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PREFACE

Since about twenty years, the science of information
has appeared and‘grown up. In the early years it was
called the information theory and concerned mainly with
the brobaﬁilistic phenomena arising in various fields of
the scieﬁce. The information theory, which was founded
by C,Shannod, was the mathematical formulation of the
electric communication system. The electric communica-
tion had béen investigated by engineers from the practi-
cal point of view before then, but this theory gave them
insight into the whole system. One of the most eminent
contributions of the theory is that it established the
concepts of the information measure and of‘the encoding
of information, The original information can not be
transmitted effec¢tively unless it is enéoded into the
appropriate code. Thehtheory of codes then appeared.
Its importance could be compared with that of the modula-
tion and transmission technique,

A 1ittle after the information theory, the field of
information processing appeared with rapid progress of
the digital computer. Here information is not regarded
as the probabilistic object but is treéted as the deter-
ministic one. Information in this field has thq fqrm of
the symbol such as the numeral or the alphabetical let-
ter. Thé single'symbol is almost meaningless and what

is interesting is the system of symbols. The language,
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mathematics, the system of codes and so on are examples
of suéh systems. Though the numerical computation is
often considered to be the ?epresentative of the infor-
mation processing by the coﬁputer, the essence of this
field may be the transformation of systems of symbols.
The mechanical translation of 1anguagés, the compiler
system of programs, etc, are typical examples. Theory
of algorithms, theory of logical functions and theory of
logical circuits are related fields. Recently the study
of logical machines, which help the human being in the
logical work, has stimulated interest of the investiga-
tor. The automatic design of machines and the theorem
proving of mathematics are such examples. |

In studying the science of information one should
treat the above mentioned both fields together, because
information has two sides.

One of the typical examples, in which these both
phases of information meet each other, is the pattern
recognition. In general the pattern recognition should
be regarded as one kind of statistical communication,
buﬁ the information theory itself does not give useful
tools for investigating this complex field. The other
theory has been expected in vain, The second phase of
the science of information seems t6 be useful for this
purpose, if it is modified., In addition to it, something
like the learning mechanism woﬁld be necessary. The gen-
eral theory of pattern recognition is the field to come.
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In this volume the works, which the author finished
during the post-graduate course, are presented.

The volume is divided into two parts, which treat
the problems of coding of information and the foundation
of the transformation theory of program respectively.,

PART I is devoted to coding problems of information.
In CHAPTER II the study on the minimum distance code is
presented as well as the mathematical formulation of
codes in general. The algorithm to generate minimum
distance codes was established and some interesting re-
sults were obtained by using the computer., In CHAPTER
IIT the problem of coding patterns into logical functions
is treated by means of the trial and error model. The
probabilistic logic circult is introduced there. CHAPTER
IV is an application of the group code theory to épproxi-
mation of logical functions, This is an answer to the
problem arising at the trial and error model.

PART II is devoted to translation of the program into
the logical circuit. It consists of four chapters.‘
CHAPTER I is introduction and CHAPTER II is formulation
of the problem, CHAPTER III is description of the logi-
cal machine and its programming syétem, which we chose
for the study of transformation. In CHAPTER IV the algo-

rithm of transformation is given as well as some examples,

November, 1965
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PART I

CODING PROBLEMS OF INFORMATION



CHAPTER I

Introduction

Since in 1948 C.Shannon formulated the mathematical
theory of information, a great deal scientists and engi-
neers have devoted their contributions to the foundation
and the application of the information theory. This
field treats the communication from the statistical point
of view. Among other subjects concerning the transmis-
sion, the reception and the reproduction of signals, the
coding of information is the main part of the theory.
Shannon's original coding theorem guarantees the possi-
bility of efficient communication.

On the other hand the theory of codes has been inves-
tigated since about 1950 R.Hamming established the con-
cept of error-correcting codes. This treats the methods
to construct actually the efficient codes which realize
the ideal communication.

Another phase of the information theory is its appli-
cation to the processing of information. The typical
examples of the information processing are the digital
computer and the pattern recognition. This field has
developed independently from the information theory. Its
complete theory has not yet been established, though
experimentally and practically there was great success

in constructing information processing machines.
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The following three chapters are devoted to the sec-
ond and the third phases of the study of information.

Here we review shortly the history and the interrela-
tion of both fields.

Though we do not treat Shannon's theory itself in
this thesis, we can not do without referring to his main
result "the coding theorem" in order to introduce our-
selves into the subject smoothly. Among his contribution
as well as those by other authors, the coding theorem is
most important and valuable in the sense that it indi-
cates the possibility and limitation of the coding of
information., The theorem states that there is a coding
df the information source such that the error probability
of decoding is as small as desired if the transmission
rate is less than the channel capacity. The converse
theorem was also proved. Note that the theorem holds
only when the channel is fixed. It is the main problem
in applications of the theorem to determine the channel
itself.

Unfortunately, however, these theorems do not suggest
directly the method to construct the adequate code for
the ideal transmissidn of information. It is only known
from the proof of the theorem that very long code is
seemingly required‘tb reach the Shanhon—bound.’ There-
fore the study of codes was required. The theory of

codes began with the excellent paper by H.W.Hamming in
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1950[1]. He founded the concept of the error correcting
and the error detecting codes. The Hamming distance has
played an important role in this theory, as well as in
many practical fields of the information processing. The
minimum distance code was investigated much since then,
The second milestone will be the group code, which was
found by D.Slepian and Z.Kiyasu about 195%6. The former
(8l

used the computer to obtain the optimal codes Today
it is quite usual to employ the computer for the study
of codes., The mathematical structure of group codes is
appropriate for the computation. But the computation
arising in the theory of codes is met with such diffi-
culties as in Fhe combinatorial problems, The computa- .
tion time increases in the factorial order of the code
length., It is therefore the ordinary methodology to
find the theory or the algorithm which reduces the speed
of increas of the computation time, besides to get the
theory to construct more economical codes.

The third big event was the burst error correcting
code by Bose and Chaudhuri in 19600*0d, The 1inear
switching circuit was applied cleverly to the encoding
and the decoding of the cyclic code by W.W.Petersonful].
One of the features of these codes is that the relatively
long code can be constructed easily and the encoder and

the decoder can be also easily implemented, which is im-

- portant from the engineer's point of view. Today the
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large scale data transmission is being investigated using
these techniques as well as the modernmodulation tech-
nique, »
Since the end of the last decade, the digital tech-
nique, of which the computer is typical, has been so de-
veloped that a great deal digital data may be processed
in a practical time delay and with reasonable expense.,
This offers effective terminal equipments of the trans-
mission system. This kind of cooperation between the
theory of codes and the digital technique is interesting.
Contrary to the theory of codes, the field of infor-
mation processing like the pattern recognition has been
not yet cultivated sufficiently. Though it seems very
much that the information theory and the %heory of codes
can be applied to this field, there is no definite theory
for it. One reason for it might be the fact that the
information theory is based on the law of large numbers
in the probability theory. TFor the pattern recognition
theory, this concept can not be applied directly. In the
pattern recognition the concept of statistical decision
making is essential and the investigation of the informa-
tion source itself is also important. On the other hand
the study of logical functions is necessary because the
recognition algorithm is expressed in terms of them
often. The mathematical formulations of the code and the

logical function have one to one correspondence. There-



fore there is a possibility of applying the theory of
code to the pattern recognition.

The pattern recognition can be regarded as a coding
problem of information., But centrary to ordinary prob-
lems, where the information source is the set of abstract
symbols with probabilities of appearance, we should con-
sider at first the measurement of concrete patterns.

It is decisive to the system, what is chosen as the ob-
served entity. If we choose the ordinary nXm rectan-
gular mesh for the observation of the printed character,
each observed image corresponds to a nm-tuple of O and
1. The ordinary pattern recognizers process this form of
information by means of the logical circuit. In general
the pattern will appear on the mesh in disturbed form,
sometimes shifted and sometimes affected by the noise.
Therefore a pattern is considered to be a set of nm-
tuples or a binary code of length nm. Therefore the
pattern recognition can be said to indicate, to what code
the observed nm-tuple belongs. The design of the ma-
chine is to design the code for the pattern. In this
case there is essential difference between the ordinary
coding and the coding of pattern. At the former the form
of the code is determined so that its transmission may be
affected 1little by the noise and the efficiency (trane- .
mission rate) may be as high as possible. 1In this theory

only the probability of the information source and the
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nature of the transmission channel are considered. Shan-
non's theorem gives the hopeful result under these condi-
tions. .

In the case of the pattern recognition, howeﬁer, the
coding problem is so complicated that it is hardly for-
mulated well. The main difficulty arises in connection
with the decision criterion of man. Any concrete pattern
is recognized by man at first. We can not therefore
design the code only from the theoretical point of view,
The structure of codes should represent such features as
the geometricél and the topological configurations, which
afe seemingly essential to the péttern. Furthermore for
encoding patterns, measurement of the concrete patterns

decides the system of codes. 1If the measurement is not
,‘adequate, effective coding can not be expected. 1In the
mathematical statistics the theory of measurement has
been investigated from the information theoretical point
of view, This, however, does not serve design of the
pattern recognition system directly.

One appfoach to the design of measureﬁent will 53 as
follows: At first we choose some codes, which‘have good
features as the code in some sense. Then the code is
tested by experiments, if it is suitable for the pattern
recognition with specific measuring.ststem. If not, the
measuring system is modified, until finally the code is

determined to be accepted or not.
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This approach may seem contradictory. Recause the
design of codes begins with investigation of the trans-
mission channel, while in our case there is not what cor-
responds precisely to the channel., But it will rive some
suggestions on the theoretical approach_to'thevmeasure-
ment to utilize results of the theory of codes.

In this sense, too, besides in the original sense,
the error—cofrecting and ~detecting code is the interest-
ing subjeét of the study. smong many codes, we treat in
CHAPTER II the minimum distance codes. The minimum dis-
tance code is mathematicully a subset of the set of ele-
ments, for which any pair of elements are separated at
least by a certain distance. In the case of application
the distance corresponds to the ability of discrimination
of objects. We persue the codes which contain the maxi-
mum number of elements,

Quite independéntly from the minimum distance code,
there is a subset, for which any pair of eleménts,ére
separated at most by a certain distance. It is called

€ -net and used in the theory of approximation of func-
tions., The minimum sets are persued in this case.

In CHAPTER IV a theory is given which indicates the
interrelation between the £ -net and the error correcting
code. This theory was developed in connection with the
"~ trial and error model of coding of patterns, which will

appear in CHAPTER III.



CHAPTER II

Theory 6f Codes

§ 2.1 Introduction

As mentioned in CHAP.I, the theory of codes is doubly
involved in the study of the information processing. At
first the former is expected to serve the latter, because
the coding problem is the starting point of the informa-
tion processing in general., Secondly the former has been
developed thanks to the latter, in particular to the dig-—
ital computer.

Hitherto the second cooperation has been pursued much
more than the first one. This is because the study of
the information processing has been done experimentally
and could not be treated theoretically so easily. For
example the pattern recognition has been investigated by
constructing the machine or by simulating the behavior of
the conceptual machine. One reason for this is that the
information processing should be always of use in practice
and the useful theory has not been established, though
in the case of rather simple éystems such as the code
conversion, the data transmission and so on, the theory
of transmission of information and tpe theory of codes
seems to be useful.

Contrary to this, the first cooperation has been made

by a great deal theoreticians. One of the most fruitful
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results of the computer use was the search of the optimal
group codes by D.3lepian in 1956[ & J. He formulated
the theory of the error correcting systematic codes
using the group theory ahd calculated out many interest-
ing codes with IBM 704 which was the biggest computer
at that time. About 1960 W.W.Petersonl 5% 1 used the
computer to find the best cyclic codes of relatively
large length.-

In general the’theory of codes is reduced to the
study of a type of the combinatorial problem. At first
a theory is established by investigating the mathematical
structure of the considered system of codes, and then an
algorithm, which will give the desired codes as effi-
ciently as possible, is written, and finally the computer
is used to obtain them actually. Therefore it would be
a success to the investigator, if he finds a more effi-
cient algorithm,

It is said however that it would be impossible to
get the general algorithm which permits us to cdlculate
the optimal code for any given length and number of in-
formation bits. The programs obtained so far are limited
to a certain region of the length, the number of the in-
formation bits and the number of the errors which can be
corrected.

In the case of the‘non-group codes such as the mini-
mum distance code, it is more difficult to use the com-

puter for finding the best codes because of the lack of
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an adequate methematical structure. It fakes much time
and memory tq look for the best codes by examihing all
possibilities one after another. N.Wax[luj used the
computer clever}y'in calculating the volume of some
geoﬁetrical objects to get the best tode.

. In § 2.2 the mathematical prerequisitss for the theo-
ry of.codes is presented and in §'2.3 the algorithm called
Standard Process is described. It gives ail minimum dis-
tance codes with the specifiedblength and the specified
minimum distance. The computatidnal results of the algo-
rithm are shown, among which there are some interesting
codes. Then an interesting anq important theorem about
S.P. and the grouﬁ code is given, as well as some compu-
tational results concerning with the maximum minimum

distance group codes.
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(8, 52, 54]

§ 2.2 Mathematical formulations of codes

Some mathematical tools for the study of codes are

listed in this section.

§ 2.2.1 Set of the n-tuples X°

The code is a set of objects which are called code
words or elements of the code, In this thesis the bi-
nary block code is investigated exclusively. Each code
word is therefore a n-tuple of QO and 1 , where n is
a positive integer and called the length of code. The’
set of all n-tuples is denoted by x* or simply by X.
We treat the communication model, for which the set of
the transmitted signals and that of the received signals
are identical and X°. The code of length n 1is a sub-
set of X% and denoted by C(ﬁ). The code word x of
C(n) is represented by a vector ' ( X1y Xpy eeey Xp ),
where x5 is gither O or 1 and called the (i-th)
component of the code word x. When a concrete code word
is referred to, the notation such as 00001111 is used.
A concrete code is represented by the array as shown in
Fig. 2.1.

c(8) = 00000000
00001111

00110011
00111100

Fig. 2.1

Of the array the row is the code word and the column

-11 -



indicates the place of the component.

The number of code words contained by the code C(n)
is denoted by [C(n)].

Two codes C1 and 02 are identical if they consist
of the same elements, Two codes bcl and 02 are said
to be equivalent if C1 is obtained by permuting the
columns of C2’ This is because they have the same ef-
fect as the code, if the transmission channel is the bi-
nary symmetric channel without memory. As shown later
the behavior of the code against the noise is determined
by its metric structure. In this respect 02 is equi-
valent to C if C

1 5 1is obtained by changing all compo-

nents of Cl frqm 0O to 1 and vise versa.

. Decision scheme

The decision (decoding) scheme of C(n) 1is a par-
- tition of X? into subsets such that every element of
C(n) belongs to one and only one subset, where the par-
tition of a set is its classification into some subsets
so that every element belongs to one and only one subset,
A receiﬁed code word is said to be decoded, if it is de-—
termined to which subset it belongs. The receiver de-,
cides then that the code word, which corresponds to the
said subset has been transmitted. | |
In the practical communication channel the noise
disturbs the transmitted signal so that the received

code word is not the same as the transmitted one. In
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this case the noise is said to cause the error.

We agree to say " An error occurred at the i-th
component ", if the i-th component of the recéived code
word does not equal that of the transmitted one., " t
errors occurred ", if t components are different in
the transmitted and received code words ( 0£t<n ).

A vector ( €11 €5y eeey € ) is called the error
pattern if it is the difference of the transmitted and
the received code words. The number of all error pat-
terns of k errors is nCxe

For the binary symmetric channel the probability
that a specified error pattern of k errors occurs is
pk(l-p)n-k, where p 1is the probability of incorrect
decision of each component. The probability that k
errors occur is anpk(l-p)n_k.

A error pattern is said to be corrected or cbrrect—
able if-ﬁhe received code word suffering it is decoded
by the decision scheme as belonging to the subset which
corresponds to the transmitted code word. A code is
called the t-error correcting codé if there is a deci-
sion scheme such that all error patterns of errors<t
can be corredted. In general the t-error correcting
code corrects some other error patterns of errors >t

than the said errors.

A partition of X® is called the error detecting

decision scheme of C(n) if the number of thé subsets
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is [C(n)]+1 and each code word belongs to one and only
one subset. In the same way as the error correcting
séheme‘the.error detecting schéme can be used to "éorAI
rect" errors. An error pattern is detecﬁed if the re-
ceivéd code word suffering it is found in the subset
which does not contain any code word.

In this thesis the error detection is not treated,
though this 5technique is being investigated by many au-

thors with respect to the data transmission.

Metric d

[ 1] indicated that the "Hamming

Since in 1950 Hamming
distance" is closely related to the error correcting or
-detecting ability of the code, the metric structure of
the code has been investigated.

For two elements x and y of X?  the Hamming dis-~
ténce d(x,y) 1is the number of components which are dif-
ferent in both elements. The Hamming distance satisfies

three axioms‘of the metric. Therefore X 1is considered

to be a metric space ( X, 4 ).

Definition 1. A code C 1is called to have the minimum

distance d and denoted by ¢C(n,d), if the following re-
lations hold;

(1) a(x,y) > 4, for any distinct =x and Y.

(ii) d(x,y) =4d, for some x and .

(iii) (1) and (ii) do not hold for d-1 in place of 4.

Definition 2. TFor fixed n and d, a C(n,d) is
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called the maximum minimum distance code (MMDC) and de-

. noted by M(n,d), if it contains the greatest number of

elements among all C(n,d)s.

Order
X" is considered to be the totally ordered set, if
the order is defined by that of the binary number. The
element (x, Koy eeey xn) can be identified with the num-
ber xi2n—i. In X%, 000...0 is the smallest element,
while 111...1 is the largest one. In § 2.3 +this or-

der is used for the computer algorithm "Standard Process".

§ 2.2.2 Operations

Since in 1956 D.Slebian[£3] pointed out that the
theory of groups is useful for designing the error cor-
recting code and its dicision scheme, the code which is
called the group code has been studied by many investi-
gators and found to be a powerful code With fespect to
its error control ability and its encoding and decoding
procedure which can be easily implemented.

