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This paper discusses a level set-based topology optimization method for the design of a ferromagnetic waveguide. The optimization 
problem is formulated to maximize the power of transmitted waves at prescribed frequencies. A level set-based topology optimization 
method incorporating a fictitious interface energy is used to find optimized configurations of ferrite materials inside the waveguide. 
The results of the numerical examples for two different target frequencies show that the presented method successfully finds optimized 
configurations that maximize transmission power of waveguides for both forward and backward propagation. 
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I. INTRODUCTION 
ECENT studies on the design of metallic waveguides 

with ferrite inclusions have generated increased interest in 
applying in microwave applications, such as waveguide filters 
and millimeter wave antennas [1], and also to the development 
of novel left-handed devices [2]. Ferrite materials exhibit a 
frequency-dependent value of permeability due to magnetic 
resonance phenomenon that can be altered by an externally 
applied DC magnetic field. Thus, metallic waveguides loaded 
with appropriately designed ferrite inclusions are expected to 
offer advantages such as tunable operating frequencies and 
compactness, because electromagnetic waves can propagate at 
frequencies below those of the cut-off frequency of the 
waveguide without the inclusions.  

The topology optimization method [3] is the most flexible 
type of structural optimization method, and has been 
successfully applied in many design problems, including 
electromagnetic problems. For the design of metallic 
waveguides, Byun and Park [4] and Hirayama et al. [5] 
applied it to the design of dielectric inclusions inside a 
waveguide, Nishiwaki et al. [6] optimized the cross-sections 
of dielectric inclusions, and Yamasaki et al. [7] designed 
metallic inclusions for T-junctions and waveguide filters. 

Here, a level set-based topology optimization method 
incorporating a fictitious interface energy [8] is used to find 
configurations of ferrite materials in a waveguide that 
maximize the transmission power of electromagnetic waves at 
prescribed frequencies. The Landau-Lifshitz model is used to 
express the permeability of the ferrite inclusions. The 
objective function is formulated to maximize the transmission 
coefficient S21 at prescribed desirable frequencies. The 
optimization algorithm uses the adjoint variable method 
(AVM) for the sensitivity analysis and the finite element 
method (FEM) for solving the equilibrium and adjoint 
equations, and updating the level set function. Numerical 
examples are provided to examine the validity and utility of 
the presented method. 

II. FORMULATION 

A. Ferrite materials 
Ferrite materials exhibit a frequency-dependent 

permeability due to a magnetic resonance phenomenon, and 
the permeability can be altered by applying an external DC 
magnetic field. The magnetic permeability fµ  of a ferrite 

material can be described using the Landau-Lifshitz model, as 
follows. 
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In the above equations, ω is the angular frequency and 0ω  is 
the precession frequency. 0ω , hω  and mω  are defined as 
follows. 
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where γ  and 0µ  are the gyromagnetic ratio of ferrite and the 
magnetic permeability of a vacuum, respectively. H0, H∆ , 
and SM  are the magnitude of an externally applied DC 
magnetic field, the resonance line width of the ferrite material, 
and the degree of magnetization saturation, respectively. 

B. 2D waveguide design problem 
Here, we discuss the waveguide design problem. The design 

domain is illustrated in Fig.1. Transverse electric waves 
propagate in x-y direction where the electric field vector is 
polarized orthogonal to the direction of wave propagation. 
Incident waves enter the domain from the left boundary 1Γ , 
the upper and lower boundaries, PECΓ , are set as perfect 
electric conductors (PEC), and 2Γ  is output port. An external 
magnetic field is applied in the vertical (outward) direction  
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Fig 1. Design domain and boundary conditions.  
 
perpendicular to the plane of the illustration. The governing 
equation is the 2-dimensional Helmholtz equation, which can 
be defined in weak form as follows: 
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where zE is the electric field, zE~ is the test function, i
zE  is 

the incident waves, rµ  and rε are the relative permeability 
and permittivity, respectively, 0k  is the wave number in a 

vacuum such that 000 µε=k . 

