A COMPUTER MODEL
OF
NATURAL LANGUAGE UNDERSTANDING FOR JAPANESE

Jun-ichi Tsujii

Department of Electrical Engineering
Faculty of Engineering
Kyoto University
March 1978

A COMPUTER MODEL
OF |
NATURAL LANGUAGE UNDERSTANDING FOR JAPANESE

Jun-ichi Tsujii

Department of Electrical Engineering

Faculty of Engineering

DOC Kyoto University

1978 March 1978

A COMPUTER MODEL OF NATURAL LANGUAGE UNDERSTANDING FOR JAPANESE

Jun-ichi Tsujii

ABSTRACT

The research described here is concerned with the development
of a natural language understanding system. Various problems en-

countered during the development of the system are discussed.

A new programming ianguage PLATON has been developed to sim-
plify the writing of natural language analysis programs. It has
facilities for pattern matching and flexible backtracking. Flex-
ibie interactions between a syntactic analysis procedure and other
components, for instance semantic and contextual analysis procedures
and so on, can be easily realized by using the pattern matching
facility. The backtracking facility permits fairly complicated non-

deterministic programs to be written in a simple manner.

A program for analyzing Japanese sentences has been developed

by using PLATON. The program utilizes not only syntactic constraints
but also semantic and contextual information to disambiguate fairly
complex sentences. The idea of '"case" proposed by C.J.Fillmdre is
adopted and modified to represent the meaning of verbs and nouns.
Contextual information is represented in the form of semantic net-—
works. By utilizing these representations, the program can appro-
priately analyze long Japanese noun phrases concatenated by the post-
position "NO", and long Japanese sentences with embeddlng sentencés |

Omitted words and anaphoric expressions can also be analyzed suc-

cessfully.

As a higher level of representation, another form of semantic

network (called S.N.) is provided. While the meaning descriptions in
the dictionary are organized in a form convenient for sentence analysis,
the S.N. is designed to facilitate deduction and problem solving. The
S.N. provides a framework in which various kinds of knowledge, such as
procedural knowledge, knowledge about external data bases, algorithmic
knowledge etc., can be naturally integrated. Examples of problem solv-

ing using the S.N. are provided.

Designers of language understanding systems often bypass the
problem of morphological analysis. This is unrealistic for Japanese,
which has no definite word delimiters and uses compound words with a
high frequency. Since the writing system of Japanese is quite differ-
ent from those of Eufopean languages, we have had to devise our own
morphological analysis procedure for Japanese. A large computerized
Japanese dictionary is used for the procedure. The data structure and

some efficient access methods are discussed.

- 1ii -

ACKNOWLEDGMENTS

The author would like to express his sincere thanks to
professor Makoto Nagao of Kyoto University for the supervision and
continuous encouragement to complete this thesis. Not only he guided
the author to the present study but also gave him many helpful
suggestions and constructive comments during the course of this
study. He also critically read the manuscript of this thesis and
gave the author accurate comments to be sincerely appreciated.

The author also wishes to thank Profeéssor Toshiyuki Sakai.
He initially guided the author to this research area.

The author is grateful to Mr. Kazutoshi Tanaka, Mr. Akira
Terada, Mr. Akira Yamagami, Mr. Shuji Tatebe and the other members
of Professor Nagao's research group for their useful discussions with
the author. Mr. Tanaka contributed significantly to the content of
Chapter III and Chapter IV. Concerning Chapter V, Mr. Terada helped
the author very much in designing the S.N.. Mr. Yamagami and Mr.
Tatebe helped the author in the implementation of the morphological
procedure described in Chapter VI.

Dr. Michael J. Freiling read the manuscript of the thesis
and corrected many errors in English.

The author is also grateful to Miss Setsuko Akiyama and Miss
Hidemi Funagoshi for the preparation and typing of this thesis.

- 1ii -

ABSTRACT

TABLE OF CONTENTS

ACKNOWLEDGMENTS
TABLE OF CONTENTS

CHAPTER I
I-1
I-2

I-3

CHAPTER II
1I-1
11-2
I1-3
I1-4
1I-5
11-6

I1-7

INTRODUCTION
Introduction

Language Understanding System - A Survey of Related
Work

Qutline of the Thesis

A PROGRAMMING LANGUAGE FOR NATURAL LANGUAGE ANALYSIS
Introduction
Outline of PLATON
Pattern-Matching in PLATON
Representation of Grammar in PLATON
Push-Down-and Pop-Up Operations - Error Recoveries

