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Abstract. The semi-infinite program (SIP) is normally represented with infinitely many inequal-
ity constraints and has been studied extensively so far. However, there have been very few studies on
the SIP involving conic constraints, even though it has important applications such as Chebyshev-like
approximation, filter design, and so on. In this paper, we focus on the SIP with infinitely many conic
constraints, called an SICP for short. We show that under the Robinson constraint qualification a
local optimum of the SICP satisfies the KKT conditions that can be represented only with a finite
subset of the conic constraints. We also introduce two exchange type algorithms for solving the
convex SICP. We first provide an explicit exchange method and show that it has global convergence
under the strict convexity assumption on the objective function. We then propose an algorithm com-
bining a regularization method with the explicit exchange method and establish global convergence
of the hybrid algorithm without the strict convexity assumption. We report some numerical results
to examine the effectiveness of the proposed algorithms.
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1. Introduction. In this paper, we consider the following optimization problem
with an infinite number of conic constraints:

Minimize  f(z)
(1 . 1) TER™

subject to g(z,t) € C forallt e T,

where f : R™ — R is a continuously differentiable function, g : R® x T" — R™ is
a continuous function such that g(-,¢) is differentiable for each fixed ¢, T C R’ is a
compact set, and C' C R™ is a closed convex cone with nonempty interior. We call
this problem the semi-infinite conic program (SICP).

When m = 1 and C = Ry := {z € R | z > 0}, SICP(1.1) reduces to the
classical semi-infinite program (SIP) [7, 13, 15, 18, 22|, which has a wide application in
engineering, e.g., air pollution control, robot trajectory planning, stress of materials,
etc. [13, 18]. So far, many algorithms have been proposed for solving SIPs: the
discretization method [7, 11, 21], the local reduction based method [8, 12, 24], the
exchange method [9, 15, 27], and others [5, 16, 20, 27]. The discretization method
solves a sequence of relaxed SIPs with T' replaced by T% C T, where T* is a finite
index set such that the distance! from 7% to T' converges to 0 as k goes to infinity.
While this method is comprehensible and easy to implement, the computational cost
tends to be high since the cardinality of T* grows exponentially in the dimension
of T'. In the local reduction based method, an infinite number of constraints in the
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original SIP are rewritten as a finite number of constraints with implicit functions.
Although this method can reformulate the SIP as a finitely constrained optimization
problem, it normally works only in a sufficiently small neighborhood of an optimal
solution. The exchange method solves a relaxed subproblem with T replaced by a
finite subset T% C T, where T* is updated so that T*+1 C T* U {t1,to,...,t.} with
{ti,to,...,t,} CT\TF.

A more general choice for C' is the symmetric cone such as the second-order
cone (SOC) K™ := {(z1,22,...,2m)" €R™ |21 > ||(22,23,...,2m) ||} and the
semidefinite cone ST := {Z € R™™ | Z = ZT, Z = 0}. We note that the al-
gorithm proposed in this paper needs to solve a sequence of subproblems in which T
is replaced by a finite subset {t1,t2,...,t.} € T. To such a subproblem, we can apply
an existing algorithm such as the interior-point method and the smoothing Newton
method [1, 6, 10, 17].

In the second half of this paper, we particularly focus on the following special
case of SICP (1.1):

Minimize  f(x)
(12) rcR”™
subject to A(t)Tx —b(t) € C forallt €T,

where f : R™ — R is a continuously differentiable convex function, A : T' — R™*™
and b: T — R™ are continuous functions, and T" and C' are as in SICP (1.1). We will
assume that SICP (1.2) has a nonempty solution set.?

There are some important applications of SICP (1.2). For example, when C' is an
SOC, SICP (1.2) can be used to formulate a Chebyshev-like approximation problem
involving vector-valued functions. Specifically, let X C Rf be a nonempty set, ¥ C R™
be a given compact set, and ® : Y — R™ and F : R x Y — R™ be given functions.
Then, we want to determine a parameter v € X such that ®(y) ~ F(u,y) for all
y € Y. One relevant approach is to solve the following problem:

M- . . @ _F .
inimize I;lea% 1@ (y) (u, y)l

By introducing the auxiliary variable r € R, we can transform the above problem to

Minimize r
(u,r)eX xR

1.3
(13) subject to (

®(y) — F(u,y)

which is of the form (1.2) when F is affine with respect to wu.

Another important application for SICP (1.2) is a finite impulse response (FIR)
filter-design [22, 26]. Generally, the FIR filter-design is to determine a vector h :=
(ho,h1,...,hn_1)T € R™ such that the frequency response function H : R® x R — C
defined by H(h,w) := Z;S hype *V=T gatisfies some given conditions for all w €
[w1,wa] C [0,27]. The following problem is called the log-Chebyshev approximation
FIR filter problem [26]:

> € Kmtt forall y €,

(1.4) Minimize sup |log|H (h,w)|—log D(w)
heR™ wel0,m]

)

20ne example of SICP with a nonempty feasible set is given by the Chebyshev-like approximation
problem (1.3). If, additionally, the constraint set X is compact, then the problem provides us an
example of SICP with a nonempty solution set.
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where D : [0,7] — R is a given desired frequency magnitude such that D(w) > 0 for
all w € [0, 7). By letting R(h,w) := |H(h,w)|? and using an auxiliary variable r € R,
problem (1.4) is expressed as
Minimize r
(r,h)ERXR"™
subject to  1/r < R(h,w)/D(w)? <,
R(h,w) >0 for all w € [0, 7],

which can further be rewritten as

Minimize r

(r,h) ERXR™
subject to rD(w)? — R(h,w) >0, R(h,w) >0,
(1.5) R(h,w)+r
R(h,w) —7r | € K3 for all w € [0, 7).
2D(w)

Since R(h,w) = ho + Zz;ll 2hy, cos kw, the functions involved in problem (1.5) are
affine with respect to (r, h) € R x R™, that is, problem (1.5) is of the form SICP (1.2)
with C = Ry x R4 x K2 and variables (r,h) € RxR". In [19, 25], the authors consider
other kinds of filter design and show that those design problems can be formulated
as SICPs with infinitely many SOC constraints. However, they actually solve such
problems via a uniform discretization.

The focus of the paper is twofold. First, we study the Karush-Kuhn-Tucker
(KKT) conditions for SICP (1.1). Although the original KKT conditions for SICP
could be described by means of integration and Borel measure, we show that they can
be represented by a finite number of elements in 7' under the Robinson constraint qual-
ification. Second, we propose two algorithms for solving the convex SICP (1.2). Since
any closed convex cone can be represented as an intersection of finitely or infinitely
many halfspaces, we may reformulate (1.2) as a classical SIP with infinitely many
linear inequality constraints and solve it by using existing SIP algorithms [13, 18].
However, such a reformulation approach brings serious difficulties since the dimension
of the index set may become much larger than that of the original SICP (1.2).3 There-
fore, it is more reasonable to deal with the cones directly without losing their special
structures. The proposed algorithms are based on the exchange method, which solves
a sequence of subproblems with finitely many conic constraints. The first algorithm
is an explicit exchange method for which we show global convergence under the strict
convexity of the objective function. The second algorithm is a regularized explicit ex-
change method. With the help of regularization, global convergence of the algorithm
is established without the strict convexity assumption.

