as ~;1 increases, and 

depends only on the relative low fare P2/ (p1 + 11'1 ). 

It. is difficult t.o provide an economjc int.erpretat.ion on the condition for Proposition 

1. g(L)/G(L) 5 f(C- L)/F(C- L). which looks like a failure rat.e often appearing in 

reliability theor). Inst.ed of doing that.. we consider a special case where there is strong 

demand from low fare passengers, that is, G( C) = 1 . For instance, the peak season may 

have Lbe demand distribution satisfying G(C) = 1. 

Assume that we can sell as many Jo" fare seats as we desire up to the capacity C of 

the plane. Lel R(L, X) be the revenue obtained if L seats arc to low fare demand and 
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C- L to high fare demand aud a demand f01 high fare X ts realized. Then, for 0 < L s C 

we have 

R(L.X) = P2L+Pt{C-L)AX-i.t(.\ -C+L)+. ( 4 .1•1) 

~ote that for each X.R(L. X) is concave in L without any condition. So, the expected 

revenue ER(L) = E{R(L, X)] is also concave in £. Because of tbe concavity, the optimal 

number of low fares r· t.o maximize the e>..-pected revenue can be determmed by looking 

at the incremental expected revenue from selling an additional low fare and stop sellmg 

when this becomes negative. The following corollary immediately follows from the fact 

that the assumption of Proposition 1 is sattsfied if G( C) = 1 for all C > 0. 

Corollary If there is an unlimited low fare demand. one should seU only LA low fares 

and protect C - L ~ seals for high fares. where £• is giYen hy 

L" = min{L ~ 0 : P2 S F(C- L)}. 
Pt + h"1 

4.3.2 Optimal Seat Allocation with Overbooking 

In this subsectjon we treat with an optimal seat allocation model allowing overbooking 

and cancellations. Assume that high fare passengers may cancel their reservat.ions but low 

fare ones can not. Hence, only high fare demands are overbooked. v\'e must determine 

both the maximum leYe) to accept the reservations from low fare passengers and the 

overbooking ratio for hlgh fare passengers. A sequence of operations is as follows i (i) 

choose the number of low fare seats to reserve! (ii) observe the number of realized booking 

progress of low fare passengers, and them (iii) determine lhe number of high fare seats to 

protect. 

In addition to the notations listed in Subsection 4.3.1, we use the following: 

Z = Lhe number of cancellations of high fare reservations, Z s X, 

1r2 = the cost per denied boarding due to overbooking, 

]( (y) = the number of seats allowed to book for high fare passengers when Y = y . 

which is assumed to satisfy I<(y) = (C- y A L)(l +a), 0 sa: s 1. 
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Hemembering L as the seat allocation for low fares, a pair of (L. a:) is called a booking 

st.rategy and sel lJ = (L, a:). We may possibly have L + K(y) ~ C' but L s C. 

R emarks 4 

{i) If h~,qh fn.rc passengers do not cancellhetr 1'C:iCrvations. so that the airline dof's not 

necessarily overbook) lhcn ihr.. booking .strategy can be wr·ittcn as B = (D.O). ?L'hich 

is red11ced lo K (y) = C - .1/ A L as samE. as in Subsection 4 .3.1. 

(ii) a: can be interpreted a::; an overbooking rolio for high fare passengers because 

yAL+(C'-yt\L)(l+a:)-C o:(C-yAL) 
- -a 

C-yt\L - C-yt\L -

So. a( C - y A L) sents arc Ol,erbooked for high fares. o = 0 corresponds to no 

ovcrbooJ...·ing w1lh which cases are treated in Subsection 4 .. '.J.J. 

Assumplion(D) High fare passengers may cancel their reservations indeprndent.ly 

with the equal probability (1 - 0 )· 

It is well known under assumption (D) that t.be probability distribution of the number 

of cancellations Z, given the number of reservations xis binomial with the mean .t·(l-0). 

that is. H(z lx) = P{Z $ z I X= .r} = Lk=o(k)(1-0)ko:r-k. z = 0.1. ···.x. So. a 

passenger may board on with probability 0. Put. {3 = (l +a) and B = (L. ,B) in stead 

of (L, a). Define ER(L, !3) the expected profit obtained from a flight when a booking 

strategy B = (L, {3) is used. Then, we obtain 

ER(L,/3) = P1bvExwEz1xfX A ((C - Y ) t\ L)/3- ZJ + p2 E[Y A L] 

-~~ ~ EvEx!Y[X- ((C- Y) AL),B]+ 

-(pJ + r.2)EyExwEz1x[Y t\ L +X A ((C - Y) A L)[J)- Z- Cj+ 

- P1 {E[X- Z I X$ (C- Y),B]P(X $ (C- Y)[3] 

+E[(C- Y),B- Z I X> (C- Y),B]P[X > (C- Y),B]}P[Y < L] 

+PI {E[X- z I X s (C- L),B]P[X s (C- L),BJ 

+E[(C- L)8- Z I X> (C- L)P]P[X > (C- L)B]P[Y > L~ 

+P2{E[Y I y s L]P[Y s L] + E[L I y > L]PlY > L]} 
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( 4.15) 



-7it{E[X- (C- Y)p I Y ~ D]+ P[}" ~ L] 

+E!X- (C- L);3 I } > £]+ P[Y > L~} 

-(Pt + 7i2){E[Y +X- z- 0 I X~ (C- } ")P]P[X ~ (C- Y),B] 

+ElY+ (C- Y),B- Z- C I X > (C- Y )d]P[X > (C- Y)8]} Pp · 5 L] 

-(Pl + ii'l){E[L -t X- z- c I )( ~ (C- L)p]P[X 5 (C- L);3] 

.L£[£ + (C- L)3- Z- CI S > (C- L)B]P[X > (C- L)P]}P[} > /,] 
{ (G-T.)/3 

- p10{G(L)[j
0 

xdF(x) + F((C- L)8)(C- L)J] 

r L r<c -y)IJ + Jo [}
0 

xdF(x) + F((C- y),B)(C- y)P]dG(y)} 

+P2 !oL ydG(y) + P2LG(L) 

-;;-dG(L) {'JO (x-(C -L)(3)dFtx) 
1cc-~)t3 

+ fLj oo (x-(C-y)B)dF(x)dG(y)} 
Jo (C y)/3 

_ {(C-L)IJ 
- (Pt + r.-z){G(L)[Jc-J. (L + 8z- C')dF(;r) 

+F((C- L){3)(L- C)(l - {30)] 
{L {(G-y)t3 

+ Jo lJc_
11 

(y+Bx-C)dF(x)+F((C-y)/3)(y-C)(1 -/30)]dG(x)}. 

The -first. two terms are the revenues for t.he high and low fares 1 respectively. The t.hird 

one is the cost of lost sales due to the booking limit. The last one is the cost of denied 

booking which occurs whenever the sum of the numbers of low fares and of confirmed high 

fares is larger than the capacity of the plane. Since the number of cancelled booking is 

binomially distributed, E[X -Z] = .bzEx[X -E(Z I X ) I Z] = E[X -X(l-0) = 8E[X]]. 

The problem is to find an optimal booking strategy (L-,,8") so as to maximize ER(L,,B). 

AII.er taking and rearranging the partial derivatives with respect to L and ,8, we have· 

P2 - 1r2B "'F(( C - L")P"') = F'(( C- L "').8")[.B"'(p10 + 111) ( 1.16) 

+an2 ll (a(C-L) I (C-£),8)]. 

G(L.)P((C- L")fj.)Q(L" ,(3") - lL" F((C- y)fj")Q(y,,B*)dG(y), (4 .. 17) 

where 

(4.18) 
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Q(y: 13) = (C- y)[p,B + rr1- 7rzH(a(C- y) I (C- y)/3)j. (t1.J9) 

and 

fJ · F(u) = lou H(L +X-C I x)dF(:r.). (4 .20) 

An optimal booking stra1 eg~. seat allocation for lo'v\ fart>s and overbooking ralio for 

high fares, must jointly satisfy equations (4.16) and {-1.17). Note that such an opl.imal 

hooking strategy is no longer independent of G( · )1 the probability dist.ribution of low 

fare demand&. Equations (·1.18) and (4.19) arc the net profits obtained from high fare 

passengers when Z 5 (C- y 1\ L).B. Equation (4.17) can, Lhereforc, be interpreted a~'> 

follows ; under the optimal booking strategy the expected profit from high fare demands 

when Y ~ L should be equal to Lhe one when Y < L. It seems to us that finding a 

closed form of an optimal booking strategy jointly satisfying equations (4.16) and (4 .17) 

is almost impossible. For this reason we consider a special case of overbookjng problems 

where there is only one class of fares. say high fares. 

A special case of overb ooking problems 

Suppose that there is only one class of fares. say a high fare class. With each fare 

booked we associat(' a random variable 

Di = { l if the i-th fare booked confirms. 

0 if the i-th fare cancels. 

Assume tbat { D1. D2, · · ·} are independent and identically distributed with mean EDl = 
0. If B seats are booked. then N(B) = L::!:1 D; seats are confirmed and the distribution 

of N(B) is binomial with mean EO. The revenue as a function of the number of seats 

available. L. and the number of fares booked. B, is assumed to be 

Since E[N(B)] = OB, the expected revenue function is 

ER(L,B) = P1()B- (Pl + 1r2)E!N(B)- L]+ -n1E[X- B]+. 

\Ve first compute t.he incremental revenue from an additional booking 

6R(L,B) = R(L) B + 1)- R(L, B) 
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where 

and 

- p1 [N(fl + 1)- J\'(B)J- (Pt + 'lf1)[(N(B + 1)- L)+- (1\ (B)-£+)] 

-r.t[(X- (B + l))t- (A - B)+J 

ZB _ { 

0

DBt1 if S(B) > L, 

if ~\ (B) < L. 

Zl -B - { 

1 if X > lJ. 

0 if X 5: B. 

:\ow. the incremental expected revenue can be obtained. 

tlER(L. B) _ ER(L. 8 + 1)- tR(L, B) = BD..R(L, B) 

- p,E( DBH)- (pl +Tit )EZB- iitEZ~ 

- PIO- (Pt + 1.) )OP{ Y(B) > L} + P{X > B}. 

ince "T\/(B) is increasing in B. so is P{S(B) > L}. P{X > B} is also decreasing in 

B. Therefore. b.ER(L, B) is decreasing in B. which implies Lhat ER(L. B) is concave in 

B. So, we should book fares so long as ER(L, B + 1)- ER( L, B) is positive. Hence, we 

arrive at. the follov,;ing theorem. 

T h eorem 4 .3.1 If we have L seats protected for high fares, it is optimal to book up to 

s · (L) where 

B"'(L) = min{B ~ Li; p10 :5 (p1 + 11"2)0P{N(B) > L} + r.,F(B)}. (4.21) 

Since P{N(B) > L} can be evaluated from a Lable of binomial distributions and P(B) 

is given, B"(L) can easily be calculated. Note that P{N(B) > L} and F(B) in equation 

( 4.21) is strictly decreasing in B. So, there exists a unjque solution satisfying ('1.21 ). 

4 .3.3 Spill Rates and Overbooking 

If passengers may cancel t.heir reservations wit.hout any penaliies, airline companies 

tend to overbook. However, such overbookings cause t.hem compensat.ion cost.s. Tf a small 
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number of seaLs are allocat.ed lo each fare class t.o prevent them Cram overbooking. they 

also lose refused boarding passengers rcsulL1ng in a cost. of goodwill lost. which is called 

spilling passengers of t.be airline. Hence. a booking strategy must be balanced between 

overbooking and spilling passengers. in thiR subsection we discuss the concepts of spill 

raLcs and the expected number of overbookings when you must obtain a cert.ain number 

of .. confirmed ,. seats. say t.he numbe1 of seats equal to the airplane capacity. 

There are 1.wo possible inlerpretations of Lhe lerm ·• sp1ll rate ,. in the airline coot.ext. 

The first. is that the spill rat.e is the expected proportion of flights on which some high fare 

reservations must. bf> refused because of prior low fare bookings .. which is often mcd in ·· 

Airline Yield Management·· articles. (For Example. see [6~. [62].) The second is that. the 

spill rate is the expected proportion of high fare reservations t.hat must be refused out of 

the total number of such reservat.ions. which seems to be more meaningful since it relalcs 

more closely t.o t.hc amount of high fare revenues lost.. \\'e provide formulae for calculating 

the spill rate under either interpretation and consider such spill rates associated with use 

of the revenue maximizing seat allocat.ion ru I e. 

The proport.ion of flighl5 refusing high-fare reservations, called the flight spill rate, 

can be expressed as 

R1 - P{X +LAY > C} ( 4.22) 

- G(L)F(C- L) + foL F(C- y)dG(y). 

It is easy to show that when S seats are a,·ailable for high-fare passengers the expected 

proportion of reservations refused will be F(S)E[X - S I X > 5]/ E[X~. Thus we have 

for t.he expedcd proportion of high fare reservations refused R2 called the passenger spill 

rate ; 

(4.23) 

where 

u8 = [(1/ F(S)) fsoo xdF(x)]- S. 

Consider tbe simple scat allocation model discussed in Subsedion 4.3.1 where the 

revenue maximizing rule is used to det.cmnine L\ t.he number of low fare seats t.o protect. 

Let s~ be t.be number of high fare seats to allocate. In this case we have 5 .. = C- L' = 
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F. 1 (p2/(p1 + 11" 1 )) from equation (4.12). F(Sk) = p2/(p1 + 1r1 ). In the extremf' case that 

low fare demand always exceeds the allocation of low fare seats. we have G(J,•) = 1. and 

the aboye formulae become : 

Xow. fmther assume that. Pd(p1 +1r1 ) = 0.1 (a typical ratio) and Lhal high fare demand is 

approximately normally dist.ributed with mean 100 scMs and standard deviation 20 seat.s. 

This will yield a spill rate (c>.rpressed as a percentage) of 40 %, if t.he first iuterpretatiou 

(R1 ) is used. H seems to us that. this figure i~ abnormally too high. However, if the second 

interpret.ation is used. we get us·:::::: 32 and then R2 :=:::: (0.4)(32)/100=0.128. A spill rate 

of 12.8 % seems in closer agreement with actual airline practice. 

GiYcn the probability dist.ribution for high fare demands, tbe problem of detcrmirung 

the seat allocation for each fare class is also of determining either spill rate. The more 

seats are protected, the smaller spill rai.e we have. However 1 tbe more bookings we acccpL~ 

the higher probability of overbookings we have, while at that time the spill rate is close 

to zero. So. the scat allocation problem is of trade off between a loss spill rale and a high 

overbooking ratio. Let us consider the following probability. What is the probahility i.hat. 

we must accept a certain number of bookings. say B, in order to obtain t.he number of 

confirmed seats which is naturally equal to the capacity of airline seat.s C, B ;:::: C. Lel 

q(B; C) be such probabilities. lt is easy to see that such a random variable follows a 

negative binomial distribution. that is, 

q(B;C) = (B -l )oc(l- O)B-c. 
C- 1 

(4.24) 

with mean CJO and variance C(l- 0)/02 . Note that variance rapidly increases as 0 --t 

0. This suggests that airline companies should make effort of reducing the cancellation 

probability. For example. tbe restriction on tickets or on booking procedures must be 

imposed. Equation (4.24) can be expressed in terms of binomial distribution b(n,c): that 

lS. 

q(B; C) = Ob(B- 1, C- 1). 

which can be evaluated from a table of binomial distributions. 
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4.4 Allocation of Airline Seats between Stochastically Dependent Demands 

This section deals with the problem of sett.ing a limit for bookings of airline seats in 

a ·· discount ·· fare class when t.bere is stochastic dependency bet wren demands for the 

discount seats and demands for ·· full fare ·: seaLs. Specificall}. the problem is examined 

as follows; 

Given probability dislribulions of fo1·ecasted dann.nd for di~counf and fu./1 fare 

passenger" for a gwen leg of a future flight. determine the .<;topping nile for 

discount bookmg that maxlmizes the expected total flight revrnuc. 

The main accomplishment of the present section is the introduction of a seat allocation 

model that allows for demand dependenc)- between fare classes. Also presented here are 

an c>xt.cnsion of the model ~o allow for con Lrol of the full fare passenger spillage (the 

rejection of full fare reservat.ion requests when a fhght is fully booked). consideration of 

the impact on passenger goodwzll of seaL allocation decisions. and a rigorous proof of a 

formula for op~imal seat allocations in the special case that dependency arises because of 

upgrades. 

A useful approach to ilie seat allocation problem was suggest,cd in 1972 by Littlewood 

[65). He proposed that an airline should continue to seU discount seats as long as the 

following condition held : 

(4.25) 

where PB is average revenue from discount passengers. P[·] denotes probability. }"is full 

fare demand, K is the number of seats available for the two fare classes. and 17 is the 

number of discount seats sold. The intuition here is cleat -sell an additional discount 

seat as long as the discount revenue equals or exceeds the expected full fare revenue from 

the seal. 

A second interpretation of ( 4.25) will prove useful in the sequel. If discount fare 

demand reaches the limit Tf on every flighL, the probability PlY > K- Tf] is the expected 

proport,ion of flight.s on which full fare demands is turned away. or spilled. The actual 

proportion of flights on which such spillage occurs is Lcrmed the flight spill rate. t.bus the 

probability above represents t.he highest possible .flight spill rate given the distribution of 

91 



Y demand. or maximum flight spill rate ( maximum because discouu~ bookings might no\, 

reach the limit TJ on ever) flight. ). When discount and full fare demands are independent, 

the maximum spill rate will increase as TJ increases. Littlewood's rule specifics thaL lhc 

optimal booking limit is the largest Yalue of 'I for which this maximal rat<' does uot exceed 

Lbe ratio of discount Lo full fare. '\'ith discount fares in the range of 30% to 60% of full 

fares. Lhe rule implies turning away one or more full fare booking r~qucst.s on 30 % l.o 

60 % of all flights when discount demands are high - proportion:" that seem higher than 

most airline managers would accept. 

A continuous version of Liulewood ·s rule was derived by Bhata and Parekh [14] in 

1973. Rilcher [86] in 19 2 gaYe a marginal analysis which proved that (4.25) gives an 

optimal allocation. :\ote of this early work allowed for lbe possibility of dependencies 

between classes of demand. 

More recently, Bclobaba [13] proposed a generalization of the marginal analysis ap

proach to more than two fare classes. In the same work IPP· 113-150]. Bclobaba discus~cd 

the possible impact of demand dependencies on book.;ng limits and showed with numerical 

examples Lhat. in a three fare class problem. the booking limit. for t.he lowesL fare class will 

be reduced as the correlation between demands for the two upper fare classes increases. 

He did not al.tempt l.o directly analyze that problem nor to examine the problem of de

termining the booking limit between two dependent classes (the problem exanuned here). 

Belobaba also proposed a seat allocation formula for the case that demand dependency 

arises because of upgrades. 

