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Robust and scalable scheme to generate large-scale entanglement webs
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We propose a robust and scalable scheme to generate an N -qubit W state among separated quantum nodes
(cavity-QED systems) by using linear optics and postselections. The present scheme inherits the robustness of
the Barrett-Kok scheme [S. D. Barrett and P. Kok, Phys. Rev. A 71, 060310(R) (2005)]. The scalability is also
ensured in the sense that an arbitrarily large N -qubit W state can be generated with a quasipolynomial overhead
∼2O[(log2 N)2]. The process to breed the W states, which we introduce to achieve the scalability, is quite simple
and efficient and can be applied for other physical systems.
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Introduction. So far tremendous efforts have been paid for
experimental realizations of quantum-information processing
(QIP), and, for example, control of a few qubits has been
performed in cavity QED, ion traps, etc. It, however, seems
difficult to increase the number of qubits dramatically within
a single physical system. In order to realize large-scale QIP,
we have to develop a way to integrate individual physical
systems scalably. Furthermore, for communication purposes,
quantum information has to be shared among separated
quantum nodes. To meet these requirements, distributed QIP,
where stationary qubits are entangled by using flying qubits
(photons), seems to be very promising [1–4]. A lot of protocols
have been proposed so far for remote entangling operations and
probabilistic two-qubit gates [5–7]. The Barrett-Kok scheme
is particularly promising, since it is fully scalable and robust
against experimental imperfections [6]. It is further studied
for generating graph states efficiently [8]. Experiments of
the remote entangling operations (or probabilistic two-qubit
gates) between separated qubits have also been done in both
atomic ensembles [9] and trapped single atoms [10]. They are
important ingredients for fault-tolerant distributed quantum
computation [6,11–13].

Multipartite entanglement is not only a key ingredient
for quantum communication but also an important clue to
understand the nature of quantum physics. There are a lot
of classes of multipartite entanglement, for example, GHZ
(Greenberger-Horne-Zeilinger) states [14], cluster states [15],
and W states [16]. Among them, the W states,

|WN 〉 = 1√
N

(|100 · · · 0〉 + |010 · · · 0〉 · · · + |000 · · · 1〉,

are quite robust in the sense that any pairs of qubits are still
entangled, even if the rest of the qubits are discarded [17]. This
weblike property is very fascinating as a universal resource,
i.e., entanglement webs, for quantum communication. There
are several protocols which use the W states for quantum
key distribution, teleportation, leader election, and information
splitting [18]. Furthermore, inevitable decoherence in sharing
the W states can be counteracted by using a scheme of
purification [19]. The preparation of the W states by using
optics has been discussed so far extensively both theoretically
and experimentally [20]. It has been also discussed in other
systems, such as cavity QED and ion traps [21]. Nevertheless
none of them seems to be fully scalable. That is, the overhead

required for sharing an N -qubit W state scales exponentially in
the number of qubits N or the W state is prepared in a single
system, which cannot be used for quantum communication
among separated quantum nodes.

In this paper, we develop a robust and scalable scheme to
generate the N -qubit W state by using separated cavity-QED
systems and linear optics. The present scheme is scalable
in the sense that an arbitrarily large N -qubit W state can
be generated among separated quantum nodes with only a
quasipolynomial overhead ∼2O[(log2 N)2]. In the following, we
first develop an efficient way to generate the four-qubit W state
|W4〉 by following the concept of the Barrett-Kok scheme [6],
which is quite robust against the experimental imperfections.
The success probability to obtain the |W4〉 is significantly high
to be 1/2. Then, by using the four-qubit W states as seeds,
we can breed an arbitrarily large W state in an economical
way, where the two |WN 〉’s are converted to one |W2(N−1)〉
probabilistically by accessing only two qubits. In contrast to
classical webs, where a local connection does not result in
a global web structure, this property of entanglement webs
is a genuine quantum phenomenon. Even if the conversion
fails, the two |WN−1〉’s are left and can be recycled. This
breeding method is quite simple and economical and can be
applied to other physical systems, such as polarization qubits
in optics [20].