Almost all featﬁres of this code come from its mathe-
matical structure, in particular its algebraic structure.

In the following some definitions about it are given,

Group G

A group G 1is a set of elements, for which a binary
operation - is defined and the following axioms Gl to

G4 hold,
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Gl. for any x and y in G, x+yGG..‘ .

G2. for any x, y and z in G, (x%j)+z = x+(y+z).

G3. There is an identity element O such that for
any x in G, x+0 = O+x = x.

G4, For any element x in G, there is an inverse

element -x such that x+(-x) = (-x)+x = O.

The set of all n-fuples ™ is a group with the ope-
ration defined as follows:

If X = (X3 Xpy eoey X)) and y = (Fyy Tps eeey Tpds
then x+y = (xl+y1, XotToy eees xn+yn), where + 1is the
modulo two sum. The identity element is (0, O, +.., O)
ahd the inverse element of x 1is Xx.

A group is calléd the Abelian group if x+y‘= y+x
for ahy x, yE€G. '

Rings R
A ring R is a set of elemehts, for which two binary v
operations are defined, say + and « , ( the second
operationbsymbol + is sometimes omitted for the sake of .
simplicity, i.e. xey = xy. ) and the following four
axioms are satisfied.
R1. R is an Abelian group under the operation + .
R2, For any x and y in G, Xy €G. ‘
R3, For any x, y and 2z in G, x(yz) = (xy)z.
R4, . For any k, y and z in. G, x(y+z) =  Xy+Xz
and (x{y)z = XZ+YZ. ‘
A_fing is dalléd commutative, if xy - yx for any
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x and y.

Fields F

A field F is a commutative ring which has a multi-
plication identity elements e such that for any x €G,
exX = xe = X, and every nonzero element x has an inverse

1 1 -1

element x -~ such that xx &~ = x °x = e.

Vector space V

A set of elements V 1is called a vector space or a
linear space over a fied F, if it satisfies the following
five axioms. |

V1. V is an Abelian group under operation +.

ve. For any v in V and ¢ in F, a product cv
is defined and cvevV,

V3, For any uw and v in V and ¢ in F,
c(u+v)= cu+cv.

V4, For any v in V and ¢ and d in F,
(c+d)v = cv+dv.

V5. For any v in V and ¢ and 4 in F,
(cd)v = c(dv) and ev = v.

The set {O, 1} consisting of 0 and 1 is a field
with the modulo two sum and the ordinary multiplication.

The set X° is a vector space over {O, 1}, whére.
the operations are defined as follows:

If x

(Xl, Xe, ee oy Xn) ‘and y = (y1’y2, ""_yn)’
then xy = (xlyl, XYy eees *nyn? Where,the prqduct
X;¥; - is the ordinary multiplication of numbers. If cEF,
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then fcx = (cxl, CXos ...,‘cxn) where the product CX;
is the ordinary one.
In this thesis X% 1is considered to be the vector

space over {O, 1}, and denoted by V! sometimes.

Subgroup
A subset H of a group G 1is called the subgroup .

of G if it is also a group.

Coset and coset leader

Given a finite group G and its subgroup H, all
elements of G can be arranged in the form of the array
as shown in Fig.2.2, where G = {gl, gé; cees gmn} and
H = {hl, h2, ceey hn}. The first row is H where
h; = 0. In order to construct the second row, g, is
chosen from G-H, ( The symbol - indicates the dif-
ferencé of sets in the set theory.) The 2nd row i-th
column element is the sum g2fhi. The i-th row is made
by choosing an element g; from G—(g2+H)-(g3+H)- cee
-(gi_l+H). The procedure proceeds until all eiements
appeai somewhere in the array. Each row (gi+H) is
cailed a (left) coset of H and 8 is called its coset
leader. | | |

If the coset are constructed by the operation H+gi
in stead of _gi+H, then they are called fight cosets.
If G is én Abelian gfoup, the left and right cosets

are identical and called cosets simply.
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Fig. 2.2

The following well known theorems are used in the
theory of codes.
P1, Two elements x and Yy are in the same coset
of H if and only if x-yé€H.
P2, Every element of .G is in one and only one
coset of H,
P3, Any element of a coset can be its coset leader,

i.e. if gegi+H, then g+H = gi+H.

Group codes

A subgroup of V? is called a group code and denoted
by G(n)., If the dimension of. G(n) in the space V%
.is k, then the code is deﬁoted by G(n, k). When
G(n, k) 1is used with the error correcting decision
scheme, k 1is equal to the number of the information
bits,

If G(n) has the minimun distance d, it is denoted

by G(n, d4), and called the minimum distance group code.
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Weight
. The (Hamming) weight of a vector x is the number of

ones contained in it and dénoted by i xl. -Then
al x, 5y ) =llx-yh (2.1)

Therefore the metric structure of the group code is

completely determined by the weight of each element.

§ 2.2.3 ’Decision scheme and the error control ability

of the code

In the case of the binary symmetric channel, the oﬁti-
mal code is the code G(n,k) which has the decision
schéme such that the average probability of incorrect de-
coding P(e) 1is the smallest among all G(m,k)s. The
problem persued is to search the optimal codes for n
and k. In this respect the decision scheme is investi-
gated further,

Let X (=X%) and Y (=X®) be the sets of all n-tuples
of the transmitted and}the received code words. Let
p(y/x) be the conditional probability that y 1is re-
ceived when x was transmitted. That is (X, Y, p( /%))
is a discrete channel without memory in the Shannon's
formulation,
| Let {4, A2,l...% AN} be the decision scheme of the
code C(n)= {xl, Xgy eees x} whgre N = [C(n)]. And
we agree that Whenevep’the'received element is found in

Aj’ we assume that xj was transmitted. Then Ai con-
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tains x; by definition. If p(x) is the probability .

that .x is transmitted, p(y) = Zf: p(x)p(y/x) is the
‘ x€X

probability that 3y 1is received, Then P(e) is given

by (2.2).

P(e)

2. p(y)[ 1 - p(xy/y) ] (2.2)
YGY

where xy:xi if yéAi.
In the case of the binary symmetric channel, P(e)
is a function only of d(x,y) and p ( the error proba-

bility of each component ). 1In fact

p(y/x) = pd(x’y)(l-p)n_d(x’y) (2.3)

p(y/x) is a monotonically decreasing function of
d(x,y) since 1l-p>p.
In particular, if the decision scheme corrects all

error patterns of errors 4&t,

_ t .
P(e) <1 - 37,0 (1-p)»t (2.4)
i=0

In order to see that the code which corrects many
errors is not always good with respect to P(e), compare
the following two codes, C(7,3) and C(10,5), for which
[c(?7,3)] = 16 and [C(10,5)] = 12. If we consider the
error pattern of one error for C(7,3) and one and two
errors for C(10,5) only and denote the error probabil-
ities)by Pl(e) and P2(e), the region of p for which
Pl(e)}-lpé(e) is 0<p< 0.435, That is, if the channel

is too‘noisy it is not preferable to use the 2-error-
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correcting code.

In the case of group codes the decision scheme is de-
termined using the cosets. ( See, Fig. 2.2 ). For each
coset the coset leader is chosen so that the weight of it
is the smallest among all elements of the same coset.
Then a received code word is decoded as the code word
which is written at the top of the column to which it
belongs. With this scheme the error patterns which are
identical with the coset leaders can be corrected,

The t-error correcting code has the scheme for which
all elements of the weight £t are coset leaders.

A group code that for some m has all error patterns
of weight m or less and no others as coset leaders is
called a perfect code. A code which for some m has all
patterns of weight m or less, some of weight m+l, and
none of greater weight as coset leaders is called quasi-
perfect, For the binary symmetric channel it is known
the perfect and the quasi-perfect codes are optimal.

The following proposition connects the minimum dis-
tance and the error correcting ability of a code.

The éode C(n) has the decision scheme which permits
the t-error correction, if and only if its minimum dis-

tance 4d §'2t+1.
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§ 2.3 Maximum Minimum Distance Codes

The study of the maximum minimum distance code (MMDC)
is one of many approaches to the optimal code or the ef-
fective error correcting code. As mentioned in the pre-
vious sections the quaiity of a code could not be judged
only from its metric structure but the feasibility of
the decoding scheme should be taken into account. 1In
this respect MMDC is not always suitable since the decod-
ing scheme is not simple. But theoretically it suggests
much about the rate of the information bits to the whole
length of the code.

The problems concerning MMDC are formulated as fol-
lows: To find the method to calculate [M(n,d)] for

any n and d and to obtain M(n,d)s themselves.

§ 2.3.1  Upper bounds for [M(n,d)] [1s 14, 16, 20~34]

These problems have not been sblved completely. The
contributions by many authors gave the answer for small
n and 4 and for some special combinations of n and
d. One of the methods was to get the good upper bounds '
for [M(n,d)] as well as the lower bounds. In the fol-
lowing are listed several equalities and inequalities

" about the function [M(n,d)] of n and d.

(i) [M(n,d)] is the function of n ( n21 ) and
d (nzd>1 ) whose value is a positive
integer < 2n.

(11) [M@,d)] = 2, [M(a,1)] = 2
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[M(n,2d-1)] = [M(n+l,2d)]
(iii)[M(n,d)] .{ [M(n*‘lad)Ja [M<n,d)] = [M(nad+1)]
(iv) [M(n,d)] < 2n/(1+n01+n02+"‘+#ct)’ where
"t = [ d&=1/2 ] ( Gauss' symbol ) (by Hamming)
(v) [M(n,d)] £ 2779 | (by Joshi)

These functional relations, even together with others
found by many investigators, are not sufficient to solve
[M(n,d)] generally. They serve the partial solution
and the upper and the lower bounds of tM(n,d)]. ‘Many
values of [M(n,d)] for small n and d were,obtéined
by getting the gap between two bounds as narrow as pos-—
sible., The right most entries of Table 2.1 are the best.
upper bounds of [M(n,d)] which were obtained using main-
1y the results of Wax and those of Plotkin. The middle
entries are M(n,d)s which were actually obtained by

several 'authors,

§ 2.3.2 Standard Process ( s.p. ) [42s 431]

Contrary to the above mentioned mathematical approach
we formulated the algorithm fo generate C(n,d) in gene-
ral which is expected to give some suggestion about
[M(n,d)]. The algorithm, called "Standard Process (S.F.)}

generates all C(n,d)s for given n and d.

Standard Process

Let X" be the ordered set with the order of binary
number (§2.2), so that any subsets of Xn_ has the small-
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est element denoted by min S,

Step 1: Construct the sequence of subsets S S

0, 1, ooy

Sk of X% in turn as follows:

89 =X

S, = {a: d(ao,a) >4, aeso};é g, where a_=min Sy
Sy, = [a: d(al,a) z 4, aésl} A @, where a;=min §,
S541° {a: d(ai,a) = 4, aéSi} £ @, where a;=min S,
Sk = {a: d(ak_]_’a)zd‘) aésk"’l} = ¢,

where a,_; = min S, 4

In the equations above, @ stands for the empty set
and {a: } for such a set that satisfies the condition
stated after the symbol :.

Since X ié finite, it is clear that there exists
a positive integer k with the above mentioned property.
If k=1, there is no C(n,d) for that n and 'd. This
may be the case when n<<d. It isleasily seen from the
construction of S; that the subset {ay, 81y +.., ak;l}
is a C(n,d). This code is denoted by Cl(n,d).

Step_ 2: If in the sequence of subsets SO, Sl’ "”Sk-l
constructed by Step 1 there is Si such that

S;n S - [ 49 (2.5)
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and i is the largerst number which satisfies the condi-
tion (2.5), then construct another sequence of subsets as

follows:

S" =S- fOI‘ j =O, l’ Q..,i

J J
Sj,, = {ai a(pg,a)24, aess} L9,
where b. = min Si(\ S iaI‘
oo = las aleg,.a)2 4, ae Si+1} £ 9,
where bi+l = min Si+l
Spr = {a: d(bk._l,a) 24, a € S',_1}= 0,

where bk'-l = min Sﬁ'—l

In general the new sequence does not equal the old
one and k' £ k. If we use the new symbolism bj in
place of aj for j=0,1, ¢o., i-1, it is-easy to see
that the new sequence bo, bl’ ey bk;-l is another
C(n,d), which is denoted by Ce(n,d).

If there is no positive integer satisfying the condi-
tion (2.5) there is only one minimum distance code
Cl(n,d) for n and d. This may be the case, for in-~

stance, when d = n, and Cl(n,d) consists of two

elements,

Step 3: In the same manner as Step 2 we comnstruct the
third sequence of subsets, if there is positive integer

satisfying the following condition;

s&n - fbas A0 - o (2.e)
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and if J = 1,
st NSy - {o) - e} #¢ (2.7)

ILet j be the maximal number which satisfies the
conditions (2.6) and (2.7). The new sequence is con-

structed as follows:

Sﬁ = Sﬁ for n=0,1, 0oy J

SR | a: d(es,a) z 4, 8655} A9,
_ s < | . -
where cj = min Sgtﬁ Sj+1 {bj‘ ,ai§
Sl'én = {a: d(ckn_laa> 24, ae Sﬁn_l} = ¢,

where Cynoy = min Sﬂ“-l

If we write c¢ = b, for n =0, 1, ...; j-1, then
the subset {CO’ Cls oo ck"-l} is the third C(n,d) and
denoted by VCB(n,d). If there is no positive integer
which satisfies the conditions (2.6) and (2.7), Cl(n,d)

and C2(n,d) are the only two minimum distance codes.

Step__m: After m codes have been obtained in this
manner, S.P. 1is concluded if there is no positive inte-

ger which satisfies the condition (2.8).

AT - And - L - deaf -t

for some 1i. (2.8)

Then Cl(n,d), Csy +sey Cp are the whole set of

minimum distance codes for given n and 4.
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As is seen from the algorithm, all C(n,d)s are gen-
erated by S.P. but it is not guaranteed that all generated
codes are different or not equivalent. It is impossible
to estimate the number m fdr n and d, but it is sup-

posed to be a very large number,

Results of computation

The Standard Process can be easily programmed for the
computer. We used the medium scale computer KDC-I, which
was installed at Kyoto University in 1960. Like other
combinatorial problems S.P. requires a great deal of
memory spaces and high speed computation. With KDC-I,
which has the memory of 4200 digit words, even the case
for n=9 and d=3 could not be computed. Among programming
techniques necessary for the S.P., there is thé efficient
evaluation of the Hemming distance of two code words x
and’ y,'d(x,y) or |[[x-y [l , which takes much computation
time if the instruction system of the computer is not
suitable. The operation of taking the weight of a bi-
nary word is found often in the computer use related to
the theory of codes and the theory of logical functions.
Since the pfesent computers do not have the special inst-
"ruction for it, the routine using the shift and the count
operations is necessary.

Table‘2.l shows the results of the computation. The
left most entries are [M(n,d)]s generated by S.P. and
[C(n,d)]s which do not reach the maximality. The other
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o d 3 5 7
6 8 8 8 2 2 2
7 16 16 16 2 2 2
8 18 20 20 4 4 4
9 | - 38 39 6 6 6
10 - 68 82 12 12 12
11 128 154 24 24 24 4 4 4
12 26 32 46 4 4 4
13 48 48 85 8 8 8
14 16 16 16
15 : %2 32 22
16 32

17 64

The left most entries are the results of S.P.. The
middle ones are the values actually obtained by
other authors. The right most ones are the upper
bounds given by Wax and Plotkin.

Table 2.1 [M(n,d)]

entries are given for the purpose of comparison. Fig.
2.3 shows some concrete codes generated by S.P., with
exceptions M(10,5) and M(11,5) which were obtained
by modifying the process. S.P. was found not efficient
to generate M(n,d) fast and modified. At an arbitrary
step, the next element is taken not necessarily as the
smallest element of the subset Si‘ The algorithm of
modification hés not been established and it is deter-

mined by intuition; at which step and how the standard

process is to be modified during the computation.  Such
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c,(6,3) = M(6,3)  C;(7,3) = M(7,3) Cx(7,3) A M(7,3)

£Cl(6’3>] =8 [01(733)] = 16 ) [02(7a3)] = 13
000000 0000000 0000000
111000 1110000 1110000
100110 1001100 ., 1001100
011110 0111100 0111100
010101 0101010 0101010
101101 1011010 1011010
110011 1100110 1100110
001011 0010110 0010101

- 1101001 1101001

C,(6,3) # M(6,3) 0011001 1000011

0100101 0110011
[02(6,3)] = 6 1010101 0001111
1000011 1111111
000000 0110011
111000 0001111
100110 1111111
011110
010101
101011

01(8,3) = M(8’5) 01(8,5) = M(895) 01(9’5> ié M(9’5)

[C1(8,5)]v= 16 [01(8,5)3 =4 [01(9,5)] = 4
00000000 - 00000000 000000000
11100000 11111000 111110000
10011000 11000111 110001110
01111000 00111211 001111110
01010100 _

10110100 02(8,5) = M(8,5) 02(9,5) = M(9,5)
11001100

11010010

00110010 00000000 000000000
01001010 11111000 111110000
10101010 10100111 110001110
10000110 01011111 001101101
01100110 101011011
00011110 010110111
11111110

Fig, 2.3 Codes generated by S.P.
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¢,(10,5) # M(10,5)

C,(10,5) = M(10,5)" Cj(ll,5> = M(11,5)

M(10,5)] = 12 (M(11,5)] = 24

0000000000 0000000000 00000000000
1111100000 1111100000 11111000000
1100011100 1100011100 11000111000
0011111100 0011011010 00110110100
1010010011 1010110110 10101101100
0101110011 0101101110 01011011100
0110001111 0110111001 01101110010
1001101111 0001110101 00011101010
1011001101 10110011010
c,(10,5) # M(10,5) 1101010011 11010100110
2
1000101011 10001010110
[C,(10,5)] = 8 0110000111 01100001110
10011110001
888?888888 ( i is unknown. ) 01110101001
1150013200 00101011001
5511111100 01001100101
1001005, 11100010101
ool 10010001101
0001000931 10100100011
S ECISEEE 101010010011
11001001011
00111000111
00000111111
11111111111

( j is unknown.)