C. Level Set-Based Topology Optimization 
Here, we briefly explain the level set-based topology 

optimization method that we apply [2]. Topology optimization 
is a method for optimizing material distribution in a fixed 
design domain D that consists of a solid domain Ω  filled with 
solid material and a domain filled with void, with structural 
boundaries Ω∂ . 

In the level set-based method, the structural boundaries Ω∂  
are expressed using the iso-surface of the level set function φ , 
as follows. 
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The optimization problem is then formulated as follows, 
using the level set-based boundary expressions defined above. 
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where φχ  is the characteristic function, f is the density 
function of the objective functional, g is the density function 
of the constraint functional, and Gmax is the upper limit value 
of the constraint functional. The characteristic function φχ  is 
defined as follows: 
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The above formulation is an ill-posed problem because the 
level set function is allowed to be discontinuous at every point, 
so regularization must be applied. In the level set method used 
here, the Tikhonov regularization method is used. The above 
optimization problem is then replaced with the following 
optimization problem: 

( ) ,,inf RFFR +=φχφχφ

                     (17) 
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where R in the above equation is a regularization term defined 
as follows: 
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where τ  is a regularization parameter.  
Next, the KKT conditions of the above optimization 

problem are derived as follows: 
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where ,GFF RR λ+=  RF  is the regularized Lagrangian, λ  
is the Lagrange multiplier, and φφ ~,/ dFd R

 represents the 

Fréchet derivative of the regularized Lagrangian RF  with 
respect to φ . 

Although level set functions that satisfy the above KKT 
conditions are candidate solutions of the level set function that 
represents optimized configurations, it is not easy to find such 
solutions directly. Here, introducing a fictitious time t, we 
assume that the variation of the level set function is 
proportional to the gradient of Lagrangian RF , as follows: 
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where ( )φK  is a coefficient of proportionality. 
Substituting Eq.(17) into Eq.(21), and setting an appropriate 

boundary condition, we have the following equations. 
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The optimization problem is then replaced by the above time 
evolutional equation. That is, optimal configurations can be 
obtained by solving the above time evolution problem. 

D. Optimization Problem 
The purpose of the optimization problem is to design a 

waveguide filter. The objective function is formulated to 
maximize the transmission power at frequency iω as follows: 
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where iα is a weighting function, S21 is the transmission 
coefficient of scattering parameters that can be obtained from 
the following equation. 
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Fig 2. Optimized configuration of Example 1.  
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where *i
zE  indicates the conjugate of i

zE . 

E. Sensitivity Analysis 
The sensitivity analysis is computed using the AVM. The 

Lagrangian of the optimization problem is formulated as 
follows: 
 

( ) ( ).~~, zzz ElEEaFF −+=                         (25) 
The sensitivity of the Lagrangian is obtained using the 

AVM as follows. 
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where the adjoint variable is obtained by solving the following 
equation. 
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The sensitivity is finally obtained as follows. 
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III. NUMERICAL EXAMPLES 
We now provide numerical examples of the 2D waveguide 

design problem. The design domain and boundary conditions 
are shown in Fig.1. The height and width of the waveguide are 
set to 10 mm and 30 mm, respectively. Incident waves enter 
the domain from the left, and the upper and lower boundaries 
are set as having the condition of a perfect electric conductor 
(PEC). Input and output ports are placed on the left and right 
sides of the design domain, to numerically support the TE10 
mode. The entire domain is discretized using 14,440 
rectangular elements. For the following examples, the 
conceptual material has parameters set as follows: γ = 1.759

1110× , 00 Hµ = 30mT, H∆ = 1mT, and 00Mµ = 173 mT, 
assuming that the ferrite material resembles a yttrium iron 
garnet. The relative permittivity constant of the ferrite material, 

rε , is set to 10-1j. We also assume that the dielectric material  

 

 
Fig 3. Frequency characteristics of scattering parameters S11 and S21 of 
Example 1, maximizing S21 at 2.0 GHz 

 
Fig 4. Frequency characteristics of scattering parameter S21 obtained using the 
optimized configuration of Example 1, with 00 Hµ = 30mT, 60 mT and 

90 mT, respectively. 
 
used as the background material has the same relative 
permittivity constant as the ferrite material. A configuration 
filled with ferrite materials is used as initial configuration for 
both cases. 