This paper is organized as follows. In section 2, we discuss the KKT conditions
for SICP (1.1). In section 3, we propose the explicit exchange method for solving
SICP (1.2). In section 4, we combine the explicit exchange method with the reg-
ularization method and show that the hybrid algorithm is globally convergent for
SICP (1.2). In section 5, we give some numerical results to examine the efficiency of
the proposed algorithm. In section 6, we conclude the paper with some remarks.

31n the case where C' = K™, since K™ = {z € R™ | 2Ts > 0 for all s € S}, where S := {(1,5)T €
R™ | ||5|| = 1}, SICP (1.2) can be reformulated as the STP: min f(z) subject to s T (A(t) Tz — b(t)) >
0 for all (s,t) € S x T. The dimension of S X T is then equal to m +dimT — 1, where dim T" denotes
the dimension of T'.
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Throughout the paper, we use the following notation. || -|| denotes the Euclidean
norm defined by ||z| := V2Tz for z € R™. For 2 € R™ (i = 1,2,...,p), we
often write (2!,22,...,2P) for ((zH)T,(z%)T,...,(2?)T)T € Rmtmat+mp  For a

given cone C C R™, C?% denotes the dual cone defined by C¢ := {z ¢ R™ | zTw >
0 for all w € C}. For vectors z € R™ and w € R™, the conic complementarity
condition zTw =0, z € C, and w € C? is also written as C 3 z L w € C?. For a
nonempty set D C R™ and a function h : R™ — R, argmin,h(z) denotes the set
of minimizers of h over D. In addition, for 2 € R™ and ¢ > 0, B(z,6) C R™ denotes
the closed ball with center z and radius ¢, i.e., B(z,0) := {w € R™ | |lw — z|| < §}.
For 21 + /=123 € C with 21, 23 € R, its absolute value is defined by |z +v/—122| :=
V22 + 23

2. KKT conditions for SICP. In this section, we derive the KKT conditions
for SICP (1.1). The result is not only interesting in itself but also provides us with an
important key to analyze global convergence of the algorithm proposed in section 4.

When m = 1 and C = Ry, SICP(1.1) reduces to the classical semi-infinite
program and the KKT conditions are given as follows.

LEMMA 2.1 (see [13, Theorem 3.3]). Let z* € R™ be a local optimum of SICP(1.1)
with C :=Ry. Let Toet(x) be the set of active indices at x € R", i.e., Tot(x) :={t €
T | g(x,t) = 0}. Suppose that the Mangasarian—Fromovitz constraint qualification
(MFCQ) holds at x*, i.e., there exists a vector d € R™ such that YV g(x*,t)"d > 0
for any t € Toer(x*). Then, there exist p indices t1,ta,. .., t, € Tact(z*) and Lagrange
maultipliers (1, o, . .., p > 0 such that p < n and

p
V@) =Y piVag(a*,t;) =0,

i=1
Ryopu; Lgla*t;) eRy (i=1,2,...,p).

In the above lemma, the MFCQ plays a key role. However, for SICP (1.1), it is
difficult to apply the MFCQ in a straightforward manner. We therefore introduce the
Robinson constraint qualification (RCQ), which is defined as follows.

DEFINITION 2.2 (RCQ). Let x € R™ be a feasible point of SICP(1.1). Then, we
say that the RCQ holds at x if there exists a vector d € R™ such that

(2.1) g(x,t) + Vag(z,t) d e intC for allt € T.

When m = 1 and C = Ry, the RCQ reduces to the MFCQ. When g is affine,
ie., g(z,t) := A(t)Tx — b(t), the RCQ holds at any feasible point if and only if
the Slater constraint qualification (SCQ) holds, i.e., there exists o € R™ such that
A(t)Tzo — b(t) € intC for all t € T. For details about the RCQ, see [3]. The next
proposition states that any closed convex cone is represented as the intersection of
finitely or infinitely many halfspaces generated by a certain compact set.

PROPOSITION 2.3. Let C C R™ be a nonempty closed convex cone. Then, (i)
there exists a nonempty compact set S C {s € R™ | ||s|| = 1} such that

(2.2) C={yeR™|s'y>0 forall scS}

Moreover, we have (i) S C C¢ and (iii) int C C {y € R™ | sTy >0 for all s € S}.
Proof. We first show (i). For any s € R™ with s # 0, we define the halfspace
H(s):={y € R™ | sTy > 0}. In addition, let S := {s € R™ | ||s| = 1, H(s) 2 C}.

By [23, Corollary 11.7.1], we have C' = (,.g H(s). Therefore, it suffices to show the
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compactness of S. Since the boundedness is evident, we only show the closedness.
Choose an arbitrary convergent sequence {s*} C S such that limg_,o s* = s* and

let 2 € C be an arbitrary vector. Obviously, we have ||s*|| = 1. Moreover, from
C =yes H(s) € H(s"), we have (s*) Tz > 0 for all k. Therefore, by letting k — oo,
we obtain ||s*|| = 1 and (s*)Tz > 0, which implies z € H(s*). Since z € C was

arbitrary, we have C' C H(s*), and hence s* € S.

Second, we show (ii). Choose s € S arbitrarily. From (2.2), we have s"y > 0 for
all y € C, which implies s € C.

We finally show (iii). Choose z € int C' arbitrarily. From the compactness of S,
there exists 5 € S such that 5 € argmin, gz "s. To show (iii), we only have to prove
25 > 0. For contradiction, suppose that z'5 < 0, which together with 5 € § C C?
implies 25 = 0. Since z € int C, we have z — 5 € C for sufficiently small § > 0.
Then, by using z'5 =0, 2 — 65 € C, and 5 € C%, we have 0 < (2 — 05) "5 = 4|5,
which yields § = 0. This contradicts the fact § € S. O

By using this proposition, we reformulate SICP (1.1) as a standard semi-infinite
program, whereby we can derive the KKT conditions.

THEOREM 2.4. Let z* € R™ be a local optimum of SICP(1.1). Suppose that
the RCQ holds at x*. Then, there exist p indices ti,ta,...,t, € T and Lagrange
multipliers y*,y?,...,y? € R™ such that p < n and

(2.3) V@) =D Vag(a* t:)y' =0,

i=1
(2.4) Clsyl Ly t)eC (i=1,2,...,p).