Fig. 2.3 Continued

a modification is possible only when the investigator
can control the computer by hand during the computation
in the sence of man-machine cooperation. M(10,5) and
M(11,5) were found by such a method.

Note that Cl(7,5) is the famous Hamming code and

Cl(n,d) is the group code in general. (See § 2.3.3).
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§ 2.3.3 Minimum Distance Group Codes

A minimum distance code with specified minimum dis-
tance Hd is called the minimum distance group code if it
is the  group and denoted by G(n,d).

In the case of the group code the minimum distance d
.1s connected to the error correcting ability by the fol-
‘lowing relation. A code is the t-error correcting code
if and onlj if t 1is the largest weight of coset leaders
such that all error patterns of errors £t are coset lea-

- ders, or the minimum distance is 2t+1 or 2t+2.

Meximum minimum distance group codes (M.M.D.G.C.)

The maximum dinimum distance group code is a G(n,d)
for which [G(n,d)] is the largest among all G(n,d)s.
The search for M.M.D.G.C. for arbitrarily given n and
.4 has;been made by many authors but not solved generally.
That is, the_generai algorithm was nat established to cal-
culate - the order of M.M.D.G.C. for every n and 4 but
thy some entries were found by applying vapidus methods
proposed by‘many authors. It is said thaf the general
algorithm would not exist. We expected that S.P. be the
general one but it was found to be also a partial solution
of the problem.
| The following théorem, which was found by the present
author and proved by S.Kitawaki, gives an interesting re-~
lationship between the structure of the group and that of

the .order as to the metric in the space of X2,
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THEOREM : The code Cl(n,d) which is generated first by

S.P. is the group code.

This theorem is proved by the mathematical induction
of n. For m<n, C(m,d) is isomorphic to C(n,d) if
the spécified n-m columns of C(n,d) are all zero and
the rests are identical with C(m,d). In the proof such
codes are identified. Cl(n,d) is denoted by C(n,d)
for the sake of brevity.

PROOF
(1) c¢(a,d) 1is clearly the group.
(2) Suppose that C(m,d) is the group and

C(m,d) = {.ao, 81y eeey 8ok 5 }.

Let a' be the first element which is generated by
S.P. after ¢C(m,d) was generated. That is,

a' = min {a: d(a, C(m,d))>d, aexm”} (P1)

b

where - r>1 and 1r is the smallest number for which a'
exists. Then it is sufficient to show that C(m+l,d) is

the group. Or

C(m+l,d) = {ao, 81y weey 85K 1, (P2)

" ' 1
a'+ay, a'+a;, ..., a +82k_1}

In other words we should indicate that by S.P. the ele-

ments a'+ao, a'+al, ey a'+a2k_1 are generated in this
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order after C(m,d) was generated. This is proved in the
following step.
(1) It is Qlear that a' = a'+a, is generated first

after a2k from (Pl1).

-1

(ii) Let ai be the i-th element which is generated
by S.P. after ayk 5 and suppose that ai = a"+ai for
i = O, 1, 2, e oy j’ WheI'e 86 = a'.

(1ii) Now (P3) 1is to be proved.

a5+l = a'+aj+l (P3)

To prove (P3), it is noted at first that

since d4a( a', { Boreens a2k_1} Y= d or Ila'+aill =d

for i = 0,1,..,2k-1. Therefore

a'+aa.+1 2 a'j+1. (P4)

Furthermore, since  d( a5+l, ag )>4da for i - Oyeneydy

a'j+l+a' > a5+l. ' (P5).
Finally
] 1
aj,q el = 8’ (P6)

In fact, C(m,d) = C(m,d)+aj+l

and

d( C(m,d),‘ aéfl+aj+l ) =‘d( C(m,d)+aj+l, aL:'j.'_1+a'j+1 )
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= min | a+a5+l | for a &C(m,d) = 4.

From the following lemma it is seen that three inequa-
lities (P4), (P5) and (P6) hold simultaneously if and
only if all equalities hold for them. In particular,

1 = ]
a +aj+1 a,j+1’

what was to be proved.
LEMMA: The following three inequalities (P7),(P8) and

(P9) hold simultaneously, if and only if all

equalities hold for thenm.

X+y2z2 ' (P7)
z+ X>Y . (P8)
Y+ 2z>x (P9)

where x, y and z are elements of X2,

PROOF OF LEMMA

If one equality, say =x+y = z, holds, the other two
also hold, In fact from (x+y)k = 2z, it is clear that
(z+x)k =y, and (y-t-z-)lc = X,. Now it is shown that the

inequalities
X+3y> 2 (PlO)}
z2+ X >y (P11).
y+ 2z 7X (PiE)

do not hold simultaneously.

Suppose for example x+y > z. Then there is an inte-
ger k such that '(x+y)i = 24 for. i = k+¢l, k+2,0.004 n’
and (x+y)y = 1, 2z, ="0. _ Therefore '(z+x)i = yi' and
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(y+z)3 = x;, for i = k+l, k+2,..., n. Since (x+j)k =1,
either X, = 1 and Yy = 0 or vise versa., If X, = 1
and Ty = O, then (y+z)k =01 = Xy ,which contradicts
(P12). 1If x, =0 and y, =1, then (x+z), = 0<1 = Yy
which contradicts (P11). This completes the proof of

the lemma,

Algorithm generating C,(n,d) effectively[qql

Some computations indicated that Cl(n,d) seems to
be M.M.D.G.C.. Though this postulate was found incorrect,
Cl(n,d) is still the interesting code. So a more effec-
tive algorithm generating Cl(n,d) only was required.
The algorithm is based on the theorem Jjust proved.

Though G(n,d) is the code in the n-dimensional
linear space, it is considered to be a code in the m
( m ¢ n )-dimensional space, if all components of some
n-m coluins are zero. According to this convention, in
the following equations will appear some terms whose di-
mensions are apparently different. The same convention
will be used in the notation of the code word.

(1) G(a,d) = 000...000

111...111 . (2.9)
— a A

Clearly [G(d,d)] = 2.

(i1) 6(i+1,d) = 6 (G(1,a), B ) - (2.10)

for i =4, d+1, .., n-1

where G (G, g) means the group which is generated by
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the generators of G and g, and 8 is the k-th gene-

rator, which satisfies the following condition:
& = min{a: d(a, G(i,d))>d, a ¢ x“l}, (2.11)

The distance between an element and a subset of X" 1is
defined as usual. If there is no element which satisfies
the condition (2.11), let G(i+l,d) = G(i,d) and try to
find g, newly. It is seen that [G(i+1,d)] = (G(i,d)]
i+l

+1, if g,_ is found in X and [G(i+l,d)] = [G(i,d)]
k

otherwise. This completes the algorithm.

Results of computation

It is easy to program the algorithm for the computer.
For the group codes we used IBM-7090, which has about
35,000 36-bit words. The program is written in the sym-—
bolic coding system FAP, The results are listen in Table
2.2, which shows Cl(n,d)s. Fig. 2.4 illustrates the
algorithm using the example of G(n,7). As seen from the
definition of the‘algorithm, codes with shorter length
are obtained at the intermediate stages of generation of
logger ones. Fig., 2.5 shows the generators of Cl(l9,5),
c,(23,7) and €,(22,9). It took about two hours for
7090 to generate them. A great portion of the computa-~
tion time was spent for finding the néw generator., In-
vestigating Table 2.2 01(18,5) was found not to be the
MMDGC for n = 18 and d = 5. For this case there is

the better code found by Griesmer, which has 210 elements.
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The maximality of C;(12,5), C;(19,5) end C,(21,9) is

doubtful.

posturate that Cl(n,d)

The other codes are seen to be maximum.

is MMDGC for any n and 4d

The

is

- not correct, but S.P. generates relatively many MMDGCs

by a single principle.

Example:

G(14,7)

G(7,7)

G(8,7)

€o =
G(11,7)

G(12,7)
85 =
6(13,7)

0000000 0000000

#

COO0O0OO00O0 O

0000000 1111111

G(9’7) = G(1097) =

000 11110000111

000 00000000000
000 00001111111
000 11110000111
000 11111111000

6(11,7)
1100110011001

0000000000000
0000001111111
0011110000111
0011111111000
1100110011001
1100111100110
1111000011110
1111001100001

Fis. 2'4

[6(14,7)]=

- 28 -

10101010101010

00000000000000
00000001111111
00011110000111
00011111111000
01100110011001
01100111100110
01111000011110
01111001100001
10101010101010
10101011010101
10110100101101
10110101010010
11001100110011
11001101001100
11010010110100
11010011001011

* 16

Illustration of algorithm
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n 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

4 5 2 2 4 4 8 16 16 32 2° 27 28 29 22 10

d 5 2 2 2 4 4 8 16 32 32 25 o7 28 29 210l pl2

d 5 2 2 2 2 & 4 &4 16 32 32 2°

4 =11 5 2 2 2 2 2 4 4 4 8 8 16
[Cl(n,d)] obtained by computation

Table 2.2




8, 0000000000000011111

8> 0000000000011100011
g3 0000000001100100101
gL 0000000010101001010
g, 0000001100000100110
88 0000010100001001011
&n 0000100100100101011
8g 0001000100101001101
&g 0010000100101100111
810 1100000000000100111
d =5

8y 00000000000000001111111
8> 00000000000011110000111
g 00000000001100110011001
3 00000000010101010101010
g 00000000100101100110100
gg 00000011000000110101011
g 00000101000001010110001
00001001000001100011101

&g 00010001000100010111100
00100001000100100001110
01000001000101000100111
10000001000101110010010

d=7
g,  0000000000000111111111
g5  0000000011111000001111
0000011100011000110011
0001100100101001010101
0010101001010010101010
gg 1100000100110001101010

d=9

Fig, 2, Generators of Cl(n,d)

- 40 -



CHAPTER III

A Trial and Error Model for Approximation

of Boolean Functions

§ 3.1 Introduction

The motivation of this study is to formulate an as-
pect of the pattern recognition. 1In the study of the
pattern recognition the Boolean function plays an impor-
tant role. 1In the ordinary methodology the investigator
observes the object patterns and establishes the recog-
nition principle in the form of the logical decision
function. If the recognition process could be repre-
sented completely by the Boolean fﬁnctions which repre-
sent the characteristic features, the recoghition ma-
chine could be constructed using the logical circuit.

In determining the decision scheme the average rate
of the correct decision is wanted to be as high as pos-
sible. This is because the pattern is of statistical
nature. The investigator investigates many pattern sam-~
ples before determining the decision criterion, And
the recognition machine itself has not the mechanism to
observe samples and to determine the criterion, once
the machine was constructed.

Contrary to this we do try to formulate the process
of the establishment of the decision’criterion itself. |

In our foumulation the pattern is identified with a

o
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Booléan function and it is the objective of the study
 t6'get a model for approximating an arbitrary function

by means of the trial and éfror procedure,

The trial and error model

The feature of our model is that it consists of the
probabilistic logical elements. We do not claim the
superiority of the prbbabilistic élement over the deter-
mihistic one in the field of so calléd "learning". But
it could be expected thaf the modél would serve the sta-
tistical decision theory. Note that the introduction
of the probabilistic element was yoluntary, contrary to
fhe study of the reliability, where the element is inev-

itably regarded as probabilistic.

Automaton
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2'g J Compa-
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B

Trial and error modei

Fig, 3.1
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Fig., 3.1 shows the block diagram of our model. The
automaton A is the machihe which are going to be de-
signed for the trial and error model. The automaton B
is the other autométon, which has a decision criterion
for the pattern recognition, even if it can not be ex-
pressed explicitely in the form of the logical function.
It is supposed that B gives the answer, "Good" or
"Bad" only, to the automaton A, according to its decision
if the pattern is the considered pattern or not. It is
our intention to design A so that it may distinguish
the considered pattern from many patterns using only the
answers of B. In this case it is not required that A
itself be the good discriminator but it is sufficient
to construct A so that‘it may be just the designer of
the discriminator. ( See § 3.6.)

Like the ordinary automaton the model is composed of
many elements, each of which has the same structure.

The basic element is the probabilistic (stochastic)

logic element.

Correspondence between the code and the logical function

Before entering the theme, the correspondence be-
tween the code and the logical function is noted, because
the code theory is expected to be useful in the field
of the pattern recognition,

The logical function, more precisely the Boolean

function, is represented in many different forms accord-
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ing to applications. In this studj it is represented
using the terms of the code theory. A function F(x)
is called the n—variable Boolean functien, if x is an
element of the space X' and F takes O or 1 as
its function value. The function is denoted by F( Xy,
Xos eees Xy ), where X; is the variable. F is defined
completely by the fupetion values for all n-tuples .of
x®, This may be done by giving the set of the n-tuples
for which F takes the value 1, Therefore a Boolean
function of n variables can be identified by a block
code of length n. ( See § 2.2 ).

~ The fﬁnction space of all n-variable Boolean func~
tions which contains 22n functions, is denoted by S}Ll
and any subset of Szrlcan be considered as a code of
length 2", In this correspondence it should be noted
- that the order of the components of each n-tuple is sig-
" nificant for representing the Boolean function, contrary

to the case of the code word, since the equivalence of

code words does not hold for the function in general,

§ 3.2 Pattern and Boolean function

What is called the pattern in general could not be
expressed by a single mathematical formula but would be
more complicated object. In order to have insight to
the study, however, we should restrict our interest to
the simplified model, for instance such a pattern as

represented by logical functions. 1In this etudy we treat
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the (combinatorial) Boolean function as a tool for rep-
resenting the pattern. Therefore the practical patterns,
such as the written chafacter, the spoken speech sound,
the photograph of the bubble chamber and so on, can not
be applied to the model as they are,.

A reason for using the Boolean function is that it
is closely connected to the digital technique which is
very powerful in constructing the machine practically.
The recognition machines constructed so far by many in-
vestigators are basically related to the logical circuit,
in particular the decision circuit is composed of logical
elements,

In this section the pattern is defined and the pro-
cess of the pattern recognition formulated as that of

the approximation of the Boolean function.

Pattern

Let n points be fixed in a certain space. To each
point the random variable xi; which takes only_the
‘value 1 or O, is attached, Thg observation is to see
if xi =1 or O at the given instance. The n-tuple
( %5, Xy eeey X ) is called the image where x; 1is
the sample value of each point., A fixed set of images
is called a pattern. That is, to a pattern belong many
images in general., The pattern discrimination is then

to decide to which pattern the observed image belbngs;

The pattern can be identified with the n-variable
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Boolean function F( Xps Xpo eees ), which is defined

X
n
as follows: If a n—tuple ( x0, %O Oy ig th

P ple ( Xy, X5y eeey Xy is the

image belonging to the pattern, then F( xg, xg, ceos xg)

= 1, and otherwise, F( xg, xg, ooy Xg )

= 0, In order
that F is the well defined function, it is necessary
that every n-tuple is said to belong to the pattern or
not,

As seen from definition it would be possible that
two distinct patterns in the ordinary sense have the
same functional representation. The choice of the space
where the observed points lie and that of the places of
the observed points'are decisive for the whole recogni-
tion system., The most common configuration of the ob-
served points is the two dimensional mesh with photo-
electric elements for the recognition of the printed
characters. This problem should be solved case by case
and can not be treated generally. Our studylstarts,

therefore, with the assumption that the observed points

have been fixed by some other consideration.

Let the information source be ( 4, p(a) ), where
A is the finite set of the objects which are to be réc-
ognized and p(a) 1is the probability that the object a
appears., Let p(x/a) be the conditional probability
that x ( = Xys KXoy eeey Xy ) is observed when .a was
generated from the source. p(x) =_2E% p(a)p(x/a) 'is
’ ae

the probability that the image =x is observed anyhow.
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If p(x/a) =1 and p(x/ ) = O for every other object
in A, the observation of x indicates uniquely the
appearance of a. In general, this is not the case be-
cause of the limited number of the observed points and
existence of the noise in the observing machine.

We agree that.the difference of two patterns with
respect to the observed points is defined by that of two
Boolean functions.

Let Egilbe the set of all n-variable Boolean func-
tions., Then the metric d is defined in San by the
formula (3,1).

aCF, 6) = 25 |re) - e | pta), (3.1)
xeX

where p(x) is the probability distribution defined on
X%, It is easily seen that 4 actually satisfies the
three axioms of the metric with the exception that if
a(F,G) = 0, then F = G almost surely,

The appearance of images at the observed points is
regarded as the stochastic process. The process is as-
sumed to be statibnary and independent as to the time.

The problem can be regarded as to extract the Boolean
function, which might represent the original pattern
best, from infinitely many observed images utilizing the
answers of the reference automaton B, Then it is formu-
lated in terms of the metric d as follows: +to find
the Boolean function FO which is nearest to the con-

sidered pattern., If the function Fo is found, a
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logical circuit_correspondingvto it is constructed.

This inputs to this circuit is the n-tuple ( Xy xé,...,
X, ) ofvthé observed points. Then it can be expected
tﬁat FO gives the best guess as to the considered
pattern. The procedure to gét FO for any pattern is
as follows:

(I) For any positive number e and any function ¥,

to find the function F such that d( F,, F ) L e.

0°

This could not be solved in general because the ob-
served points are not necessarily enough. Therefore the
first compromise is made,

(11) For any Fo, to find the function Fi out of the
given X functions F, Fyy +ee, F,, such ﬁhat d(FO,Fi)
is the smallest. The set of the given functions is de-
noted by EE..

The present study ié an answer to this phase of prob-
lem,

(III) To find the function F  which is nearer to FO
than F, of problem (II).

In problems (II) and (III) it is desirable that the
approximation is uniform as to the considered patterh
and the probébility distribution p(x). In order to
solve these problems it is necessary to investigate the

set é in the space SBn. For this we employed the

theoryvof group code as shown in CHAPTER IV.
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§ 3.3 The stochastic logical circuit

The trial and error model should have some active
mechanism to do the "trial", TFor this purpose we devised
a probabilistic element described below. The element |
takes one of two 2-variable Boolean functions with the
probability which changes according to the history of
the eiement. "By combining several such elements we get
a logical net which takes one of some functions with the

probability determined by its history.