Four-qubit W state (seeding). We consider four three-level
atoms, each of which is embedded in a separated cavity. The
two long-lived states of the atom, |0〉 and |1〉, are used as a
qubit, where only the state |1〉 is coupled to the excited state |e〉,
whose transition frequency is equal to that of the cavity mode
(see Fig. 1). The output fields of the cavities are mixed with
50:50 beam splitters (BSs) and measured by photodetectors.
The effective Hamiltonian of the system is given by

H =
4∑

i=1

gi

2
(|1〉ii〈e|ĉ†i + H.c.) − i

4∑
i=1

κi ĉ
†
i ĉi ,

where gi denotes the coupling between the |1〉i ↔ |e〉i
transition and the ith cavity mode ĉi . The cavity photon leaks
to the output mode with rate 2κi (κi > gi), which is treated
as the non-Hermitian term by following the quantum jump
approach [22]. For simplicity, the cavity parameters are set
to gi = g and κi = κ (i = 1,2,3,4). As shown in Fig. 1, the
output modes are mixed by using the four 50:50 BSs. Thus
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FIG. 1. (Color online) Three-level atoms are embedded in cavi-
ties. The two long-lived states |0〉 and |1〉 are used as a qubit, and the
transition between the states |1〉 ↔ |e〉 is coupled to the cavity mode.
The output modes are mixed with four 50:50 BSs and measured by
photodetectors Di .

the modes âi of the four detectors Di are given in terms of the
cavity modes ĉi by

â1 = (ĉ1 + ĉ2 + ĉ3 + ĉ4)/2, â2 = (ĉ1 − ĉ2 + ĉ3 − ĉ4)/2,

â3 = (ĉ1 + ĉ2 − ĉ3 − ĉ4)/2, â4 = (ĉ1 − ĉ2 − ĉ3 + ĉ4)/2.

The procedure to obtain the four-qubit W state |W4〉 is
as follows. We first prepare the initial state of the atoms as
|�(0)〉 = (|0〉 + |e〉)⊗4/4 by using π pulses. Then, we wait for
a sufficiently long time tw to detect photons. Before proceeding
to the second round, each qubit is flipped as |0〉 ↔ |1〉, and the
state |1〉 is excited to |e〉 by a π pulse. Then we wait again for tw
to detect photons. If three- and single-detector clicks, or vice
versa, are observed at the first and second rounds, respectively,
the |W4〉 is obtained up to unimportant phase factors, which
can be removed by using local operations.

Let us see in detail how the |W4〉 is generated and calculate
the success probability. For concreteness, we consider the case,
where the D1, D2, and D3 are clicked at t1, t2, and t3 (t1 < t2 <

t3), respectively, in the first round. In the second round, the
fourth detector is clicked at t4. The state conditioned on the
first three clicks is given up to normalization as

|�(t1,t2,t3)〉 = (2κ)3/2â3e
−iH (t3−t2)â2e

−iH (t2−t1)â1e
−iH t1 |�(0)〉

= (2κ)3/2

8
α(t3)α(t2)α(t1)[W(|1,0〉,|0,0〉)

+α(t3)W(|1,0〉,|1,1〉) +β(t3)W(|1,0〉,|e,0〉)],
where |a,b〉 (a ∈ {0,1,e} and b ∈ {0,1}) indicates the
states of the atom |a〉 and photon |b〉, respec-
tively, for the combination W(|A〉,|B〉) ≡ (|A〉|A〉|A〉|B〉 −
|A〉|A〉|B〉|A〉 − |A〉|B〉|A〉|A〉 + |B〉|A〉|A〉|A〉)/2. The coef-
ficients α(t) and β(t) are the solutions to the Schrödinger
equation:

α(t) = −ig/(2
√

κ2 − g2)(−eω+t + eω−t ),

β(t) = g2/(4
√

κ2 − g2)(−eω+t /ω+ + eω−t /ω−),

where ω± = (−κ ±
√

κ2 − g2)/2. The probability of such an
event is given by

p(t1,t2,t3) = |〈�(t1,t2,t3)|�(t1,t2,t3)〉|2.

For the sufficiently long tw (	 1/|ω±|), the states |e,0〉 and
|1,1〉 decay to |1,0〉 incoherently. The postmeasurement state
at tw is given by

ρ(tw) = N [ρW (|1,0〉,|0,0〉) + |α(tw)|2|1,0〉〈1,0|⊗4],

where ρW (|A〉,|B〉) = W(|A〉,|B〉)W(|A〉,|B〉)† and N =
(2κ)3|α(t3)α(t2)α(t1)|2/[64p(t1,t2,t3)].

Before proceeding to the second round, each qubit is flipped
as |0〉 ↔ |1〉, and the state |1〉 is excited to |e〉 similarly to the
first round. Then, the initial state of the second round is given
by

ρ ′(0) = N [ρW (|0,0〉,|e,0〉) + |α(tw)|2|0,0〉〈0,0|⊗4].