Proof. By Proposition 2.3, there exists a nonempty compact set S C
{s € R™ | ||s|| = 1} such that SICP (1.1) is equivalent to the following semi-infinite
program:

Minimize  f(z)

T

(2.5)
s'g(xz,t) >0 forall (s,t) € S xT.

subject to

Let (S X T)act(z*) := {(5,8) € S x T | s Tg(x*,t) = 0}. If (S X T)act(x*) = 0, then we
have (2.3) and (2.4) with y* = 0 for all i. Next, we suppose (S X T)act(2*) # 0. We
first show that the MFCQ holds for problem (2.5), i.e., there exists a vector d € R"
such that

(2.6) (Veg(z*,t)s)Td >0 for all (s,t) € (S X T)act(z*).

By assumption, there exists a vector d € R™ satisfying RCQ (2.1), i.e., g(z*,t) +
V.g(x*,t)Td € int C for all t € T. By Proposition 2.3, we also have 0 ¢ S C C9.
Hence, from Proposition 2.3(iii), we have s T (g(2*,t)+V.g(z*,t) Td) > 0 for all (s,t) €
S x T, which implies (2.6). Therefore, d satisfies (2.6). Now, applying Lemma 2.1 to
problem (2.5), we have p indices (s',#1), (s%,t2),..., (s?,tp) € (S X T)act(z*) and the
Lagrange multipliers ji1, ft2, ..., ttp > 0 such that p < n and

(2.7) i Vaig(z*, t;)s; =0,
(2.8) Rysp L () glz*,t;) eRy (i=1,2,...,p).
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By letting y* := pu;s’ for each i, we have from (2.8) that 0 = ;s g(z*,t;) =
(y") Tg(z*,t;). We also have y* € C? since s* € S C C? from Proposition 2.3 and
pi > 0. In addition, we have g(x*,t;) € C since z* is feasible for SICP (1.1). Thus,
(2.7) and (2.8) yield (2.3) and (2.4), respectively. This completes the proof. 0

Before closing this section, we give two theorems. The first one states that the
KKT conditions are also sufficient for global optimality when the problem is the
convex SICP (1.2).

THEOREM 2.5. Let x* € R™ be feasible for the convex SICP(1.2). If there exist

p indices t1,ta,...,t, € T and p Lagrange multiplier vectors y',y?, ... ,y? € R™ such
that
p .
(2.9) Vi) =Y At:)y' =0,
i=1
(2.10) Cloyl LAt) 'z —bt;) eC (i=1,2,...,p),

then x* is a global optimum of SICP(1.2).

Proof. Let £ : R™ — R be defined by ¢(z) := f(z) — Y7_, (y") T (A(t:;) "z — b(t:)),
and let T € R™ be an arbitrary feasible point of SICP (1.2). Since ¢ is convex and
Vi(z*) = Vf(x*) — 30 A(t)y" = 0 by (2.9), z* is a global minimum of ¢, i.e.,
£(z) — £(z*) > 0. Hence, we have f(z) — f(z*) = £(z) — £(z*)+ > 0_, (y") T (A(t;) T2 —
b(t;)) > 0, where the first equality follows from the definition of ¢ and (2.10), and
the last inequality follows from £(z) — £(z*) > 0, y* € C¢, and A(t;)"z — b(t;) € C
(i=1,2,...,p). We thus conclude that z* is a global optimum of SICP (1.2). O

Next, we enhance Theorem 2.4 so that it can elaborate upon the case where C'
has a Cartesian structure, i.e., C = C1 x---x CP CR™ = R™ x ... x R™». Consider
the following problem:

Minimize  f(z)

2.11 . . )
( ) subject to g;(x,t?) € C7 forallt! €Tj, j=1,2,...,h,

where g; : R" x T; — R™7 is continuous, g;(-,¢’) is differentiable for each fixed #/,
T; C R% is a nonempty compact set, and C7 C R™ is a closed convex cone with
nonempty interior for each j. Then, the following theorem holds.

THEOREM 2.6. Let z* € R™ be a local optimum of SICP (2.11). Assume that the
RCQ holds at x*, i.e., there exists a vector d € R™ such that

(2.12) g;(x*,t9) + Vagi(z* ) d € int C for allt? € Ty, j=1,2,...,h.

Then, there exist p indices* ji, jo,...,j5p € {1,2,...,h} and (tfl,yf‘) € T;, x R™i for
i1=1,2,...,p such that p <n and

p
(2.13) V(@) =Y Vagi (@ )yl =0,
=1
(2.14) (C) syl L g (x5t e O (i=1,2,...,p).

Proof. For each j = 1,2,...,h, let ¥/ € R% \ T; be an arbitrary point and T} be
defined as Tj := {#'} x -+ x {71} x Tj x {#1F1} x - x {th} C RO+ Then
we can easily see that T; N1} = () for any j # j'. Let

4Repeated choice of the same index is allowed in the set {j1,j2,.-.,Jp}-
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(2.15) t:= (t17t27 L ,th) € Réttattln, [ C RO+t +n

I
iC=
S

and g : R® x T' — R™itmzt+mn he defined by

(216) g(x,t) = (gl($,t),...,gh($,t)),
where

Gl — gj(xvtj) (t € 7}'),
o min {CJ’ (t¢ 1)),

and (7 € int C7 is an arbitrary vector. Then, the function g is continuous on R™ x T,
and ¢g(-,t) is differentiable for each ¢t € T'. In particular, we have

Vegi(z,t))  (teTy),
0 (t¢Ty).

Then, T is nonempty and compact, and SICP (2.11) is equivalent to SICP (1.1) with
C =C' x---x C" and g defined by (2.16). By letting d € R™ satisfy (2.12), we have

(2.18) Vzgj(x,t) = {

(T 0y *7tj TdeintCi teT. 7
gj(a:*,t)—kvzgj(x*’t)'l'd: gj(x .7 )+V gJ(CE ) € int C ( c ~J)
¢? eintCY (t ¢ Ty),

for each j = 1,2,..., h, where the first case follows from (2.12) and the second one fol-
lows from (2.17), (2.18), and ¢ € int C7. Therefore, we have g(z*,t) + Vg(x*,t)Td €
int C for all t € T, which implies that the RCQ holds at z* for SICP (1.1). Hence, by
Theorem 2.4, there exist p < n, t1,t2,...,t, € T and y1,¥yo2,...,yp € R™ such that

(2.19) vag (z*, t;)y: = 0,
(2.20) ok ByiJ_g(x, t)eC (i=12,...,p).
Let t; = (t},t2,...,th) € Ratbet+b and y;, == (y},y2,...,yh) € Rmatmattmn

for z'N— 1,2,...,p. From (2.15), for each i, there exists j; € {1,2,...,h} such that
t; € Tj,, ie., tI* € Tj,. Then, we have

1

p Yi

szg x*, ;) Z < 2g1(x", ;) Vzgg(x*,ti),...,Vmgh(aj*,ti)) :
=1 h

Yi

= Z%gﬁ )y,

where the second equality follows from (2.17) and (2.18), which together with (2.19)
implies (2.13). In the last, we show (2.14). From (2.20) and C¢ = (C')? x (C?)¢

x (CM)4, we have (C) 5 y! L g;(z*,t;) € CI for j =1,2,..., h, which together
with g;, (2*,t;) = g;, (x*,tz'i) from (2.17) implies (2.14) for i = 1,2,...,p. The proof
is complete. O
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3. Explicit exchange method for SICP. In this section, we propose an ex-
plicit exchange method for solving the convex SICP (1.2) and show its global conver-
gence under the assumption that f is strictly convex.