Before proceeding with a detailed analysis of the dependent demand case. we offer 

the following brief intuitive argument. The case considered fare is much the same as thai 

considered in deriving Littlewood's rule except that, herel the full fare demand distribution 

must be modified as each discount demand occurs because of the dependency between 

the demands. That is. after observing B 2::: Tf the full fare demand distribution becomes 

P[Y > K - Tf I B 2::: 77]. It seems reasonable to conjecture that tbe opLimal booking 

limit will be obtained simply by replacing t.he probability in Littlewood 's formula with 

this conjecLure is valid as long as the discount and full fare demands are monotonically 

associated a condition t-hat. will be prec1sely defined later. 
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The sect.ion is organized as follows. Subect10n 4.4.1 describes a general seal allocation 

modelt.hat will form the basis for later analyses. In Subsection 4.4.2, the allocation model 

is used to dcnve the above generalization of Littlewood's rule for t.he dependent demand 

case. 

Notation 

Our nolalion will follow· the conYeution that capital letters are random Yariables or 

functions. and Greek letters arc paramentcrs in the model. We wil1 use the notation 

a. V b =max( a, b), a 1\ b =min( a, b). and a+ =a V 0. The indicator operator I is defmed 

for logicaJ propositions as 1 if the proposition is true and 0 othNwise. For example, 

I 
{ 

1. if a< 3. 
{o <i3] = 

0. if a> /3. 
( 4 .26) 

The operator E denotes stochastic expecr.at.ion. 

4.4.1 A Seat Allocation :Vlodel 

This subsection present.s a general model for the seat allocation problem t.bat. will serve 

as a basis for t.be specific analyses of later subsections. It is similar in structure t.o optimal 

stopping models described in Chow. Robbins and Siegmund [25]. and Dermau and Sacks 

!34) and this correspondence will be used to characterize instances of the problem for 

which a simple rule yield an opl.imal solut.ion the so-called monotone class of problems. 

As discussed in the introduction, the following restrict.ions arc placed on the demand 

and decision processes. There is an initial demand for discount seats W"hich is followed 

by demand for full fare seats. Once the decision is made to stop satisfying requests for 

discount seal.s, no further requests will be accepted. 

It is assumed that the decision to close discount sales is made kno"ing only t.he number 

of requests currently accepted. The decision cannot .for example, involve any observations 

of the times at which the demands occur or t.be arrh·al rate of demands. Also, tbe decision 

cannot use any observations of full fare sales. 

Note that one way of relaxing the static nature of this restricted model would be 

t.o simply rE> appl) the model a~ demand forecasts are updated or other changes occur. 

Empirical work by Mayer [68J showed that such a heuristic applicaLion of LitLlewood's rule 
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results in onl~ slighL losses in revenues relati\'e lo more complex dynamic optimization 

methods. Also. simulation work by Titze and Greisshaber [121] shows that.. in practice. 

the strict booking sequeuce assumption can be relaxed somewhat.. 

Let p8 and py denot.e t.he average revenues per discount. and rull fare booking. rc 

spectively. The revenue resulting from booking ( B 1\ 71) discount. pa..c;scngers wiU be 

p8 (B 1\ TJ). Define F(q) Lo be t.he seats remaining after discount. bookings are closed. 

so that F(TJ) = K - (TJ 1\ B). It. is assumed that t.bere is now an additional demand for 

a total of Y( 7]) full fare demand might depend on t.he decision variable TJ, as is the case 

when a proportion of customers denied discount bookings elect t.o upgrade to full fare 

bookings . .Moreowr. it is not assumed that. 8 and } (7J) are independent.. 

By accepting as much of the demand Y(7J) as possible. an additional revenue of py() · 1\ 

F( 17)) '"'ill be generated. [n the case that a goodwill cost or penalty is incurred for turning 

away full fare demands. the unsatisfied portion of this demand will incur a t.ot.al cost of 

pc(}·· - F(17))+ ; where Pc is t.he goodwill cost per reject.ed fuU fare passenger. 

Combining the above revenues and costs gives t.be net revenue fundion 

R(17) = PB(B 1\ 17) + py(Y(17) 1\ F(ry)) 

-pc(Y(7J)- F(ry))+, 

(4.27) 

whose ex:pectat.ion is to be maximized as a function of TJ . Since jt, is uot possible to allocate 

more than the available capacity) R( 7J) is only defined for 7J such t.bat. 

0 ~ 17 < K. (4.28) 

. ·ow suppose 7J- 1 requests have been accepted from the discount demand. and an 

additional discount request is received; (i .e., B 2: 17). If bookings stop at 7J -1, then the 

expected revenue is E[R(17- 1) I B > 7J). If the additional request. is accepted, expected 

revenue will be E[R(17) I B > 7J] . It is useful Lo write the expected increment.al gain, G(7J ), 

of accepting an add itional request. It follows from (4.27) that 

G(7J) - E[R(7J) I B 2: 71]- E[R(7J -1) I B > 17] 

- PB + pyE[Y(17) 1\ (K -7])- Y(7J- 1) 1\ (~e -7] + 1) I B 2: 771 

+pcE[(Y(7J)- (~e -7J))+ - (Y(7J- 1)- (~e- TJ + 1))+ I B 2: 77}, 
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{4.29) 

provided I'[B 2 17] > 0 so that the c;onditional expectatiOns are defined. If B is less than 

'1 then the decision to accept. or rejccl the T]th request can ucver arise and G( 71 ) is not. 

defined. 1'h<! domain of G is al5o limited t.o that of R(rJ), as specified by condition (4.28), 

above. 

The gain function G(7J) is just the first difference of the expected revenue funct.ion. 

Clearly, a hooking lirrut of TJ will be preferred to TJ - 1 whenever G(J7) is posni,·e. 

Furthermore. if G(17) is nonnegat.iw: for all q up to some 17·. and nonpositive thereafter. 

then r( will he: optimal. 

Tbe S{'at. allocation problem belongs to a class of stochastic optimization problems 

known as optimal stopping problems. Within that class of problems. those defined as 

monotone have part.icuJarl) simple solutions. The seal allocation problem is monotone 

if the following conditions are satisfied : 

1. There IS some r( such that the gain G(77) is nonnegative ( and defied ) for 71 ~ 1( 

and uon positive (or not. defined ) for 11 > 77" ; and 

2. I V(ry) - Y(17- 1) I is bounded in 11· 

U the model 1s monotone. then the expected revenue will be maximized by accepting 

up to 1( requests from the B demand: that is. by protecting K - 17- seats for full fare 

customers. The expected revenue is maximized in the sense that no policy which only 

uses the informalion obtained by observing /[B~'Il can do better. 

The following subsections will consjder applications of the above model to specific 

allocation problems which are monotone . 

4 .4 .2 Specific Seat Allocation P roblems 

This subsection specializes t.be above model to three variants of the seat allocation 

problem wilb dependent demands. In the first variaDL, it is assumed that there are no 

penalties for refused bookings and that there are no penalties for refused bookings and 

that full fare demand is not influenced by the discount booking level 17 . The second 

considers the loss of goodwill associated with full fare passenger spillage by introducing 

a penalty for refused book1ngs. The third deals with t.he upgrades case in which ulLimate 

full fare demand is influenced by the discount booking level. 
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A Simple Seat Allocation M odel with Dependent Demand 

The model analyzed here is the nsual seat allocaUon model except that the demands 

of the two fare classes. }' and B are allowed to b<' stochastically dependent. 

\\'ilh reference to the general revenue model ( 1.27). assume no penalty cost~. so Pc == 0. 

and assume that full fare demand is not influenced by the booking limit assigned to 

discount fares. so that. Y(77) =}' .for 77 = 1. .... /\. :'\ole that since derna.ocl is an i.nt.eger. 

Y > K - 71 is the same as Y ~ K - Tl + 1. 

L:sing these properties, the gain associated with increasing the discount booking limit 

from 17- 1 to 11· given by ( 1.29). can be simplified t.o 

G(77) = PB + pyE((}' A (K -77)) ( L30) 

-(Y A (K- 77 + 1 )) I y > K- '1· B ~ 17] . PlY > K- 17 I B ~ 17] 

- PB- py P[Y > K- 7] I B > 17]· 

This expression has a familiar interpretat.ion: when an additional seat is sold to a discount 

customer. there will be a certain gain of one discount fare. and if full fare demaud exceeds 

the new lower protection level1 there will be a loss of one full fare. 

The expected gain is positive whenever G(ry) > 0. or equivalently whenever 

U it is the case that 

PB 
P{Y > K,- TJ I B > Tt] < -. 

py 

P[Y > K- 111 B > 77] is nondecreasing in 77, 

t.hen G(17) is nonincreasing in 77~ and the problem is monotone. 

(4 .31) 

(4.32) 

Henceforth: property ( 4.32) will be referred t.o as the monotonic association property. 

Loosely speaking, tills property specifies that as the discount booking limit increases, the 

full fare spill rate tends to increase. 

A suitable 17 to satisfy the definition of an optimal solution in a monoLone problem is 

11· - rnax{ry : G(71) > 0} ( 4.33) 

= max { 0 $ q < • : P[Y > < - q I B ?: qJ < ~~ } , 
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where we will adopt. the convention t.hat 17~ = 0 if PlY' > K] ~ PB/ Pl' so that the maximum 

is over t.he empty set. ( Recall t.baL the domain of G consists of t.hose 11 between 0 and 

K such t.hat P(B 2:: 77] > 0. ) H is t.lms optimal Lo sell at most. r( seats lo customers 

rcquestmg discount fares. 

.:\ot.c that. the probabilit) P(Y > K - 11 I B 2:: q] can be interpreted as the maximal 

.fltght ~pill rate as was Lh<' analogous term in Littlewood's rule (1.25). But then (4.33) is 

just. a generalization of the fact thaL this rat.c should be just. less than the discount/full 

fare ratio. 

If the demands are independenL. t.ben (4.32) clearly holds, and the optimality condition 

become::, 

11· = max { 0 ~ q ~ K : P [Y > " - '7 J < ~; } . (4.31 ) 

ln this case t berc 1s not a unique 17· which is opt.imal. The 77· defined by ( 4.3~) is t.he 

smallest. The largesL optimal discount booking limit is obt.ained by permitting equalit.y 

in (4.33) : 

TJ . . = max {a ~ 17 ::; K : P[Y > K- TJ 1 B ~ 17~ < PB}. 
P't' 

(4.35) 

This is just. Littlewood's rule (1 ) excepl that now dependenc) bet.ween discount. and 

full fare demands is allowed. subject to the monotonic associat.ion propel't.y (4.32). 1 he 

following subsection illustrates the effect of such dependency. 

4.4.2.1 Example : Seat Allocation with Dependent Demands 

Table 4.1 presents an example of optimal discount seat booking limits for a range of 

cabin capacities and for both independent and dependent demands. For this example, t.be 

discount fare was fixed at. 60 % of lhe full fare, and discret.e approximations to bivariate 

normal distributions \vere used to model tbe discount/full joint probability functions. ( 

Recall that monotonic association condition is satisfied by positively correlated bivariate 

normal random variables. ) The mean combined demand was 100 seat.s in all calculations. 

In the dependent demand case, a high correlation ( p = 0.9 between discount and full fare 

demands was used in order to obt.ain approximate upper bounds on the revenue 1ncreases 

that result (rom taking dependency into accoun&. 
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Table 4.1: Effert of l)emand Dependency on Discount Seat Bookjng Limits 

Booking Cabin Capacit) 

4,6 60 80 100 120 140 

Discount booking limit: 19 33 53 73 93 113 

Tl(P = O)a 

full fare protection: '27 27 27 27 27 27 

K-'f/ 

Discount booking limit: 19 32 49 65 81 97 

(p = 0.9)b 

Full fare protection: ?~ _, 2 31 35 39 13 

Percent revenue 0 0.08 0.54 1.25 1.27 0.71 

increasec 

a. independent: correlation = 0. For all calculations. mean demands were 70 discount 

and 30 full: and standard de\iations were nominally 26.5 discount and 11.5 full. 

The standard deviations varied slightly between cases because of the discretization 

procedure. 

b Dependent: correlation= 0.9. 

c Revenue increase achieved by allowing for dependency. 

W ith reference to Table 4.1. note that in the independent case. the optimal discount 

booking limits correspond to a fixed protection level of 27 seats for full fare passengers aL 

all cabin capacities. The discount booking limits are increased as capacity increases in 

order to keep the maximum flight spill rate for full fares in balance with the discount/full 

fare ratio as discussed earlier. Since the mean demands are being held constant. for 
l 

all cabin capacities, it appears that increased capacity is being allocated exclusively to 

discount demands. Recall, however, that unsold discount seats can be sold to full fare 
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passengers. ln l.he capacity = 140 case. for example, the majorit} of Olghts wiU have 

discount demand& of less than 113 seats, and full fare sealing capacity \\·ill be accordingly 

larger than 27 scats most of t.he time. lt is onl} when discount demands reach 113 seats 

that the marginal revenue considerations expressed bj equation ( 1.34) dictate closing 

clown discount sales. 

In Lhis example. the optimal full fare protcct.ion level mcreases witu capacity when 

discount and full fare demauds are dependent (the p = 0.9 case). The same spi11 rate hal 

ancing considerations ar<' acting here; however, because of the posit.ive correlation between 

demands. the d1sr...ount hookmg limits are not. increased as murh as in the independent 

case. (The information that discoum demand bas exceeded some value should imply an 

increased probability of higher full fare demand and should lead to higher protection levels 

for full fare seats.) Tn fact. it bas been shown by Mcgill [69] that . with bivariate normal 

demand djst.ributions. tbe optimal discount booking Hrnil always decreases as correlation 

increases. 

With small cabin capacities relative to demand (capacities of 46 seat& or fewer). the 

booking limits in the dependent case are the same as those in the independent case, 

as there is no revenue benefit from taking dependency into account. This i because with 

small capacities the discount. demand is almost certain to exceed the discount. seat hooking 

limil. and so P(Y > K - T} I B 2: T'JJ ::::: P[Y > K - 77). For large capacities relative to 

demand (somewhat. greater than 140 seats), the optimal discount booking limit in the 

independent. case will be substantially lower than that in the dependenL case ; however, 

the corresponding revenue benefits will be negligible as there is ample space for both fare 

classes under most. reali?:alions of the demand process. 

Implementation 

The optimal booking rule for lhe dependent demand case (4.33 ) is simple to implement 

as a planning tool if some joint distribution such as the bivariate normal is assumed to hold 

for the demands. In this case it is straightforward to calculate the conditional distribution 

P[Y > K- 17 I B 2: 77) for enough values of Tl to solve the optimalit) condition. It is t.hen 

possible to study the impact of hypothesized shifts in the demand distribution or in other 

parameters in much the same way as in the example above. 
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Implementation of the dependent. demand booking rule as a control tool in a reser

\'ations system is also possible, but less straightforward. Estimation of the conditional 

demand distributions can be done, as above. by using a joint demand distribut.ion. ln 

this case. however t.hr parameters of t.he dist.ribution must. be oblaincd by rtLting t.o his

torical data and, po5sibly. by adjusLing for ant.icipated market conditions. This fitting 

process is not stratghlfor·ward since 1) demand data from a hist.oty of pre,·ious flights 

will be censored whenever demand reaches a booking llmit or the capacity of t.he aircraft,. 

and 2) the parameters of the demand distribution depend on external factors like fares. 

competition and time [o year. The same problems with the estimation problem in Lhe 

dependent demand case. 

The spill rale interpretation of the optimal allocation rules suggests a second. simpler. 

application. Over a series of flights for which the underlying demand distributions are 

considered stable (e.g .. within one season. mid-week flights) the optimal allocation rule 

in either the independent or dependent demand cases specifics that the maximal spill 

rate should be as close as possible to, without exceeding, the discount/full fare ratio. 

An observed proportion that is too high would indicaLe that. the discount booking limits 

have generally been too hjgh. Similarly. a proport.ion that is too Jov. would indicate that 

booking limits have been too low. This approach has two significant advantages. First: 

there is no requirement for modeling the demand distribution. and second, there is little 

computational difference between the independent and dependent dcmnad casE>s. To sec 

the second point not.e that the observed maximal spill rate in the independent case will 

simply be the proportion of flights on which full fare demand exceeded the protection 

level K - "l· In the dependent. case. it will be the proportion of those flights on which the 

discount booking limit was also exceeded. This technique does not provide a practical 

way of controlling bookings on iodjvidual flights since airlines perform such control based 

on individual forecasts of demand and other factors ; however, it does provide a simple 

way of monitoring past performance relative to theoretically optimal booking limits. 

4.4.3 Full Fare Passenger Goodwill and the Spill Rate 

Airlines are justifiably concerned about the impact of discount seat allocation policies 

on the number of full fare reservation requesls that, must be relurned away. This number 
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expressed as a proportion or total full fare demand is the pa.s!-ienger spill rate, 01' simply 

spill ralr.. The related. but different. proportion of flights on which one or more reservation 

requests arc turned away. or the flzghl spz/l rate has been discussed earlier. 

\Vil.h monotonically associated demands. full fare spill rates are most severe when 

discount d<•mands are sufficienlly high that the discount booking limit is always reached. 

Linder the~e circumstances. the morunal flight spill rate and the actual flight. spill rate 

will be t.be same. If an optimal seat. allocation rule is used (in either the independent or 

dependent. demand case). the flight spiJJ rate wiJl be close to the discoumjfuU fare ratio. 

For example. consider Lhe independent demand case with a plane capacity of 100 seats 

in Table 1.1. If mean low rare demand is significantly higher than 70 seats so that. tbe 

discount booking limit of 73 seats is reached most the time. and full fare mean demand 

remains at. 30 scats. then the flight spiU rate is approximately 60%. since PJ/ Pr = 0.60. 

In t.his example. the full fare passengers are essentially being booked into a fixed 

allocation of 27 seaLs. In a report. prepared by Boeing Compuier Services. Harmer [12] 

gives a simple formula relating passenger and flight. spill raies under these circumstances. 

when t.be full fare class has a normal demand distribution . 

Let a denote the fixed allocation of seats. and let rp andrp denote the passenger and 

flight spill rat.cs respectively. Then 

( 4.36) 

where J.l,y and O"JJ are the mean and standard deviation respectively of the demand dis

tribut.ion. <P( ·) is t.he standard normal probability density, and z
01 

is the standardized 

allocation (a- J.J,y)jO"y. 'Cpon applying this formula to the example aboYe, it is found 

that the passenger spill rate corresponding to the 60% flight spill rate is 21%. 

It. is dHiicult to obtain reliable data on actual airline passenger spill rates, but it is 

hard to imagine that airline managers would tolerate t.uroing away 21% of their best 

customers, even given the high demand for discount fares assumed in the example. 

There thus appears to be a substantial discrepancy between spill rates corresponding 

to optimal booking limits and the spill rates that would be tolerated by airlines. Possible 

explanations for this discrepancy include the following: 

1. Optimal allocation rules may simply not be used by many airlines. 
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2. The airlines may he compensating for demand dependencied. eith(>r deliberately or 

on a trial-and-error hasts, by lowering discount. booking limit.s below those specified 

by the simple allotment rule. 

3. The discount and full fare demands may overlap in Lime t.o a sufficient degree. Lhat. 

the observed full fare demand can be used to adjust the discount hooking Limit. 

4. \'oluntar} .. bumping·· of discount passengers may be used to permit high overbook 

ing levels for full fare passengers, t.hu~ reducing the effective full fare spill rate. 

5. The discount booking limits may be adjust,ed dovmward in an ad hoc fashion t.o 

compensate for the perceived extra value of full fare passengers above and beyond 

thier higher fares. (Full fare passengers are predominantly comvosed of business 

travelers who can be expected t.o travel more frequently than the discount,, predom

inantly leisure, travelers. Low spill rates can be seen then as a way of promoting 

future earnings from these customers by maintaining passenger goodwill.) 