Since the first term has exactly one excitation, by observing
the single detector click at t4, the second term is removed
in this round. Finally we obtain the four-qubit W state |W4〉
for the atoms. The joint probability for the first three clicks
and the second single click is calculated as

p(t1,t2,t3,t4) = p(t4|t1,t2,t3)p(t1,t2,t3)

= Tr[2κâ
†
4â4e

−iH t4ρ ′(0)eiHt4 ]p(t1,t2,t3)

= (2κ)4|α(t1)α(t2)α(t3)α(t4)|2/256.

For sufficiently long tw (	1/|ω±|), the success probability is
calculated as

4∏
i=1

∫ tw

0
dti

(2κ)4

256
|α(t1)α(t2)α(t3)α(t4)|2 = 1

256
,

where the sum over the orderings of t1, t2, and t3 is also taken.
By considering the cases for three detector clicks, (D1,D1,D1),
(D1,D1,D2), and so on, we obtain the total success probability
p = 1/2, which is unexpectedly high. This success probability
can also be understood by the fact that the initial state (|0〉 +
|1〉)⊗4/4 contains two types of the W states (i.e., |0001〉 · · ·
and |1110〉 · · ·) with each probability 1/4. Then in the present
setup, we can fully extract the W states by virtue of the highly
symmetric detector modes. This method inherits the robustness
of the Barrett-Kok scheme [6]; the detector inefficiency and
photon loss do not deteriorate the fidelity, but only decrease
the success probability. The success probability scales like p =
(ηdηl)4/2, where ηd and 1 − ηl denote the detector efficiency
and photon loss rate, respectively. Other imperfections such
as decoherence of the qubits, detector dark counts, and mode
mismatchings would not deteriorate the fidelity crucially for a
specific physical system such as the nitrogen-vacancy (NV)-
diamond system, as discussed in Ref. [6].

The above process to prepare the |W4〉 is viewed as a single
concatenation of entangling operation, |1〉 → |10〉 + |01〉 and
|0〉 → |00〉. It can be extended straightforwardly to generate
an N -qubit (N = 2L with an integer L) W state |WN 〉 with
probability N/2N−1 by using a similar setup. The detector
modes are given by â

(L)
j = A

(L)
ij ĉi/

√
N in terms of an N × N

matrix A(L) generated recursively by

A(L+1) =
(

A(L) A(L)

A(L) −A(L)

)
,

where A(0) = 1. Then single and N − 1 clicks, or vice versa,
at the first and second rounds, respectively, result in the |WN 〉.
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FIG. 2. (Color online) Economical breeding. Two |WN 〉’s, which
are depicted symbolically as circles connected with lines, are
converted to a |W2(N−1)〉 probabilistically. Even if the conversion
fails, the two |WN−1〉’s are left and can be recycled.

More generally, if we observe m and N − m clicks at the
first and second rounds, respectively, we can obtain the Dicke-
symmetric state [23]:

|Dm,N−m〉 =
∑

i

Si(|0〉⊗m|1〉⊗N−m〉)/
√

Cm
N−m,

where {Si} denotes the set of all distinct combinations of the
qubits and Cm

N−m = N !/[m!(N − m)!]. With the increasing
number of qubits N , however, the success probability ∼2−O(N)

diminishes exponentially.
Economical breeding. We next show that the four-qubit W

states are sufficient to generate an arbitrarily large W state
with a quasipolynomial overhead, introducing an economical
breeding (Fig. 2). Suppose that we have obtained the N -qubit
W states:

|WN 〉 = 1√
N

|1〉(a)|0N−1〉 +
√

N − 1

N
|0〉(a)|WN−1〉,

where the qubit labeled by (a) is used as an ancilla for the
breeding and |0n〉 ≡ |0〉⊗n. Then, the two N -qubit W states
can be rewritten as

|WN 〉|WN 〉 = 1

N
|11〉(a)|02(N−1)〉

+
√

N − 1

N
|10〉(a)|WN−1〉|0N−1〉

+
√

N − 1

N
|01〉(a)|0N−1〉|WN−1〉

+N − 1

N
|00〉(a)|WN−1〉|WN−1〉,

where the two ancilla qubits in the W states are moved to the
first two-qubit Hilbert space labeled by (a). Here, we perform
a controlled-NOT (CNOT) gate between the two ancilla qubits
and measure the second ancilla qubit in the Z basis. If the
measurement outcome is 1, the postmeasurement state is given
by

1√
2

(|11〉(a)|WN−1〉|0N−1〉 + |01〉(a)|0N−1〉|WN−1〉).