3.1. Algorithm. The algorithm proposed in this section requires solving conic
programs with finitely many constraints as subproblems. Let CP(7") be the relaxed
problem of SICP (1.2) with T replaced by a finite subset 77 := {t1,t2,...,t,} C T.
Then, CP(T”’) can be formulated as follows:

Minimize  f(z)

CP(T’
) subject to  A(t;)Tx —b(t;) € C (i=1,2,...,p).

Note that an optimum x* of CP(T") satisfies the following KKT conditions:

p
V@) =Y Aty =0,
=1
Clsy LAM) 2" —b(t;) €C (i=1,2,...,p),

where y;, is the Lagrange multiplier vector corresponding to the constraint A(t;) T x* —
b(t;) € C for each 1.

Now, we propose the following algorithm.

ALGORITHM 1 (explicit exchange method).

Step 0. Let {7z} € R44 be a positive sequence such that limg_o 7% = 0. Choose
a finite subset 70 := {t9,...,t9} C T for some integer® ¢ > 0 and a vector
ecintC. Set k:=0.

Step 1. Obtain zFt! and T*+! by the following steps.

Step 1-0. Set r := 0, E° := T*, and solve CP(E°) to obtain an optimum
W0,
Step 1-1. Find a t_ € T such that

new

(3.1) AT ) To" = b(th.) & —yke + C.

new new

If such a t] ., does not exist, i.e.,

(3.2) A To" = b(t) € —ype + C

for any ¢t € T, then set zFt! := o7, TF+! := E" and go to Step 2.
Otherwise, let
Y =Erue, )

new

and go to Step 1-2.
Step 1-2. Solve CP(ETH) to obtain an optimum v”*! and the Lagrange
multipliers y/ ™" for t € B
Step 1-3. Let ™! := {t € T | yr ™t #0}. Set r := r 4+ 1 and return to
Step 1-1.
Step 2. If v is sufficiently small, then terminate. Otherwise, set k := k 4+ 1 and
return to Step 1.

5We allow £ = 0, which means T° = 0.
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Here, 75 > 0 plays the role of a relaxation parameter for the feasible set of SICP (1.2).
Let X(v7) :={r € R" | A(t) Tz — b(t) € —ye+ C for all t € T'}. Then, X (0) coincides
with the feasible set of SICP (1.2), and X () expands as « increases. Note that by
the termination criterion (3.2) for the inner loop we have z¥*! € X (v;) for each k.
Hence, we can expect that the distance between z* and the feasible set of SICP (1.2)
tends to 0 as k goes to infinity. Moreover, as will be shown in the next subsection, the
positivity of v; guarantees the inner loop of Step 1 to terminate in a finite number of
iterations for each k.

When C' is a symmetric cone such as an SOC or a semidefinite cone, a natural
choice for the vector e € int C' is the identity element with respect to Euclidean Jordan
algebra [4].° Moreover, in Step 1-2, we can employ an existing method such as the
primal-dual interior point method, the regularized smoothing method, and others
[1, 6, 10, 14, 17].

Let us denote the optimal values of CP(7”) and SICP (1.2) by V(T") and V(T'), re-
spectively. Since E"*! is obtained by removing the constraints with zero

Lagrange multipliers from E" and the feasible region of CP(E") is larger than
that of CP(E' ), we have

E)=V(E) < <V(E)
E

ETH=V(ET) < <V(T) < .

V(EY) <V
(3.3) 1%

IN

In the subsequent convergence analysis, we omit the termination condition in Step 2,
so that the algorithm may generate an infinite sequence {x"}.

Remark 1. Note that the optimal solution set of CP(E") contains that of CP(E")
by the construction of E” in Step 1-3 of Algorithm 1. Therefore, for each k > 1, we
may simply set v := z* in Step 1-0 without solving CP(E°) since CP(E?) is identical
to CP(ET) and z* solves CP(E.), where E7 and E. are the finite index sets obtained
at the end of Step 1 in the previous outer iteration.

3.2. Global convergence under strict convexity assumption. In the pre-
vious subsection, we have proposed the explicit exchange method for solving SICP
(1.2). In this subsection, we show that the algorithm generates a sequence converging
to the optimal solution under the following assumption.

Assumption A. (i) Function f is strictly convex over the feasible region of SICP

(1.2). (i) In Step 1-2 of Algorithm 1, CP(ET—H) is solvable for each r. (iil) A generated
sequence {v"} in every Step 1 of Algorithm 1 is bounded.
Notice that statements (i)—(iil) automatically hold when f is strongly convex. Under
Assumption A, we first show that the inner iterations within Step 1 do not repeat
infinitely, which ensures that Algorithm 1 is well defined. To prove this, we provide
the following proposition stating that the distance between v"*! and v does not tend
to zero during the inner iterations in Step 1.

PROPOSITION 3.1. Suppose that Assumption A holds. Then, there ezists a posi-
tive number N > 0 such that

[0 = 07| > N
for anyr >0 and k > 0.

6For example, if C is Ry, K™, and ST, then the identity element is 1, (1,0,... ,O)T € R™ and
the m x m identity matrix, respectively.
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Proof. Denote z(v,t) := A(t)Tv — b(t) for simplicity. Due to the continuity of the

matrix norm || A(t)|| := maxj,=1 | A(f) "w|| and the compactness of T there exists a
sufficiently large M > 0 such that ||A(t)|| < M for any ¢ € T. Hence, we have

(3.4) 2™+ 8) — 20" )| = [ A@®) T (" =) < Mo =0T

forany t € T

We next show that ||z (v" 1, ¢7, ) —2(v", 7., )|| is bounded below by some positive

number for any r > 0. Since e € int C, there exists a § > 0 such that e+ B(0,4) C C.
We therefore have

(0"t ) + B(0,6yk) = —yke + 2 (v o) 4k (e + B(0,6))
(3.5) C —ye+C,

where the inclusion holds since e + B(0,8) C C, v, > 0, z(v" T4, t7, ) € C, and C is a

convex cone’. From (3.1), we have z(v",t" ) & —yre + C, which together with (3.5)
implies that

(3.6) 20, te) = 207 )| > S

Combining (3.4) and (3.6) with IV := /M, we obtain
[0 =" > 6y /M = Nye. O

THEOREM 3.2. Suppose that Assumption A holds. Then, the inner iterations in
Step 1 of Algorithm 1 terminate finitely for each k.