The latter case, which recognizes the goodwill benefits associated with serving the full 

fare passenger, is now examined. 

The effect of not being able to accommodate a full fare passenger can be Yiewed in two 

ways. First. a goodtvill premium of Pa can be included in the full farc .• \l ternatively, the 

revenue derived from a full fare can be kept at py. and a loss of goodwill can be incurred 

for each full fare cust.omer not accommodated. The argument used in Subcction 4.4.2 can 

be applied to this version of the revenue model to derive the opt.imalit.y condition. 

Tf"' - max{Tf~O:G(TJ)>O} 

- max {0 5 1J 5 k: 

P[Y > k - ,.,, B ~ Tf] < p B } . 
PY + PG 

(4 .37) 

It is clear from (4.33) with py replaced by py + PG, and from ( 4.37), thai the optimal 

allocation will be identical with either interpretation of goodwill. That is. the same 

number of seats should be protected whether a loss of goodwill is incurred worth pa per 

full fare customer denied a booking or whether a gain of goodwill is accrued worth Pa 

per full fare customer booked. In either case, the incorporation of goodwill considerations 

will increase the full fare protection level and reduce the full fare spill rate. 
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To illustra~e one implication of (4.37). consider an airline that wishc::> to limit its 

passenger spill rate to 3%. From formula (4.36), using tbe same assumptions as the 

example given above. a passenget spill rate of 3% corresponds Lo a flight, spill rat.e of 

15%. And this in turn corresponds to a goodwill premium or Pa:::::: 3py (the solution to: 

0.15 = 0.6pyj(pv + Pa)). Thus a goodwill premium of three Limes tbe full fare would be 

required t.o jnst.ify restricting the spill rate to 3% (assuming none of tbe other spill rate 

cont.rol met.hods. mentioned previously: are being used). It is not. clear whether such a high 

premium is just.ified. Such a jusLification would depend upon an airline's assessment of 

the proportion of thier full fare cusLomers who might he lost permanently to competitors 

after failiug to obLaiu a booking. 

Perhaps one of the chief uses of Equation (4.37) would be. as in this example. to 

impute the goodv.;ll premium implied by a particular spill rare policy. 

4.4.4 Upgrades 

We now examine the case in which the dependency between discount and full fare 

demands arises because of a tendency for some discounL fare customers to upgrade to full 

fares if denied a discount reservation. If this context, it will be assumed that the upgrading 

tendency is the only source of dependency and that the initial B and y demands (i.e .. 

before upgrading) are independent. Under these circumstances. t.he ultimate y demand 

will depend hot.b on the B demand and on the booking limiL set for the B demand. It 

is Lhis dependency on the booking limit that necessitates an analysis separate from and 

more involved than that for the dependent demand case discussed in Subsection 1.4.2. 

):ote that. the optimality condition derived here was previously proposed without. formal 

proof by Belobaba [12, p. 130. equation 5.53] and that a similar resuLt has been obtained 

independently by Pfeifer [84] using different methods. 

The purpose here is to provide a formal proof of t,be result within the cootexL of a 

general model for the seat. allocation problem. 

To model the upgrading. define 

D, = { 1 if the ith customer would upgrade if denied a discount fare, 

0 otherwise. 
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Assume that { D1 , D2• · • ·} are independent and identically digtrihntcd with ED, = ~, 

being the probability t.hat a customer denied a discount fare will upgrade. Also assume 

independence of tbe process { D1 • D2 , · · ·} of upgrades. the demand {] for discount fares, 

and the demand Y for fares exclu.<;ivt of the upgrades. Let U(77) denote lhe loLa! number 

of upgrades when the d1scounl booking limit Js q; that is. 

;;;.8 

c( 77) = I: n •. (L39) 
I;;. lj-\ ) 

This quantity is. of course. zero if B ~ TJ. ldentification of this model with the general 

revenue model (4.27) is t.he same as in Subsection 4.4.2 except. that now 

Y(77) = Y + u(77) (4.40) 

is the sum of the full fare demand and upgrades. 

To motiYate the optimality condition, marginal analysis cau be used as in Belobaba. 

If a discount fare customer is booked. then tbe re\·enue is PB· If a discount. fare customer 

cannot be booked. then with probability 1 t.bcre is an upgrade generating revenue Pl'. 

and with probability 1 - 1 there is no upgrade. In the later case, t.he booking decision 

will have no impact on revenue if B:::; Tf· However. if B > Tf 1 then additional revenue fJr 

wiU be obtained if the seat being considered is \lSed either by some other upgrade 01 b) 

a full fare customer. This analysis leads one to conjecture that it is optimal to book a 

discount fare customer if 

PB > AfPY + (1 -1)P[(Y + U(77 )) > k- 77IB 2: 771· ( 4.41) 

To verify this optimality condition, compute G(-11) from (4.29). Letll(TJ) = [Y(TJ) 1\ 

(k- TJ)] - [Y(TJ- 1) 1\ (k- 77 + 1)]. To evaluat.e H consider two cases. First suppose 

that Y(7J) > k -7]. Then Y(TJ - 1) 2: k- 77 + l and H(71) = -1. Second, suppose that. 

Y(77) ~ k- 77· Then Y(7J -1) ~ k- TJ + 1 and H(7J) = Y(7J)- Y(77-l) = -D11 • Thus (5) 

reduces to 

G(7J) - PB- pyP[Y(TJ) > k -7]jB 2: 7]j- pyP[Y(TJ) ~ k- TJIB 2: 77]E[Deta] 

- PB- (1 -1)pyP[Y(77) > k -7]1B 2: 77} -"'fpy, (4.42) 

where the assumption that D11 is independent. of B and of Y is used to obtain the first 

equation. 
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1 L remains to be shown that the problem is monotonP by est.ablisbrng that. G( ,
1
) is 

nonincreasing in 77· llsing the fact that D < 1 ciYes ,_ 0 

&;;;:8 

P[Y(7J- I)> k -7] +liB 2: r1-11 = P[(Y + L Di) >A·- Tf + ljB ~ r1- 1] 
I=!J 

J;;;.8 

< P[(Y + L D) > k- 'liB ~ lJ- 1] 
1=!7+1 

- P[Y(77) > k- 77lB 2: 11- 1J. (4.43 ) 

By conditioning on whether B = Tf - 1 or B > 77, and manipulat.ing the conditional 

probabili tics, PlY ( 77) > k - 77111 > 11 - 1 J can be wri Uen as 

P[Y(17) > k- 77IB 2: 77] + P[B = 11 -liB> 77- l J 

(P[Y(rJ) > k -11IB = 11-1}- P[Y(17) > J.·- qjB 2: ~1H) 

The diJTerE>nce in the last Lerm cannot be positive since 

p [}" ( 7]) > k - 7JI 8 2: 77 J > p [Y > k - TJ I B ~ 71 J 

= P[Y(TJ) > k- 77IB = TJ -1]: (4.1.5) 

where the assumption that Y andB are independent and the observation that C(rt) = o 
if B = r1-l are used to obtain the last equation. Replacing the difference in (4.44) by 0. 

and using the inequality (4.43). shows that 

P[Y(17- 1) > k- Tf + !JB > 77-1] < P[Y(77) > k -11JB > 77], (4.46) 

and so G('l) is nonincreasing. Then. from (4.39) and (1.42). G(r/) will be positive as long 

as 

P[(Y + U(71 )) > k -l71B ~ 7l] < PB- "'PY, 
(1-r)Pl" ( 4.4 7) 

which is equivalent t.o (4.41). Define 77* to be the largest TJ(O ~ 17 ~ k) satisfying (4.47). 

As with opt.imallt) condition ( 4.33) . set 7]* = 0 if no 77 can satisfy ( 4.4 7). This wiU be 

the case, for example, when -y is sufficiently large that the right hand side of (4.33) is 

nonpositive. This 77-. satisfies the condition in the definition of a monotone problem and 

IY(77)- Y(77-I)j ~ 1. Hence the problem is monotone and it. is optimal to book discount 

fares up to 7J*. 
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lmplernentaJ..ion 

Tbe comments made earlier regarding implementation of the d~pendenl demand so-

lution apply again here. In ~he present case estimation of the joim dblribution of 

y + C(ry)and B will be somev1hat easier aioce ) · and B can be estimated indepcndcn~ly 

and then y adjust.cd by the binomial dist.ribu1 ion L/(71) for each 11. AltC'naLively, svill 

rale control approach could be applied with no change except for adjustment. of the dis

count/full fare ratio as indicated in (4.47). 

A numerical example of the usc of lhc upgrades formula is provided in Belobaba P 3. 

pp. 138-139]. 

4 .4 .5 Summ ary 

This subsection has preseuLed a simple resource allocation model and applied it \.o 

airline seat allocation problems. For ease of reference. the main re!'ults are summarized 

below: 

1. \Vhen discount and full fare demands arc bivariate normal with positive correlation. 

optimal discount seal booking limit wiU be less than or equal to that specified by 

Lill.lewood's rule {independent. demand). The optimal limit. will decrease as the 

correlation increases. 

2. With monot.onicaUy associated discount and full fare demands B and Y, respec

tively. cabin capacity k, discount fare PB· full fare py, and full fare goodwill premium 

p
0

; iL is optimal to lomiL discount fare bookings to 'r/* seats. where: 

q• =max { 0 $ q < k: P[Y > k- q[B > q] < pyp: PG} · 
Again, this will result in a lower discount seat. booking limit. 

3. \t\'hen the discount and initial full fare demands are independent. but. t.he presence 

of upgrades creates a dependency between discount and ultimate full fare demand. 

results ( 4..37) and ( 4.4 7) can be combined to obtain the following optimal discount 

seat allocation: 

{ 
PB- I(PY +Po)} 

T!* =max 0 ~ 17 ~ k: P[Y + U(T!) > k- T!IB > fl} < (l -I)(Pl' +Po) . 
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where "f is the upgrade probability, and L ' ('I ) is the total number of upgrades given 

discount allocation T/· 

Once again, this implies lower discount seat booking limits. 

It has been sbown lhat t.bese coodit1ons are optimal among all polic1es thai use only 

lhe information B > 11· Gi,·en st.able fares. the only possible justification for changmg an 

optimal booking limiL is a perceived shift in the joint dC'mand distribution for discount 

and full fares. 1 hus. for example, the occurrence of a sudden '·flurry'' of discouDL demand 

at some pojnt. in the booking process cannot in itself justify a change in the booking limit 

unless it can be validly associated with a change in the joint demand distribution. If it is 

decided t.hat sucb a change has occured. a reasonable response is to simply recalculate the 

optimal booking limit on the basis of the new joint demand distribution and seat. capacny 

remaining for Lbe fligbL. 11ore sophisticated dynamic modeling is required Lo optimally 

account. for t.he possibilit.) of periodic re\·ision of the joint demand dist.ribution on the 

basis of more information than B > rJ. 

The three varianLs of optimal booking conditions given above all suggest lower discount 

booking limiLs than those implied by Littlewood's rule for independent demands. This IS 

important since these resuh.s are more easily reconciled wit.h t.he low full fare passenger 

spill rates actually observed in practice. X umerical examples suggest that. the revenue 

gains from application of these condiLions may be modest. (e.g .. 1.3% in the extreme 0.9 

correlation case in Table 4.1). However, given the largely fixed cost. low margin natuTe of 

airline operations in competitive markets. sucb reYenue gains represent. almost pure profit 

and thus arc greatly magnified in terms of profit. impact. 

With the exception of independent demands. this paper has retained many of t.he 

strong assumptions required in earlier work on the two-fare allocation problem. One 

direct.ion for further work is in developing the type of dynamic policy mentioned above. 

while another is in estimating joint demand dist.ributions on the basis of data that has 

been censored by the presence of booking limit.s. T he authors are currently pursuing bot.h 

of these ~opics . 
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Chapter 5 

Optimal Portfolio Selection Models 

5.1 Introduction 

In this chapter we demonstrate that when there are more t.hao t.wo assets, we show 

how t.o dcr)ve an optimal portfolio so as t.o maximize the expec~ed mibty function defined 

on the wealth of an investor. The key idea is a trade off bclween return and risk. This 

observation is one oi the motivation to characterize optimal portfolios which have thC' 

minimum risk for the various levels of expected rate of return. 

In Section 5.2 we develop an asset allocation model wilh various risk measures '"hicb 

is quite different from t.he mean-variance porfolio models. From institut.ional im·estors· 

perspective the purpose of investing is to achieve a Larget level of raLe of return Lo meet. 

the cash flows of the business. A situation unfavorable to this purpose is penalized as a 

risk. The model developed here is in closer agreement with actual practice in Japanese 

financial institutions. (Refer to Sawaki [105]) 

In Section 5.3 we treat with a systematic approach of optimal consumption and port-

folio selection models under the setting of stochastic optimal control. Stochastic processes 

for the asset prices are semi-martingale. Main results obtained for ~be model are an opti

mal policy for consumption and portfolio selection. an equation t.hal the expected excess 

return of each asset should satisfy, and the closed solution for a special class of risk-averse 

utilit.y runctions. Those results are driven by Sawaki and Lin [108]. 

In Section 5.4 we discuss optimal exercise policies for a discrete Lime option model in 

which state o{ the economy follows a Markov chain and stock prices fluctuat.e according to 

the distribution of Lhe product o{ independent positive random variables. VtJe show under 
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some spC'cific assumptions that there exist a simple optimal exercise policy which depends 

only on the slock pric<" and the state of economy. Furthermore, a simple altcrnatiYe 

derivation of the Black and Scholes· option pricing formula is presented by the means of 

an analysiS developed by Sawaki [103J. 

5.2 An Asset Allocation Model with Various Risk Measures 

For t.he majorit)' of inst.iLutional in\·est.ors the maio objective of asse1. allocaLion is 

achieving sufficient return to satisfy t.he demand for cash that is generated by t.he business 

activities of t.be enterprise. What is the risk to intilutional im·estors in the light of this 

objective? Previous analysis bave measured risk in Lhe terms of mean and variance t.ypcs 

(~larkowitz 1959), safety-first criterion t.ypes (Kataoka 1963; Pyle and Turnovsk} 1970). 

absolute-deviation types (Konno and Yamazaki 1991 ). and. more generally, by the shape 

of ut.itity function. The problems pointed out by these measures of risk were. one. the need 

for an enormous amount of computation and an enormous amount of data input labor for 

large-scale problems. and two. the difficulty of identifying investors· risk preferences and 

the discrepancy between investment behavior among institutiona.li.nvesLors. 

In this section risk is defined as an allocation performance that falls short of the tar

get return of asset allocation made on the assumption of institutional investors. and a 

new asset allocation model is de\'eloped that imposes a penalty when such unfavourable 

situations have been generated. The advantages of this approuch are. one. it avoids the 

problems mentioned above, and two. it becomes possible to avoid handling expressly the 

utilit.y function that is the risk preference of investors. Recognizing as a risk a situation 

t.hat falls short of the target return seems to be an approach that agrees more closely 

with actual pradice in the investment arena by institutional investors in Japan. This 

sort of formulation is an optimization problem that belongs to the class of stochastic 

programmings with recourse and the actual problem is one of large-scale mathematical 

programming. The most essential characteristic of an asset allocation model is that . to 

counter the fact that t.here is uncertainty about asset. returns, the optimization technique 

based on maLhemaLical programming basically assumes the handling of a deterministic 

amounL. Hence, lhe compulat.ional algorithm for the asset aUocation model also involves 
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a development of the procedures on how to transform a stochastic quantity into a deter

ministic quantity. 

ln Subsection 5.2.2 an asset allocation model that maximizes t.erminal wealth under 

t.hc constraint that. shor t of the target return is formulated as an asset allocation model 

with penalty costs. and we lay down t.he conditions that must be satisfied by optimal 

allocation. This is followed by a more detailed analysis of cases in which there are t.wo 

types os asset. class and cases in which the distribmion of the rate of return is normal 

distribution. In Subsection 5.2.3 we propose more general risk measures that embrace 

the various risk measures that have been suggested in the past, and we formulate an 

opt.imization problem that deals with a trade ofT between risk and rct.urn. We touch upon 

the possibility of constructing, by making the optimization problem lhe parameter and 

creating a return-and-risk set. a new efficient frontier and a capital asset, pricing model. 

ln Subsection 5.2.4. by way of conclusion we shall list. the advantages of the new asset 

allocation model that is proposed here the differences between it and olber models. In 

addition, we shall look at, t,his asset allocation model from the perspective of performance 

assesment of asset allocation. 

5.2.1 An Asset Allocation Model with Penalty Costs 

In this subsection we wish to formulat.e an asset allocation model that, assumes intit,u

tional investors. In the Markowitz-type mean-variance model, risk was measured by the 

variance of portfolio returns. Institutional investors do not necessarily have such vot.a1ity 

as their main concern. Rather, they see as a risk an insufficiency of returns thai. would acl 

as an obstacle to business activities, or circumsl.ances that would necessitate a transfer of 

funds among several accounts that should be managed independently, and they consider 

the principle aim of asset allocation to be ensuring of a sufficient cash flow Lo avoid such 

an undesirable situation. In conformity with the actual pract,ice of asset allocation by 

institutional investors, let us define as risk situation in which t.be asset allocation per

formance of institutional investors falls short of the target return in advance, and let us 

assume that. when this undesirable situation has arisen, the institutional investors impose 

a penalty cost on their own objective function. 

Consider the case of n types of risk assets and one type of riskless asset. there is, 
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therefor. <tn asset class of (11 + 1) t.ypes, and the institutional investor makes a decision 

regarding <tssct allocation under Lbis class. \\'e make usc of t,bis following nolation : 

ri = the raLe of rCLurn of risky assCL i, i = 1, 2, ... 
1 
n. 

ro = the rate of return of riskless asset. 

Xi = the fraction of the asset allocation invested in asset. i. 

Ro = the Largct rate of return of an asset allocation. 

C(-) = Lhc penalLy function defined on tbe set of rates of return. 

J.l i = the expected rate of return of risky asset i. i = ] , 2 .... , n. 

Let ,r, = (xo. X1 .. • • • Xn) be an asset allocation where L~o = 1 and short sales are 

allowed. \\'c assume that J?O > r0 . Define o = r · _ r R-. - - 1 2 d 
- -'«-, , o, , -J.t,-r0.z=. , .... n.an 

- o R =flO- r0 . 

The objective function is to choose an asset allocation of maximizing the Lotal rabe 

of reLurn E~=O r,x, subject to I:Z..o rix, ~ R0 and 2::?:0 Xi = 1. However. the objective 

function contains random \·ariables and so does the constraint. Therefore. b; using the 

relation .r = 1 - "" · th' · d' · 1 · · · o L..i=o x,, Js con Jttooa optnnt2at10n problem may be transformed to 

the unconditional problem as follows : 

n n 

max£[2:: Rixi- C((LR,x,- R0t)l: 
i=l i=l 

(5.1) 

where (.r)- = min{x. 0} and E denotes the expectation operator. 

Assumption. C(x) is decreasing in x for x < 0 and C(x) - 0 for x > 0 d · t' 1 - _ · an JS COn IDUOUS y 
di:fferenLiable. 