§ 3.3.1 The stochastic logic element (S.L.E.)

The stochastic logic element is a logic element in
the sense that the inputs to it are logical variables
and its output is also a logical variable., Contrary to
the ordinary (deterministic) element, however, its func-
tion is not the single Boolean function but composed of
two functions. The S.L.E. takes one of two 2-variable
Boolean functions with probability p and thé'other
with probability 1-p, where p changes according to the
history of the element.

Fig. 3.2 is the block diagram of the S,L.E. Refer-
ring to it, X and Y are the inputs and F is the ouf-
put. G and B are the terminald where the "answer" ié |
given, ZEach part is explained roughly below:

L: The logical element which takes one of two Boolean
fuhctions fd(X,Yj and fl(X,Y) according that the

value of S is 0 or 1 respectively, fo and £
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— +0k |

L: logic element D: delay element
'C: comparator R: random number generator
M: memory element EOR: exclusive OR circuit

Fig, 3.2 Stochastic logic element

X o— Ll
Y o— > «=1/2
L, L5 l— N0 R
— o=1/2[° «o G
) <o B
Lo
K=1/2
Ll: fO=XY, fl=X+Y L2: fo=XY, f1=X+Y
Ly: f£o=X¥, £1=X+Y

Fig. 2.3 Model of stochastic logic net
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may be arbitrary but fixed for a S.L.E.

R: The random number generator which generates an
independent random number r, which is distributed be-
tween O and 1 wuniformly, at each trial.

M: The memory with saturation characteristics whose
content m is between O and 1. m is increased or
decreased by an amount A according to the result of
the trial. If m reaches the value 1 then m re-
mains 1, even if snother X is added. But if « is
subtracted, then it is reduced at once by that value.
(0 <X<1 ).

C: The comparator which gives 1 as its output 3,
if r> m and O otherwise.

D: The delay element which holds the value S during
the period between the trial and the answer.

EOR: The logical circuit which generates the value «
or - according to the combination of the answer and

the output of D,

We used the computer to simulate the behavior of
S.L.E. instead to construct it by means of the real phys-
ical element. When making S.L.E. by the electronic cir-
cuit, there are difficulties in devising the memory ele-

ment M.

Behavior of S.L.E.
At a certain instance the inputs are given to the

terminals X and Y. At the same time a random number
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r 1is generated by R and r 1is compared with the con-
tent m of M. Then the output S of C is 1, if
r>m and is 0 if r <m. L takes one of the func-
tions fo and fl according to S =0 or S =1, The
function value for the selected function and the inputs
appears at F. During this process the time delay is
considered to be negligible. This is one phase of the
tfial.

After a time interval the answer is given the termi-
nal G or B. Then the input to M 1is determined by
EOR from the answer and the output of D. If G =1,
the content m of M changes so that the same S5 as
that of the previous trial may be expected at the next
trial much and if B = 1, m changes conversely., If
there is no answer or are both answers at the terminals,
M remains unchanged. When m has changed, one cycle

of the behavior ends.

The inner state of S.L.E. is completely specified by
m., The number of states depends on the initial value of
m and A . If K is small, m takes many values.
After several trials it is expected that m reaches one
of both saturation limits., If m does not divide .1,
there are much states. In our first model oK is assumed
to be 1/2. Therefore after some frials the possible
values of m are 0, 1/2 and 1, whatever the initial

. value is, Thus if K were 1/3, they would be O, 1/3,
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2/3 and 1,

§ 3.3.2 The stochastic logic net (S.L.N.) ( in case

of two variables )

The stochastic logic net is a logical net which con-
sisté of S.L.E. and ordinary logic elements as well as
the ordinary delay element. The main feature of the con-
nectioh is that S.L.N., has the circuit for the answer.
Fig. 3.3 shows an example of S.L.N, usiﬁg three S.L.E,s,
where the lines connecting G-B terminals are for the
answer. As is easily imagined, the behavior of the
S.L.N, is so complicated that it may not be analized
generally.

We use the model shown in Fig. 3.3 to indicate that
S.L.N. is useful for the trial and error process. The
model is the case for two variable functions. For every
element o = 1/2. Each element has different functioné
for L as indicated at the bottom of the Figure.

In the following sections the process is analyzed

for the model shown in Fig. 3,3,

§ 2.3,3 The behavior of S.L.N.

The state of the circuit of Fig. 3.3 is determined
by those of memory elements. It is denoted by the vector
notation m = (ml, m,, ma), where m; 1is the state of
the i-th element. In the case of ok = 1/2, there are
27 states, among which only 9 states are realized in the

trial and error process as shown later. The set of ran-
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dom numbers generated by Gs 1is denoted by T = (rl, T,
r3), where Ty is the random number generated by the
i—th element. The set of outputs of the comparators is
represented by S = (Sl, S2, 83>’ where Si is the out-
put of the i-th comparator. There are 8 possible values
for S. The function of the circuit is represented by

T which vafies according to S. If for example, s =(1,
1,0), L is the function of flJ of the first element,
fl of the second element and fo of the third element.

The connection of the answer is made so that the G
terminal of the circuit goes to every G terminals and
‘the B terminal to every B terminals.

The behavior of this model is explained as follows:
First the inputs are given at a certain instance, then
the set of random numbers T is generated and the vector
S is determined. The function I is détermined by it
and the output of this function appears at F for the
given inputs. This is the phase of thé trial. Then
after a while the answer is given G or B, Then the
state m changes according to it. Thisvcompletes one
cycle of the trial and answer. In order to use the model
as the trial and error process, the answer is given by
Automaton B as follows: If Fo(x,y) = 1, where F, is
the decision criterion‘of_iB in the form of the Boolean
function, then the answer G is given. Otherwise the
answer B is given. In the.real process the criterion

may be unknown in many cases.
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§ 2,4 Analysis by the Markov chain[56N'6l]

In order to analyse the stochastic behavior of the
circuit we employ the "trial-output table" as indicated
in Table 3.1. The trial-output table is determined, when
the circuit is fixed, in the following way: In the first
row all possible combinations of S are listed. The
second row is the function I which corresponds to the
S over it. The i-th column is the function F; which
is extended accordi;ginputs. Thus the i-row Jj-column
element eij is the function value of Fj for the i-th
input. For example, if XY = 10, and the trial S = 011,

then the output of the circuit is epn = 1.

s 000 | 100 | 010 [ 110 001 | 101 [o011 | 112
0 oow F, |F5 |Fy |Fg |Fg |Fp |F
’ 7 8
00 oloflolo]1}lo0o|1]o0
10 o|lo|lolo|ojo |1 ]1],
o1 o lo |1 x| 11|12 ]12]|2
11 1 lol1]ol 1|1 |12
Table 3.1

The trial-output table for Fig. 3.3

Since the state of the circuit is stochastically de-

pendent only on the immediately previous state, the tran-
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sition of the state can be represented by the simple
Markov chain. -We are interested in the transition of the
-state and not in the output itself. For the present mod;
el the number of the states which the circuit takes be-
comes 9 after a few trials, because = 1/2 and Ms
are the saturating type memories. They are (1/2, 1/2,
1/2), (1,1,1), (0,1,1), (1,0,1), (0,0,1), (1,1,0), (0,1,
0), (1,0,0), (0,0,0). They are denoted by Ej; Eyy ..,

E respectively. The state transition diagram of the

9
Markov chain is indicated in Fig. 3%.4. The transition
occurs only to the direction of the arrow as seen from
the fact that M is the saturation type memory and
L = 1/2,

At the states other than E,, all Ms are saturated

and the result of the next trial is predic#ted completely.

State diagram for

the net of Fig. 3.3
Fig. 3.4
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Function Space

Markov Chain'

Correspondence between Markov
chain and function space

Fig, 3.5

Therefore the state can be regarded as corresponding to
the function. In fact Ei+1corresponds to Fi uniquely.
Ei does not correspond, however, to any function.-
Suppose now the function FO is fixed as the deci-
sion critefion of Automaton B and kept constant during
the trial and error experiment. The Markov chain is
stationary if the input is stationary and FO is con-
stant but it is nonstationary if FO changes,.éven when
the input is stationary. ( See §3.7 ). Denote { Fi}-by 3.
The transition probability is calculated from the
input probability p Aand FO using the trial-output
table. Let Fj, be represented by the vector ( £1s f2’
f3, £y ), where fl = FO(O,O), f2 = Fo(l,O), f3 = FO(O,
1) and f, = Fo(l,l). Let the input probability distri-
bution be represented by ( Pys Ppsy Py Py ), where
p, = p(0,0), P, = p(1,0), Pz = p(0,1) and p, = p(1,1),
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4 .
and Z p; =1, p;=0. Using €5 j (i=1, 2, 3, 4
1

l:l .
and j =1, 2, «.., 8 ) we defined another entity cy 5
by
cij =1 if eij = fi’
Then the probability pij that the state Ei goes to
E. is given by the following formulas.

J

P13 = %

4
Pregen = /8 25 {ong + Gronge-p) § me

for j = 1,2, DY 8,

_ &
pJJ 1%5, Ck(j_l)pk for J-= 2,3, «eey 9,
pjl = 1—pjj fOI‘ J. = 2,3, eo e 9 90

(3.3)

For example, F, = XY and py =P, = Py = Py = 1/4,
then the stochastic matrix is calculated as shown in

Fig. 3.6A. In this chain the state E, is the absorb-

2

ing state, because Pos = 1. Note that TF, = Fl' This

0
case is called the model 1. The model 2 is Fo =X+ 7,
for the same uniform input probability distribution,

whose matrix is Fig. 3.6B. The model 3 is indicated in

Fig. 3.6C, for which Fy = X-¥ + %Y and py = 0y Pp=Px

= Py = 1/3. These two models are the ergodic chains,

since Fo does not equal any Fi‘
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/

0
1/4
1/4
1/2
1/2
1/4
3/4
1/2

1

3/4
3/4
1/2
1/2
3/4
1/4
1/2

Stochastic matrix of model 1

Fig. 3.6A

0 1/16 1/16 1/8 1/8 1/8 1/8 3/16 3/16

1
3/4
3/4
1/2
1/2
3/4
1/4
1/2

0]

1/4
1/4
1/2
1/2
1/4
3/4
1/2

Stochastic matrix of model 2

Fig. 3.6B
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/
P=|0 1/24 1/12 1/8 1/6 1/12 1/8 1/6 5/247

1 0

2/3  1/3

2/3 1/3

1/3 2/3

2/3 1/3

2/3 1/3

1/3 | 2/3

1/3 2/3

N /

Stochastic matrix of model 3

Fig. 3.6C

Since the repeated trials are characteristic to the
trial and error process, it is necessary to analyze the
behavior of the model after many trials, The limiting
theory of the Markov chain is useful in this case.

In general the trial and error model is analysed by
its stochastic matrix. Using Feller's terminoiogy[ 561
the chains appearing in our models are classified into
two classes, the reducible chain and the irreducible
chain, If there is a function in EE which is almost
equal to the considered pattern FO, then the chain is
absorbing., There may pe more than one absorbing states
according to the structure of the S.i.N. ‘In the case of
the irreducible chain, all stateé are ﬁersistent non—nﬁll.

Furthermore if the period is 1, then the chain is called
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ergodic. It seems that in our model the periodic chain
does not appear. Therefore we analyse the absorbing and
the ergodic chains exclusively.

In the study of the trial and error model the sta-
tionary distribution, lim Pn, the speed of the conver-
gence of it and P0 hzve significance. 4is seen later
we can measure the stationary distribution approximately.
It is almost clear that the speed of the convergence is
essential to the model. In the following the analysis
is shown using the models Fig. 3.6A, B and C.

The methods are:

(1) The stationary distribution q for the ergodic
chain is calculated by solving the set of simultaneous
linear equations,

(2) P! is calculated by means of the Sylvester's ex-
pansion theorem of the matrix.

(3) The speed of the convergence is estimated by the
absolute values of eigenvalues of the said simultaneous
equations and by the Sylvester's theorem.

The stationary distribution q = (qy, Aoy veey q9)
is shown in Table 3.2A, B and C as well as the distance
distribution di = d(FO,Fi). Note that to: the state E

1
no function corresponds.

P! is calculated by the direct matrix multiplication
when n is small but it is not practical for large n.

Feller indicated the computation method for the case
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d — | O 1/4 |1/4 {1/2 |1/2 |1/4 |3/4 |1/2

q 0 1 0 0] 0 0 0 0 0

Stationary distribution and distance distri-
bution of model 1. Fy = ( 0001 ).

Table 3.2A

§_-—F1F2F3F4F5F6F7F8
d — |1 |z/4 {38 |1/2 |i/2 [3/4 (/4 |1/2

q .3221,020(.027[.054.081 |.081 [. 054 |. 242 |.121

Stationary distribution and distance distri-

bution of model 2. FO = ( 1110 ).

Table 3.2B
| —17 |5 Fy | By | Fs Fo | Tn | Fs
d — |1 Jerz las3 |1/3 (273 |2/3 [1/3 |A/3

= |.%04|.013{.0%8}.057|.152|.038].057 [.152 }.190

Stationary distribution and distance distri-
bution of model 3. Fy = ( 0110 )e

Table 3.2C
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that the eigenvalues of the matrix P are all simple
roots. In our models the multiple roots appear, so an-
other method is required. For this we employed the

(60 ]

Sylvester's theorem , which allows the expansion of

the matrix by means of its eigenvalues.

Let 0(1, 0(2, ey O(i be the eigenvalues of P and
813 S5y eeey Sy their multiplicities, If P has full
degeneracy for all eigenvalues, i.e. rank(P - O(rI)= & - s,

for any r, where a 1is the degree of P, then

P = Zlo(ﬁtK( o« y1(sr), (3.4)
r=1
where
i (&, I~ P)Sk

k(o )1(50) - 5 TR
r T

The simple root has full degeneracy. Since P is
the stochastic matrix, for every eigenvalue o(r, [o(rls 1,
and among o(rs there is the eigenvalue which equals 1.
This may be denoted by- 0(1. If there are k absorbing

states then = k, but for this o(l(= 1) the full de—

51
generacy holds. For the ergodic chain o(l seems to
have the full degeneracy. If the full degeneracy does
not hold, the equation (3.4) becomes complicated so that
the convergence of 1lim P?  becomes sléw. In discussing

1im P® the full degeneracy needsto be considered only
for the root o, such that |°(r| =1,
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- According to the theorem 1lim PP is represented as

follows.
| i (I -P)°T
lim P% = —
- r
n-> r=s1+l(o<r 1) s

provided that 0<r A1 for T #1 and the full degen-
eracy holds for ¢ 1°
The speed of the convergence is estimated by the in-

equality (3.5).
' i n
(P" - lim Pn)kl, < 3T (k| B
n->oo r=2
k,l = 1,2, o-o’i (505)

where Kr is the matrix whose elements are the absolute
values of those of [K(c(r)](sr) and k1 means the k-1
element of the matrix.

That is the speed has the order of the exponential
function of the eigenvalues. If there is a root whose
absolute value is large, the speed is slow. "For example,
the convergence of P® is indicated in Fig. 3.7 for the
‘model 1 and the model 3. The characteristic equations

for them are:

model 1

(P -oT ) = (1-o0)(1/2- )2 (3/4- ®)2(0.287-0( )
-(0.358+ o()(0.618—0()(0.952-'0()
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model 3

(P-oI ) = (1= ol)(1/3~ L) 3(2/3-()2(0.033- o )

. (0.510- 0 ) (0. 543+ &% ). b
[ ]

The greatest root for the model 1 is 0,952 and that of
model 3 is 0.667. Therefore the model 1 converges slower

than the model 3, as seen from Fig. 3.7 also.

8§ 3.5 Approximate functions

In this section the relationship between the station-
ary probability distribution and the distance distribu-
tion of _§i is investigated. The stationary distribution
@ is regarded as that of & s instead that of the
states El’ E2, ooy E9.

Then the following relation holds from Tables 3.2A,

B and C.
Tet d; = d(FO, Fi) and q; Dbe the stationary dis-

tribution of Ei'

it di £ d;j then 9341 2 9447 (1,5 = 1,2,04.,8)

J+
(3.6)

where the equalities do not necessarily hold simultane-
ously. In particular for the function which has the
smallest distance corresponds to the greatest probability.
We assured from other several models that the relation
(3.6) holds in general.

Therefore the problem II of § 3.2 is solved by know-
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ing the stationary distribution. For our models 1, 2 and

3, the approximate functions are Fl, F7 and F and the

8’
differences are O, 1/4 and 1/3 respectively.
In order that the relation (3.6) holds generally, it
is desirable that the set of functions jii , which the
circuit has, distributes uniformly in the space Szn. In
this respect we established a method to find the epsilon
net with specified properties, using the theory of group
codes. The next chapter is devoted to this theme.
However the complete systematic design of the set @_

and that of the S.L.N. which realizes it have not been:

reached,

§ 3.6 Measurement of the stationary distribution 27>8]

In the preceding section the model of the trial and
error was analyzed, brovided that the pattern Fo is
known and fixed. Here we‘éhould treat the practical
problems arising in the experiment. That is, the pattern
is unknown and to be recognized by the model.

As is indicated in § 3.5 it is required to measure
the stationary probability distribution of the Markov
chain, TFor this purpose we measure the present state of
the circuit m. Then by calculating the relative fre-
quency of each state we obtain the distribution approxi-
mately. What guarantees this method is the strong‘law

of large numbers (érgodic theorem) of the Markov chain.

- 67 -



Assume that the chain is ergodic and let Si(n) be
the number of times that the circuit takes the state E.
during n trials, then

 8;(n)
P { lim = q; } = 1, (3.7)

n->00 n

This means that almost all experiments converge to the
stationary distribution gq. If we do not distinguish
the absorbing states each other, this method is applica-
ble to the absorbing chain. In the case of the periodic
chain, however, another measurement is necessary to know

the period.