Proof. Suppose, for contradiction, that the inner iterations in Step 1 do not
terminate finitely at some outer iteration k. (In what follows, k is fixed.) Then,
by Assumption A(ii), there exist accumulation points v* and v** of {v"} such that
v — v* and vt = v** as j — oco. Moreover, we must have v* # v** from
Proposition3.1. Denote 2! := A(t)Tv" — b(t) for simplicity. Since v" solves CP(E'),
it satisfies the following KKT conditions:

(3.7) V) =Y Alt)y; =0,
teE"
(3.8) Clsyl L2leC (teE),

where 3! are the Lagrange multipliers. From (3.3), we have f(v!) < f(¢?) < --- <
V(T') < +o00, which implies

. 1y ™Y
(3.9 Tim (7074 - £0)) = 0.

Let F, := f(v"*) — f(v") — Vf(0") T (v"T! — o"). Then, we have
FOT) = f@) = B4+ V@) (0" —o")

-
(3.10) =F + ( > A(t)y;”) (Wt — ")
teE"
(3.11) =Fo+ > W) A=) A
teE" teE"
(3.12) =F4+ Y ) =
teE"

"When C is a convex cone, az + By € C holds for any z,y € C and a, 8 > 0.
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where (3.10) and (3.12) follow from (3.7) and (3.8), respectively, and (3.11) follows
from 27 = A(t)Tv" — b(t) and 2/ Tt = A(t)To™t! — b(t). Since f is convex, we have
F. > 0. In addition, since yJ € C? and z; ™' € C, we have Zteir(y[)—rzfﬂ > 0.
Therefore, from (3.9) and (3.12), we have
(3.13) 0= lim F, = lim F,, = f(u™) — f(v*) = Vf(u*) " (v** —v*).
r—00 j—o0

However, this contradicts the strict convexity of f since v* # v**. Hence, the inner
iterations in Step 1 must terminate finitely. O

The next theorem shows global convergence of Algorithm 1 under the strict con-
vexity assumption.

THEOREM 3.3. Suppose that SICP(1.2) has a solution and Assumption A holds.
Let x* be the optimum and {z*} be the sequence generated by Algorithm 1. Then, we
have

lim z* = z*.
k—o0

Proof. We first show that {z*} is bounded. Let X () := {x € R™ | A(t) Tz —b(t)+
ve € C forallt € T} and L := {x € R" | f(x) < f(x*)}. Since 2*¥ € LN X (y) C
LN X (%) with ¥ := maxg>0 Yk, it suffices to show that L N X (y) is bounded for any
v > 0. By Proposition 2.3, there exists a compact set S C R™ such that 0 ¢ S C C¢
and

X(y)={zeR"|s" (A®) 'z —b(t) +ve) >0 for all (s,t) € S x T}
={zeR"|(e"s) ! (sTb(t) — (A(t)s) z) < for all (s,t) € S x T}
= {x ER" | h(z):= max (e's) ' (s"b(t)— (A(t)s) z) < fy},

(s,t)eSXT
where the second equality is valid since e € intC and 0 # s € S C C? entail
mingeg e' s > 0 from Proposition 2.3(iii). Notice that h(z) < oo from the compactness

of S x T and continuity of A(-) and b(-). Therefore, function & is closed, proper, and
convex. Now, let i : R" — (—o00, +0o0] be defined as

=« Jh(x) (el
Mz) = {oo (x ¢ L).

Then h is also closed, proper, and convex since L is convex. Notice that
LNX(y)={z € R" | h(z) <7},

i.e., LN X(7) is a level set of h. If a closed proper convex function has at least one
compact level set, then any nonempty level set is also compact [2]. Moreover, we have
LNX(0) = {«*} since f is strictly convex. Therefore, L N X (v) is compact for any
v 2> 0.

We next show that limg_, 2" = z*. Let & be an arbitrary accumulation point of
{«*}. Then, there exists a subsequence {z%/} C {2*} such that lim;_, 2% = z. For
all j, we have A(t)"a* —b(t) + e € C for all t € T and f(2*/) < f(z*). Hence, by
letting j tend to oo, we have

(3.14) At) 'z —b(t) € C forallt €T,
(3.15) f(@) < f(az¥)

k
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from the continuity of f and the closedness of C. From (3.14), we have f(Z) > f(z*),
which together with (3.15) implies f(Z) = f(z*). Therefore, T solves SICP (1.2).
Since f is strictly convex, we must have & = x*. We thus have limg_. zk =z O

4. Regularized explicit exchange method for SICP. In the previous sec-
tion, we proposed the explicit exchange method for SICP (1.2) and analyzed its con-
vergence property. However, to ensure global convergence, we had to assume the strict
convexity of the objective function (Assumption A). In this section, we propose a new
method combining the regularization technique with the explicit exchange method
and establish global convergence without assuming the strict convexity.

4.1. Algorithm. Let f : R® — R be a convex function. Then, the function
fe : R™ — R defined by f-(z) := iel|z||* + f(z) is strongly convex for any € > 0. So,
if we apply Algorithm 1 to the regularized SICP (RSICP)

Minimize  f.(z)

RSICP(¢)
subject to  A(t)Tz —b(t) € C for all t € T,

then Step 1 always terminates in a finite number of (inner) iterations and the sequence
generated by Algorithm 1 converges to the unique solution z} of RSICP(¢).

By introducing a positive sequence {ej} converging to 0, we can expect that xZ,
converges to the solution of the original SICP (1.2) as k goes infinity. However, since
it is computationally prohibitive to solve RSICP(gy) exactly for every k, we solve
RSICP(eg) only approximately by using the explicit exchange method. In the inner
iteration of the latter method, we repeatedly solve problems of the form

Minimize  f, (z)

CP(Ek, TI)

subject to  A(t;) Tz —b(t;) €C (i=1,2,...,p),

where T := {t1,t2,...,t,} C T. The detailed steps of the regularized explicit ex-

change method are described as follows.

ALGORITHM 2 (regularized explicit exchange method).

Step 0. Choose positive sequences {7t} C Ry; and {ex} € Ry such that
limys00 7% = limg 00 € = 0. Choose a finite subset T° := {t{,...,t)} C T
for some integer ¢ > 0 and a vector e € int C. Set k := 0.

Step 1. Obtain 2**! and T**+! by the following procedure.
Step 1-0. Set r := 0 and E° := T*. Solve CP(gx, E°) and let v° be an

optimum.

Step 1-1. Find t]_. € T such that

(41) A(tlrlew)—rvr - b(tgew) ¢ —Yke + C.

If such a "

Tew does not exist, i.e.,

(4.2) Ao = b(t) € —ype + C

for any t € T, then set ¢t := v” and T**! := E" and go to Step 2.
Otherwise, let

ET =Eu,)

new

and go to Step 1-2.
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r—+1

Step 1-2. Solve CP(g;, E ) to obtain an optimum v"*! and the Lagrange
—r+1

multipliers y/ ™! fort € E .