From the first condition of optimality we have 

r1 

~- E[C'((L Rj.x;- R0t)R,] = o: i = 1, 2, ... , n. 
i=l 

By mult,iplying x, and summing up with respect to i . an optimal asset allocation x· shoul 

satisfy 

(5.2) 

Note that. C'(·) < 0. 
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When t here are two asset classes 

\Ye assume t.hat ~here are only ~wo asset classe~. risky asset and riskless asset. Let J.L 

be the expected rat.e of ret. urn of the risky asset and x t.he associated fract.ion of the asset 

allocation. The penall) cost is assumed to be piecewise linear as follows : fot some p > 0 

{ 

0, 
C(y) = 

-p· y. 

(5.3) 

Under this assumption equaLiou (5.1) can be rewritten as 

max{(J.L- ro)l' + ro + pE[(rJ' + r0(1 - :r)- R
0

) j}. ( 5.4) 

Let A'(t) be the realization of the portfolio rate return 7'.1: + r 0(1- x) wllich value is 

just equal to _RO, that is. 
A. (X) = R0 

- ro( 1 - X). 
X X 

(5.5) 

The equality of the bracket of equation (5.4) can be reduced to 

J
K(x) 

(J.L- ro)x + ro + p -oo ((r- ro):r + ro)- R
0
)di' (f) (5.6} 

where F(r) is the distribution function of the rate of return of risky asset.. By taking t.he 

derivative of equation (5.6) an optimal allocation to the risky asset. :r· must. satisfy 

J
K(z• ) 

(J.L- ro) + p -oo rdF(r) = proF(I<(:r'")). (5.7) 

To explore t.he existence of a solution in equat.ion (5.7), we put y = K(x). Jt. is easily 

seen that. 

and 

r - R0 

I<' ( x) = 0 

2 
0 for R0 > ro 

X 

[(" = 2(R
0 ~ ro). 
X 

The inverse funct.ion x == J(-1 (y) exists for all y except y = r 0 . 

K(x) is decreasing in x: convex for x > 0 and concave for x < 0. Uno shod sales are 

allowed . .f?!> ~ K(x) < oo for 0 < x < 1, and if short. sales are allowed, -oo < L<(x) < oo. 

Equation (5.7) can be rewritt.en as 

J.L - ro + p J:oo rdF(r) = proF(y ). (5.8) 
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Figure 5.1: A Pair of Optimal Values 

Next, we shall investigate whether or not a solution of equation (5.8) ex:lsts. It can be 

shown that. the Umit of the left hand side of equation (5.8) goes to (l..Lp)J.' -ro as y -t 00 

and J.'- ro as Y -t -oo. On the other band the limit of the right hand side goes to pro as 

Y ___. oc and ) as y-. -oo. l\ote that we have (1 + p)J.t- r0 > pr0 and pro > J.' _ ro for 

P large enough. If solution of equation (5.8) exist, then there exist at least. two solutions, 

say y~,y;. (See Figure 5.1). If no short sales are allowed, the solution is unique. So we 

reach to the following proposition. 

Pro pos ition 1 If no sales are allowed and J.'- ro + p J~ rdF(r) < pro holds, then there 

exists an optimal solution. If short sales are allowed, then there exist at least two optimal 

allocations. 

T he Case of the Rate of Return Normally Distributed 

Suppose that the rate of return is normally distributed Wl'th mea d · 2 n J1. an vanance CJ . 

Putt.ing u = (r -!J.)/CJ,u is normally distributd with mean 0 and varaince 1. Then we 

obtain 
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where <r>( ·) is Lhe normal standard distribution and o( ·) its densi t.y function. Hence. 

equation (5.8) turns out. to be 

{ 
y - II y - Jl } y - /L 

Jl- J'o + p tt<P-- - en/>-- = pro<I>--. 
u u u 

(5.9) 

Put.ling z = (y- Jl )ju. we han~ 

(JL - ro){1 T pci>(z)) = puo(z). (5.10) 

If pu../2T. 2: (J.l- ro)(1 T p,/2). then from Proposition 1 there exists a pair (zi . =2) of 

solut,ions satisfying equal ion (5.10). So, Yi = p. + uz; . i = l. 2. Hence. the associated 

optimal asset alloca~ion for lhe risky asset is given by 

E{J- r 
x· = i = 1. 2. 

' p- r + uz~ (5.11) 

Sote: \\"hen you look at (5.11) carefully. you can see that z~ depends on penalty cost p 

when the target return R0 has not been met. \\'hen .z; > 0. z; < 0. if u increases lhc 

allocation ratio to risky asseLs, x'i decreases and x2 increases. The higher you set the 

Larget return. t,he more :ti increases. If you set. target return at 11, you get 0 < :z:} < 1. 

but. x; depends on Lbe size of z;. 

5 .2.2 Various Risk Measures 

In this subsection we propose more general risk measures Lhat can embrace the various 

risk measures put forward in the past, and we formulat.e the problem of a trade off between 

risk and return. Let us denne t.he function m of sucb risk measures as Lhe follo.ving : 

a -r + u.-)2 - o.-k- r _< 1.: 
'2 ) 

(5.12) 

where the parameter a -, a+,k- and k+ must. saLisfy a - :5 k- :5 k+ :5 at-, the risk 

measure m( ·;a- . a+. k- , k+) is a convec and piecewise quadratic function. The exist.ing 

risk measures are Lhe special cases of our risk measure. (See Figure 5.2) 

(i) H k- -+ oo and k+ -+ oo, m(-j ·) is the variance which is Markowitz type. 

(ii) U a - = k- and a+= k+ , m(·;· ) reduces to the risk measure introduced by King 

[56]. 
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Figure 5.2: A Generalized Risk Measure 

(iii) If k- and k+ both converge to 0 a-= -1 0 + -1 then m(.) t b ' ' - , ·, · urns out. to e 

equal to the risk measure proposed by Konno and Yamazaki [59]. 

(iv) if k - - 00 and k+ -+ 0, t.hen m( ·;·) becomes the lower semi-variances risk measure. 

( v) If a- - p k- - R0 d k+ + Ro h ( ) - ' - , an = o. = . t en m ·; · come to be equal to the penalty 

function p(·). 

X ext, let us define the risk measures by defining the probability of Ialling short of the 

target return. Thus, if we take the risk measure m when R:: ~~ .. 
L...,;::::0 rtx, as 

m(R;Ro) = 1 -1 = Pr{R < Ro} 
Pr{R 2: JlO} Pr{R;::: RO} (5.13) 

then, when the target return has been definitely achieved. m(·; ·) 1, and when the 

probability of achieving the target. return approaches 0, m(·; ·) becomes infinitely large. 

Also, m has the desirable characteristic that a monotone increasing function of Ro. In 

regard to such a variety of risk measures and the target return }?!J, let us define the 

following conditional optimization problem. 

n n 

rz¥n E[m(,L r,xi- Lt£iXii a-, a+, k-, k+)] 
i:::O i:::O 

(5.14) 

subject to 
n 

LPiXi 2: R0
, 

n 

L:x, = 1. 
i:O i=O 
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To sohe t.his problem. if ..... e take> R0 a..-. the paramr.ter. t.hcn wr. can draw the efficient 

frontier Oil tht.• u~o. m ) plane. As t.herc lS a CAP\1 model for when w is the ~tandard 

dcviat.ion. :,O it is also theoritically possible to discus::. a capital asset pricing model on the 

(/f!.m ) plauc. It is especially lObe noted that the optimization problcm of m defined in 

equation (.1.12) still remains within t.he rangl' of quadratic programming. 

By ·w ay of Conclusio n 

\\e have proposed. in regard to asset allocation rnodt'ls (portfolio !'election models). 

an approach different from prevJOu:, ones. \\'e analy:wd in particular a model b) means of 

measures different from the standard de\iatton cu; a risk measnrc relaLcd to an m,·est.or·s 

return. As a r<'sult we have not. defined Lhe investor's nsk prefcr<~nct' as informat.ion on 

utilit.y function. \\ e haYe also deri,·ed an equation that an opt.imal asseL allocation ought. 

lO satisf.) under a framework different from a mean-variance type of model. 1 here are at 

least two pmnt.s m which t.bere is an important difference bet ween our model and mean

variance models. The first point IS that. whereas the prcYious types of model:-. are trade 

off bet.ween t,he average Yalue or return and standard deviation. in our model we haYe a 

trade off between target return and the penalty costs for a shortage in it. 'I he second 

point is that it uses all information concerning the probability distribution of the rate of 

return of assets. T his is an especiatly important pomt. when the probability distribution 

of return does not follow normal distribution. 

A method that acknowledges as a risk a situation that falls short of target return and 

imposes penalty costs on such a risk is known as stochastic programming with recourse. 

Problems ba~ed to a realistically meaningful extent on large-scale stochastic programming 

require an enormous amount of computation to obtain an optimalsolulion. for this reason 

we have prepared numerical examples based on the computational algorithm of H.ockafellar 

and \ \ ets. which splits stochast.ic programming by means of the scenario method into 

subproblems based on normal mathematical programs. 

An optimization problem that takes into account a trade off between target return 

and penalty costs for a shortage in it would seem to be closer to the invesmenL environ

ment of inst.itutional investors in Japan, and more faithful to t.he risk measures of people 

who are not. allocating their own funds . Also. target rcluru does nol di ffer widely from 
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in:-.t.itul ional investor to institutional inv<:.'1LOr; rather. it is strongly regtllated by 1 he term 

:,truct.mc of th<• bond market and such ~<·curity- rnarkC't benchmarks as the Tokyo Stock 

Index and the ~ikkei average. ~1indful that these arc business indicators common to 

institutional im·cstors. and that our model is mdepcndent. of the utility function that is 

tlw rbk pr •fereuce of in\'estor5. we present in our model. we helic\·e. a more object i\·e 

norm form tll<' IJCr5pective of performance• cvaluat.ion of asset allocation. Assuming thai 

utility funct.iou \'aries with each investor make.'> it posstble to carry out. a comparison of 

performance evaluation 10 reliance upon the informMton t.bat. is more commonly shared 

among invcst.ors, that of the probabtlity distribution of return. 

5.3 Optimal P o r t folio Selection and Asset P ricing .Ylodels for Semi-Mar t ingale 

Processes 

The study of an mdi\'idual im·estor 's optimal con~umption and portfolio selection was 

orw of the principal t.beme~ in finance t hcory. The chief problem was the question of 

whether an opttmal policy exists in regard to consumption and portfolio selection when a 

utility function and an asset price proces~ in continuous time ba"e been given. One bad 

to prepare an answer to the question: lf tt does exist. what properties does that optimal 

polic) possess? (See ~tenon {70] and Cox and Huang [26]) Just. as t.he static model 

C \ PI\1 depends on the mean-variance lype of portfolio select.ion, so the dynamic asset 

pricing model ( t.he lntertemporal Capital Asset Pricing ~lodel) presupposes consumption 

and portfolio sclect.ion in continuous Lime. Stochastic processes of asset prices almost. 

all assume geometric Brownian motion. But two problems are often pointed out as the 

reasons wh) geometric Brownian motion is abandoned as a stochastic process of asset 

prices: first. while it has been empirtcally test.ed that there is a time series correlation in 

a~s<'t return. Brownian motion does not have such a t.ime series correlation; and secondly. 

volatility does not depend on asset price and time. 

This study a1ms at overcoming thc throretical defects of the geometric Brownian mo

tion by considering the semi-martingale a:-. a stocbasLic process of asset. pricing and, also in 

regard to utilil) function. it. examines a consmnption and portfolio selection model under 

a general class. An intertemporal model t bat takes MerLon [70] as its starting point has 
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been developed by means of specificat.ion and generalization with regard to the asset price 

process and the utility function of the investor. (See Aase [1], Back [7L Cox, Ingersoll and 

Ross [27]. and Ingersoll [48]) In our study we d<'velop an ini.ertemporal asset pricing model 

in a semi-martingale. In particular we derive an cqualion that the value for the expected 

excess return should satisfy. and 1rve indicate that. tills equation represents a modification 

of the accepted CAPM formula. There are l.wo benefits in examining a consumption and 

portfolio selection model for occasions in which asset prices follow a semi-martingale. The 

first. benefit is t.hat an optimal pobcy for consumpLion and portfolio selection possesses 

robust properties from the asset price process. The second benefit is that, when investors 

1n tbe market are all using this optimal policy, an asset pricing formula that is derived 

from t,he demand-supply conditions of the market is similar to the CAPM formula. 

This study is made up of four subsections. In the first subsection we explain asset price 

processes and give examples of semi-mart.ingales. In the second subsection we formulat,e a 

consumption and portfolio selection model as the optimal control problem. and we discuss 

the optimal policy for consumption and portfolio selection. We follow this by deriving 

an equation that the expected excess return for each asset should satisfy from demand

supply conditions, and we go into its economic implications. In the third subsection we 

express in concrete fashion the results obtained in Subsection 5.3.2, restricting the utility 

functions to a special class of risk-averse utility functions and assuming asset prices follow 

a geometric Brownian motion . Finally, in Subsection 5.3.4 we draw the conclusions of 

this study and at the same time touch upon directions future research migbt take. 

5.3 .1 Asset Price Processes 

It is well known that the geometric Brownian motion is not always supported as an 

asset price process. If asset prices are not described by means of geometric Brownian 

motion, the derivation of an optimal policy for consumption and portfolio selection be

comes extremely difficult. Still, it is possible to investigate the analytical properties of an 

optimal policy in even more general stochastic processes, say semi-martingale. From the 

point of view of explaining the Black Monday of October 1987 and of constructing a model 

that includes actual cases in which asset prices jump as a result of public announcement 

of information, the semi-martingale bas definite theoretical advantages. 
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Let us t.ake time l continuously and assume it to be an element. of a closed interval 

[O.TJ. l E [O,TJ. There are n types of risky assets: indicat.ed by subscript 1. YVe use the 

foLlowing symbols: 

Pi( l) Lbc price of asset. i at time t 

.1:i( t) - the investment ratio of asset i at time t 

W ( L) the wealth of t.he investor at time t 

C(l) the instantaneous consumption rate at timet 

The price processes are described by the stochastic differential equation as follows: 

(5.1.5) 

where M,(t) is a semi-maningale process and P(t_) denotes the left-hand limit at timet. 

For t.be riskless asset, indicated by subscript 0, \ovith instantaneous rate of return r we 

have 

dPo(t) 
Pa(t) = rdt. (5.16) 

The closed solution of equation (5.15) is known (see [74]) and given by 

(5.17) 

where < JV!f, M,c > is the bounded variation process for the continuous part of Mi and 

6.M;(s) denoLes the size of the jump of t.he process M;,(·) at timet. Thus, in this case, 

P(t) ~ 0 with probability 1 if and only if 6.lvf, > -1. 

The change in wealth at timet when the investor follows a consumption and portfolio 

seledion policy x(t) = (x0(t),x1(t), · · · ,xn(t))T satisfies 

ll 

dW(t) = L x;(t)W(L)dM;,(t)- C(t)dt 
i=D 

(5.18) 

- t,x;(t)W(t_)dM;(t) + [w(L)r(l- t,x;(t))- C(t)J dt. 

Whenever tbe stochastic process M(t) can be decomposed as the sum of a local mar

tingale and a bounded variation process denoted by < M, 111 >t, then 1VI(t) is called a 

semi-martingale. Let. us consider four examples of semi-martingale processes. 
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Example 1 (geometric Brownian motion) 

We replace equalion (l) by 

d.U;(i) = JJ.,dt + u dZ,(t), (5.19) 

where z,(t) is a \\'i<>ner process (Brownian mot.Jou) with mean 0 and \·arinncc I. l'hen, 

t,hc price of asset. i follows geometric Brownian motion wiLh mean ~til and varia nrc u;t, 

Lha\. is. 

Putt.ing dPM(t) = O'iP,(t)dZi(t) and dP,B(t) = J.l,P,(t)dt, we obtain 1.he decomposition as 

follows: 

where p:\f 1s t.he martingale and P,8 the bounded variation which is denoted by < 
' 

Example 2 (sub-martingale) 

Denote the wealth of the investor at time t by W(l), which satisfies 

W(t) = uZ(t). (5.20) 

where Z(t) is the v\ieiner process with the mean 0 and \'ariance l. Since lV(t) is martingale, 

H' 2(t) is a sub-martingale. Put.l1{t) = W2(t)- u2t and< M, lvf >t= 0'
2
l, and then we 

have the decomposition as follows: 

W 2(l) - (W2(t)- u2 t) + u2
L 

- ~~(t)+ < }vf, M >t: 

where 1\IJ(t) is the martingale and < M, 1\11 >t the bounded variation process. 

Example 3 (Poisson process) 

Let N(t)be a the Poisson process and put. M(t) = N(t) - >.£ and < M, M >t= >.t. 

The Poisson process has the following decomposit.ion. 

N(t) - (N(t)- >.t) + >.t 

- J~l(t)+ < M, A1 >t1 (5.21) 
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which implies Lhat. the Poisson process is also a semi -martingale. 

Example 1 (geometric Brownian motion wiLh jumps) 

Consider an example of a semi-martingale that. lS a composite of examples 1 and 2. 

c.;uch a slocha.st.ic procc<;s for the a~set price is convenient to describe practical situations 

t.hat can occur when information on a new technology becomes public. 

Let A k( t.) be the number of price changes of jump size !3.k at Lime l which fol 

lows a Poisson process witb the intensity Aik(t). \\'c assume that Pik are given for 

k = ±1, ±2. · · ·. ±m, and B,~o: > 0 stands for t.he jump up and .dik < 0 the jump down. lu 

connection with equation (I) set 

(5.22) 

The cont.inuous part of the asseL price follows geometric l3rownian motion and th<' 

discrete part follows Poisson jump process. From examples 1 and 3. the continuous and 

discrete parts are bot.h semi-martingales and so t.he sum of them is also a semi-martingale 

whose decomposition becomes lvf,{t) = 1\.1;(l)+ < M,. lvl, >1• where 

m 
dlt,(t) - P;(L)u,dZ,(t) + P,(L) 2:::: {j,k (dNik(t)- Aik(t)dt) , (5.23) 

k=-m 

d < M;, M, >, = P·(L) (J.Iodt + k~m 8,k.lik(t)dt) . (5.24) 

The martingale part. consists of the continuous part P,( t )u idZi ( 1) and discrete parts 

Pt(f) Lk=-m (J,k 

[dNik(t)- >..:.~;(l)dt]. respectively. Xote that Pr{S.:k(t) = 1} = f~ >.,~c(s)ds + o(t), the 

probability that tbe asset i makes a jump is >-o:(t)dt, and E[dX,~c(t)) = >.,~c(t)dt. 

5.3.2 The Optimal Control Problem and Asset Pricing M odel 

As mentioned in Subsection 5.3.1, a semi rnart.ingale can be represented by the sum of a 

local martingale and a bounded variation. Consider a portfolio x(t) = (x0(t),x1 (t), · · · ,xn(t))T 

consisting of n risky assets and one riskless asset. The wealt.h generated by this port.folio 

is given by 

V\ (t) - lrV(O) -1 11 ~ XiVl!(s_)dM.:(s) + fo' [ W(s-)r(l- ~xi)- C(s)] d$ 
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wit.h 

wM (t) 

w"'c(t) 

- W(O) + WM (t) + H'8 (t) 

_ \F(O) + WMe(t) + n r·'-ld(l) + H'8 (t) 

-
-

n·Mc(t) + ttrMd(t) 

latt,.t 1H (s )dM[(l) 

(5.25) 

1\'.\fd(t) - fott,l~,W(s-)dJtf(t) (5.26) 

l'\' 8 (t) - 1ttx·iVl'(s-)d < MHMi >s + 11 

[ttV(s-)r(l- t.1:i)- C(s)] ds, 
0 =1 ° t=l 

where n rMc(t) and H·Md(t) are the continuous and discrete parts of the local martingale. 

respectively. 