At the practical measurement the speed of the conver-
gence of the ergodic theorem (3.7) is essential, because
we want to obtain the stationary distribution as fast as
possible. In other words the chain which converges quick-
ly is desirable. But there hag- been not an effective
estimation of the speed in general. We found an estima-
tion for the case of the absorbing chain[ 47],‘

Suppose the chain is absorbing with the absorbing
state Ei and the condition of the full degeneracy is
satisfied for the eigenvalues o(r of the stochastic ma-
trix of the chain (See § 3.5). ILet the initial state of

the chain be E Then the following inequality holds

k.
for the 1limit probability q; (=1).
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S_(1) :
P{ o - qy < e, for any n > m},< p}({im)
n =
<1- % | o™ x_ (3.8)
Ir=

where pﬁgm) is the transition probability from Ek to
Ei after em trials and kr is the constant of order
1. Note again that Ic(r | < 1.

This inequality gives an effective estimation for

our models,

We constructed the simul#ation system of the trial
and error model by the digital computer and experimented
the'process to see that it really converges. The system
consists of the part representing the S.L.E. and the part
indicating the connection of the elements. The compiler
produces the simulating program from the given connection.

In the case of the experiment using hardwares, the
measurement of Si(n) would not be easy. To use the
counter is not desirable from the economical point of

view,

Now we indicate the fact that it is not preferable
to use the S.L.N. for descriminating the patterns. The
model is designed only for the extraction of the function
and the practical pattern descrimination should be done
by the deterministic logical circuit, which is design by

means of the model.
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Let the input probability distribution be p = (pl,
Pps Pz p,) for the model of Fig. 3.3 and the stationary
distribution be q = (234 Qo eoey q9). Then the proba-

bility P, that the output of the S.L.N. coincides with

G
the decision by FO is calculated using the trial-output
table. |
8 | 4
i=1 } k=1
On the other hand,
' : 4
k=1
Therefore

4 8
P Smex (37 ey Py ) {Z (a1 + 99/8 )}
T k=1 i=1

4
= max ( 37 ¢xi Pk ) =1 - min d( Foy By ) (3.11)
i k=1 i

Therefore if Fo' is the approximate function, then
Py <1 - da( Fy, Fy' ). (3.12)
This proves the assertion,

§ 3.7  The non-stationary Markov chain

Thus far the criterion function FO has been assumed
to be constant during the trial and error experiment even

though it is unknown. In the practical pattern recogni-
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tion, however, the criterion of the Automaton B could
not be assumed to be constant (from the point of view
-that it is a logical function). Furthermore if the Au-
tomaton B is a man, it may be possible that he replies
the Automaton A by mistake. This situation is formulated
8s the non-stationary Markov chain. Here the input prob-
ability is assumed to be stationary.

In general the non-stationary process has not been
investigated fully. So the study of each case is neces-
sary by its own method. We need only to see that the
process does not converge or converges slowly, if such
situation occurs., Especially the 1limit distribution is
disturbed by the incorrect answer.

A numerical experiment is shown below in order to
explain some phenomena arising in the case of the non-
stationary chain,

. ‘
Let F and FO be two different criterion functions.

0]
Suppose_the Automaton B applies FO for a pattern, i.e,
Fo(x) = 1 1if the input x belongs to the pattern, Be-
sides this, it uses (by mistake) Fg, but not so often,
In this case we consider Fg is the noise of this process.
In this case, if Fg is not applied after finite number
of trials, then the process will be the game as the undis-
turbed trial and error process, since the limit distribu-
tion of the ergodic and the absorbing chains is independ-

*
ent from the initial state. Contrary to this, if FO
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appears for ever, then the limit distribution of the chain
changes and the trial and error process is affected. In
this case the resolution (differences of qi) becomes

less and the extraction of the proper approximate func-
tion becomes difficult. Consider, for example, the ex-
treme situation that the Automaton B changes his criterion
definitely from FO to FS or his object pattern changes
from FO to Fg. Then the Automaton A should indicate
also some change of its behavior, and give the approximate
function of Fg as the result,.

Now let P and P* be the stochastic matrix of the
models for FO and Fg respectively. The process above
described is represented by the multiplication of matrices,
At the step where Fg is applied the matrix P* is mul-
tiplied in place of‘ P, Therefore, for example, PPPPPP*
PPPPPP*PPP,.. shows that at the sixth and the twelfth
trials the Automaton B made mistake.

Fig. 3.8 shows the convergence of the chain with P*

multiplied periodically every fifth times and tenth times.

The model is that which is shown in Fig. %.3 and F, = XY

0
*
= 0001 and FO = Y = 0011. The limit distribution of
the process can be obtained by considering the chains
I

P'" = P P* and P' = P9P' for the every fifth time noise
model and the every tenth time noise model respectively.A

The limit distribution does not exist in the strict sense.
From the figure it is seen that the model which was ab-

sorbing bécomes the non-absorbing model. (See the curve
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of p92). The oftener the noise occurs, the less the dif-
ferences of Q;s are. Therefore thé noise makes the be-
havior disordered, Thué the non-stationary Markov . chain
is the model of thé real trial and error process. So

the study of it islﬁécessary, in particular we should

. assure experimentally.that the ergodic theorem holds ap-
proxiﬁately, because it is fhe basis of the measurement

as described in § 3.6,
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CHAPTER IV

An Application of the Group Code Theory to
thé Approximation of Boolean Functions

§ 4,1 Introduction[so’ 51]

As is mentioned in §3. it is necessary to obtain

the set of functions gi which will give the uniform ap-

proximation in the space of the n~variable Boolean func-~
tions L§Bn. The epsilon net which is used in the theory
of approximation is an appropriate tool for this purpose.
It was‘found, however, difficult to solve the approxima-
tion problem generally, so the epsilon group net was de-
fined and used together with the fruitful theory of group

codes,

§ 4.2 Definitions[55]
The distance d is defined by (4.1).
A 7@, 66 ) = 2 Ie-om | M @
xeX _

where F and GGISBD and ,((x) is the probability dis-
tribution on X. x is the element of the space X = Xl
X XX 4 uu X X where X, ;[o, 1} .

Let 32 be a subset of SBn' " Then to each EE corre~

sponds a real number £ Dbetween O and 1 such that:

£ - Max Min d( F, G )
= FESBnGG§ (4.2)
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Then we have three definitions concerning E .

Definition 1 For a real number £ if there exists a

subset £ of £  such that (4.2) holds, then we call &
a & -net (epsilon net).
Definition 2 For agiven £ (0<EXL1), a E -net

is called the smallest E -net, if it contains the least
number of elements. Denote this number by Ng .

n
Definition 3 For a given integer N ( 1X£ N'£_22‘),

g subset P of N elements is called the best net (BN)
of size N, if its corresponding &£ 1is the smallest
among all the subsets of éﬂan containing N elements,

Denote this smallest number by 61?

The definitions depend on the spaée zfzn, i,e. n
and p(x), but we do not refer to it when there is no dan-—
ger of confusion. As is easily seen, Ng 1is essentially
the same as Ng(A) defined by Kolmogoroff et al.[55],
though we have defined it independently and in a different
form. In general there could be many smallest E -nets
and best nets of size N for a given & and a given N
respectively.

In general, it has been found that it is rather dif-
ficult to get an effective method to obtain E‘N and N6
for arbitrarily given £ and N even when F(x) "is the
uniform distribution. Such an algorithm that one examines
all possibilities one after another taskes so much time

and memory of the machine that it is hardly practical.
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This may be the same difficulty as that encountered in
the study of the error correcting code. Therefore we
restrict our concern to a certain kind of net and apply
the group code theory to it.

We found it convenient to introduce the structure of
the group into the space JBn.in the same way as we did
with the group code in §2.2 . As usual the relationship
between the metric and the'group»is defined by méans of

a norm as follows:
d( F(x), G(x) ) =[ F(x)-G(x) || (4.3)

where || || means the norm. It seems natural to define
the group of modulo two sum because the Boolean function
is defined on the product space of the Boolean ring

{O,l} . A some whggfgg%soning to do so is given below.

A uniqueness of the modulo two sum

Let ( X, d ) be the metric space with finite under-
lying set X. Denote X= { %, Xpy eaey ;n} and  d( xi,xj)
= dij‘ Then the following two propositions are proved.
Pl In order that a group operation xi-xj and a real
number (norm) || xill can be defined for elements of X

such that they satisfy the relation
a5 = || x.x 4 (4. 4)
1g =0 X% 0 .
'the following condition is necessary. The n-tuple of

numbers ( diqgs 40y eeey 4y ) is a permutation‘of ( dyqs
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d ®o 0y dln ) fOI‘ all i = l’ 2, LRI IEY n.

12°
P2 ( the case of discrete metric )

If dlj %—dlk for any different J and k, the met-
ric is called discrete and at most one group operation
can be defined and satisfies the relation (4.4) stated
in Pl. If there is such an operation, then it is commu-

tative and =x°x = 1 ( the identity element ) for any x.

In this case the norm || x| is also determined uniquely.

PROOF : Suppose x; = 1. Then
-1 -1 -1
Uoxg it = Mxgexy 70 = Q35 = dyy =Wy ey = lx570

From the condition 4,4 A dlj’ if | xiu = llxj“’
then X; = xj. Therefore if dij = dlk’ then

-1
x5 xj = X uniquely.

‘In particular, xlox—l = x and x-xIl = x. 4And from

the symmetry of 4, xi-xgl = xj-xgl. This completes the

proof.

Now in our case of "weighted Hamming distance'", the
metric satisfies the condition of Pl of course. If (x)
is not a special distribution, then the metric is dis-
crete. Therefore thé modulo two sum is the unique group
operation in sum form. If W(x) is uniform, i.e. d ig
the ordinéry Hémming distance, however, other group oper-
ations besides_modulo two sum can be defined which also
satisfy the relation (4.4) in Pl, Considering the above

results it seems natural to introduce the group of modulo
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two sum,

From here on we assume Lon is such a group with coef-
ficients GF(2) 'and the norm [ Fll is defined on f2_ so
that (4.3) holds. Then we have

Definition 4 Replacing "subset £ " by "subgroup P o

in the Definitions 1 to 3, we obtain definitions for
" € -group net ( € -GN)", "the smallest € -GN" and
"the best GN (BGN) of size N" respectively. N must be 2k.

Two reasons to have investigated the group net are
that even the study of the group net gives insight to the
more general case and that the group is useful in applica-
tions. ©Now it would be instructive to give some examples
of the group net: +the set of all linear functions ( more
generally, the set of éll functions of degree<i ) and
the set of all functions of i variables, where i< n,

in the space 621? We will discuss these examples later.

§ 4.3 Application of the group code theory[8]

In this section several theorems are proved using the

decoding scheme described in § 2.2.

Theorem 1:
Kin 82
ZLet_ﬂE be a. subgroup of order 2 in n* Partition
,SZn into cosets relative to & . 1In each coset we
choose an element which has the smallest "norm" among the

elements in the same coset and call it the coset leader.
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n
Let agy 81y evey 8 1 (m = 22 -k ) be the coset leaders.
Then P is a & -GN of ISZn, where

E = max Haill s 0 £i £ m-1.

—

Proof

Let § = {%O’ 5/1, ...,%g} . If xGSBn belongs

to the i-th coset ai-i , then

a( x, P ) = m%n a( x, %) = m’%n Il = {/[lll =min || x|
= ”ai”
Therefore E = max 4( x,f ) = m?x Il aill.
X

This completes the proof.

In the followings every time we write "partition into
cosets.", it means the partition stated in Theorem 1. This
theorem is useful in obtaining the epsilon by a computer

when a subgroup is given,

In order to apply the results of the group pode theory
and to get powAerful theorems, we must have some restric-
tions on the probability distribution H(x) of X2,

A probability distribution is called "partially uniform”,
if there exists a subset A of X° such that x & A,

Hx) =03 =x %A, I“(x); 142%-M, where M is the
‘number of elements in A. If A4 is empty, then "((x)
is uniform,

If H(x) is partially uniform, 52 can be regarded

n
as the set of all vectors whose components are O or 1
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and whose length is 2"-M. The norm correponds to the
weight. Any subset of ,§Zn corresponds to a code. There-
fore a GN is equal to a group code of length n = 2n-M,
where the metric is equivalent to the "Hamming distance".
From here on the metric space SZn is assumed to be
the~same as a code and the norm is changed according to

the metric. The group operation is, however, unaltered.

Theorem 2:
It /&(x) is partially uniform and subgroup ) equals
a perfect or quasi-perfect code whose order is 2k,
then j‘i is the BQN of size 2k. Furthermore, for a given
E , if there is a £ -GN which is equal to a perfect
code, then it is the smallest &£ -GN.
Proof
In the definition of the perfect or quasi-perfect
code let t be the number such that all vectors of norm-
less than or equal to t are coset leaders and some of
the vectors of norm +t+1 are not. Then the epsilon for
this code is t+1 ( or t ) from Theorem 1. No other
group of the same order gives a smaller epsilon., There-
fore '§i is the best group net of its size. The lagfer
half of the theorem for the case of the perfect codzj%bvi-
ous from the meaning of the word "perfect".
Note that the latter half does not hold necessarily
in the case of the quasi-perfect code. A counter example

is given by Example 4 below.
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P
He 31

n i ) k=2 3 4 5 6 7 8 9 10
ol 1] 1 1
4 |1 4 3
0 1] 1 1
511 5 5 3
2| 10| 2
0 1l 1 1 1
6 |1 6] 6 6 3
2| 15| o9 1
0 1l 1 1 1 1
1 71 7 7 7 3
7 2| 21| 18 8
31 35| 6
0 1] 1 1 1 1 1
1 8| 8 8 8 7 3
8 |2 28] 28 20 i
31 56| 27 3
0 1] 1 1 1 1 1 1
1 91 9 9 9 9 7 3
9 |21 26| 36 33 22 6
z | 84| 64 21
4 1126| 18
0 1l 1 1 1 1 1 1 1
1| 10,10 10 10 10 10 v 3
10 |2 45| 45 45 39 21 5
3 1120{110 64 14
§ | 210| 90 8
0 1 1 1 1 1 1 1 1
1) 1111 11 11 11 11 v 3
21 551 55 55 55 20
11 |3 |165|165 126 61
4 | 330|226 63
5 |462) 54
0 1| 1 1 ‘ 1 1 1 1
1| 121 12 12 12 12 7 3
2| 66|l 66 66 19 3
12 |3 | 220|220 200 '
4 | 495|425 233
5 1792|300
[ 81

Coset leaders of optimal codes

Table 4.1
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Table 4.1 is a copy of Slepian's table[ 8 ] showing
the coset leaders of the optimal codes for the symmetric
binary channel., From it, using Theorem 2, we can find
the BGN for smaller n and k: For some larger n and
k, the table of the quasi-perfect code given by W.W.Peter-
son[54] is useful,

Now some examples are given concerning Theorem 2.
Example 1

Suppose n = 3 and M = 1, therefore n = 7. Let 3.
be the Hamming code of Order 16. Then P is the 1-GN
of 523. That is, any function of [23 is within fhe
distance 1 from P . This is clear from Theorem 1 and
from the fact that the Hamming code is the l-error cor-
recting perfect code. Furthermore gi ~is the BGN of size
16 and conversely the smallest 1-GN is the Hamming code
of order 16.
Example 2

Suppose n = 3 and M = 0, therefore n = 8 ( the
uniform distribution ). Let's take a subgroup ¥ of
order 8, According to Table 4,1, the norms of the coset
leaders of the optimal code 0(8,3) are ‘0, l,'2 and 3,
Thus max l(ain equals to 3, This code is not qﬁasi-
perfect. But it is a . 3-GN and the BGN of the size 8.
( See Theorem 4 ), It is also seen ffoﬁ'the same table

that the smallest 3-GN is not of order 8 but of order 4,
Example 3
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Suppose n = 8. The quasi-perfect code of order 16

is the BGN and § = 2. Furthermore this is the smallest

2~GN of size 16,

Exgmple 4 v .

Suppose n = 9, The quasi-perfect code of order 32

is the BGN and € = 2 but it is not the smallest 2-GN.

The smallest 2-GN 1is the code of order 16.

The following two simple theorems are also useful
in obtaining the BGN, We assume here also the uniform

distribution.

Theorem 3
Let the order of ® be N, where N = 25, If & is

a & -GN, then
€ > t+1

for suéh a t that

t+1 - t
>3 . = 22k 2207 ¢
j=0 %1 j-0 o1

Theorem 4

Ir 92 is the optimal code and there exists a number
t such that all vectors of norm<£ t and some of thése
of norm t+1 and t+2 are coset leaders of the parti-
tion of S:Bn into cosets relative to ﬁﬁ. and none .of the
vectors of norm > t+3 are the coset 1éaders, then £ is
the BGN of its size. Note that the optimal code is not

necessarily the BGN.,
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uniform distribution
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These theorems are easily proved from the distribution
of norms of the cosgt leaders. For example in theorem 4,
£-=‘t+2 from Theorem l'and_if there were a code with
€ = t+1 then it must be a quasi-perfect code ( there-
fore optimal ), so wé would result in contradiction.
Using Theorems 1 to 4 Table 4.2 showing the BGNg for
the partially uniform distribution was obtained. In |
obtaining BGNs for larger n end” k we used the figures
given by Peterson[54']. In Table 4.2 the blank means
that the BGN has not been obtained because éhe corre-
sponding quasi-perfect code is unknown for this parameter.
The encircled entry was obtained bj Theorem 3 and the
underlined one by Theorem 4 and the others by Theorem 2.
Using Table 4,1 we can also compute the order of the
smallest 16.-GN. Table 4,3 shows the logarithms to the
base 2 of the orders of the smallest & -GNs. Table 4.4
gives the same figure as Tablev4.3 for the normalized € .
From Table 4.5 we know for example that the order of the
smallest € -GN for 1/4< £<3/8 in 25 1s 2%, It
is also seen that for all n the order of the smallest
£ -GN for & larger than 1/2 is 2. Kolmogoroff
et al., defined " & -entropy" of a metric space. Since
we restricted the net to the group net, Table 4.5 shows
the entity which is similar to the & -entropy but
larger than it. |
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> El1 2 3 4 5 ¢
412 1
513 1 1
6|4 2 1
714 3 1
8|5 4 2 1
9|6 4 3 1
10(7 5 4 2 1
11 |8 5/6 4 3 1
129 7 32 1

k= log,N of the smallest
2°€

E -GN,
Table 4.3
n Nel  for £EL
4 4: 02E<1/4, 2: 1/4 1/2, 1: 1/2 1
5 5: 0 1/5, 3: 1/5 2/5, 1l: 2/5 1
6 6: 0 1/6, 4: 1/6 1/3, 2:1/8  1/2
1: 1/2 1 '
7 7: 0 l/?, 4: 1/7 2/7, 3: 2/7 3/7
1l: 3/7 o
8 8: 0 - 1/8 5¢ 1/8 1/4, 4. 1/4 3/8
2: 3/8 172, 1: 1/2 1
9 9: 0 1/9, 6: 1/9 2/9, 4 2/9 1/3
3: 1/3 5/9,  1: 4/9 1
10| 10: 0 1/10, 7: 1/10 1/5, 5: 1/5 3/10
4: 3/10 2/5, 2: 2/5 1/2, 1: 1/2 1
11| 11: 0 1/11, 8: 1/11 2711, ?
4: 2/11 4/11 3: 4/11 5/11, 1: 5/11 1
12| 12: 0 1/12, 9: 1/12 1/6, 7 :
3- 1/3% 5/12,72: 5712 1/2, 1: 1/2 1
The Ng (=2%) for the smallést E-GN relative to the
normalized distance.
Table 4.4
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§ 4,4 ° Application of the & -GN

It is noted at first that the results obtained in §4.3
are independent of the permutation of the code components.
That is, we can choose an arbitrary representation of a
function by means of a code word.