Step 1-3. Let B! := {t € T | yi ™t #0}. Set r := r 4+ 1 and return to
Step 1-1.
Step 2. If v, and ¢;, are sufficiently small, then terminate. Otherwise, set k :=k+1
and return to Step 1.
Algorithm 2 differs from Algorithm 1 only in the choice of {e;} in Step 0 and

the subproblems CP(ak,ETH) and CP(eg, E°) solved in Step 1. But we give a full
description of Algorithm 2 for completeness.

In the subsequent convergence analysis, we omit the termination condition in
Step 2, so that the algorithm may generate an infinite sequence {2*}. Moreover,
to ensure convergence, the sequences of {e} and {7} are required to satisfy the

condition v = O(ey).

4.2. Global convergence without strict convexity assumption. In this
section, we show global convergence of Algorithm 2 for SICP (1.2) without the strict
convexity assumption. Indeed, we only need the following assumption for the proof
of convergence.

Assumption B. Function f is convex. Moreover, the SCQ holds for SICP (1.2),
i.e., there exists an g € R™ such that A(t)Txg — b(t) € int C for all t € T.

Notice that for SICP (1.2) the SCQ holds if and only if any feasible point satisfies the
RCQ as studied in section 2. We first show that Step 1 terminates finitely.

PROPOSITION 4.1. Suppose that Assumption B holds. Then, the inner iterations
in Step 1 terminate finitely.

Proof. By Theorem 3.2, it suffices to show that conditions (i)—(ii) in Assumption
A hold when Step 1 of Algorithm 1 is applied to RSICP(g) for any ¢ > 0. Since
conditions (i) and (i) hold from the strong convexity of f., we only show condition
(ii). Let x¥ be an optimum of RSICP(g) and L} := {x € R" | fo(z) < fo(z2)}.
Then, LY is compact since f. is strongly convex. Moreover, we have v" € LI, i.e.,
f-(v") < fo(x¥) for all r since E C T. Hence, {v"} is bounded. O

Now, we show that, under Assumption B, the generated sequence {2} is bounded
and Algorithm 2 is globally convergent in the sense that the distance from z* to the
solution set of SICP (1.2) tends to 0. In the proof, the KKT conditions established
in Theorem 2.4 plays a critical role.

THEOREM 4.2. Suppose that Assumption B holds. Let {x*} be the sequence
generated by Algorithm 2. Then, the following statements hold:

(1) If {er} and {y} are chosen to satisfy v = O(ex), then {z*} is bounded.

(i) Any accumulation point of {x*} solves SICP(1.2).

Proof. (i) Let * € R™ be an optimum of SICP (1.2). Since Assumption B holds,
Theorem 2.4 can be applied to SICP (1.2) to ensure that there exist t1,t2,...,¢, € T
and y',y?,...,y? € R™ such that p < n and

(4.3) Vi) =) Alti)y' =0,
i=1
(4.4) Cloyl LAL) 2" —b(t)eC (i=1,2,...,p).

Let {2*} be the sequence generated by Algorithm 2. Since z* solves CP(ex_1,T*)
and x* is feasible for CP(g;_1,T%), we have

1 1 .
(4.5) ser-tllet |2+ (@) < Senmalla®|? + £,
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Multiplying both sides of (4.5) by 2/ex_1, we have
2

I < [P = () = £(a")
< Jla]? - %Vf(x*f(x’“ )
2 P ’
(4.6) — ]2 - = (qumyi) (2% — 2*),

where the second inequality holds since f is convex and the equality follows from
(4.3). Moreover, the last term of (4.6) satisfies the inequalities

p T
- (Z A(tnyi) (a —a")

=- Z(yi)T(A(ti)T’Ik —b(t;) +vr—1€) + Z(yi)T(%—le)

=1
(4.7) < pulleflve-1,
where p = max{||y!||, |l¥?|,.--,[|y?||}, and the first inequality since (4.2) and (4.4)

imply y* € C?%, A(t;)"2% — b(t;) + yu_1e € C, and (y*) T (A(t;) T2* — b(t;)) = 0. Then,
by substituting (4.7) into (4.6), we have

(4.8) l2* 12 < Nla* |1 + 2ppallellyn—1/er-1-

Since vi_1 = O(ex_1), {7x_1/ex_1} is bounded, and hence {z*} is also bounded.
(i) Let # be an accumulation point of {z*}. Then, taking a subsequence if
necessary, we have

zF =z, €p_1 — 0, Ye—1 — 0 (k — 00).

First, we show that Z is feasible to SICP (1.2). Since z* is determined as v"
satisfying (4.2) with 7% replaced by yx_1, A(t)T2¥ — b(t) + vx_1e € C holds for
any t € T. Noticing that C is closed, we have limy_ oo A(t) 2% — b(t) + Y16 =
A(t)Tz —b(t) € C for any t € T. Hence, 7 is feasible to SICP (1.2).

We next show that z is optimal to SICP (1.2). Let z* be an arbitrary optimum
of SICP (1.2). Since Z is feasible for SICP (1.2), we have f(z) > f(z*). On the
other hand, z* is feasible for CP(ei_1, F§) since the feasible region of SICP (1.2) is
contained in that of CP(eg_1, F)). Hence, we have

1 1
(4.9) §€k—1||33k||2 + fa*) < §6k—1|\$*||2 + f(@").

Due to the continuity of f, by letting & — oo in (4.9) we have f(z) < f(z*). Therefore,
we obtain f(z*) = f(z), which implies that Z solves SICP (1.2). O
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From the above theorem, we can see that if we choose {ex} and {v;} such that
Y& = O(ey), then the generated sequence {2*} has an accumulation point and it solves
SICP (1.2). Moreover, we can show that if {ex} and {vx} satisfy v, = o(e), then
{2*} is actually convergent and its limit point is the least 2-norm solution.

THEOREM 4.3. Suppose that Assumption B holds. Let {ex} and {vyx} be chosen
such that v, = o(ey), and let {x*} be a sequence generated by Algorithm 2. Let
S* C R™ denote the nonempty solution set of SICP(1.2) and x* € R™ be the least
2-norm solution, i.e., x¥; = argmingcg.|z|. Then, we have limy_o 2% = 27, .

Proof. By Theorem 4.2, {x*} is bounded and every accumulation point belongs
to S*. Moreover, z};, can be identified uniquely since S* is closed and convex.
Therefore, it suffices to show that ||Z|| = ||zf,,|| for any accumulation point & of
{z*}. Note that the inequality (4.8) in the proof of Theorem 4.2. (i) holds for any
x* € S, in particular for ¥, . Since v, = o(ey), by letting k& — oo in (4.8) we
obtain ||Z]| < ||z£;,ll- On the other hand, we have ||Z|| > ||z%;,] since T € S* and

T = argmin, . 2. We thus have [2]| = ||}, .