The probability for obtaining such an outcome is (N − 1)/N2.
Next, by measuring the first ancilla qubit in the X basis
and performing local operations properly depending on the

outcome, we can convert the two N -qubit W state to the
2(N − 1)-qubit W state:

1√
2

(|WN−1〉|0N−1〉 + |0N−1〉|WN−1〉) = |W2(N−1)〉.

This indicates a good property of entanglement webs; a local
connection produces a global web structure.

Alternatively, if the outcome of the first measurement for
the second ancilla qubit is 0, we have

|10〉(a)|02(N−1)〉 + (N − 1)|00〉(a)|WN−1〉|WN−1〉√
N2 − 2N + 2

.

Then, by measuring the first ancilla qubit in the Z basis with
the outcome 0, the two |WN−1〉’s are left, which can be recycled
to generate the |W2(N−2)〉. The joint probability to obtain such
outcomes as (0,0) is (N − 1)2/N2.

Notice in the above that, in order to grow the size of the W

state, 2(N − 1) > N is required, that is, N � 3. Thus starting
from the four-qubit W states, we can breed an arbitrarily large
W state by repeating the conversion process. With an even
number of qubits, we can also obtain the W state with an odd
number of qubits as byproducts when the conversion fails.

In the cavity-QED setup such as in Fig. 1, instead of
the above procedure (CNOT and measurements), the original
Barrett-Kok scheme can be used to project the ancilla qubits
to the subspace spanned by {|10〉(a),|01〉(a)}. Then, if the
projection is successful with probability (N − 1)/N2, the two
|WN 〉’s are converted to the |W2(N−1)〉. In the failure case,
then, if the ancilla qubits (atoms) are confirmed to be in the
|00〉(a) by measuring them directly, the two |WN−1〉’s are left
for recycling. Even when the detector inefficiency and photon
loss are considered, the conversion probability is diminished
by only (ηdηl)2.

1
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1×1040

 10  20  30  40  50  60  70  80  90  100

R
N

N

FIG. 3. (Color online) The overheads RN for the concatenated
entangling (red ◦) and the breeding (blue ×), respectively, are plotted
as functions of the number of qubits N , where ηdηl = 0.5,0.7,1 from
top to bottom.
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The success probability for the breeding sequence |W4〉 →
· · · |WNk

〉 → · · · |WN 〉 is calculated (ηdηl = 1 in the ideal case)
as

pN = 1

2

K∏
k=1

2k + 1

(2k + 2)2
,

where K = log2(N − 2) − 1 means the number of conversions
required to breed the |WN 〉 and Nk = 2k+1 + 2 satisfies
Nk+1 = 2(Nk − 1). The overhead RN = 4 × 2K/pN scales
like 2O[(log2 N)2] for N 	 1, which is quasipolynomial in the
number of qubits N . This is because, although the success
probability of the conversion |WN 〉|WN 〉 → |W2(N−1)〉 de-
creases as O(1/N ), the size of the W state grows exponentially
with the number of conversions O(log2 N ). (The overhead will
be somewhat improved by recycling.) On the other hand, if we
generate the |WN 〉 by the concatenated entangling with A(L)

as mentioned before, the overhead RN ∼ 2O(N) is exponential.
Furthermore, the number of total clicks in the breeding is
4 + 2K = 3 + 2 log2(N − 2). Thus the detector inefficiency
ηd and photon loss 1 − ηl do not upset the scalability in
the breeding scheme though they require somewhat more
resources. In Fig. 3, the overheads RN for the concatenated
entangling (red ◦) and the breeding (blue ×), respectively,

are plotted as functions of the number of qubits N , where
ηdηl = 0.5,0.7,1 from top to bottom. As by-products in
breeding the |WN 〉, the |WN−2M〉 (1 � M � N/2 − 1) can also
be obtained with probability (N − 2M)pN/N and resources
4 × 2K [N/(N − 2M)]/pN by recycling.

Discussion and conclusion. We have considered a robust
and scalable scheme to generate large-scale entanglement
webs. We have first introduced an efficient way to generate
the four-qubit W state by following the Barrett-Kok’s concept,
which provides a significantly high success probability of 1/2.
Then, by using the four-qubit W states as seeds, we have
developed an economical breeding method to generate an
arbitrarily large W state with a quasipolynomial overhead.
The breeding method is quite simple and exploits a unique
property of entanglement webs. That is, a global web structure
can be constructed only by a local connection. This provides
a different perspective on multipartite entanglement.

Note added in proof. Recently, we became aware of
Ref. [24], which uses the breeding method for generating the
W states of polarization qubits.
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