We agree to represent a function as follows:

F(X,Yye..,2) = (¥(00...0), F(100...0), F(010...0),
ceey F(111...1)) (4.4)

If /A(x) = 0 for some x, then we delete the corre-
sponding code component. According to this notation,
the syétem of all linear functions in 623, for example,
is represented by Fig. 4.1.

0 00000000 1 11111111
X 01010101 1+X 10101010
Y 00110011 1+ 11001100
Z 00001111 1+Z 11110000
I+Y 01100110 1+X+Y 10011001
Y+2 00111100 1+Y+2 11000011
X+Z 01011010 1+3+2 10100101
X+Y+Z 01101001 1+X+Y+Z 10010110
Fig, 4.1

~ The set of all functions of two variables: X and ¥
in the space 533 is generated by the generators shown
in Fig. 4.2, ’
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00000000
01010101
00110011
00010001
11111111

om0
a

Fis. 4.2

Now suppose P 1is the set of all linear Boolean
functions in n variables and fi(x) is the uniform dis-
tribution. Since £ 1is a subgroup of Jzn’ we can find
the epsilon ' for @ according to Theorem 1. From
Table 4.2, on the other hand, we know the epsilon £ of
the BGN for @ = 2% and k = n+l, Comparing £’ and £
we can see 1if the set of linear functions is the BGN of
the whole space or not.

For an example consider the case n
4

3. The order

of the group of linear functions is 2 16, From

Table 4.2 we see £ =2 for this case, i.e. we can get
at most the approximation of 1/4 by means of linear func-
tions. It is seen that the set of linear functions is
the 2-GN and therefore one of the BGNs of size 16 in &2
If we add one bit to the Hamming code.so that the result-
.ant code has the even parity, then one representation of
this code is the set of linear functions, i.e. the set
‘generated by X, Y, Z:' and 1. |

. The set of all functions of‘ degi'ee < 2 has the order
27. From Table 4.2 the BGN has £ = 1. On the other
hand the stated set is a 1-GN of 633, therefore is the
BGN,
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Though we have not obtained the BGN for larger value
of n, it seems that the validity of these propositions,
i.e. "the linear functions give the BGN" and so on, is

doubtful,

In this study we obtained the interesting results
only for the space with the partially uniform distribution.
The group code}theory could be applied to such a limited
case,

Though the study of the epsilon entropy seems to be
interesting and useful in the information theory, we are
far from the general solusion. The problem to obtain N
in general seems to be almost impossible to solve.

The application of the epsilon group net was rather

unsystematic and limited.
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PART II

TRANSLATION OF PROGRAM INTO LOGICAL CIRCUIT



CHAPTER I
Introduction

Information appears in various concrete forms,

Though information is an abstract object, it should take
some real form, which is accepted by the observer. Since
we think of the human communication, information must be
accepted and utilized by man fihally. At the intermedi-
ate stage, however, it takes several forms, so that com-
munication may be efficient and not disturbed. The elec-
tric communication using the radio wave is the typical
example. On the transmission channel, information has
the form of the code, which is constructed from the orig-
inal information, in order to prevent the noise. The

Coding is a transformation of the form of information.

Thus transformation of information is the essential
problem in the information proceééing.

Among many forms of information, there are those
which exist in the natural world, such as the electro-
magnetic wave, the speech sound and so on, and those
which are created by the human being and still abstract,
such as the letter. The letter has also its concrete
form, such as the printed character, when used as a tool
of communication., But its essence is not the concrete
form.

Eﬁery study of the natural science treats information
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of the first form. Contrary to this the theory of infor-
mation processing treats sometimes the second one, that
is, the system of abstract objects. In other words, it
is concerned with the structure of the system, whose
:each ‘element has not much characteristics., In mathemat-
~*ics they study only such objects.

- One of the most important systems of abstract things
is the language. It is the system of letters. Its each
‘letter or symbol is considered to be completely known,
~but its structure has not yet been clear. In studying
the language we can not do without considering the autom-
aton, which uses the language. In case of the natural
- language, however, the automaton is the human being.
Since the structure of the human being is too complicated
to formulate, it is quite difficult to study the natural
language with respect to its accepter.

On the other hand, the digital computer has its lan-
guage, or programming system, in order that the human
being may communicate with it., In fact, if a man wents
to do some logical work with the computer, he makes at
first the program for it. The program can be regarded
as the system to represent logical activities of the pro-
grghhgr. In recent years the theory of the program has
béénmétudied by many investigators. Mathematical lin-
guié%ics plays an important role in this case.

... The theory of programs and generally the theory of
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algorithms have treated the set of basic symbols almost
exclusively.

Here we should investigate them together with their
acceptors or automata. Recent study of automata indi-
cates clearly this tendency. This field, however, treats
the elementary and abstract system of symbols as the in-
put of the automaton. The automaton is also abstract.

We treat the real programming system and the real logical

circuit in this study.

The system of logical circuitfis considered to be
that of abstract things. The logical circuit has the
real form,only when it is implemented as the electric
circuit, It represents only the logical relationships
among elements. Many investigators devoted their contri-
butions to the study of logical circuit. There are two
different phase of the study. One is the analysis and
the other the design of the circuit., We are mainly con-

cerned with the design problem here.

We take up transformation of the programming system
to the system of logical circuit in this study. This is
because both are essential in the modern information pro-
cessing, Both are the concrete forms of information or
algorithm, which represents the logical content of some
Job. Those who experienced once both programming and

logical design, could see that there is very intimate
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analogue between them., Of cource there are distinctive
features of two systems. The most remarkable feature of
the programming system is its flexibility in expressing
the job and in computing it. Another feature is its ‘
linguistic structure. That of the logical circuit is its
real time operation. The parallel processing is another
feature. If we would transform them each other, we could
have different forms of the same job and choose any one

of them for the specific purpose.

One application of this concept is the automatic de-
sign of the logical circuit. The logical machine is so
designed by the designer that it may execute what he in-
tended as quickly and surely as possible with the least
number of elements. For this the designer analyzes his
job precisely in terms of the logical design technique
such as the time flow chart, the theory of logical func-
tions and so on. The quality of the design greatly de-
pends on ability of the designer, because he carries out
the work by his ingenuity sometimes, not doing always
the routine work, This methodology has its merits and
faults. We wish to give some other method to this prob-
lem., In recent years some investigators have contribufed
papers to the automatic design of the logical machine.
Actually there are some practical computer programsfor
this purpose. | |

Their methods are to express in the special computer
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language the design factors such as the connection of
elements, the timing relation and so on, and to utilize
the cﬁmputer for checking the logic and for getting the
input equations of the logical elementsi3’5’6]

Our method is to transform the program directly to
the logical circuit.

Its objective is to see,how the ordinary expression
of the job by means of the program gives information
about the logical design of the circuit,which executes
the same job. In this respect the author does not claim
that the study offers the optimal automatic design method,
but intend to give the general methodology in this field,
though he does not believe the end was reached.

The second objective is to serve the theory of pro-
grams or that of algorithms. Thus far many techniques
have been developed to make the programming easier. The
compiler is the representative of them. This is, how-
ever, concerned only with the symbolic.processing of the
programming systeﬁ and not with the hardware directly.
The author believes thgt the automaton itself should be
considered in investigating the program, though the con-
crete method has not been reached.

One example of the programming theory is to establish
the method for getting the optimal or the most economical
program. It is said that the good program reduces the

computation time much more than the fast logical element.
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There are some efforts in this direction, though the
results are limited. It is expected that the following
theory will serve this field, tool?] v

One of the most difficult problems concerning the
language is semantics. The programming language is con-
sidered to have semantics. For designing the good cir-
cuit by means of the iinguistic approach, we should treat
this problem. One example of semantic problems may be
the choice of subroutines. In writing the program the
programmer utilize subroutines often. The mechanism to
determine, which part is to be the subroutine, is quite
unknown. In designing the machine the same problem
arises., Though this kind of semantics seems more tract-
able than that of the natural language, Wwe have not for-
mulated it effectively.

, The definition of symbols appearing in the program-
ming system in terms of the other system (language or
other schematic descriptions) can be élso regarded as
semantics of the system. We define thé symbol by means
of the diagram of logical circuit. Another theory is
necessary to solve the general problem concerning the

definition of symbols,

The following chapters are devoted to the formulation
and the concrete method of transformation'(translgtion)

of the program. Especially the algorithm to reduce the
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number of logical steps of the program is presented.
One way to reduce the cqmputation time is to employ the
concurrent operation, that is, such a machine that has
many processing elements is faster than the ordinary

machine, which has only one accummulater.
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CHAPTER II

Formulation of Translation

§ 2.1 Meaning of translation

"Translation" is Jjust "transformation" of the.form
of information into another form, but is the word, which
is used especially for the language. The word "transla-
tion" is usually used for natural languaggé like "The
translation of English into Germann®. We mean here by
this word translation of the program into the logical
circuit., One of the characteristics to the translation
in general is that the language, which is to be trans-
lated, as well as that to which it is translated, has-
linguistic structures, such as the syntax and the seman-
tics. As is recognized among the investigators of the
automaton, the program of the digital computer has élso
the very clear linguistic nature, especially the syntax.
Contrary to this the logical circuit itself does not
seem to have the syntactic property in its essence. But
if we investigate the process of the logical design and
the behavior of the circuit, it will be found that the
system of hardwares could be treated likg a linguistic
system. In other words the system of the logical circuit
and the system of the program belong to the same category

of the system with respect to their linguistic structure.

- 105 -



So we can think of possibility of translation between
them and in fact establish the concrete method of trans-
lation,

In translating some language it is required to keep

the content of the sentence unchanged, while the other

- factors such as the form, the order of words and so on

may change. Our method is to establish an algorithm of
the translation which preserves the logicai contents of
the source program, while the execution time of it is
reduced.,

In general in translating natural languages we need
some reference besides both languages. Especially defini-
tion of each word requires such a thing. For example
the word "appie" could not be translated as "der Apfel",
if there were not the concrete red fruit. This corres-
pondence between the word and the object is recognized
unconciously by man., In the study of translation little
attention is paid to this relationship, because it is
unnecessary for the practical problems to refer always

to the background and the relation is too complex to
formulate in the useful form. Therefore the correspond-

ence between words in both languages like '"apple" «—>'"der
Apfel" is the starting point of translation. In our case
the referéence of translation is a logical machine, which
is called the "kernel machine". Since the program is

translated into the logical circuit, definition of each
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word should be done in terms of the logical circuit.

Contrary to the natural language the logical circuit
can be expressed precisely and it is rather easy to
establish the algorithm of translation with reference to
the kernel machine. The translation algorithm should
depend only on the schematic description of the machine
and the formal description of the programming system,

In referring to the kernel machine, meaning of each symbol
is defined. In this sense presentation of logical cir;
cuit could be called the semantics of the translation.
Tﬁe transformation algorithm of program described in
CHAPTER IV will be the syntax of the translation.

As ié seen later we can not translate the program
and design the uéeful logical circuit only by formal
processing of symbols. This is the same situation as
in the natural language. The logical element indicates
its physical features which appear in different forms in
each apblication. Definition of the single element does
not give complete information about the phenomena which
occur when many elements are connected each other.
Therefore at the stage of translation where such s1tua-
tion arises, addltlonal 1nformat10n should be given by
man. In this sense the translation system can not be

closed by itself.
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§ 2.2 Method of translation

The concrete method of translation is explained here
using the schematic diagram of Fig., 2.1.

The objective of translation is to obtain the (spe-
cial purpose) logical machine, which executes the same
job as the programmer intended. This machine is called
the object machine, while the program, which is to be
transformed, is called the source program. Here the spe-
cial purpose machine means a circuit, which is not con-
trolled by the stored program but has the definite control
or timing circuit, nor has the addressable memory.

The translator is an transformation algorithm, which

can not devise the new circult by itself, That is, it

[Source Program]}%———-——- Programmer Job
- A & 1§

\

\

\

Translator je,

-
E \\

Object

Knowledges

about

kernel

machine
logical circuit

Method of translation
Fig, 2.1
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only "transforms" the form of information —the algorithm
of some Jjob in our case. The translator needs knowledges
about the hardware, with which the object machine is to
be constructed. All such informations are given from
outside in terms of symbols or other formal representa-
tions. We give them in the form of register operation,
because the ordinary logical machine is composed of sev-
eral registers and logical elements connecting them.

In order to give the description of register operaéion,
we used the "kernel machine", The kernal machine is the
computer, for which the source program is programmed.

The programmer programms his job utilizing knowledge
about the behavior of the computer and expecting that
the program and the computer will execute his intended.
job., In other-words, the program, once it was written,_
deséribes the job completely, together with the descrip-
tion of the computer. Therefore in talking about the
program, we can not do without the machine. Our trans-
lator needs also such knowledges. The kernel machine is
described presicei& in CHAPTER III using the concrete
example,

The kernal machine (KM) is a universal computer,
whose structure is quite well known and can be expressed
easily, for example in terms of register operations.

The general structure of KM is shown in Fig. 2.2. Its

logical elements have simple and general properties so
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that the construction of more complicated logical cir-
cuits from them may be straight-forward. We employed

the transistor delay element and the diode logical ele-
ment, because they need no caution about the logical
timing relationship among elements, contrary to the multi-
phase elements such as the parametron. As to KM, it is
assumed to be clear, which part of KM corresponds to each
instruction of the programming system. In our transla-
tion, this correspondence is regarded as definition of
the instruction. | -

The schematic description of KM is, however, not suf-
ficient sometimes for giving all necessary informations
about the logical design. In the course of translation
extra knowledges are required. They differ from case to
case and could not be formulated beforehand. They con-
cern in general with the physical limitation on the ele-
ments and the technical and economical requirements on
the construction of circuits. For instance, the diode

logic of mény stages can not be implemented because of

Memory OR: Order Register
SC: Sequence Counter
Address
OR selection I1/0: Inp:t Ou:put
N - - equipments
N\ P :
\),/
PR
7 Kernel Machine
' Processing > 1 5.2
SC [k-——-> center . 1/0 Be 2.2
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the time delay and the distortion of wave forms. There-
fore the translation algorithm can not be general and de-

pends on the chosen KM, especially on its elements.

The source program P 1is written in the machine lan-
guage, not in the higher level language such as the sym-
bolic or the automatic programming system. This is be-
cause, otherwise the tfanslation would become too compli-
cated to formulate. The program written in the machine
language corresponds directly to the series of basic log-
ical operations and therefore to the series of the logical
circuits for them,

~ The format of the program is not essential, We for-
mulate the programming system in § 3.2 as the system of
strings of words for the sake of simple representation,
In writing the program actually, however, this is not -
suitable and it is convenient to write it symbolically
and the program in many lines as is done usually. In

this study examples are given in this form.

TLet's make it clear here, that what is transformed
is not the program only, but the program plus a part of
KM. TFig. 2.3 illustrates the parts of KM which are in-
volved in translation. It is difficult in general to
classify the memory into the program memory, the working
memory and the data memory, since the memory is used for

various purposes during the execution. We restrict,
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Kernel machine Object machine

Fig, 2.3 Parts which are translated

therefore, the source program to a program such that the
memory allocation is fixed. Roughly speaking the program
memory, the sequence counter (SC) and the order register
(OR) are translated to the timing circuit of the object
machine, while the accummulator (AC), OR and the working
memory space are to the operation part. Thus the object
machine is composed of two parts. The input or output
operation isvtreated as the register operation between

the input-output register and AC.

The translator consists of two parts, one giQing the
correspondence between the symbolism of the programming
language and the schematic description of the logical
circuit, the other being the main part, which transforms
the source program into another program. Fig. 2.4 shows
it. The correspondence (3) 1is definition of the instruc-
tion and (2) is description of the object machine. Both
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(
(
Transformation | (1) [ (4)
{
(
W A 4
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Object program P |l Object logical circuit C

Routes of translation

Fig. 2.4

correspondences are obvious and need not analysis. If
the translator is expressed as the program of the digital
computer, then the representation of logical circuit in
the computer gives them. In the route of translation
from P, to C through (1) and (2), there is the inter-
mediate stage P. P is introduced to formulate the
concurrent operation of many instructions. The concur-
rent operation reduces in general the execution time of
the object machine. P is a kind of program, which is
not executed by any real computer. Or we have not the
machine which executes ©P. The programming system of P
is described in § 3.2 and CHAPTER IV,

Transformation (1) is the main subject of the trans-
lation. The algorithm of it preserves the logical con-
tent of the source program, while it reduces the number

of logical steps. Also, if possible, it is required to
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reduce the number of logical elements which are necessary
to construct the object machine, P is the object pro-
gram of the transformation algorithm (1).