5. Numerical experiments. In this section, we report some numerical results.
The program is coded in MATLAB 2008a and run on a machine with an Intel Core2
Duo E6850 3.00 GHz CPU and 4GB RAM. In this experiment, we consider the SICP
with a linear objective function and infinitely many second-order cone constraints
with respect to a single second-order cone. Actual implementation of Algorithm 2 is
carried out as follows. In Step 0, we set e := (1,0,...,0)" € int ™. In Step 1-1, to
find ¢7,, satisfying (4.1) we first choose N grid points #1, 2, . .., ty from the index set
T and compute A (A(t) To" — b(t) + yke) for t = t1,%s,...,tn € T, where A(+) denotes
the spectral value of z € R™ [6, 10] defined by

A(z) ::zl—\/z§+z§+---+z%.

If we find a ¢ € {t1,%2,...,tn} such that A (A(¢) "v" — b() +yxe) < 0, then we set

r — f ‘Q a
1 ew ‘= t. Otherwise, we solve

Minimize A(A(¢)Tv" — b(t) + Yxe)

(5.1)
subject to t € T

and check the nonnegativity of its optimal value.® To solve (5.1), we apply Newton’s
method combined with the bisection method when T is one-dimensional and fmincon
solver in MATLAB Optimization Toolbox when 7' is multidimensional. For both
methods, we set the initial point &y € T" as o := argmin{\ (A(t) "v" — b(t) + Yxe) |
t =11,t2,...,tn}. Although there is no theoretical guarantee, in practice we can
expect to find a global optimum of (5.1) by taking a sufficiently large N. In Step
1-2, we solve CP(g,T”) by the smoothing method [6, 10]. In Step 1-3, we regard yj
as 0 if |ly7|| < 10712, In Step 2, we terminate the algorithm if max(eg,vx) < 1075.
In each experiment reported below, we choose the grid points t1,t2,...,ty € T as in
Table 5.1.
Experiment 1. In the first experiment, we solve the following SICP

Minimize ¢’z

5.2
(5:2) subject to  A(t) Tz — b(t) € K™ for all t € [-1,1],

8Notice that A (A(t)T@ — b(t) + ve) > 0 if and only if A(t) Tz — b(t) € —ve + K™.
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TABLE 5.1
Choice of grid points in each experiment.

Experiment T N {t1,t2,...,tN}
1,2,3-1 [-1,1] 101 {~1+ g52}p=0.1,....100
32 |01 2600=51) {SELr)l, o ore. s
TABLE 5.2

Convergence behavior for Experiment 1.

Problem (m,n) iteout {Tx} Fsum  tsocp Thn time(sec)
1 (25,15) 18 06,4,08,1,02 5 23 {-1,-0.296, 1} 5.57
2 (25,15) 18 08 0 18 {-1,0,1} 2.41
3 (15,15) 18 0'8 0 18 {-1,0,1} 1.84
4 (15,15) 18 03,11,02,1,011 14 32 {-1,-0.2,-0.18,1} 12.49
5 (10,15) 18 0%,13,0,3,0,3,0,1,0° 20 38 {—1,-048,-0.46,1}  3.83
6 (10,15) 18 02,7,4,6,22,0°,1,0%,1,0 23 41 {—1,-0.387,0.25,1} 12.91

where K™ := {(z1,29,...,%m) " € R™ | z1 > |[(x2,23,...,2m) " ||}, c € R?, A(t) :=
(Alj(t)) € R™™™ with Aij t) = ay0 + Oéijlt + Oéijgtz + Oéijgtg (Z = 1,2,...,n,
j=1,2,...,m) and b(t) := (b;(t)) € R™ with by () := — Y70, 3", | 8] and b;(t) :=
ﬁjo + ﬂjlt + ﬂjgtg + ﬁj3t3 (] =2, .. .,m). We choose aijk,ﬂjg (Z =12,...,n, j =
2,...,m, k=0,1,2,3, £=0,1,2,3) and all components of ¢ randomly from [—1, 1].
Note that by the choice of by (t), feasibility of (5.2) is ensured.” In this way, we generate
two sets of data A(t), b(t) and ¢ for each of the three pairs (m,n) = (25, 15), (15, 15),
and (10, 15), thereby obtaining six problems referred to as problems 1,2,...,6.

In this experiment, using parameters {e;} and {7y} such that e, = 0.5%, v, =
0.3, and the initial index set T° := {=1,0,1} in Step 0, we observe the convergence
behavior of the algorithm. The results are shown in Table 5.2, where

iteout : the number of outer iterations,
{Fr} : the values of r when the inner termination criterion (4.2) is satisfied
at the kth outer iteration for k = 0,1, ..., iteout — 1,

Tsum : the sum of 7i’s for all £k =0,1,2,...,itequs — 1,
tsoep :  the number of times the sub-SOCPs (CP(ex, E°) and CP(ey, B 1))
are solved,

Thn @ the index set T upon termination of the algorithm,
time(sec) :  the CPU time in seconds.

In the column of 7, p? means that we have 7y, = p in g consecutive iterations.
For example, 01°,2, 1% means that 7, = 0 (k = 0,1,...,9),710 = 2, and 7, = 4 (k =
11,12,13,14). Notice that we always have tsocp = it€out + Tsum, siice we solve sub-
SOCPs once at Step 1-0 and 7 times at Step 1-3 for each k. Although 75, usually
represents an approximate active index set at the optimum, the real active index set
is {—1,1} for Problems 2 and 3. This is because the inner termination criterion (4.2)
is always satisfied with » = 0 and therefore the inactive index ¢ = 0 is never removed
at Step 1-3. From the columns of 7, we can see that 74 is sometimes large when
k < 4, but it is always 0 or 1 for £ = 7,8,...,17. This fact suggests that Tq, is
usually obtained in the early stage of iterations.

Ezxperiment 2. In the second experiment, we implement the nonregularized ex-
change method (Algorithm 1) as well as the regularized exchange method (Algo-

9Note that the origin always lies in the interior of the feasible region, since we have —b(t) € int K™
from —b1 (t) — ||(=b2(t), ..., —bm ()| > 0 for all t € [—1,1].
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TABLE 5.3
Comparison of reqularized and nonregularized exchange methods.

Regularized Nonregularized
Problem (m7 TL) tgocp tgocp tgocp tgocp tgocp tgocp
1 (25, 15) 23 23 34 5 5 32
2 (25, 15) 18 18 20 1 1 11
3 (15,15) 18 18 25 1 1 15
4 (15, 15) 27 28 44 4 4 F
5 (10,15) 19 24 29 4 5 F
6 (10, 15) 28 30 46 8 8 F

rithm 2) and compare their performance. In step 1 of Algorithm 1, for £ > 1 we
set v0 := 2% instead of solving CP(E"), as suggested in Remark 1 in section 3. For
both methods, the initial index set 77 is set to be TP := {—1,-0.5,0,0.5,1}, TP :=
{~1,0,1}, or T? = {-0.5,0,0.5}. The parameters are chosen as v = 0.5* for Algo-
rithm 1 and e = v = 0.5% for Algorithm 2. Both methods are applied to the same
problems as those used in Experiment 1.