A. Example 1: maximizing transmission power at 2.0 GHz 
Figure 2 shows the optimized configuration, maximizing S21 at 
2.0 GHz. Only the optimized configuration in the design 
domain is shown. The asymmetry in the optimized 
configuration is caused by the anisotropy of the ferrite 
material's permeability. Figure 3 shows the frequency 
characteristics of the scattering parameters S11 and S21 as the 
transmission coefficient S21 is increased over a broad 
frequency range. The transmission coefficient S21 is increased 
to roughly -12 dB at 2.0 GHz. 
   Figure 7(a) shows the electric field at 2.0 GHz for different 
phases of incident waves, namely, (i) 0°, (ii) 60°, (iii) 120°, 
and (iv) 180°. These figures show forward wave propagations 
in the waveguide. As the optimization results show, the 
optimized configuration consists of two bars located in the 
upper and lower areas of the design domain. Electromagnetic 
waves propagate in the dielectric material between the upper 
and lower ferrite bars that guide the transmission of 
electromagnetic waves. Figure 4 shows the frequency  
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Fig 5. Optimized configuration of Example 2.  
 

 
Fig 6. Frequency characteristic of scattering parameters S11 and S21 of 
Example 2, maximizing S21 at 3.25 GHz 
 

 
Fig 7. Electric fields of optimized configuration: (a) Example 1 at 2.0 GHz: 
(b) Example 2 at 3.25 GHz for various phases of incident waves: (i) 0°; 
(ii) 60°; (iii) 120°; (iv) 180°. 

 
characteristics of the scattering parameters S21 for the obtained 
optimized configuration when different magnitudes of an 
external magnetic field are applied, with 00 Hµ = 30 mT, 
60 mT, and 90 mT, respectively. These illustrate the tunability 
of the operating frequency by the application of externally 
magnetic fields. 

B. Example 2: maximizing transmission power at 3.25 GHz 
Figure 5 shows the optimized configuration when S21 is 

maximized at 3.25 GHz. Figure 6 shows the frequency 
characteristics of the scattering parameters S11 and S21, as the 
transmission coefficient S21 is increased to roughly -14 dB at 
3.25 GHz. 

Figure 7(b) shows the electric field at 3.25 GHz at different 
phases of incident waves. In contrast to the results of Example 
1, the optimized configuration consists of a single ferrite bar, 
and the electromagnetic waves are strongly excited at the  

 
Fig 8. Effective permeability curve of the ferrite material. 
 
horizontal interface between the ferrite and dielectric materials. 
This phenomenon resembles the edge guide mode of a ferrite-
metallic plate system. Although the figures do not provide a 
clear indication, backward waves propagate in the waveguide 
due to the left-handed behavior of the waveguide. We note 
that in rectangular metallic waveguides, the effective dielectric 
constant becomes negative at frequencies below the cut-off 
frequency. Figure 8 shows the effective permeability of the 
ferrite material obtained by following equation. 
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The effective permeability also becomes negative at 3.25 GHz, 
so the waveguide exhibits left-handed behavior. 

IV. CONCLUSION 
In this study, a level set-based topology optimization 

method incorporating a fictitious interface energy was applied 
to the design of ferrite inclusions in a waveguide. The 
objective function was formulated to maximize the 
transmission power. The numerical examples for two different 
target frequencies show that the optimization method 
successfully found configurations that maximize the 
transmission power of waveguides for both forward and 
backward propagation. 
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