In the theory of algorithms there is the general
problem concerning the equivalent transformation. The
theme is to obtain the algorithm which preserves the
equivalence relation of a certain given algorithm and
minimizes (or maximizes) a certain value attached to it.
Our transformation is just an example of this problem.

In CHAPTER IV we use the term "transformation" of

programs to indicate the transformation (1).

The other route of transletion in Fig. 2.4 goes
through the broken line, PO-QCO->C. This route could not
be formulated because transformation (4) of logical cir-
cuits is unknown. It is not so preferable to use the
computer to process the geometric pattern directly in its
form and some symbolic representation of it is necessary.

Finally translation in the reverse direction is con-
ceivable, But the transformation algorithm (1) is not

reversible and we do not treat this problem here.

§ 2.3 Limit of translation

There are two kinds of limits to our method of trans-
lation, The first one is the essential 1limit, caused by
the general property of the source program, and connot be .

removed easily. Straight-forwardly speaking, such a pro-
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gram that has the self-modifying routine can not be
translated. The self-modifying program modifies some
instructions of its own in the course of execution, so
that we can not completely know the sequence and the
operations of the programs before execution. If we dare
to translate such a program, the self-modifying or self-
organizing logical circuit would be required. Since we
think of the ordinary logical design here, so this be-
longs to another field of the study.

The second limit arises from the practical problems‘
As is seen later we make each address symbol appearing
in the program - correspond to the register., Therefore
if the program used many memory registers, the object
machine would have also many registers, though the number
of them is reduced by the algorithm, It is not practical
to design the machine which requires so many elements.
Therefore we exclude also such jobs that use many memoxry
registers. In the following analysis, we treat the jobs,
which process the information contained in the accumula-
tor and use the memory as the intermediate working space.
They require only a few input data and their results are

placed at the accumulator.

. Since our algorithm does not take into account the
engineering intuition, there is possibility to design a
non-sense object machine. This is mainly because the

choice of KM is not always suitable. If KM has not
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suitable instructions for the considered job, the object
machine is badly designed. We have no algorithm to ex-
clude such a non-sense design. The quality of the sourse
program affects also very much that of the designed ob-
Jject machine. We need therefore so called pre-edit and

post-edit by man, in order to obtain good machines.,
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CHAPTER IIT

Descriptions of Kernel Machine

and Programming System

As is stated in the previous chapter the translation
system is based on the kernel machine, which has the
suitable programming éystem. In this chapter the kernel
machine and its programming system, which we defined for
the study, are described.

For the formal representation of KM, we utilize the
illustration by the schematic diagram and the ordinary
logical circuit. The programming system is formulated
so as to serve the transformation algorithm given in the
next chapter.

It is not claimed that the descriptions specify the
system completely. It may be sufficient to give the

understanding about what system is going to be treated.

§ 3,1 Kernel machine

Kernel machine is the basis of translation and should
be specified precisely. But as is seen from the previous
chapter, all parts of KM are not involved in translation.
For instance the memory aﬁd its coincidence circuit may
be assumed arbitrary. The I/0 equipments are also not
essential. We need only to specify the processing center

and the accummulator.
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We choose the concrete KM, of which the processing

center is indicated in Fig. 3.1, and investigate trans-

Memory

\J
(v}
v/

(cbinciden

Processing center of KM

Fig, 3.1
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lation using it exclusively. This KM was devised concep-
tually only for the purpose of translation and is not the
real machine, but clearly can be implemented easily if
wanted, because it does not contain any unrealizable ele-
ment. In the following explanation this special KM is

referred to always.

The necessary préperties, which KM should have, are

as follows:

(i) The general purpose computer

KM should be general in the sense that any logical
operation can be done between &any pair of bits of memory
or register without changing the other bits, For this,

our KM has the instruction'set as indicated below:

Instruction set:

AND X EOR X OR X NOT RSH 1 ISH 1

STO X DRW X  RIN WRT JMP X JNZ X  HALT

where X 1is the general symbol for the memory register

eand i 1is the positive integer.

Each instruction is precisely explained later by
using the logical circuit of the processing center.

If there were not the shift operator, operation be-
tween the corresponding bits of AC and of the memory

register would be impossible.
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Generality is required, of course, in order to guar-
antee the generality of the job which is to be translated.
If the kinds of the source program are limited, then the
generality is unnecessary. But in this case the object
machine is also limited.

As is supposed from the instruction set, we think of
the jobs which are not of direct use but are the basic
logical operations on binary words such as counting the
number of 1ls, addition of binary numbers and so on,
Since the instruction set does not contain the higher
operation such as Addition and Multiplication, such a
program as computes SIN X or X 1s not programmable

easily for our KM.

We do not insist upon the minimality of the instruc-
tion set. There may be redundant instructions in order
that the instruction set may be general. The set was

chosed from the pradtical point of view.

(ii) The binary parallel synchronous machine

KM 1is the synchronous machine, each instruction of
which is executed in a unit of clock time. Operation is
done in parallel for each bit of a word. A word consists
of n bits, where n .is a fixed positive integer. For
the practical KM, n is larger than 20. For our study
the specific value of n is not essential. Fig. 3.1

shows the processing center of KM, Every information
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(1) Binary operator
X( AC, X )—4AC and

eﬂ

(1) Unary operator

/G( AC )—> AC and

PO
AC

(ii1i) Transfer operator

e ( AC )—X and
or *( X )—>AC

O—0O

X AC

(iv) Sequence operator
%,0( X, 8C ) —>sC

SC+1—>» SC

e

SC

SC+1 > SC

—

SC

SC+1-> SC

e

SC

O : Register

: Operation
circuit




is expressed, transmitted and processed in the form of
the n-bit binary word en bloc.

The operation is made only between AC and the mem-
ory register or on AC. The former is called the binary
operation and the latter the unary operation. Results
of both operations are placed in AC,

In general the binary operation is the set of n 2n-
variable Boolean functions and the unary operation is the
set of n n~variable Boolean functions. They define the

input equation of each bit of AC.

Fig. 3.2 shows the operations schematically. The
circle means the n-bit register, the rectangle means the
operation part and the line transmits n-bit information
in parallel. We do not use the figure indicating the
logical circuit but utilize this diagram in the study of
translation.

Fig. 3.2 shows the i~th bit of AC and its operation
part. For the l-st and the n-th bit of AC some modifi-
cations are necessary to Fig. 3.3.

The name of the instruction indicated there means the
output of the instruction decoder, which is omitted from
the illustration. The timing clock is not expressed
explicitely but enters each gate so that every operation
is finished in a clock time. Since there is no other
counter than SC, there is the independent gate for each

shift operation.
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Xi is the general symbol for the memory register,
which is selected by the address part. Since the logical
content of each instruction is defined completely by Fig.
3.3, we explain its meaning roughly.

AND X, OR X, EOR X are binary operations of X and
AC,

NOT is negation of each bit of AC.

By RSHi or LSH i, AC is shifted by i bits to
the right or to the left respectively.

STO X and DRW X are complementary operations each
other. STO X stores the content of AC to X and
DRW X draws the content of X to AC.

RIN and WRT are input and output operations, by
which a word of data is transfered between AC and the
I/0 equipments. These operations are also assumed %o
be finished in a clock time.

JMP X is the ordinary sequence operation to X.

JNZ X modifies the program sequence to X, if every bits
of AC are zero. HALT stops the KM. The last three

operations concern- SC and are not indicated in Fig.3.3.

(1iii) The ideal logical element

For the basic elements of KM we assume the ideal
elements which have the following properties.

The iogical elements, i.e. the delay element and the
operation element, should be simple in its logical struc-

ture. Any output of the delay element should be able to
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go to arbitrary operation elements, without considering
the timing relation. In this respect such elements as
parametron are not suitable for the formulation of trans-
lation.

The delay and the operation elements should be sepa-
rated, There are such elements as have the functions of
operation and delay in connection. TFor these elements
we can not insert any other element between the operation
and the delay elements. Therefore they are not suitable
for constructing the complicated logical circuit by our
‘algorithm,

The time delay is assumed to be only due to the delay
element so that the operation element operates instanta-
neously.

The number of elements (the number of fan-outs) which
can be connected to one delay element in parallel is
limited for the practical elements. But in this study,
it is assumed that this number may be arbitrarily large.
It is easy to restrict the number in each practical de-
sign problem by modifying the transformation algorithm.
The same condition is assumed for the number of operation
elements which can be connected in caséade without any
delay element among them. If a delay element is inserted
at a branch of logical circuits, then the timing of the
operation may be disturbed. In the real logical design,
the designer adjusts the timing by inserting dummy delay

element at the other branches to compensate it. Such a
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technique is not essential in our case, so we assume the
ideal case. These assumptions were not met with diffi-
culty in the examples given later, because the number of
operations contained in each compound operation is not

so large. At most three or four stages of AND-OR gate

logic are constructed by the algorithm.

Choice of kernel machine

Translation depends greately on the choice of KM,
in particular that of the instruction set. In writing
the program in general, if the instruction set is not
suitable for the Jjob, many program steps, and therefore
much computation time, are necessary. In our case such
dependence does not exists directly, because the source
program is transformed by the reduction algorithm of
program steps. But there are always unfavorable jobs for
the specific KM. For example for KM of Fig. 3.3, the
program which inverts the order of the content of AC,

i.eo (Xl, XZ, ev oy Xn)_>(xn’ X

n-1® **°*9 Xl), requires

many steps. If KM had an instruction for such an oper-
ation, the program is trivial., By the way, this opera-
tion is quite easily implemented.

Choice of the instruction set has been one of the
biggest problems of logical design of the computer. This
can not, however, be solved generally.

Systematic research of the instruction set is impos-

sible for our study, too. From the restrictions on KM
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stated thus far, we can not choose such instructions as
ADD or MULT which might require many logical steps to
execute, but those instructions are to be designed by

translation of the source program for them.

§ 3.2 Programming system

There are various ways to describe the programming
system, ranging from‘the quite formal representation to
the vague verbal exposition. For the theory of programs
or algorithms the formal representation of the system is
necessary but for the practical programming the precise
formalism is not always required. It is not our inten-
tion here to give the complete description of the system,
but it is sufficient to indicate what type of the pro-
gramming system we are going to employ.

In transforming the program the main interest goes
to the sequence of it, not to the concrete operations.
This is because the program should be always the general
algorithm, that is, the same program is used for various
input data. So we should not take into account the con~
crete data or the contents of registers. For example,
the content of AC controls the sequence of the program
if it has the conditional Jump with condition on AC.
But the instance when the condition is satisfied can not
be determined beforehand. Therefore we must neglect the
concrete data. The timing circuit of the object machine

is designed by following the executiqn of the source pro-
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gram. Execution of the program should be therefore ana-
lyzed precisely. We do it by classifying the instruc-
tions into the normal and the sequencing operators.

For the non-self-modifying program the execution can
be specified completely by the form of program, but for
the self-modifying program, its sequence can not be de-
termined in general., For expressing the program sequence
the sequence diagram is used in this paper.

The linguistic description of the programming system
consists of "definition of the used symbols" in a non-
linguistic way and "the structural description of the
syntax", The former is called sometimes 'semantics" of
the system and is given by the schematic diagram of the
logical circuit shown in Fig. 3.2,

§ 3,2,1 Form of progranm

The program consists of many instructions or words.
Each word consists of the location part, the operation
part and address part. At the location and the address
parts the register symbols is written. We use the sym-
bolic representation of the memory register. At the op-
eration part is written the operator symbol. The general

form of the word is one of the following two forms,

(1) a K
(i) a K X
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where X is the operation symbol and a sand X are
the register symbols. The operator NOT, RIN and WRT
are of type (i), while AND, OR and so on are of type
(ii). RSH i and ISH i are considered to be of type
(1. | ’

In translation, X is translated to the n-bit regis-
ter of the object machine, while A is translated to
the logical operation part. Each K is defined by the
diagram of Fig. 3%.2. The location part a 1s trans-
lated into the timing circuit, after analyzed by the
sequence diégram.

Fig. 3.4A is an example of the program. It is a pro-
gram, which counts the number of ones in AC and place
the result in AC in the binary coded decimal form.

This example is called TAKE WEIGHT.

§ 3.2.2 Program sequence

The program does represent the Jjob completely, if it
is not executed.

The complete description of the job, which the pro-
grammer intended, is obtained only after the execution
of the program, Therefore we should investigate, how
the program is execufed.

But it is seen that the behavior of the general pro-
gram can not be specified by finite number of steps. For
example, if the program contains the "Loop", there may be

infinitely many behaviors,
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START JNZ a

HALT HALT

a STO D
RSH n-1
STO C

d DRW D

LSH 1
b
c

JNZ

DRW

JMP HALT
b STO D
RSH n-1

JNZ

_ JMP

c STO

DRW

STO

EOR

STO

DRW

AND

JINZ

JMP

LSH

JMP

O H oo k>t akE a0

Program of TAXKE WEIGHT Sequence diagram
. Fig. 3,44 . Fig. 3.4B
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If the program is self-modifying, the program se-
quence itself is determined according to the execution.

There is such a program that itself generates the
instruction, which it executes later.

In our translation, we treat only the symbols which
appear on the program sheet and exclude such an ambiguous
program.

In other words, we treat the program, of which the.
sequence is completely specified only by the normal se-
quence and the sequence operator before execution. We
assume also the program, which has been loaded on the

computer, is the same as the written program.

The sequence is represented by the sequence diagram,
Fig. 3.4B is the example of the sequence diagram for the
program TAKE WEIGHT indicated at the same page..

The white circlevmeans the normal operator and the
black point the conditional jump. The unconditional
jump is neglected in writing the diagram. The diagram
"is constructed by the following algorithm: ‘Write the
starting point at first, Then following fhe normal oper-
ators write the successive circles and connect them by
line. If the conditional jump appears, then write the
black point and make a two-way branch; By following each
branch, continue the same procedure, until the branch is
connected to some point of the diagram or ends with the

HATLT instruction.
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At the branching point, the symbol 1 1is attached
to the branch, for which the condition was satisfied, and
the symbol O +to the branch, for which the condition was
not satisfied.

In CHAPTER IV we use the word "branch" in this sense.

The sequence diagram is considered to be the state
transition diagram of the timing circuit of the object

machine,
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CHAPTER IV

Transformation of Source Program

As is formulated in CHAPTER II, it is the transfor-
mation of program that can be treated rigorously.

At first, since the register operation is the basis
of representing the logical circuit in our system, we re~
write the source program in this notation. Then we
transform it by the algorifhm to get the object program.
The system of object programs has the instructions which
are obtained by extending the meaning of the original
instructions,

The main alteration of the system is that the concur-
rent operation and the compound operation have been in-
troduced. The concurrent operation, called also the
parallel operation sometimes, means to execute many in-
structions in a clock time. The compound operation is
an logical operation which is the function of the origi-
nal operations, We will call "compound operator" such
operators that contain the concurrent and the compound
operators.

The transformation algorithm gives the rule to con-:
struct the compound operator which is equivalent to a
portion of the source program. It was so chosen that
the number of steps of the‘object program may be as small

as possible. And then, if possible, it is tried to re-
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duce the number of registers which appear in the object
program. These both criteria are complementary each
other. We prefer the reduction of program steps to that
of number of register symbols in our algorithm. The

general algorithm is given as well as some examples,

§ 4.1 Generalization of Operation

We assumed the general logical elements for KM.
Herekwe extend each operator to the general registers.,
For example, NOT was the negation operator of the con-
tent of AC, the result being placed in AC. There was
no reason, however, to restrict the operand to AC. Here
we consider the general negation operator which operates
on the arbitrary n-bit register and whose result is also
placed in the arbitrary n-bit register.

In defining the new interpretation of each instruc-
tion, we use the schematic diagram of Fig. 3.2.

The instruction can be represented by the register
operation formula as follows,

Let the content of the registér be denoted by the

same symbol as the register itself.
(1) Binary operator

a Kx = a O{(X)—>AC and SC+1—>SC
(11) Unary operator

= f

a F(X)—)AC and SC+1~>SC

il
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(1i1i) Transfer operator .

a ¥X == a  o(X)—AC and SC+l1-—>SC

or a ¢(AC)—>X and SC+1—SC

wher.e ¢(X)—> AC means the content of X is transferred

to AC without any operation on it.
(iv) Sequence operator

a 88X = a EX)>sC
or a S;A(x,sc_)»sc

where % (X) means X itself and EA(X,SC) means that
if the condition on AC is satisfied, the content of

SC 1is changed to X and otherwise SC+1 1is placed in
SC.

Generalization means the following scheme. ILet X,

_Y and Z be the general registers of n-bits.
(1) Binary operator

a XX, )= 2 and  SC+1—»SC
(ii) Unary operator

a [BX)—> z and SC+1-—>SC
(iii) Transfer operator

a *(X) > 2 and SC+1 —»SC
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(iv) Sequence operator
a  B54(Y,80)~>scC

where ¥, means that the condition of branching is

concerned with X,

By this genéralization, AC has lost its speciality
as the center of processing, We treat all register sym-
bols equally. Note that SC 1is kept always unaltered
and is the register for controlling the program sequence,

The above generalization is allowed naturally, since
it requires no constraints on the physical element, But
the extension of each register, for example, to m?bit
register ( m > n ) may be not allowed without considera-
tion of the engineering problems, such as the stability

of physical elements.

§ 4,2 Concurrent operation and compound operation

Concurrent operator[4]
Concurrent operation is defined in order to reduce
the number of program steps. Suppose, for example, there

is the portion of program as follows:
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Then both operations can be executed concurrently or in
parallel. We express this situation by the new symbol

as follows:

a STO X (\ AND Y

In general the concurrent operator is defined as an

operator which was the following form.

a KAja N o4, NAzhz Neee NEL N o eees

where (xi and Gi are normal operator symbols and Ai

is register symbol.

Compound operator

We are met with the following situation often in the

course of programming:

This is the cascade of two logical operations, which is

illustrated by the register operation as follows:
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a AND(A,X)—> A
b OR (4,Y)—>4A .

The content of AC at the step b 1is the result of
the imediately previous step a. We can combine two op-~

erations in a compound operation, which has the form:

a OR( AND(A,X), Y ) —>a

The meaning of this formula may be.clear. This is a

kind of the concurrent operation.