A Simple Example

Conclusion

CHAPTER III DESCRIPTION OF MEANING AND SEMANTIC ANALYSIS OF

ITI-1
ITI-2

JAPANESE SENTENCES
Introduction

Lexical Descriptions of Words

I11-2-1 Noun Deécription

ITI-2-2 Verb Description

I1I-3

Analysis of Noun Phrases

I1I-3-1 Properties of a Noun Phrase

ITI-

3-2 Analysis Procedure for a Noun Phrase

ITI-3-3 Analysis of Conjunctive Noun Phrases

ITI-4

CHAPTER IV

Iv-1
Iv-2

Ahélysis of a Simple Sentence
CONTEXTUAL ANALYSIS OF JAPANESE SENTENCES

Introduction

Memory Structure for Contextual Information

Iv-2-1 Noun Stack(NS)

- iv -

iii

iv

10

27
27
31
33
40
43

51

53
58
58
62
71
71
75
81
85

93
94
95

Iv-2-2 Hypothetical Noun Stack(HNS)

V-3 Estimation of the Omitted Words

IvV-3-1 Omitted Word in a Simple Sentence
IV-3-2 Omitted Word in a Noun Phrase o
Iv-3-3 Detailed Description of the Trapping List(TL)

IV-4 Processing of Anaphoric Expressions

IV-5 Analysis of Complex Sentences.

IV-6 Conclusion

98

99
100
104
105
107
112

CHAPTER V SEMANTIC NETWORK AS INTERNAL KNOWLEDGE REPRESENTATION
V-1 Introduction 121
V—2 Internal knowledge Representation - Survey of Related

Research Works 122
V-3 Definition of the Semantic Network - S.N. 131
V-3-1 Variable Node and Constant Node 131
V-3-2 . Function Node 132
V-3-3 Predicate Node 133
V-4 Generalization Hierarchy 140
V-4-1 Concept Hierarchy and SELF Node 141
V-4-2 Concept Hierarchy and DISJOINT NODE 146
V-5 Path Merging and Assimilation of New Knowledge 147
V-6 Generic Node and Occurrence Node 150
V-7 Description Language for the S.N. 153
V-8 Operations of the S.N.
V-8-1 Identification of Objects with Concepts 157
V-8-2 Calculation of Property Values ; 166
V-8-3 Evaluation of Boolean Expressions 171
V-9 Conclusion 175

CHAPTER VI DICTIONARY ORGANIZATION AND MORPHOLOGICAL ANALYSIS
VI-1 Introduction 179
VI-2 Dictionary Organization 180

VI-2-1 The Computerized Dictionary 181
Vi-2-2 Data Structure for Japanese Dictionary 183

—V—-

VI-3 Morphological Analysis of Japanese Written Texts
VIi-3-1 Basic Characteristics of Japanese Texts
"VI-3-2 Morphological Analysis of Japanese
VI-3-3 Experimental Result of Morphological Analysis

VI-4 Compound Noun in Japanese
VI-4-1 Segmentation of Japanese Compounds
VI-4-2 Segmentation Procedure of Long Compounds (1)

— Procedure without Dictionary Consultation

VI-4-3 Segmentation Procedure of Long Compounds (2)
- Procedure with Dictionary Consultation

CHAPTER VII CONCLUSION
VII-1 Summary of the Thesis
VII-2 Areas for Future Work

REFERENCES

PUBLICATIONS AND TECHNICAL REPORTS BY THE AUTHOR

- vi -

188
190
193
203
208
207

216

217

223
227

229

231

CHAPTER 1

INTRODUCTION

I-1 Introduction

Why are we interested in language processing by computer ?

People are interested in human language activities fdr various
reasons and the researchers in many established disciplines are en-
gaged in uncovering various aspects of human language activities
through their own research methodologies. Linguists have striven to
uncover syntactic or semantic features common to all of the world's
languages. They concentrate their research efforts on constructing
a theoretical framework in which the grammar of every language in
the world can be well explained. One of the main goals of psycholo-
gical studies is the experimental and theoretical understanding of
human cognitive processes, and language activities play a central
role in those processes. Psychologists investigate the internal
mechanisms of human cognition through observing how a child learns
his native language and how people communicate with each other by

means of language.

Why however are computer scientists interested in natural

language ? Furthermore, from what viewpoints and by what methodology

should they study natural language phenomena ?

From the practical point of view, it is desired that a com-
puter be able to understand and process natural language because of

the following reasons :

1. Natural language is the most convenient and flexible media

for man-machine communications.

In the near future we can expect a vast increase in the range

of computer applications and a corresponding increase of the effect
of computers on our daily liyes. All sorts of people, not only
computer specialists but also non-specialists such as researchers of
various fields of natural and social sciences, maﬁagers of various
enterprises, and even housewives will enjay the benefits of computer

technology.

One of the main objectives of the attempt to develop systems
which can understand natural language is to make it easier for ordi-

nary people to interact with a computer system directly and fluently.

2. Natural language is one of the most important types of

data which may be processed and stored by computer.