Our problem is to :find an optimal policy with respect to consumption and portfolio 

selection so as to maximize the expected utility. \\'e need the generalized Ito lemma. We 

get the bounded variation of t.he continuous part of t.he wealth 

Let u(C(t),t) be a utility function defined on the consumption and B(W(T) ) t.be 

bequest function defined on the wealth. Given the dynamics of t,he wealth changes. we 

define an optimal control problem as follows: 

sup E[ {T u( C(t), t)dt + B(W(T))]. 
C(t),r(t) Jo 

To solve this problem, define the derived utility function J(W,t) 

J( Vl',t) =sup E [1T u(C(s),s)ds + B(W(T)) I W(t) = w]. 
Applying the generalized Ito lemma, we obtain 

J(W.t) = J(W0.0) + ht Jw(W(s_):s)dW(s ) + fo' J,(W(s_),.s)ds 

+~lot lww(W(s-),s)d < WMc, WMc >3 

+ L {J(W(s).s)- J(W(s_),s)- Jw(W(s_),s)~W(s)} 

- J(Wo, 0) + ht J,(W(s-), s)ds 
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{5.27) 

(5.28) 

+ J.' Jw(W( s_ ). s) [t, x, W(s_ )( dMf + d.lf:J + 11 (s_ )r(l - t. "•)- C] di 

1 r n , 

+2 Jo lt1·w(W(8_ ). s) L L XiX; H12($ )d < }.1[. M; >s 
1-1 ;=1 

+ L {J(W(s) . .s)- J(IV(L). s)}- L Jw(W(s_),.s)~l\ (-')· (5.29) 
05·•51 0$1$1 

.\ote that lV(l)- lV(L) = 11'(L) 1:~1 x.dA!l. and let T;t be the length of the sub-interval 

with the partit.jon of the interval [0. t], 

L lw(H (~-).s)~H'(~) 
0$.,5t 

" I 

~~~LL: L .lu (Hlrit) .... )(H'(r;t)- ll'(rj1-)) 
•-=1 ;=1 rJI <t 

- it Jw(W(s_),s) tW(s_).t,d.Md. 
0 =l 

which equals tbe third term to cancel to each other. The fifth Lerro can be rewritten 

L {J(l¥(s),s)- J (W(.s_),s)} 
O$-'$t 

" I 

- ~~~LL L {J(W(r,t) + H '(r1t)Xi~J1,)- J(W(TjJ))} dM,d 
•=l;=IT;I<t 

- lot t { .J( W(s_) ..L W(s_ )xi~J1Ji) - J(W(s_ ). a)} d.\I~(s ). 
•=1 

Hence, upon laking expectations. we are left with 

E(dJ(W. t)) = 
n n 

Jt(W. t) + lw(W,t)vV~ x,d.\1,c + lw( l1 cr(l- L:x, )- C)dt 
•=1 '=1 

1 n n 

+2Jww H'
2 L L X~T;d < }J,c. Af~ >t 

i=l i=l 
n 

+ ~ E {Pw(H'(l + x~~Mi)· t)- Jw(lV(t), t): dJff(t)}, (5.30) 

where Jt(·), lw(·), and lww(·) preseOL t.he first. and the second partial derivatives. re

spectively. The Bellman's optimal equation associated with problem (5.27) now turns out 

to be 

0 - sup E { u( C(t), t)dt + dJ} 
C(t),r(t) 

sup E {u( C(t). t)dt + J1dt + Jw lif' t x·dAf~ 
C(t},r(t) i=l t I 

[ 
n l 1 n n 

+lw Wr(l- ~x,)- C dt + 2IwwW2 ti~x,x1d < 1'1ic,lvfJ >t 

+ t, IJ(W(J + x;tc..M;). t) - J(W, I)] dM,'(t) } . 
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The first order condition t.hat. au opt.irnal policy mnst. satisfy is 

(5.:31) 

0 _ Jw · lV(E[dM,c] - rdl) 
1'1 

+Jwn· . W2 L :r, E[d < ,\l.C. :\fj >t] 
J;;:; I 

+WE[Jlv~M,d.M~(t)] i = 1,2~ ···,n : (5.32) 

a Ia d ,j.- 1 .1 (I+ X ~M·) . Let r = [f ·] be then X n mat.l"ix with an where ILc = u c. an v 1 - v1 , , , 

l E[d < 'Jc \1c > ] Then solving equation (5.32) we obtain an optimal portfolio e em en t ~ , · J 1 t · · 

.•-- lw ~ r-t { E[dJ\1~] - rdt}- 1 , t fijt ElJ~t·~ .tH,dM1 (1)]. (5.33) 
X 1 - J Lf{ LJ IJ J ]w'.\" l' - l 

WlV n J =l ., J-

\\' hen the discrete part. of the asset price process vanishes, t.he equat.iou (5.33) above 

reduces to 

.. _ ltr ~ r~t {E[d '\P'] _ 1-dt}. (5.31 ) 
Xj - - U r L._, I ) J J 

J\.i1lY 1' 1 J=l 

!\ow, suppose that all the investors in the market have chosen the portfolio satisfying 

equation (S.33) as well as (5.32) with respect to the consumption. V..~hat relation does 

the expected excess return of the risky asset satisfy under the market equitibrmm? Let 

or be the demand of asset i investor [ wishes to possess. Then, tbe amount of demand of • 
asset i is 

L 

D, - l:D~ 
I= I 

L 
_ I: x!vV1 

1=1 

_ t -/{v t f~1 
{ E[dM;J- rdt}- t -}-- t fi/ E[Jiv~M,dMJ(t)] 

1=1 Jww 3=.1 l=t ww J=;J 

_ At fij' { E[dM;]- rdt} + t fi/ Br (5.35) 
i=l J=l 

where A = -2:1 Jlv/ Jlvw and B1 = l:r E(J~~M;dlv!f(t))/.ltvw- Let x, be the per· 

centage of asset i among the total asset. volume. called market portfolio. The amount of 

supply for asset i 1 Si must equal Si = x,S. 

S; = x;S - D, 
n n 

_ ALfij1 {EfdMj]-rdt}+ Lfi/B3 , i=l,2.···,n. (5.36) 
j=l j=l 
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Rearranging eqnation (5.36) wit.b respect. to the expected excess return of asset. i . we 

obta111 

(5.37) 

~ote that en~u if f~ l~.\11 dJ\1l(l )J is positive. the jump up of asset price does not mean an 

incr<'asc in the expected excess return of t.be asset. 

Using equation (5.32) we obtain Lh<' following for A: 

A - L -/l\· = - L ~~ 1 > 0 
r lww 1 Ucc fJujaw for OujaH' > 0. 

It is possible to give Lhe following economic interpretat.ion with regard to equation 

(5.37). 

1) Since A is the inverse of risk averse function (risk tolerance) resulting from derived 

utility. risk tolerance decreases as A increases. When this happens. expected excess return 

also decreases. 

2) If we assume t.be risk measure of asset i to bed< J1f. M e >t · then t.he excess rate 

of return increases as risk increases. 

3) Equation (5.37) teJis us that an increase in money supply for asset i pushes up the 

excess rat.e of return of that asset in the equilibrium . 

The conclusion that bas been arrived aL here is similar in many respects to the con

clusion arrived at in geometric Brownain motion . For example. from equations (5.32) 

and (5.33), optimal decisions on consumpLion and portfolio selection are dependent only 

through derived uttlity functions and, formally at least, are independent. Also. as long 

as t.he parameters in equation (5.34) do not depend on time t, t.he optimal portfolio is 

also Lime independent.. In this sense, optimal consumption and portfolio selection can be 

described as st.ructurally robust after the asset price process. 

5.3.3 A Consumption/ Portfolio Selection Model under the HARA Type Utility 
Function 

ln this subsection we shall specify Lhe class of utility function and explain in fuller detail 

a consumption/portfolio selcct.ion model when asset prices follow a geomet.ric Brow·nian 

motion. T he opt.imal policy regarding consumption and portfolio selection derived in the 
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preceding subsection depends on the unknown derived utility function J( W. t), and iL is 

not a closed solution. in order lo obtain a closed solution we must substitute equations 

(5.32) and (5.34) for equation (5.31). and solve the second degree parlial differential 

equation regarding J(Tif'. t) in order to find J( W. 1). But unless the ulilit.y fnncLion is 

specified and the asset price process is also something simple, it is almost 1111possiblc lo 

find a closed solution. In this subscct1ou, therefore. we shall give a coucret<> form t.o 

the class of utility function and derive a closed solution to the problem of an optimal 

consumption and portfolio selection when asset prices follow geometric Brownian motion. 

Consider a cominuous Lime stocbast.ic model in which an individual decides on ! he 

optimal consumption rule and portfolio selection t,ba.L would maxJTnizc the expected utili~y 

v.;tbin consumption and portfolio selection consisting of n types of risky assets and one 

type of safe asset. We assume ~hat. changes in the rate of return of t.he ith risky asset. will 

follow geometric Browruan mot.ion: 

dP(I) 
P;( t) = J.tidt + u,dZ.(t) . i = l, 2 ... ·, n. (5.38) 

We define E[dZi(t)dZi(t)J = p,jdt. 

"Csing the lto lemma and Bellman equation. we Lhen get 

0 = max [u(C(t). t) + Jw( lV. t) (t .1\(l)W(J.t,- r) + rJ!V- C(t)) 
C(t),""(t) •=l 

1 n n l +2Jww(TV,t)~_f;xi(t)Wxj(t)Wui1 + lt(W,t) . (5.39) 

Here. subscript.ion denotes Lhe partial derivative for the variables. and u 1 is t.he (i- j)lh 

element of the variance-covariance matrix. 

The boundary condition is 

J(VV(T). T) = B(W(T), T). 

The first order condition that an optimat consumption and portfolio must satisfy is 

Uc(C"' (t), t) - Jw(W, t); (5 .40) 
N 

0 - (J.ti - r )Jw(W, t) + Jww(W, l) .2: xj( t)W O'j3 . (5.41) 
j=l 

The decision making on consumption is independent of the portfolio seleclion. They 

indirectly depend on each other only through the derived utility function J( W. t). 
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D<'fine tbC' 1IARA type of utility function as follows: 

L'jC(t), tj = 1 ~ 'Y [( 1 ~I C(t) + ~ f +( l ,-". 
The J,>aramet.ers are restricted to take their values in the following intervals: 

-oc < -r < 00. -, ..J. 1' a 0 I > . a 
~C-rrJ > 0. 

I 

Also. define the bequest. function for t.he finit.e planning horizon model as 

B{W(T). Tj = K
1 ~ 7 

[(I : _
1 
W(T) H)'+(] e ,r 

with 

K > 0, < ...t. -oo 'I < oc. -, .,... 1: /3 > 0, p w . 
-1- +77 > 0. _, 

An optimal consumplion rule is given by 

C~(t) - 1 -~ (Jw(i-F.l)ePt) 1/('l"-l)- 1 - ... , . 
.a p 8 Tf: 

' 

{5.42) 

(5.43) 

(5.44) 

l-7 [(J~t·(lV,t)eP')"'/h-l) ·] -pt { . (ex ( t), t) = -, ,8 + ~ e . ( 5 .45 ) 

Substituting (5.44) and (5.45) jnto (5.39L we are left with tbe partial differential 

equations 

(1--,)2 [.Jw(H'.t)ePi]"~'/b-1) -pt+ (1-1). . (1-.-.) 
I {J e - 1- (e-Pt + (rvV + 8 ' 77 )Jw(W. t) 

1 l • 

- - (J.t- r l )'r-1(p- r l ) JA:(Ii 't) + 1 (W t) -
2 J~·w(W,t) t • • (o.46) 

0 = 

where J.t = [J.I-1 , J.l.'l, ... , llnJT. 

fn order to solve (5.46), let us try separation of variables and 50 assume that 

J(H'. t) = e-pt [A(W +B)"'+ D], 

where all parameters A. B. and D are unknown For the ;nfin'* t · h · h · ...... J..e p annmg onzon t e 

partial differential equation (5.46) can be re,·vritten as follows: 

0 (1 -,)2 ({J) "Y/(1--,) 'Y/b-1) ., 1 - ') (1 -
- I :y A (W +B) + 1( + (rW + i3 I) 11)1A(n· + B)'Y-1 

1 "'( 
+2 1 - 1 A(tt- rl)'~ l(J.t- r l )(W +B)...,- P (A( l-V + B)"Y +D). (5.47) 
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Table 5.1: A List for Optimal \ alues for HARA Type Utility T'unctions 

In OflZOn Infinite(T = oo) I Finitc(T < oo) 

HARA TypeU ( ·) 1 ~.., (( 1'\C(l) + qp + (] e pt sarnf' as l0ft side 

~~:.L:! ( ( _!!_ t n1) + ~rv -L c] c pT BequestB( ·) none .... 1--r 

Derived Uti. Func . ./( ·) {.4(H ..I.. B)"' T D c pt [A(t)( W + B(t))" + D(t)]e pt 
0 

A or A(l) l-'Y ( _L r u r .. 
-, l -:r Q 

, _., ( ..L r (lb. r -.. 
'"I I-'\ o 

1--y !l. 1--v !l. + .L:!c B or B(t) r i3 r tJ i3 2 

D or D(t) 1-J .( 1--. .( + c 
' p 1' p 3 

a [ ~v + 1---, %]- 1--, 17 a[W l-7l(¥+c2U _ !.......:! 
Opt. Consumpt. c· (l) I+c1 f3 Tf r {3 iJ 

~~1'+9(~+C1lj L:" ·J( - r) [W . !-"'~ '~ 

Portfolio x:(L)W + r ~~ L:" q'l(p - r) 
1-"r J=lq JlJ ,_..., J 1 } 

As in (5.46). we assume t.bat the derived utili~y funct.ion bas the form 

.J(vV,t) = e-pt (.4(t)(W + B(t)r' + D(t)], (5.48) 

where A(t). B(t) and D(l) are time dependent unknown parameters. Then, we obt.ain 

from (5.4 7) 

o = (l- ~,) !:. A(tplh-t>(vV + B(t)f' 
2 ( l:J) ... /(l--r) 

"'I I 

+ 1 -1 ( + (r \1\' + (1 -I) 77)'-;A(t)(W + B(t))'-1 

"'! {3 

+~-~-A(t)(J.t- r l )'I:-1(1-'- r l )(W + B(t))"'- p(A(t)( lV + fl(t)f' + D(t)) 
21-1 

+A'(t)(l'V + B(t)? + -yA(t)B'(t)(l'V + D(t))'"'-1 + D'(t). (5.49) 

Table 5.1 is a list of optimal consumption, portfolio, and derived utility function for 

HARA t.ype utility functions. 

Here, we define the parameters as follows: 

a = _ I_ [t _ r- 1 
(J.L- rl)'~-1 (J.L- rl )l ; 

1 - ~, 1 2(1 -I) 

[ 

~ _1 (P)-r/Cl--:r) 1] ,-aCT-t). 
cl - aK.l-'T fJ - ... ' 

[
{3 A Tfl -r(T-t). c2 _ -;:-17 - - e , 
{3 r 
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_ 1- f (A/: ') -p(T-t) c3 = - K._,-- c . 
I p 

Coefficient a is a constant that is a time independent; we can see that coefficients c
1

• c
2

, 

and c3 arc dC'pendcnt. on the planned period. Rene<>. since C'"(t) and VV must be positive 

in regard Lo a finite planned period, we end up wit.h 

w~~(~-r). 
:'\otc, however. t.hat. when JJfr > 0. then 1/a < r. and contrariwise. when Eft< 0. then 

1/a > r. 

For cases in which the planned period is finite. we get 

From Table 5.1 the following is clear. In regard to an infinite planning horizon (T ~ 

oo), (1) the individuars derived utility J(H'. t) is t.he result of multiplying the linear of 

wealth A(W +B)"'+ D by the discount rate e-Pt; (2) the parameters A. B, and D are 

constants that. are noL time dependent.: (3) the optimal consumption C"(t) is one in which 

wealth 11\' is proportional to a. after wealth H~ has been added to the coefficient B; ( 4) 

the optimal consumption is not time dependent; and (5) optimal consumption and the 

decision making on asset allocation are separated. 

SeLLing 

for the case of a finite period. t.be optimal sum invested in a risky asset is given by 

n 

.r, H' = A L a'J (J.L, - r ). 
J=l 

In this case, put.ting 

A= t r~~~ +~(If+ c&)J 
1=1 1 -'it 

for investor /, 

equation (5.37) can be reduced t.o 

1 n 

~-'·- r = - 2:: ai,s1 • 
A j=l 

which is an equation that the expected excess return should satisfy for each asset. 
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\V hen a Bequest Utility Function Does Not Depend on t h e Amount of t h e Bequest 

Here we shall see what happens when we seek the derived util1~y function t.hat. cor 

responds to the HARA type utility function. in those cases in which a bequest. utili~y 

funct.ion regarding a finite planned period does not depend on the amount of t.he bequest. 

At such times. the conditions that guarantee thai lhe bequest. amount H' is noL negat.iv<' 

and that. from equation (5.43) the ut1lity function of the bequest B( \\ .1') docs not dcpc-nd 

on the amount. of the bequest, are r, = 0 and ;, = 0. Under these conditions the derived 

utility function of the HARA type ut.ilit) function when the amount. of Lhe bequest does 

not depend on t.he bequest. utility function becomes 

1 - ~, 

~im J("\ ,l) l~=o= --
~<-0 1' 

- ' - li" + 11 + ( e-Pt. [(1 _ e- a(T-t)) 1
_.., ( 3 ( 1- c-dT-t))) ,., (1- e-p(T-t))] 

a 1-1 r p 
(5.fH ) 

When this happens. the optimal consumption rule C"(l) in a finite planned becomes 

Lim c·(t) = a [w + {1- I )fJ ( 1 - c.-r(T-t) )] - (1 - ~, )'7. 
1(-0 1 - e-o.(T -t) (3 r (3 

(5.52) 

The optimal sum to be invest.ed in risky asset i is given in 

lim x':'(t)W = ~J=I r:J W + -'---'~' 
""N uiJ(,t -r) [ (l-....,)r1 (] -e- r(T t))]. 

.(_..o 
1 1 - 1 .B r 

(5.53) 

From this it is easily seen that the ut1Ut.y of the bequest 1 regardless of t.he amount of t.he 

bequest., is 

lim B(W(T), T) IJ?=o= 0 . 
...,~o 

5.3.4 Conclusion 

In this section we have discussed an optima] policy regarding consumption and port 

folio selection when asset prices follow a semi-martingale. Then we derived an equation 

that the ex:pedecl rate of return should salisfy when investors in t.he market. have identical 

utility functions and agree on the parameters of stochastic processes that describe assel 

prices. Finally, when we gave uWity function classes in concrete, we derived a closed so

lution for an optimal consumption and portfolio as well as the derived utHit.y. vVhat was 

learned from this study is t.hat. the analytical properties of the opt.imal policy regarding 
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consumption and portfolio selection are 1) it. is robust afLer an asset price stochastic pro

cess; and 2) it Lakes the form of au addition of a discrete part to past results. v\·e gave an 

cquat.ion similar to the intcrlemporal capital asset pricing model of Merton [73~ . lusLead 

of introducing. as Merton does. a stat.e variable, we have expressed it as the supply of 

each asset.. 