Schematic representation

The sequence of two instructions of the source pro-
gram is represented by the schematic diagram of the logi-

cal circuit as follows:

@ =




The whole source program is also represented by such
a scheme. The circuit for 8y, 8, is the timing cir-
cuit. It has the form of ring counter, such that one and
only one pulse exists in a delay element and the output
of it triggers the gate of the corresponding operation

circuit.

The concurrent operation in the generalized notation

is represented by Fig. 4.2.

Fig. 4.24 Concurrent operation

X,

—@-
()~

‘0(2

Fig, 4,2B Concurrent operation
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The compound operation is represented by Fig. 4.3.

Compound operation
Fig., 4.34A

1999¢

Fig. 4.2B Compound operation

These correspondences are generalized to the concur-
rent operation of many steps, or to the compound opera-

tion of many factors., -

We use the following notations to avoid the nuisance

symbols.

X : the ordered set of finite resister symbols such as:

= {xl, Xy vees X}

<l

- 140 -



&(X) : the compound logical function on X such as:
for X = {xl, Xpy X530 X },
&E® = ofy { ooy X v 5(X50 %) }

where o(i is the original normal operation symbol.

X(X)~>7Z : The function value of & for X is !
placed in éll registers contained iﬁ Z. This is the
general form of the single compound operator. The reg-
isters which appear in X are called the operand regis-

ters and those in 7 the destination registers.

Then we have the following definition of the concur-

rent compound operator,

Definition:

The concurrent compound operator is a series of com-
pound operators connected by the symbol (\, for which the
destination registers of each compound operator are dif-
ferent. The ordinary operator is called the simple oper-

ator.

The general form of the concurrent compound operator .

is as follows:

a @ ED T N KE)DT N NeEI—=7

We abbreviate the notation as follows:

k

Q)

8 g K3E)—>3
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The condition on the destination registers stated in

definition is expressed set-theoretically as follows:
ll Z,'f\id':¢ ( F#J)

where [\ means the intersection of sets and 96 is the
empty set. This condition is required for the sake of

consistency of concurrent operations.

Concurrent operation of sequence operator

Thus far the concurrent and the compound operations
have been limited to the normal operators. Here we can
think of those sequence operators. For example the pair

of operators as follows can be executed concurrently.

In fact, the following compound operator is consist-

ent,

where ?;AND(A,X) means the condition on the result
AND(A,X).
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The general form of the concurrent compound operator

is therefore as follows:

k
& (Xy) —>Z; N 54 Uz, ) (%:80)—> 8¢,

where Ljii is the set union of ii and f is a logic-
al function of \in and ¥ operates on its function
value so that if all bits are zero, then SC+1—>SC and

otherwise X —> SC.

We studied also the following situation:

a ¥,(X,8C)->sC
b  £5(Y,80) >SsC

This is the branching of the program sequence into
three alternatives according to the contents of A and
B. If the condition of A 1is satisfied, then X—>8C,
if not and the condition B is satisfied, then Y—SC,
and finally if either condition is not satisfied, then
SC+1-> SC. We execute both operations concurrently
by constructing the logical circuit for SC. But this
process could not be formulated completely. Therefore

we do not enter this problem here.
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§ 4,3 Timing circuit

As indicated previously the sequence diagram corre-
sponds to the timing circuit of the object machine. The
diagram is considered to be a state diagram of automaton
with the input given by the condition of AC. Therefore
we can design the timing circuit by the state asignment
theory of the finite automaton. In pracfical cases the
binary coding is employed for the state asignment. 1In
fact, SC of KM, as well as the sequence counter of the
ordinary computer, is the binary counter. This asignment
is not optimal for specific program sequences, but has
generality and can be easily designed.

We do not, however, encode the state by the binary
counter, but use one bit of flip-flop for each state.
Therefore the same number of flip-flops is used for the
timing circuit as that of the circles of the sequence
diagram,

This kind of the circuit is the direct counter-part
of the program sequence, while thé circuit, which is ob-
tained through the state asignment, has lost the direct
correspondence with it,

An example of such timing circuits is given in Fig.
4,10, which correspénds to the object program. Like the
ring counter, one and only one pulse exists in the cir-
cuit and goes around the circuit giving the appropriate

timing pulsesto the operation part.
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§ 4.4 Transformation algorithm

§ 4,4,1 Extraction of branches

The program is not transformed as the whole, but
treated branch by branch., A branch of the program is
the portion, which has no conditional jump, nor the in-
struction having more than one inputs to it. (See, Fig.
4.4,) '

If we are to transform the instructions which are
contained in different branches, we must consider the
condition of AC for many situations according to the
previous sequences the program took. Though we estab-
lished some rules to treat the transformation over the

limit of branch, they are hardly general and omitted

- e e o — o e

et

r~=

(I

i |

| : : the Branch
|

.l

Branches of Sequence diagram

Fig, 4.4
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here. Since we transform only branches, the loop struc-
ture of the source program is kept unchanged by trans-
formation. That is, the sequence diagram has the same
shape, while the number of white circles contained in
each branch is reduced. In some special cases a loop
shrinks so that it contains only one concurrent compound
operator. Note that even in this case the loop can not
be eliminated.

The main feature of the sequence diagram of the pro-
gram is that it has loops in general. There are, of
course, those programs which have no loop, but from sever-
al reasons the programmer uses loops often. The ordinary
program is constructed recursively and the loop is neces-
sary.

It is supposed sometimes that the better machine
could be designed by altering the structure of the se-
quence diagram itself. But it has been impossible to es-
tablish the general algorithm to do so. Therefore we in-

vestigate the transformation branch by branch.

Though the branch is extracted by means of the se-
quence diagram described in § 3.2, it can be detected
quite easily by the symbolic processing of the source pro-
gram. The conditional jump is regarded as the last step
of a branch,

We apply the algorithm described in the following

sections to every branches independently and connect them
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after transformation to obtain the object program.

§ 4,4,2 Rule of applying transformation formulas

The algorithm consists of the set of transformation
formulas listed in § 4.4.3 and the application rule of
them, which is given in this section.

The general form of the transformation formula is as

follows:

a

}+

where & is the concurrent compound operator (the simple
operator included), b is the simple operator and ¢ is
the new concurrent compound operator constructed from a
and b. The formula is applied successively for the
pair of operators from the top to the end of the branch.

In order to show the rule of application of formulas,
we use the notation (a, b)’for the operator c¢. Then

two lines of operators are transformed to a line, so that
a
} =@, o).
b :

Let 8y 85 coes 8 be the instructions of the_v.‘

branch which is to be transformed. 8y is the starting

point and &_ is the end point of the branch. &, is

k
the simple operator.

The branch is transformed according to the following
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rule:

(1)

Start a

End

(i1)

Take the pair of operators and 5. If there

81
is a formula in the list, whose left hand elements
are identical with them, rewrite the pair by the

concurrent compound operator which is the right
hand of the formula. If there is not, leave a8
as it is and go to the next step. (See, Fig. #.5)

or ¢

Transformation of the first step

Fig. 4.5

In general at the i-th step, the transformation of
the program is as shown in:Fig.'4.6. The number of
steps m depends on the transformation thus far.
(1<m<1),

We apply the rule for the pair, Ch and a, where

c is the concurrent compound operator and is

a
m i
the simple operator. If there is a formula, which
is applicable to this pair, rewrite them by the

right hand operator, say, ¢! = (c_, ai). If not,
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leave c, @s it is, and try the next pair, ay
8141
Start ¢, ‘ : cq
Cs Transformed ¢y Co
operators c
. 2 L ]
a, T T = —3(c, a,) a,
i :::$ m i i
a. a, -} a, }
i+l i+l or i+l
End a, I 8y

Transformation of the i-~-th step

Fig. 4.6

(iii) The procedure ends when ay is transformed.

It is seen from the rule that if each pair is trans-
formed, the result of transformation of a branch is only

one concurrent compound operator.

§ 4,4,3 Transformation formulas

In the formula X/Y stands for the set of the reg-
isters, which are contained by X but are not Y.

Formulas are divided into two classes. Type A
formula is applied to the pair of simple operators and

type B formula to the pair of the concurrent compound
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operator and the simple operator., The former is included
by the latter, but it is explicitely presented for the
sake of easy understanding.

The formula, for which the symbol * is attached,
causes the compound operation. Such a formula can not
be applied, if the compound operation can not be imple-
mented because of, say, the distortion of the wave forms
in the logical elements. If the number of the concur-
rent operations is restricted, those formulas, which

produce the new concurrent operation, can not be applied.

Transformation formulas of type A

1)+ o{l(AC,X)—>AC
oK 2(AC,Y) —> AC
(2)*  of(ac,X)—>AC

} =60 oty (40,0, D> ac

-
BAC)~> 40 B B (cX(ac,x)) —>ac
(3)* AC AC
pac— } = o B(aC),x) —>ac
A (AC,X) —>AC
(4) o (AC,X)—>AC
} = o (ac,X)~>{ac, ¥}
e(AC)—>Y
(5) X (AC,X)—> AC
} o(Y)—>AC
*(Y)—>AC
(6) *(AC)—>X } = *(AC)—>X MKAC,Y)—sAC,
X (AC,Y) —» AC iIf XA Y
= *(AC) —=>X NO((AC,AC)—>AC,
if XaY
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(7).
(8)*
(9)

(10)
(11
(12)
(13)
(14)
(15)

(16)

o (X) —>AC

ol(AC,Y) —>AC

(31(AC)—>AC
PE(AC)—>AC
B(ac)—>ac
* (AC) =X
e(AC)—> X
Bac)—4c
@(AC)—) AC
e (X)—>4AC
*(X)—>4C
@ (ac) —>4AC
*(AC)—>X
e(AC)— Y
e (AC) —>X
o (Y)—> AC
*(Y)-» AC
o(AQ)——>X
o(X)—>AC
o(Y)— AC

=

b=
|

}‘=>

P

} =
)} =
} =
} =

}=>

} = X (X,Y)=>AC

= (a0 —>4C

Bac)-sfac,x}

e(AC)—>X N (3(AC) — AC

o(X)— AC

P(X) —>AC

o (4C)>{x,¥}

e (AC)>X N *(Y)>AC
o (AC)—X

o (Y)->{4ac,x}

o (X) —> AC

o (Y)—»AC

Transformation formulas of type B

X(AC,X)>AC

143

ﬂO(_j (23 )= 'Z'J/AC
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if X £ Y
if X = Y
if XA Y
if X = Y

> ﬂ o, (2,07, ﬂo((o( (Z,),X) -4

if ACeZ, and
» J
X Uz,



= Qdi(ii)—ﬁino((.txc, o5 (X)) ->AC
if X &7, end AC Uz,
= Qo( Ty )> Ty 10ky (Xy) 5T/ k0
143
o ( K (%), &y (F,))-34C

if ACeZ, and xezk

J
= no(i(ii)éii(\o((Ac,x)»Ac
i
otherwise
@)+ 1% (2)>7;

3N«, 1 (B2 N (X)) >2 /80
P ac)—> ac 143

n{S(dj(ij))-»Ac if AceZJ.
= QO‘i()_(i)%ZiﬂP(AC)—:»AC if not

(3) Qdi(ii)—ﬁi

A :3’00((3? )*Z(\O((X)AZ
*(AC)->X 143

Ne(ac)>x  1f X€Z, end Acgfuzi

J
= Qdi(xi)-aiiﬂo(j()'{a.)-',x
if ACGEJ and xg(U'Zi
> ) o @70l (70 >
N X )3F, /%
if ACGTZ'J and X€7Z,

, = ndi(ﬁi)-% EiQO(AC)»X otherwise
i
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ORILNeSESA

«(X)->4C =>in°(i(Xi)" 2y (10 (X3)>25/40

Ne (x)> 4c 1f AC€ Z, and x/e./UZi
ﬁiil oy (%3)> 2, (10(;(X)> 4C
if er‘j and Acg/UZi
> iQk oy (X, )~ Z, Nl (X, ) >, /AC
N (X,)>4C 1f ACE T, and X €T,
= {i)o(i()'fi)» Z; N *(X)->AC otherwise

Transformation formula for conditional jump

If the conditional jump is the last operator of the

branch, the following formula is applied.
(i)o(i(xi)-mi

E (X,s0) —>sc}:> Qdi(ii)—rz-i N EAC(X,SC)‘#SC
ACH ‘

if  AC €z,
Qo(i'(ii)é'z'i () &5 (x,5C)>scC

otherwise,

where F means the logical function, which computes the

new value of AC,
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§ 4.4,.4 Post-edit of results

After applying the tfansformation formulas to every
branches and connecting branches to reconstruct the pro-
gram sequence according to the sequence diagram, we
obtain the object program. The object program is not,
however, the most efficient one and needs "post-edit" by
man. The post-edit is made in order to brush up the
object program and to make it more practical. The defi-
nite rule of post-edit has not been reached but the pro-
gram is processed case by case with a few exceptions of
the general rule.

Consider the following situation. TlHere may happen
to occur the non-sense register operation such as

*(X)—>e(X). This is obtained from the transformation
of the pair (DRW X, STO X). This operation has no
effect and should be eliminated. Furthermore, if X 1is
not used by other operations, the register X itself
can be eliminated. In general the following rule is ap-
plicable:

Starting at the operator, where some register symbol,
saj X, appears at the right hand of the register opera-
tion for the first time, and tracing all sequences fol-
lowing it, if X is not found at the left hand of other

operators, then the reglister symbol X can be eliminated.

By this rule two registers were eliminated in the
case of TAKE WEIGHT.
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The other technique to eliminate the symbol and
reduce the program stepsis to change the name of register.
This technique is, however, applied by intuition of the
human being and can not be formulated completely. The
registers, which are eliminated by post-edit, were used
for the intermediate memory in the source program because
our KM has only one AC.

The logical circuits indicated in the next section
for example are those which were obtained by translation

and by post-edit after that,

§ 4.5 Examples of transformation

The program TAKE WEIGHT of Fig. 3.4A is transformed
for example. Consider the branch, which starts at c.

The procefure of transformation is indicated in Fig. 4.7.

c «(AC)—A
* (C)->AC } e(AC)->A () +(C)—AC

*(AC)->B «(4C) A N +(C)~fac,B}

EOR(A,AC)—>AC EOR(C,AC)—>AC N *(AC)—>A N «(C)—>B
e«(AC)>C EOR(C,aC)-=+fC,ClN-(AC)~>A N «(C)—B
*(B)->AC EOR(C,AC)—)C N -(AC) A N+(C)~>{B,AC}

AND(AC,A)—>AC  EOR(C,AC)-»C() AND(C,AC)->AC () «(AC)—>4

Ne(c)->B

Example of transformation of a branch

Fis. 4. E
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Thus this branch is transformed to the single con-

current compound operator,
¢ EOR(AC,C)—>CAND(C,AC)—>AC N+(AC)>AN +«(C)—>B,

The whole object program, which was post-edited, is
shown in Fig. 4.8, where the formula for the conditional

jump is not applied.

START ~ JNZ,,(&,SC)—> SC
HALT  HALT

a LSH1 (AC)—> D M RSHN-1 (AC) —AC
d JNZD(b,SC) - SC
JMP  HALT
b LSH1(D) —>D (\ RSHn-1(D)—> A
JNZ,(e,SC) —>5C
JMP 4
c EOR(A,AC)—> AC [ ) AND(A,AC)—>A
JNZ, (e ,SC) —> SC
JMP 4
e LSH1(A)—> A
JMP c

Object program of TAKE WEIGHT
Fig, 4.8

The logical circuit of the i-th bit, which corresponds
to the object program of Fig. 4.8 is shown in Fig. 4,9,
Its timing circult is given in Fig, 4.10.

- 156 -



AN

ACi+1

O

s

—
<

1l
TT|I LT

i’g

A

A

i+l

T

L

O

@

Operation part of TAKE WEIGHT
Fig. 4.9

i=2,3,. oo ,n-l

Aia



T Al’..o,An

C
= N,

A A

Al" . ,An
Acl’o ,Acn

A02 ACn

!

START

Fig.4.10 Timing circuit of TAKE WWIGHT
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The program "ADD X", which is addition of the con-

tents of AC and memory register X in the binary num-

ber system, is indicated in Fig. 4.11.

The object pro-

gram, which is obtained by transformation and post-edit,

is shown in Fig. 4.12.

of the registers have been changed by post-edit.

technique two registers were eliminated.

Among other tdchniques, the names

By this

The object cir-

cuit corresponding to Fig. 4.12 is shown in Fig. 4.13.

"ADD

START STO
EOR

STO

DRW:

AND

JINZ

DRW
HALT  HALT
a LSH
STO

DRW

JMP

X"

B START
X

c

B

X

a

C 0
3 a

X HALT
C

START

Source program of "ADD X"

Fig. 4.11

START e(X)—>A
b - EOR(AC,A)—> AC M\ AND(AC,A) —A
JNz,(a,S0)—> SC

HALT  HALT
a LSH1(A) — A
JMP b
Fig, - 4.12 Object program of "ADD X"
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g
b -—<[>__ Operation part
A
Ap<— —< 440
4
Al"}An | ACi, Ai
Al"':
. START
] ' A
DO DO o
"ADD X" JNZ >__
‘ ?5
Timing circult 5

i
T

Fig. 4.13 Adder designed by translation
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ACi

END

( ) Operation part

END EOR

| END

T
O

~O-

START

END

Fig. 4.14 Adder designed by man
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Fig. #.14 shows the adder, which was designed by a
student independently from our translation. It is shown
for the purpose of comparison. The timing circuits are
the same for both circuits. The operation part of this
method uses much elements than that of our method.

We investigated some other programs. Among them
there are MULT, which is the multiplication of two bi-
nary numbers and CMP, which compares the absolute values
of two binary numbers and branches the program sequence
according to the comparison. These examples suggest
some interesting problems, Above all the dependence of
the object machine‘on the difference of the source pro-
gram for the seame job is interesting. It seems that the
operation part may be affected by programming on the dif-
ferent principle, but the structure of loops of the tim-

ing circuit remains unaltered.
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