Table 5.3 shows the obtained results, where tg,,, tls’ocp and t$, ., denote the values
of tsocp for the initial index sets T, T, and T2, respectively, and “F” means that we
fail to solve a problem. From the table, we can observe that ts,cp for the nonregularized
method is much less than ts., for the regularized method. This is due to the fact that
the regularized exchange method has to solve the sub-SOCP (CP (g, E?)) at least once
in every outer iteration, whereas the nonregularized exchange method does not need
to solve it when the inner termination criterion (3.2) is satisfied for r = 0. However,
convergence of the nonregularized exchange method is not guaranteed theoretically
since the objective function is linear. Indeed, the nonregularized exchange method
fails to solve problems 4, 5, and 6 with 70 = T since their objective functions are
most probably unbounded on the feasible sets.!® On the other hand, the regularized
exchange method succeeds in solving all problems for any choice of T°. This is the
main advantage of the regularized exchange method.

Experiment 3. In the third experiment, we apply Algorithm 2 to Chebyshev-like
approximation problems for vector-valued functions.

Experiment 3-1. We first consider the vector-valued approximation problem with
respect to H : R — R3 and h : R® x R — R3 defined by

e’ Syut’ !
H(t) := 2tet” , h(u,t) = S (= DtV 2
(4% + 2)e” S (v = 1) (v = 2u, "3

In order to find a u € R® such that h(u,t) ~ H(t) over t € [—1,1], we solve the
following problem:

5.3 Minimi H(t) — h(u,t)].
( ) 1361%%1% t&p[l—al),il] || () (Uv )H

101n fact, for each CP(TB) of Problems 4, 5, and 6, we found a feasible point whose objective
function value is less than —107.
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0.16

0.14

0.12

0.1

0.08

0.06

1 H (#) = (=, t)]]

0.04

0.02

91 -08 -06 -04 -0.2 0 0.2 0.4 0.6 0.8 1
t

F1G. 5.1. The graph of |H(t) — h(u*,?)|| (¢t € [-1,1]) in Ezperiment 3-1.
Introducing an auxiliary variable v € R, we can reformulate (5.3) as the following
SICP with infinitely many four-dimensional second-order cone constraints:

Minimize v
(v,uT)TeRXRE

1000 -~ 0 2
01 ¢ 2 - | (v !
4 ' - '
(5.4)  subject to 00 1 2 - 75| \4 2tet’ ek
00 0 2 ... 49 (412 + 2)et”

for all t € [-1,1].

In applying Algorithm 2, we set Ty := {—1,1} and & = 4 := 0.5F. Then, the al-
gorithm outputs the solution v* = 0.1415, u* = (0.9948, 0.0000, 1.0707, 0.0000, 0.3083,
0.0000, 0.3442,0.0000) 7) together with Tg, = {—1.00, —0.88, —0.52,0,0.52,0.88,1.00}.
Notice that we have uj = uj = uf = u§ = 0. This is reasonable since H;(?)
and Hs(t) are even functions, whereas H3(t) is an odd function. Figure5.1 shows
the graph of |H(t) — h(u*,t)| over t € [—1,1]. From the graph, we can observe
that the values of ||H(t) — h(u*,t)|| are bounded above by v* = 0.1415 and the
bound is attained at multiple points in [—1,1]. Actually, those points coincide with
Tan = {—1.00,—-0.88,—0.52,0,0.52,0.88,1.00}, which correspond to the active con-
straints at the optimum.

Experiment 3-2. We next consider a vector-valued approximation problem where
T is two-dimensional. Let H : RZ — R3 and h : R® x R2 — R3 be defined by

10g(t1 +to + 1) sin t1
sinty/(t1 +t2 + 1) + log(t; +t2 + 1) costy | ,
sinty/(t1 + t2 + 1)

N S wt
h(u,t1,ts) := 2?22 u, (v — D25 |
S (8 =)t T

H(tl, tg) .
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TABLE 5.4
Results for Experiment 3-2.

v, ()T | 0.9730, (—0.1189, 0.2040, 0.2867, —1.0159, 0.9723, 0.1877, —0.3704, 0.1687)
Tin {(1,0), (0, 1), (1, 1), (0.64, 0.60), (0.46, 1), (0.60, 0.68), (0.58, 0.74), (0.62, 0.64)}
{7r} 02,2,02,3,1,4,0,1,5,3,12,6, 1,2, 02
FSL[[I) 40
time(sec) 15.40
respectively. In order to find a vector u := (uy,us, ..., us) € R®such that h(u,t;,ts) ~

H(t1,t2) for (t1,t2) € [0, 1] x [0,1], we solve the following problem:

(5.5) Minimize

H(ty,ta) — h(u,ty,t H
u€ER8 (tl,t2)I€rf§:>1(]><[O,l] H ( 1 2) (u 1 2)

Introducing an auxiliary variable v € R, we can reformulate (5.5) as the following
SICP with infinitely many four-dimensional second-order cone constraints and two-
dimensional index set:

Minimize v

(v,uT)TeRXRE
v

oot
> (v = D5
(5.6) > (8 = )t

0
10g(t1 +ts + 1) sintq
sinty/(t1 + ta + 1) 4 log(t1 + t2 + 1) costq
Sintl/(tl +t2+1)

for all (tl,tg) S [0, 1] X [0, 1].

subject to

e Kt

In applying Algorithm 2, we set T, := {(0,0), (0,1), (1,0), (1,1)} and e = 4 := 0.5.
The results are shown in Table 5.4, where (v*,(u*)")" is the computed optimal
solution. From the table, we can observe that Algorithm 2 obtained the solution
within acceptable time (15.40 seconds). Moreover, the values of |Ty|, |Tan|, and Fsum
indicate that 36(= |To| 4+ Tsum — |Thn|) indices are discarded in Step 1-3 in total.
Thus, the exchange-scheme in Step 1 worked efficiently to prevent the size of problems

CP(e, FTH) from growing excessively.

6. Concluding remarks. For the semi-infinite program with an infinitely many
conic constraints (i.e., SICP), we have shown that the KKT conditions can be repre-
sented with finitely many conic constraints, as long as the RCQ holds. Furthermore,
for solving the SICP with a convex objective function and affine conic constrains, we
have proposed the explicit exchange method and the regularized explicit exchange
method and established their global convergence. Finally, we have conducted numer-
ical experiments with the proposed algorithms to examine their effectiveness. For the
standard semi-infinite program, there exist many methods other than the exchange
method. It is an interesting future subject of research to extend those methods to the

SICP.
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