Fut.ure research should deri,·e a closed solution for an opt1mal policy regarding con

sumption and portfolio selection as an example of semi-martingale. but using examples 

other than thos<> of geometric Brownian motion and similar stochastic processes. and 

develop an inLerLemporal capital a~set. pricing model in those cases. Also, even in Lhe 

case of well~known stochastic processes. it would probably be interesting to carry out the 

same kind of analysis in regard to other classes of utility functions. Other future research 

lasks would include studying what happens when variables besides wealth arc imroduced 

as state variables io deriYed utility functions. or analyzing utility functions that are not 

additive in regard to time. Just so long as 'A'e rely on methods of dynamic programming 

in contmuous times, we shall probably encounter the problem of a trade-off bet.wecn the 

generalization of utility functions and asset prices. and tbe richness of conclusions that 

have been obtained in that area. 

5 .4 Opt ima l Exercise Policies for Call Options and Their Valuation 

An American call oplion, simply called an option, is a right to buy a share of stock at 

any time during a stated interYal for a stated price, t.he exercise price. Suppose that you 

own an option to buy one share of stock at a fixed exercise price. say c and you have n 

days to the maturity date. If you exercise the option on a day when the stock price is 5 

and sell it. in the open market, then your profit is s-c. The problem here is to find which 

slrategy maximizes your expected profit. In other words. how should we choose a stoppmg 

rule in order to maximize our expected profit? Ross [89) aud Taylor [119] study the stock 

option model under the setting of an optimal stopping problem in which price changes 

are independent identically distribut.ed, that is1 a random walk, and consequently the 

model has a single state. The model proposed by t.hem leads to the unrealistic conclusion 

Lhat. for a fixed time the st.ock price is negalive ,.,.;th a positive probability. To aYoid this 
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defecL we modify then· model so that stock price::. are assnmed to change according to 

the distribution of the product of independent positive random variables, whicl1 excludes 

the possibilit.y of stock pric<~f> becoming negative. We also assume !.hal tb<> distribution 

of stock prices depends on the state of the economy which follows a ~larkO\ chain. In 

snbection 5.4.1 we formulate i lw st.ock option model wit.h multiple states as an optimal 

stopping problem. In subection 5.4.2 we show under some assumpttons that there ex1sts 

a simple optimal exercise policy which dependf' only on the current st.ock price and t.be 

st.at.e of the cconomy.Funhcrmore. properties of the optimal polic~' and its hounds arc 

investigated in Subsection 5.4.3. J\lost. results arP distribution-free under tbc assumption 

that both Lhe distribution of price changes and the state transition probability have a 

monotone property with respect to a sl.ate of the econom). 

Finall). in Subsedion 5.4.! we propose a new. but simple. derivation of the. Black and 

Scholes· option pricing formula with some concluding remarks. 

5 .4 .1 Formulation of a stock option model 

Let { 1, 2 ... ·, N} be the set of states of the economy and i or .i denote 011e of these 

states. The economy changes according to a discrete time finite stale Markov chain with 

a one step transition matrix { ?;3 } . Let St be the stock price on the day t and suppose 

S S X , 5 xitx'2 ,,. 
HI= t. t+l = 0 l 2 ... ·"t+l 

provided that the staLes of the economy from day 1 through t+l~(i1 , i 2 , · • ·• i) are observed, 

where X 1, X 2 , • • •• are independent positive random variables with finite means. 

Remarks 1 If we have St+l = St + Xt+1 and Xt are independent and identically dis

tributed, then the process St is a random walk which reduces to be the case of {89}. This 

random walk hypothesis leacs to the 1Lnrealistic conclusion that for a fixed day the stock 

price can be negative with a positive probability. 

1\ote that our model avoids this defect and t.hat the price process in our model is a 

martingale if E(Xt+ 1) = 1 for aUt, where E stands for the expectation operator. Consider 

now an option that. entitles the holder to buy Lhe stock at any time before the maturity 

date at a fixed exercise price, say c, regardless of what. the market price might be. Let 
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T be the maturity date of the option. Suppose thaL we have already bought an option 

on day 1. If St > con day t, the option bolder may exercise his opt.ion, buy the stock at 

tile st.atecl exercise price, and resell it in the market at the marke~ price Ci
1

• which gives 

him the profit 5', -c. If S, $ c. no one exerctscs his opLion and no such profit 1s possible. 

Thus the expcct.ed profit Lithe option holder is E{ma.x(S1 -c.O)}. The problem is to fiud 

a stopping Lime''" to maximize L{max(S1 - c,O)} with respect t, 1 $ t $]. LeLl'i( ·) 

be the JJrobabilit.y distribuLion of X1 • If we let llt(s, i) denote the maximum profit when 

the st.ock price is s, the stat.c of the econom.r is i on day t. and t.he option bas (T _ t) 

addit.ional days t.o go , t.hcu from the principle of optimality ~~(·,·)must satisfy 

~~(->. z) = max { ,... -c. t Pij {oo \~+1 ( sx. j )dF, (.r) } (5.5'1) 
J=t lo 

with the boundar~ condition 

VT(s, i) = max{ s- c. 0} (5.55) 

on t.he mat.urit.) daLe. To establish an optimal exercise poucy we need Lhe following 

assumpLion. Assumption 

(ii) For each k. L:
1
':.r. P,3 is increasing in i. 

Lemma 5.4.1 (i) ~'t(s. i) is increasing) convex and continuous in .s for each i . l. 

(ii) \ l(s,i) is increasing in i and dcc1'easing in l for each s. 

P1·ooj The proof is by induction on t. For t = Tthe statements (i) and (ii) certainly 

hold. Assume that \'t+1 (s, i) is increasing, convex and aontinuous in s for each i and is 

increasing in t for each s. Since ''t+ 1(sr,j) is increasing, convex and cominuous in 
8 

for 

each .t > 0, so is L1 P;JJ: \r~+l(sx.j)d.Fi(x). Hence. vt(x,i) is increasing, convex and 

continuous in s fo r each i. On the other hand 
' 

N 

L pi) 100 

vt+J(8x,j)dFi(x) = 
i=I 0 
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-;¢ l'v N 

< 1 L(\~+I(s.r.k)- \I,H(sx.k-1)jdF.+t(.r) l:Pi+IJ 
0 k~l J=k 

N 

- L P,+lJ 100 

'-t 1-l(sx,j)df<i+I(x). 
J=l 0 

where the first and second inequalities follow from Assumption (i) . {ii), respectively, aud 

\lt(Sl: 0) = 0. Therefore, we obtain 

V,(s. i) = max { s - c.l1 P;, J.~ V,+ (-<x.j )dF,(.,.) } 

< max { s- c.l1 J.~ V,+l(sx.j)dF;+ 1(x) } 

- l ;(s. i,-1). 

which asserts t.hat. \~(s . i) is increasing in 1 for each s , l. That \'t(s, i) is decreasing in 

t is immediately apparent from the fact t.bat a higher value of t haJ:> the less chance of 

exercising options. 

5.4.2 An optimal exercise policy 

In thjs subsection we shall show under certain conditions that there is a simple optimal 

exercise policy which can be specified by the single value St(i) at each day t with the slate 

i, which in words says. do exercise the option if s < St(i), do not exercise. othcn"ise. To 

establish this resuh we need t.he following lemma in addition to Lemma 5.4.1. 

Lemma 5.4.2 If J.LN = f000 xdF,.,(x) ~ 1, then "'t(s)i)- sis decreasing ins for each J,t. 

Proof The proof is again by induction on t . Fort = T we have VT( s, i)-s =max{ -c. -s} 

which is plainly decreasing in s. Assume the assertion for t + 1. Then, for t we have 

V,(s, i) - s = max { -c.l1 P;1 J.~ (V,+J (sx,j)- sx)dF;(x) + s(JL, - I)} . 
where Jl.i is the mean of x;. By the induction assumptjon for l + l, vt+l (sx,j)- SX is 

decreasing in s for each x > 0. Assumption (i) implies that p.1 :5 J.L2 ~ • · • < J.Lv. If 

J.LN :51, then J.L i ~ 1 for all i . Therefore, s(JJ.i - 1) is decreasing in s. This complet.cs the 

induction arguments. 
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For each t and 1 define 

.-;t(i) = inf{s: Vt(s,t)- s ~ -c}. (5 .. 56) 

where we take ,o;1(i) to equal oc when this set is empty. 

T h eorem 5.4.1 if J.LN < I. then thrr-e exits an optimal c:reTc1sc policy rts fol/ou:s: Jf the 

slock 71rtre i.5 .s on day l and.<:> -'>t(i), fhtn c:ro·c1se the option. olheru·ist. do nol curn"Jt . 

Proof II the stock price is .<; and the state is in i on day t, it is optimal to exercise 

the option if ~~(.~. i) ~ :; - c because l ;(s. i) > s - c from equation (1). Since for 

J.I.·N ~ 1, Yt(s . I) - .s is decreasing iu s for each i by Lemma 5.4.2. it follows that. for all 

s > .st(i) \"(s. i)--" ~ \'t(st(i) , i)- St(i) < c, which asserts that it ts optimal to exercise 

the option when at price s and in stat.e ion day t s > s1(i). 

Theorem 5.4. 2 If J.Ls ~ L then St(i) is incrcasmg in i for each t and decreasing in 1 for 

each i. 

Proof From Lemma 5.4.1 ( ii) \ :(s. i) is increasing in i and from Lemma S.l.:? t it~ . 1 ) _ s 

is decreasing in s. Hence. for each t 

.'>1(i) - inf{s:v:(s,i) - s5c} 

< iof{s : Ft(s.i+l)-:;<-c} 

- .'>c(i + 1). 

Furthermore, f1·om Lemma 5.'1.1 (i1) \~(s . i) is decreasing in t. which implies that 

St(i) - inf{s: Vt(S, l)- S ~ -c} 

> inf{s: \tt(s, i)- .~ ~ -c} 

- St+l(i) 

Theorem 5.4.3 If (cfs)F;(cfs) > 1 - fc~ xdF;(x) for each i and s
1 

then it is ne1•er 

optimal lo exerctsc the option before the mat1rrity. 

Proof At the maturity we have 

sr(i) - inf{s: Vr(s, i)- s ~ -c} 

- inf {s: ma.'<{s- c, 0}- s ~ -c} 

- c < oo for eacb i . 
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Therefore. the set {s: ''T(s~ i)- s ~ -r} never becomes empty. Since .St(i) is decreasiug 

in l from 1 beorem 5.4 .2. we only have to show that ST _ 1 ( 1) = oo for each i . }or l = T- I 

we have 

>T _, (•· i) - max { s- c.~ P,, J.~ \ T(sx .J )dF;(x) } 

max { s- c.s ( rdF,(x) -c [1- F; (~) l} 
- s- c+ max { O.s (1: xdF;(J) -I)+ cl-~ (;)} 

Since the quantity of the backet is positive, we obt.ain \'r 1 (~ 1 i) > .s - c~ which implies 

that.. ST-1(i) = oc for each i. 

Remarks 2 

{i) Note that 

s (1: xdF(x)- I)+ cF. m -s (f xdf/(x) -I)- s !."' xdF,(x) 

+cF. (;) 

> s(~, -1)- s foc/
11 (~) dF,(x) 

+cF; (;) 

- s(~i-1) 

> s(~,- 1) > 0, for J1.1 > 1. 

This implies that ~ 1 > 1 is a sufficient condition for Theorem 5.4.3. 

{ii) It is of interest from an investor's point of view to mention an implication of the 

optimal exercise policy established in Theorem 5.4.2 and 5.4.3. If an investor infer.s 

that the price of stock is expected to increase in the mean ~1 > 1. he should do 

nothing until the day of maturity. On that day he should make a puTchase at the 

lower of the call price or the market price. If he expects ~N < 1, follows the optimal 

exercise policy in Theorem 5.4.2 may give him the expected value V,(s, i). In words1 

should the price rise on the day with the stock prices .s < St(i) and the state z, he 

should exercise the option to buy at the stated price and immediately resell in the 
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open stock market so as to receive a capital gain. lnterprcling v} (s. i ) as fht 1:alue 

of the option at thr bcginmg of the firs/ day when lhe stock price is 8 and the .slate 

zs in i and also denoting the purchasing pn.ce of the option by V, u·e should buy the 

oplion u·hcn ' '1(s. i) >F. and should no! buy it. olherwu;e. 

5.4.3 Properties of the optimal value and optimal policy 

ln tltis subsection we explore some analytical properties of an optimal exercise policy 

and its \'alue. \\c wriLe P1 > P2 whenever r:·' pl > -.;;-N p2 r0 U '· 1' h J=i· ,3 - ~,:k 3 t ' r a fl.. o present t e 

dependency of P = [P,3] on V(·, · )> we define 

I ,(s. i. P) =max { s- c.~ P, J.~ V,+l(ox.j, P)dF,(x)} 

and 

~t(LP) = inf{s: l't(~:i.P)- $ < -c}. 

Propert.y 1 If P 1 > P2 • then we have 

Proof The proof is by induction on t. For l = T1 ~(s.i) is constant with respect to 

P = [/,;,3]. So assertion (i) holds with equation. Assume for t + 1 that l't+t (s. i. pl) 2:: 

\~+1 (.s. i. P2
) for P

1 > P2 
• Since l't(s, i) is increasing in i, by the first degree of stochastic 

dominance we can easjly show that 

L P,~ fooo 1ft+1 (sx . j, pl )dFt(x) = L Pi} 100 \~+1 (sx . ;, P2)dF,(:r) 
J j 0 

which implies that \'t(s. i, P1
) 2 \ ~(s .t. P2

) for each s. i. t. Assertion (ii) immediately 

follows fiom asscnion (i) because 

St(i. P 1
) - inf{s: ~~(s:i.P1 )- ·" 5 -c} 

> inf{s: \'t+t(s . i,P2)-.s 5 -c} 

- St(i, P 2
) 

Similarly, we usc the notation ViC,·, F) for emphasising the dependency on Fi(. ). 

Property 2 1f Jlt = P? for all i and each i fcf F,1(y)dy $ JC: F?(y)dy for all :c. then we 

have 
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Proof The proof is again by induction on n. For I= TFr(·. ·)and sr( ·)are bot.h constant 

with respect to F. Since from Lemma 5.4.1 (i) \ t(s. z. F) is increasing and convex in 

~. it can be shown that t.he 5econd degree of 5tochastic dominance and the induction 

assumption fort+ 1 imply 

fooo \ ~+I (.:>X. j, F1 )dF 1 (x) ~ hex \'~+I (.~:r. j. F2 )d 1· 1( X) 

Therefore. we have \'t(s.i,F1
) ~ \'t(s. i,F2

). Then, 

St(i .F1 ) - inf{.!i: \ ~(.>,i.F 1 )-_., ~ -c} 

< inf{s: ~ ;+ 1 (.:.. i. F 2
)- .s $ -c} 

- St(l . F2
). 

5.4.4 An alternative derivation of the option pricing formula 

In Subsection 5.4.3 we demonstrate in Theorem 5.4.3 !.hat it is nevc1 optimal to exercise 

the option before maturil.y, provided that ( c/ s )F,( c/ s) > 1 - J:i., xdF;(x) for each i and 

s. Using this fad, we propose an alternative derivation of t.he Black and Scholes' option 

pricing formula. 

Suppose that there is only one state. which allows us to eliminate t.he staLe variable 1 

from our notation. Also, suppose that ln Xt is independently normally dist.ributed wilh 

the mean J.i and variance u2 , that is. the stock price follows a geometric random walk. 

E[X] > 1 implies exp(J.i + u2 /2) > 1, which can be rewritten as J.i > -u2 /2. H E[X] > 1: 

it bas been shown from remarks for Theorem 5.4.3 thai it is optimal never lo exercise the 

option before maturity. Therefore, we have the maximum expected gain V(slc, T,p, u) as 

follows: 

V(sic, T, J.i. u) - E[max{ Sr- c, 0}] 

- 100 

xdFsr(x)- c 100 

dFsr(.x), (5.57) 

where Fsr(-) is the probability distribution of Sr = s · X1 · X2 · · · Xr. NoLc that. 
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- Pr{lnXt + · · · + lnXr $ln :!.j 
.s 

_ <I> {lnxfs -JtT} . 
u...ff 

where <I>{·) is L!Je standard normal distribution. So. Equation (4) can be rewrit.len as 

follows: 

\l(.'>jc.T,J.i.u) - 1--o o>e.u..ffz+,,r _ 1_ c-z 2 /2dz+ foe d<I>(~ 
(In cf.,-p.T)/u../T V'ii }(In cf s-p.T)/uVT "') 

_ sc.(JJ.+tr2
/2)T <I> (io cfs +(It+ u

2 )T) _ c<l> (io cfs + pT) . 
u-lf uvT (5.5 ) 

J . av av av av av 
t. 1s easy to sc<' t.hat- > 0.- < 0 - > 0.- > 0 and_> 0 

, 88 Be ' BT 8p . Bu . 
:'\ow. we are ready to deriYe the Black and Scholes· option pricing formula [3.. Let r 

be the riskless rate of interest. Since each In Xt is norrnall) distributed with mean J.L and 

variance a
2

. the expected \'alue of the maturit.y price of t.he stock with the initial price 

sis s · cxp{J.i + a 2 /2}T. On the other band, if we invest. x dollars today with the rate 

of interest r. we can expecl to receive ,Q. • exp{ rT} at the maturity date T. For any ri"k 

neut.ral investor or from t.bc no arbitrage condition, these Lwo investment opportunities 

must be equivalent. that is. 

·' · exp r.d ~2

} 1 - s · exp{rT). (5.59) 

llence. we obtain a relation 

q2 
J1. - r- -. 

2 (5.60) 

Substit.uting (7) into (5) we have 

l '(sjc, T. JL, u) =sci> (ln c/ s + (r + q'l /2)T) - ce-rT <I> (ln c/ s + (r- u'l /2)T) 
uR uVT ' 

which is exactly the same equation as the Black and Scholes' option pricing formula. 

This implies that the model presented here includes the Black and Scholes' model as a 

special case which can be derived from a fTamework of optimal st.opping problems. It 

is worthwhile t.o note that. the expected \·alue derived from an optimal exercise polic) 
1
s 

coincident with the option pricing formula under the condition tbaL Lhe underlying stock 

bas no divided wit.h the mean rate of return E[X] > 1. This approach gi,·cs us a deeper 

understanding of t.he Black and Scholes' model. 
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Chapter 6 

Two Software Reliability Growth 

Models Based Upon Module 

Structures 

6.1 Int roduct ion 

There have proposed quite a few Software Reliabilit) Growth Models (hereafter ab 

breviated by SRGl\l) to estimate. interpret and monitor failure behavior of large-scale 

software syst.ems [41], [51], [132). Those tradit.ional models are formulated in a way of 

birds eye watch of target software. That is, the models handle the software as a black

box entity and interpret hs defect behaYior in the manner of macro. In oLher words, the 

tra<litional SRGM studied so far assumes failure occurrence and detection process as a 

stochastic or deterministic process. 

Those tra<litionaJ SRGM's have been applied to large-scale software developed througb 

life-cycle processes. The SRGM's, however. have never applied to software developed in 

a modern process which is based on, for example, the object-oriented paradigm or data 

abstraction concept. In other words, it is an open question that the application of SRGM 's 

to such type of software would success or fail (see [79), [82]) . 

The purpose of this chapter is to provide an approach of formulating a new SRGM by 

emphasizing module structure of software and to answer tbis open question. To consider 

t.he module structure> in this context, means to <livide Lypes of instruction in software 

into several types according to inter or intra module decomposition. In concrete, in tbe 
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process of model formulat.10n, we first categorized instructions inlo multiple t.ype> such as 

dat.a ac.cess, subprogram call, data flow via global data, etc. we. then, assume that. t.he 

number of instrucLion executions is a stochastic counting process as weJl as the number 

of failure:. occurred. For t.he last decade, theoretical achievements in SRG~l havf" been 

appH<xi to the practice of sofLwarc> development.. Data abstraction t.ecbuique [64] and 

object oriented design nlf'thods [l 1 are such example t.o prO\·ide ::.orne theoretical bases 

of the qnalit.y and measurc•ment of software. 

In tbis chapter we formulate a new SRG~1 which is much more general than t.he one 

appeared 10 the exir:.ti11g lit.eratures and explains detect behavior of software. We also 

show lbat software de\eloped by data abstraction techniques is more reliable than one 

developed by functional decomposit.ion in terms of fajlure rates as well as the variance 

of the number of failure occurred. Those results are in closer agreements \\·ith actual 

software development practice. In Section 6.2 we formulate a new SRG~l by considering 

modul<" structures of soft.ware and detection rate of failures. In Section 6.3 we discuss a 

comparison of daLa abstraction software with functional decomposition one. Section 6.4 

follows with some concluding remarks. 

\Ve have developed a new soft ware reliability gro•~tb model based on a counting pro

cesses for instruction execuLion in a soft.warc. Through the analysis using the proposed 

modeL we conclude that higher software reliability can be achieved \\itb dat.a abstract.ion 

techniques than wit.h functional decomposition, under reasonable assumptions. vVe note 

also that the exponential NHPP model. which was developed t.hrough experience. is a 

special case of our theoretical model, and that, the results of our model t.herefore agree 

with that of ~HPP. 

6.2 A Software Reliability Model Based Upon Module Structures and Error 

Detection Rates 

In tbis section we formulate a new SRGM whkh explains detect. beha,~or of software. 

Before doing so we need some notations and assumptions. The set of operations consists 

of functions and instructions in software. A set of opcraf.ions or data is called a module. 

A soft.ware is defined as a set of such decomposed modules. Object-oriented software's 
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modules consists of data and operaLions. On t.he ot.ber hand, f\l(\Ctionally decomposed 

software consists only of operations. Any software carrys out. jobs to communicate each 

other among modules . 

Failure of software can occur cit.her in communications between modules or in executing 

internal instructions within modules. Failure occurrE-d within modules can be classified 

into t\vo types due to access lo either lo<'al or global dat.a. We assume Lhat mult1ple faults 

never turn ouL t.o be one failure. 

Wt" use the following not a lions : 

{ l 
if iot.er module communicat.ion occurs at. nth instruction 

X -n 
0. otherwise. 

{ 1 if accessed to local dat.a at nth instruction 
Yn -

0. otherwise. 

{ 1 if accessed to global da1.a at nth instruction 
Zn -

0. othen•.t.ise. 

S(t) = the number of instructions executed by timet. 

Lett be a continuous time in a real line. So, .Y(t) is a counting process whose sample 

paLh is non-decreasing in t. Let. X(t) be Lhe number of intermodule communications by 

L. Let Y(t) be the number of accesses to local data and Z(t) the number of accesses to 

global data by t, respectively. Then, we have 

N(t) N(t) N(t) 

X(t) = I: X" Y(y) = I: Yi. and Z(t) = I: z,. 
·=• •=I 

Assumption I {Xn}: and P'n} and {Zn} are independendy and identically distributed 

and also independent of N(t). that is, N(t) is a stopping time wit,h resped to {Xn}, and 

{Yn} and {Zn}· 

Let p be the probabilit.y of intermodule communica~ion, q the probabilit.y of access· 

ing to local data and r the probability of accessing t,o global data at each instruction, 

respectively. So, we have 

E[Xn] - Pr {Xn = 1} = p 

E[Yn] - Pr {Yn = 1} = q 

E[Zn] - Pr {Zn = 1} = r. 
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Deflne 

S(t) = X(l) + Y(t) + Z(t) (6.1) 

which presents tbe total sum of number of inter- communicattons and ·1nt. · t · 1.a-1ns ructiOns 

on the module decomposed software. lnder Assumptton f. appljing \\'aid's formula into 

equat.ion (6. I )1 we obtain 

E (S(I)] - b(X(t)~ + E[l (t)] + E{Z(t)J 

- (p+q+r)£[1\(t)]. 

(6.2) 

To count. the number of failures on the software we define the r0 u0 ... 1·n d · bl 1' .. gran om Yana es 

and 

Deline 

Oj = { 1 if a failure is observed at the jth inter module communication 

0. otherwise, 

o; = { ] if a failure is observed at the j th local data access 

0. otherwise. 

0 3 _ { 1 if a failw·e is observed at the jth global data access 
) -

0, otherwise. 

Pr { o; = 1} - aJ 

Pr {OJ= 1} - a2 

Pr { o; = 1} - a3. 

Assumption II {OJ}, {OJ} and {o;} are independent.ly and identically distributed and 

also in~ependent of S(t), Lhat is. S(t) is a s1.opping time wit.h respect to OJ . Oj and OJ. 
res pee L1 vely. 

Denote 0( l) Lhe total number of failures observed by time t. which is given by 

S(t) S(t) S(t) 

o(t) = I: oj + I:o; + I:o;. (6.3) 
J=l ;-=:1 i=l 
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Let H(t) be the mean value function of O(t). Applying \\'aid's formula into equation 

(6.3). again, we obt.ain 

11(1) = E[O(t)J (6.4) 

- £[5(1), { £(0~) + El07) + E(O;)} 

= (p + q + r)E[N(t)](o:l + (\2 + a:3) 

- o(p + q + r)E[S(t)]. 

where a =a,+ et2 + 0:3. 

Defining .A(t) a failure rate at time l, we have 

dH(t)fdt a(p + q + r)dElJ\'(1)]/dt 
.X(t) = a_ H(t) = a- H(t) (6.5) 

h - l' H(t) > 0 t.be t.otal number of faults embedded in the software. w ere a= lffit-oo 

To discinguish where the observed failures come from we put 

S(t) :>(t) S(t) 

Ol(t) = L 0~. 0 2 (t) = L 0 2
• and 0 3 (1) =~or 

t=l =l t-l 

Let Hl(t) be the mean value function of failures caused b) inter-module communicaLioos. 

H2(t) the mean value function of failures by local data access and H 3 (f) by global data 

access. 

H 1 (t) - a.1(p + q + r)E[N(t)] 

H2(l) - a 2(p + q + r)ElN(L)} 

H 3(t) - 03(p + q + r)E[N(t)]. 

Let ,Xl(t), ,X2(t) and _A3(t) be the failure rate corresponding t.o H 1(t), H2(t) and H 3(t), 

respect.jvely. 

( ) - dffi(t)f dt i = 1. 2, 3. 
Aj t - a- H(t) ' 

where H(t) cbe reliability funcl.ion of the entire software is given by H(t) = H 1(l) + 
H2(t) + JJ3(t). The failure rate of the entire software is given by 

.A(t) = dH(t)fdt 
o- H(t) 
dH1(t)jdt dH2(t)jdt dll3(t)fdt 

- a - II ( t) + a - H( t) + a - B ( t) 

_ .A1(t) + .A2(t) + .A3(t). 
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Let T1 , 'Ii and 73 be the inter failure Limes due Lo inter module communication!'. lo<'al data 

and global data accesses. respectively. Let R( t) be the reliability function of the entire 

software, H
1
(f), R2(l) and R3(t) tbe reliability functions for T1. T2 and T

3
• respecti,·ely. 

\\e have th~ relation of the reliability function aud failure rales .A(l) . .X
1
(t). ,\

2
(1 ) . .A

3
(t) 

as foUows: 

R(t) - Pr{mhJ(7 1,72.T3)>t} 

- Pr{T1 > t.T2 > t.T3 > t} 

= Pr {T1 > t} · Pr {T2 > J} · Pr {73 > t} 

= R1(t) · R2 (l) · R3 (t) 

- exp {- fo' .-\1(r)dr} · exp {-for .A 2(r )dr} · exp {-lot ).3 (r)dr} 

- exp {-lot [>. 1(r) + .X2(r) + >.3(r)] dr} 

- exp{-fo
1

.A(r)dr} . (6.6) 

\ote thal the software reliabiln.y function based on module structure is of series system. 

Tbe reliabi!it.y funct.ion is uniquely determined by and non-increasing in tbe failure rate. 

6.3 A Comparison of Object Oriented Software with Functional D ecom posi

t ion Software 

In this section we describe functional decomposiLion and object oriented softwares. 

Defining their reliability functions or failure rates. we discuss a comparison between two 

softwares. I t can be shown under some well-accepted assumptions that object-oriented 

software is better than functional decomposition one in a sence of software reliability 

growth models. 

A functional decomposition software consists of the set of modules and global data, 

where each module shares global data with each other, and jobs can be carried out through 

intermodule communications and accesses Lo global data. Each module has no local 

data. On the other hand, a object oriented sohware consists only of the set of modules 

where each module posesses a sequence of operations and local data but does not haYe 

global data. Each module carries out instructions or statements within the module and 

communicates wiLh other modules . Note that each module in the object-oriented software 
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has a similar structme with a functional decomposition software. Ilow{'ver. global data 

of functional decomposit.ion software are not decomposed but shared with all modules. 

One advantage of module part.it.ion in software design process can reduce t.he possibility 

of putting faults by partitioning modules in smaller size. Access t.o daLa in codes of int.ra 

module in object-orient.ed soft\vare has a smaller probability of puHiug faults than in 

functional decomposition software. l" nder those considerations we assume t.hal 

(1 ) t.he objecL-orientcd and functional decomposition software have boLh t.he same prob 

ability of put.ting a fault 1n the inter module communications, 

(2) the object-orient.cd software has the smaller probability of putt.ing a fault at the 

data access instruction. 

(3) the functional decomposition software has a higher probability of accessing the 

global data and 

(4) t.he objected-oriented software has a higher probability ofint.er module communica-

tioos . 

\Ve use hereafter the subscripts o and f to present the object-oriented and functional 

decomposition softwares. respectively. Hence, flo(l) and H1(t) are the mean \'alue func 

lions for object-oriented and functional decomposition softwares. From equation (6.4) we 

have 

llo(t) - ao(Po + qo + ro)E[N(t)) 

H1(t) a:J(PJ + qf + r1 )E(.LY(t)J. 

Similarly, we have the corresponding failure rates 

dH0 (t)jdt 
a - ll0 (t) 
dH1(t)/dt 
a-1!1(t)' 

Proposition 1 If a:0 fat < (PJ + qf + rJ)f(p0 + q0 + r0)~ then A0 (t) < AJ(t) for all t. 

Object-oriented software's reliability is higher t.ban functional decomposition's. 

Proof Taking 1..be difference of llJe failure rates bet ween two soft\<:ares. we obtain 

).
0

(1) _ AJ(i ) = dllo( f)/dl dfl1(t)/dl 
a- 110 (l ) a- H1(l) 

_ [ao(Po + Qo + ro) _ o!J(pf + fJJ + TJ )] dE[N(t)J 
a - lfo(l) a -JIJ(l ) dt 

_ [a:o(Po +qo +~o) _ OJ(PJ+qJ+rJ ) ]dE[X(l )) 
0 .->(PD + qo • ro) a- DJ(PJ + ql ..L r1 ) dt 

a . . dE[ \"(t)J 
- A lou(Po T 9o + ro) - OJ(PJ + q1 + r 1)_ ~~ 

< 0 

~herr {{ i.s t.he common denominaLor appeared in the calculation and f( > 0. Since J\'(t ) 

IS a countmg process. dE[lV(t )]/dt > 0. By definition of reJiability function ).
0
(t) < ). (t ) 

impHes Ra(l ) > R1(l ). 
1 

(Q.E.D. ) 

5BXext.. we shall compute the ,·ariance of the number offaulis observed by time l. which is 

t.bc risk measure of the reliability of soh ware system. From cquat,ion (6.3) and Assumption 

f1 we obtain 

l' ar(O(t )] - l' ar [~( 0~ + 0/ + O?)] 

- l'ar [~ o:] + Var [~ O'] + Var [~or] 
- E[S(t)JVar(Of) + (E[0}])2Var[S(t)J 

+E[S(t)JVar(on + (E[Ol))2\far[S(t)] 

+E[S(t)~ \ ·ar(O~) + (E[0?])2Var[S(t)] 

= E[S(t)J { l 'ar(Of+O;+O~)} 

+ \ ·ar[S(t)J { (E[OlJ? + (£[0f])2 + (£!0?])2} 

From Assumption 1, II we bavc for m = 1, 2, 3 

\ ·ar(O;") - E[(0;")2J- E[O:r']2 

- 0 m- (Omf = am(l- o·m). 

Renee, 

E[S(t)] - (p + q + r)E[N(t)] 
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\ ·ar[S(l) _ Var[.X(t) + Y"(t) + Z(t)] 

_ 1"ar [~ x,] + \lar [''I})·~] + \'ar [~ z,] 
s=l 1=l 1-1 

E(X(t)]Var(X,) + (E(X,))2
\' ar( \(f)] 

+E[.\'(t)jVa.r(},) + (1 (}'))z\lar[ \ (t)] 

+E[.S(t))'' ar(Z) + (E(Z,))2
\ ar{ \ ll)) 

- E[1Y(t)]{Var(X,) + Var(),) + Var(Z )} 

+Var[N(t)] {(E[X.])2 + (£[)~)) 2 + (E[Z,]) 2
} 

E[N(t)] {P- p2 + q- q~ t r- r 2
} 

+ Var(N(t)] {p2 + q2 + r 2
} 

So. Lhc variance of O(t) can be written as 

Var[O(t)] = (p+q+r)E[1Y(t)]{a1(1-o!)ta2(1-a2)+o3(l-a3)} 

T {E(S(tr {p(l- p) + q(l- q) + r(l - r)} 

T Far[X(t)] {p2 + q2 + r 2
}}. { ai +a~+ an 

Putting A = o~ to~ +a:;. B = p + q + r. C = p2 + q2 + r2 and o == Ot -r 02 + 03. the 

equation above can be rewritten as 

Var[O(t)] = (aB- Ac) · E[N(t)J + AC · l'ar(JV(t)]. 

For each m and i 0 < ar < 1, 0 < p, q~ T < 1 and aB > AC l which guarantees 

Var{O(t)) > 0. 

Assumption III Var[N(t)] ~ E[N(t)] 

Under Assumption Ill we obtain the following proposition which insists t.hat object ori

ented software is better than functional decomposition software in a sense of the variance 

of the number of faults observed by timet. 

Proposition 2 If a0 /0:J < (p,+qJ+r,)f(Po+Qo+ro) and (af,+a~,+a~,)(p}+q}+rj) < 

( o:f0 + a~0 + a50)(p~ + q~ + r;) then 

Proof Taking ~he difference of the variances between two softwares, we have 
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+ {Var!O(t)j- E[i\'(t)]} (AJCJ- .-\,C
0

) 

< 0 

where A= oi +a~ +a~. B = p+q +r. C = p2 + q2 +r2 and o
0
B

0 
< a1B

1
. A

1
c

1 
< A

0
C

0 

from Lhc assumptwn. 

( Q.E.JJ.) 

Remarks 1 If the testing procedure has been done by the equally qualified engineers, c
1 

almost eqvals to C0 • Then Proposition 2 holds for Ao > A
1

. 

Remarks 2 In this section software i.<; treated as the sel of decomposed modules and is 

classified lo object-oriented and functional decomposition soft'wares. Executed instrucllons 

on the so}/wares can be considered to be carried out by inter module communications or 

acccsse~ to data. Under those constderalions we fo1 mutate a new softu·are reliability grou:th 

model emphasizing upon it~ module structures. 

It has been shown under some as!'umpt.ions that object-oriented software is better than 

fuuclional decomposition software in the sense of their reliahilit.y functions as well as t.he 

variance of the number of faults observed. This result obtained here is in closer agreement 

with act.ual practice in sohware design and development processes. So, our model can 

provide some theoret.ical base Lo software engineers who have intuitively recognized this 

practical fact,. 

6.4 A New Software Reliability Growth Model Predicated on Counting Pro

cesses for Instruction Execution 

1 f we develop an SRG~1 which represents internal struct.ure of the software in det.ail. the 

values of various parameters estimated from the defect behavior naturally give measures 

of the goodness of structure of target software and eYen causes and types of faults can be 

estimated. \ViLh such a model, we can have not only the estimation of the total number 

of faults bul also quantitative measure for the goodness of software structure with such 

a model. Therefore the model can be actively used to control the software development. 

process [8]. 
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Following t.he discussion above. we propose a new SRG~l which n•preseot.s st.ruclure 

of target software. Our model has, in concrete. the following features: 

1. Execution of instr\lction is assumed to be a counting process. 

2. }nslruct.ions in software are classified into ~e,·cral classes. 

3. A set of parameter~ for instruction classes r<'prCR<'nt:; the struct uc of a target soft-

ware. 

ln case inst.ruction execution obeys Poisson process. let us prcvi('w the formula obtained 

in t.he next. section for reliability of software at. Lime l. R(t ): 

p· 
R(t) =IT exp[--'-.Xq,t] 

. s a+ p, IE 

where 

S = {G,L.C.O}. G. L. C, 0 denot.es global. local. communication. and others. re

spectively. 

a is the total number of faults. 

p, is the probability that failure occurs at the first execut.ion or a class i instruction. 

proportional to the number of faults in class i msLruct.ions (we call p, the initial 

probability of failure). 

.X is the rat.e of instruction execution. 

q, is the probability t.hat an instruction execution is of class i, 

{3 is a constant which denotes failure detection probabilit.y. 

In this sect.ion, we develop an SRGM for sequential-processing software in two steps: 

• We derive a reliability function of the given time t for a single class of instruct,ions. 

as in traditional models. 

• We categorize the instructions into several classes to represent, the st.ructure of the 

code, and then extend ihe model io the general case. 

Throughout. lrus section. we assume that a single failure ts always caused by a single 

fault. 

T hat is , a failure never be caused by a cornbioa~ion of multiple faulis. 
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T he Basic Model 

Ju general. an SRG~1 yields a cootmuous-time formula. Since failure can take place at 

any moment of time, it is natural to build our SBG~l as a continuous-time model. First 

we focus on the series of time instants of instruction execution and deri,,e a discretc· t.ime 

formula. Then the discrete time formula if'i translaLed into the corresponding continuous· 

time formula in the case that instruction exccut1on is randomly distributed according to 

Poisson process. 

Instruction Execution a nd Failure 

F'igure 6.1 illustrates the basic assumptions of lhe relationships between jnst.ruction 

execution, occurrence o[ failures. and detection or failure. Let us define random variables . 

M, and 0, as t.he following: 

0 · { 
= { 

if a failure occurs at the epoch i: 

0 otherwise 

1 if a failure is detected at the epoch i; 

0 otherwise 

where the epoch i is the time instance of the i-th instruction execution. a., represenLs 

the probability of failure occurrence at the epoch i, and ils decreases when the reliabilit.y 

grows. (J is assumed to be a constant. independent. of time and represents failure-detection 

probability. T he probability of failure occurrence is assumed only depends on time through 

Lhe number of remairung failures. 

The figure assumes the following scenario: 

l. At epoch 2 and 3. failures occurred. (11!2 = .\l3 = 1) but were not detected (0
2 

= 
03 = 0). 

2. Al epoch 5. a failure also occuned (J\15 = 1) and was detected ( 0 5 = 1 ). The fault. 

caused the failure was fixed and ihe total number of faults was reduced by one. 

Then o.6 reduced. 

3. At epoch 6, a failure occurred and was detected (same as above). 
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Epoch i 1 2 3 4 5 6 7 8 

0 0 1 0 1 0 0 

!··---····-··-·· .. -·-··---·· ............................. - .... . 

0 ...... ---- .. -·-······· ............................................... . 

Figure 6.1: Relationship between Instruction Execution, Failure Occurrence, and Its Probability 

iu Software 

The Mean Value Function for Failures in Discrete Time 

Let p be the initial probability of failure occurrence, that is, 

p = Pr{One of faults in the code is executed} 

(the total number of fault.s) ( • t) 
--~~~~----~----~~ x cons~an . 

- (the total number of instructions) 

Then. a-, is defined as: 

p · 2::: 0 · Pr{ the total number of faults = m} 
(the total number of faults) 

p · E[the number of remaining fault.s] 

(the total number of faults) 
(a- H,) 

·p 
a 

where a is the total number of faults in software. The mean value funct ion, H,, is 

H, = E [the number of faults detected at i-th event (fixed til (i- 1 )-th event)] 

To derive Hi, let. Qi(k) be a probability mass function: 

Q1(k) = Pr{the number of faults detected til (i -1)-tb event.= k}. 

Then, the expectation of k becomes H,: 

00 

IIi =I: k · Q,(k) (the mean value with respect to k). 
k=O 
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(6.7) 

Xote that we have the following recurrent equation, Q,(k): 

Q,(k) = Pr{(k at (i -1)-th event) 1\ (no new failure are detect..ed at (i- 1)-Lh event)} 

-t Pr{(k -1 at (i- 1 )-th event) 1\ (a new failure is det.ected at (i- 1)-th event)} 

- Pr{no new failur<' are dctect..ed at. (i- 1)- t..h event lk at (i -1)-t..h event} 

xQ, 1(k) 

+ Pr{[a new failure is det.ccled at (i- 1)-Lh event] /\ [k -1 at (i- 1)-th event}} 

xQ,_1(k-1) 

(6.8) 

wbere i = 1. 2. 3..... k = 0.1. 2 ..... a A (i - 1). and Q,(k) = 0 ot.her\\ise. Let Q~(z) be 

a probability~generating function of Q,(k). That is. 

Equation (G.8) becomes 

= 
Qi(z) = L /~Q,(k). 

k=O 

Q7(z) - (1- at)Q;_1(z) + a,zQ;_ 1(z) 

- {(1- a,)+ aiz}Q'"_1(z) 
I 

- IT {(1- an)+ Onz}Q;(z). 
n=2 

Note tha~ Q1 (0) = 1 and Q;'(z) =], then, 

I 

Q;(z) - IT (1- On+ Cl'nz). 
n=2 

We have II, in t..erms of etn: 

Ht - 0 

Hi = f k · Q,(k) =lim dQi(z) 
k=O z-1 dz 

I I 

- !~ L{ak IT (1- Cl'm + amz)} 
k=2 m::;:2,m#J.· 

1 

- L an (i ~ 2). 
l\=2 
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Prom equation (6. 7). 

a'] - p 

a- Hi 
a. - p· 

a 

pI: a,. 
n=2 (i ~ 2). - p-

a 

!\ow we take 1.he differ<'nce as: 

lienee. 

From (6. 7). again: 

( i ~ 2 ). 

Since EE. > 0. 
11 • 

lim Hi= a. 
i--+co 

The derivation so far does not depend on any specific probability distribution of consec-

utive instruction executions. 

T he Continuous-Time Formula 

If we assume t.haL the executions of software instructions are carried out according 

to a Poisson process with intensity >. . we have a quite simple form for the reliability 

function. Since a Poisson process is known to represent random arrival of customers at a 

service faci lity in terms of queuing theory, this assumption IS reasonable in most cases of 

instruction executions in software. 

d . . . l t '} (J.t)' -At Pr{the number of instructions execute m t.tme mt.erva = ~ = -.,-e . 
2. 
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Thus, mean value function of failures at. a given time l is 

H<'nce, 

The failure rate defined by 

cau be obtained: 

H(t) = ~ 11 . ().tf -.\t 
~ Hl .1 e . 
;0 1. 

H(t) = a(1 - expj--p- >.1]). 
a+p 

dH(t) 

d(t) = dt • 
a- lf(t) 

d(l) = _P_..\. 
a+p 

Finally. we have the reliability. R(l) = exp{- J~ d(r)dr]: 

R(t) = cxp(--p->.t]. 
a+p 

6.4.1 Exte nsion of the Basic :Model for M ult iple Classes of Software I nstructions 

\\'e now classify instructions into t.be following four categories: 

• Global data access. 

• Local dat.a access. 

• Inter-module communication. 

• Ot,hers. 

Here, a module is defined as a set of subprograms (procedures or functions) and/or 

dat.a definit.ions. A software system consists of multiple number of modules. Inter-module 

communi cat ion is defined as follo\vs: 

\Vhen an instruction in module J J1 is a call to a subprogram pin module .\t/
2

, 

inter-module communication occurs between A-11 and 1\12 , and is defined to be 

the set of actions lhat are the parameter passings of p's invocation. along wit.b 

the return value in tbe case of a function call. 

Let. Pi be t.he initial probabi lity of failure occurrence, and q; be the probability of 

instruct ion execution: and suffixes such as G, L, C, 0 mean global data access: local data 
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access, inter-module communication, and others, respectively. Say PG denotes t,he initial 

probability of failure occurrence in global data access. If we assume tbat executions of 

t.he different. types of instructions is independent of one another. Lhe failure rate can be 

obtained: 
p· 

d(t ) = 2:-'-J..qi 
iES a.+ Pi 

where 

5= {G.L,C.O}. 

Reliability is defined as: 
p· 

R(t) =IT exp[--'->.qil]. 
iES a.+ Pi 

6.4.2 Data Abstraction versus Functional Decomposition from the Perspective of 

Our Model 

This section discusses the reliability of data abstraction software and funcLional de

composition software. Data abstraction software is the one which is designed by abstract, 

data type technique [64] or an object-oriented design method such as Booch 's [18]. Soft

ware developed by the design method of functional decomposition is called funcLional 

decomposition software. Sets of parameters for bot,h types of software are defined accord

ing to the SRGY! proposed in the previous section. Then. their reliabilities are compared 

with each other under several well-accepted assumptions. 

6.4.3 Data Abstraction Software and Functional Decomposition Software 

Structure of functional decomposition software and data abstraction software is il

lustrated in Figures 6.2 (a) and (b), respectively. As shown in the figure, functional 

decomposition software consists of a set of global data and modules that are sets of sub

programs. Data abstraction software, on the other hand, is composed of modules which 

have internal local data and operations (procedures and functions) to access the internal 

data. No global data exist in data abstraction software. 

Which is More Reliable? 

Let Pi be the initial probability of failure occurrence and qf be the probability of 

instruction execution, where i E S = {G,L,C,O} and jET= {d,j}. G1 L,C, and 
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Global data 

Module 1 

Inter-module 
communicaLion 

Global 
data 

access 

Module 2 

Inter-module 
communication 

? 

(a) Functional Decomposition Software (b) Data Abstraction Software 

Figure 6.2: Structure of Software 

0 denoLe globaL local. communication and others. respectively. d denotes data abstrac

tion software and f denote functional decomposition software. For example. Pb is the 

initial probabHity of failure occunence at the time of global data access in functional 

decomposition soft.w·are. 

Let. da(t) and d1(t) mean failure rates f d b o at a a straction soft ware and functional 
decomposition software at timet. That is, 

da(t) 
d 

_ "' Pi ). a 
~a +pd qi 
tES t 

1 
"' Pi 1 L., 1 J..qi. 
ies a+ Pi 

Assumptions Made for Comparison 

The following assumptions are made for comparison of these two types of software: 

1. Assumptions on the probability of instruction execution 

la) Data abstraction software does not have global data in its components, which are 

accessed by multiple number of modules. 

IL is assumed that the data structure is completely hidden m data ab

stract.ion software. 
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1 b) There is global data in functional decomposition software. 

Since we assume that data abstraction is done only in a li:rrllted way in 

functional decomposition software, it has global data accessed by mulLiplc 

number of modules. 

lc) In functional decomposition software, a part of inter-module communication in data 

abstraction software is realized as data flow via global data. n 

Global data in functional decomposition software, thus, can be categorized 

into two types: one because of incomplete abstractioDj and and the other 

data for data flow via the data. 

2. Assumptions on initial probability of failure occurrence. 

2a) Initial probability is 0 if it is for instructions never executed (p~ = 0 as q~ = 0.) 

2b) Initial probabilities of failure occurrences in local data access1 inter module commu

nication, and others are the same. 

We assume that both types of software are designed and coded by pro

grammers with the same level of skill. Hence, there is an equal chance to 

introduce faults in codes for those three types of instructions. As a result, 

all of their initial probabilities are equal. 

Table 6.1 summarizes, based on the assumptions above, initial probability of failure 

occurrence and probability of each instruction. qc in the table represents probability of 

flowing data via global data, qL represents probability of accessing global data which are 

declared as a result of incomplete data abstraction in functional. decomposition software. 

Let ~d be the difference between the failure rates of data abstraction software and 

functional decomposition software, that is , 

(6.9) 
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Table 6.1: Initial Probabjljty of Failure Occurrence and Probab1'lity of In t t' t: • . s ru c ton uXecu t10n 

Global data Local data Communication 0Lhers 
access access 

Initial probability of p~ = 0 Pi= Pi pd - pf d - f c - c Po- Po 
failure occurrence Pb pi- pd pf- pd pi - pd L- L c- c 0- 0 

Probability of q~ = 0 qt = qL + q£ q~ = qc + qb q~ = qb 
instruci.ion execmion qb = qc + qL q{ qb qf - qd 0- 0 

The deno:rrllnator of each term of equation (6.9) is positive and the parameters a,)., qL 

and Qc also take positive value. t\umerators, therefore, determine the sign of 6d. Due to 

the following reasons. the value of 6d is always negative. 

1. Pb > pf because the possibility to introduce faults into instructions which access 

local data is smaller compared with codes for global data access. That is, abstracted 

data is decomposed into fine chunks compared with global data, and they are pro

tected from illegal access from outside by operations. Hence, faults can be easily 

introduced into instructions which concern global data. 

2. Pb > p'f:: because faults introduction is, compared with inter-module corrununicaLion, 

easier in codes for data 1low via global data, which makes use of side-effects. 

Based on the discussion above, we can objectively conclude 

Data abstraction technique contributes to achieve highly reliable software. 
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6.4.4 Validation of Our Model 

Our Model and the NHPP Model 

Our SRGM can be coneived as a refinement of the exponential NIIPP model[41] whose 

mean value function of failures is represented as: 

H(t) = a(l- e-bt) 

when we define bas: 

b=-P-A. 
a+p 

That is. our SRGM explains failure behavior of software more precisely than the expo-

nential NHPP model does. The exponential NHPP model is, from experience, from its 

application to real project; said to explain failure behavior of large-scale software. We 

can conclude. from this fact. and the discussion in Section 6.4.3. that: 

Data abstraction is a useful technique to enhance reliability of large-scale 

software. 

How Can We Demonstrate Usefulness of Our Model? 

The next questiob is that how we can demonstrate the usefulness os our SRGM other than 

the formal proof above. The most common and popular way to demonstrate usefulness 

of SRG.NPs is to 

1. gather failure data in a real project, 

2. estimate parameters of the SRGM, and 

3. validate the difference between the estimated value of parameters (particularly the 

total number of faults) and an actual set of value observed. 

So far, data from real projects (preferably from third party) detailed enough to be 

utilize in our SRGM is not available. Instead, we are now validating model by simulation. 

The steps in our simulation experiment is as follows: 

1. Generate pseudon failure data based on Gonpertz curve. 

2. Estimate parameters of our SRGM, using the data generated. 
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3. Validate the estimated total number of fault.s with the value ,vh· b · h fi 
1c IS set at t e rst 

step. 
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Chapter 7 

Conclusion 

This dissertation develops many stochastic dynamk optimization models invoh;ng se

quential decisions. Some of these models require a special structure in order to be anal

ysed by means of dynamic programming. In cases where ibis stl'uct.ure exists, dynamic 

programming is a very useful and pradical technique for solving problems. In cases where 

uncertainty is involved in a control system described by a Marko\ process. we can apply 

dynamic prograrnrrring to the control system. In earlier chapters, especially in chapters 

3. 4. aod 5. we present examples of stochastic dynamic models that analyse the dynamic 

aspc>ct of system behaviour. However. the dynamic programming approach is both more 

difficult and at the same time simpler than other optinuzation approaches such as linear 

and non-linear optimization techniques. It is difficult to formulate certain opLirnizing mod

els involving many decision variables and state descriptions because the computational 

requirements increase even though computer-aided search methods may be available. 

In Chapter 2 we consider a class of dyamic programs in which there are dist.inguished 

subsets of policies and value functions, respectively called simple policies and simple value 

functions. An algorithm called generalized policy jmprovement is used to find ~-optimal 
policies. This algorithm bas the property that only simple functions and policies are 

generated. \\'hen formulated as a dynamic program, it bas an uncountable stale space. 

However, the sets o{ simple policies and simple value functions can be cbosen so ~hat 
they are easily represented in a computer. As a special class of these simple dynamic 

programs we analyse piecewise linear dynarruc programs and partially observable t\'larkov 

decision processes. Vve also demonstrate how partially observable Ylarkov processes may 
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be transformed into piecewise linear ones. ~loreovcr. we specify how to find the simple 

policies and simple value functions. 

Jn Chapter 3 we deal with problems of how many units of a particular product to 

produce each period and ho"· lo allocate price differentiable products between two t.ypes 

of demands. The maiu result of this chapter is Lo show t.he existence of a simple optimal 

policy even if fixed inventory costs arc involved and even when the demands for the Lypes 

of products are stochastically dependent. ln addition. we provide several interesting 

examples in which demand distribution is specified. This inYentory control model is one 

example of a sequentially interrelated decision that must be made over time. 

In Cbapt.er 4 we consider airline seat allocation between high and low fares with and 

without st.ocbastic cancellations. Here we consider a dynamk airline seat allocation prob

lem for a single Oigbt with two fare classes. The problem is formulated as an 1\' -step 

dynamic problem and aims at. deriving optimal policies. V\'e also explore some analnical 

properties of such a.J.J optimal seat allocation policy and the associated expected re,·enue. 

The model also extends the existing literature in two ways. First. it is a dynamic Yersion 

with the cost of losl sales. Second, it is formulated under a setting of Markov decision 

processes which explicitly take into account. Lbe periods remaining until departure and 

permit reopening of fare classes. We also examine the problem of allocating airline seats 

between two nested fare classes when the demands for the classes are stochastically depen

dent. The well-known simple seat formula of Littlewood, which requires the assumption 

of statistical independence between demands. is generalized to a formula that requires 

only a much weaker monotonic association assumption. The model employed here is also 

used Lo examine the problems of full-fare passenger spillage and passenger upgrades from 

the discount class. 

Chapter 5 develops an asset allocation model with various risk measures that is quite 

different from tbe mean-variance portfolio models. From the perspective of institutional 

investors the purpose of investing is to achieve a target level of rate of return that meets 

the cash flows of the business. A situation unfavorable to this aim is penalized as a risk. 

The model developed here is in closer agreement with actual practice in Japanese financial 

institutions. We discuss an optimal policy regarding consumption and portfolio selection 

when asset. prices follow semi-martingales. Then we deri,·e an equation that t.be expected 

163 



rate of reimns should satisfy when investors in t.he market have identical utility functions 

and agree on Lhe parameters of st.ochastic processes that. describe asset prices. Future 

research should derive a closed solution for an optimal policy regarding consumpt.ion and 

portfolio selection, but using examples other than those of geometric Brownian motion and 

similar stochastic processes, and developing an intertemporal capital asset. pricing model 

in those cases. Ot.her future research tasks would include studying what happens when 

variables besides wealth are introduced as st.ate variables in derived utility functions. So 

long as we rely on methods of dynamic programming in cont.inuous time, we sball probably 

encounter the problem of a trade-off between the wide perspectives gained by generalizing 

on utility functions and asset prices, and the richness of conclusions that can be obtained 

by a more specific model. 

In Chapter 6 we develop a new SRGM by representing execution of software instruc

tions as a counting process. Using the SRG::VL we discuss whether or not tbe data ab

straction technique contributes to enhance the reliability of software. The conclusion 

that it really does is formally drawn under well-accepted assumptions on software devel

opment. That. is, we have objectively supported an instinctive apprehension good software 

developers have. 

Future research includes the following topics: (l) Generalization of the model (in the 

process of our model formulation, described in Section 6.4, we assume that instruction 

execution is a Poisson process). A more generalized process such as a non-homogeneous 

Poisson process can be used to formulate a more generalized model. (2) Deriving a family 

of models (in the current form of our SRGM1 ai is to result a family of models based on 

our model formulation framework) . This fact is a kind that various NHPP models can be 

derived by defining the mean value function of failures from one t.o another. Thus, our 

SRGM is a meta model whose parameter is ai. (3) Demonstration of the usefulness of 

our SRGM by real project data. 

This dissertation has been developed on the basis of an algorithmic method of dy

namic programming in Chapter 2 and four areas of applications in chapters 3,4,5 and 6 

using stochastic dynamic optimizing models. These applications are formulated in a form 

amenable to dynamic programming techniques. The formulation is used to derive certain 

simple properties of the expected value function, which then motivate the const.ruct.ion of 
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the compu l.ational algorithm. 

Mosl. of the applications in which these dynamic programming techniques are used are 

examples of a sequential decision problem in which !.he optimal policy bas a special struc

tural property that simplifies t.he procedure for constructing simple stationary policies. Of 

course, we should not emphasize only the analytical results discussed in this dissertation. 

but. also the fact that we have developed the computational requirement of an algorithm 

that is solvable in practical applications. Finally, a most. important area for future re

search should include the estimation of parameters for the stochast.ic dynamic models and 

should extend to include uncertainty about the stochastic process itself. The problem be

comes more difficult, but it nevertheless remains important, when the stochastic process 

and the system dynamics come to include mutual interdependence and uncertainty in the 

process parameters. 
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