By the benefit of the recent development of technologies, we
have come to be able to process various kinds of data by computer.
However, there still remain some important types of data which cannot
be processed freely by a computer. Natural language texts are one of
these types. It is still not possible to automatically translate
texts from opne natural language into another. Though we can extract
spectral information easily from arbitrary wave forms by computer,

we cannot extract key words automatically from natural language texts.

One of the main objectives of developing a system which can
process natural language data is to offer people the capability to
manipulate, transform and manage natural language data in arbitrary

ways.

The most interesting feature of computer natural language
research to many workers, however, is that the methods a computer
uses in comprehending language may serve as a model in the attempt
to study human language comprehension, or language comprehension in
general. In order to understand the methodology which computer
scientists have adopted in the study area, it is necessary to examine
the research work which has so far been produced. In this chapter,

we will first make a brief survey of current work in computational

linguistics which is.related to our research in section I-2. Then
in section I-3 we will explain the outline of this thesis, which de-

scribes results obtained during the past few years by the author.

I-2 Language Understanding System --- A Survey of Related Work

Initially the major problem of computational linguistics
was machine translation. Machine translation (MT) programs were de-
signed to accept a text in one language (source-language) as input
and produce as output a text in another language (object-language
or target-language) that has the same meaning. The initial approach
to MT was very simple-minded. Giant dictionaries were prepared in
which the equivalent target-language word was assigned to each word
of the source-language. For each word in an
input text, an equivalent in the target-language was found. Then,
rules were applied that in order to transform the word ordering of
the source language into that of the target-language. However, the
results obtained by this approach were not encouraging. Researchers
in MT came to believe that a more precise understanding of the syntax
of natural languages was necessary for better translation. The
first attempt was to apply a certain set of syntactic rules to the
input sentences and to obtain certain intermediate structures which
represent syntactic constructions of sentences. These intermediate
structures were usually called parse trees. A certain set of rules
was to be applied on a parse tree to obtain the corresponding syn-
tactic construction of the target-language. Generation of a sentence
in the target-language, then, was defined as the mapping of the syn-
tactic structure into lexical strings. In this respect, Chomsky's

theories began to gain favor. In Syntactic Structure, Chomsky(1957)

outlined the theory of transformational grammar. This was a new

syntactic theory, and people working on machine translation consid-
ered the programming of transformational grammars as the solution

to the MT problem. However, it did not take long for the research-
ers to feel that this approach had come to a deadlock. It appeared

that even a simple sentence such as
Time flies 1like an arrow

has many possible syntactic structures (Kuno, 1963). In order to

select a single correct syntactic structure from among others, it

seemed necessary to grapple with the problem of semantics of natural
language. Moreover, it seemed that not only semantics but also

knowledge of the physical world and inferential abilities based upon h
it were needed for translation. Y. Wilks (1975a,b) presents an ex-

ample as follows, which requires such kinds of abilities. Suppose

that an input text is

The soldiers fired at the women and I saw several of

them fall.

His problem was to translate the sentence to French. In analyzing

the above sentence, the question arises of whether them refersjfo-

soldiers or women because the choice will result in a differently

gendered pronoun in French. 1In order to disambiguate the reference

of such an anaphoric expression, the system will have to be able to

infer that things fired at often fall or at least are much more

likely to fall than things doing the firing. Hence there must be

access to inferencial information here, above and beyond the mean- .

ings of the constituent words.

What is really needed for good translation is a successful -
computational model of language comprehension. Such computational
models should include the compoments, for not only syntactic but
also gemantic and pragmatic analyses, and the model should also be
able to explain how these components interact with each other in the

process of comprehension. Such computational models must be more

-4 -

precise and performance—oriented.than those proposed by linguists

or psychologists.

T. Winograd stated in his thesis (Winograd, 1972) his atti-
tude to computational linguistics as follows :

When a human reader sees a sentence, he uses knowledge to
understand it. This includes not only grammar, but also his knowl-
edge about words, the context of the sentence, and most important,
his knowledge about the subject matter. A computer program supplied

with only a grammar for manipulating the syntax of language could
not produce a translation of reasonable quality.

and therefore,

If we really want computers to understand us, we need to
give them ability to use more knowledge. In addition to a grammar
of the language, they need to have all sorts of knowledge about the
subject they are discussing, and they have to use reasoning to
combine facts in the right way to understand a sentence and respond
to it.

These attitudes have come to be common among the researchers
in computational linguistics. In recent years, the research focus
in computational linguistics gradually shifted from the development
of techniques for language processing to the construction of com-
putational models of understanding natural language. The researchers
were first convinced that the extent to which a system understands
input would be demonstrated by the behaviour of the system when a
certain sentence, a question or a request, was received. They
thought : if a system could make conversations with human as if it
were a human being, it could be claimed that the system understood
natural language. Remarkable advances have been made in this direc-
tion. The programs which understand English by R.F.Simmons (1975),
L.S.Coles (1968), B.Raphael (1968), T.Winograd (1972), W.A.Woods
(1972) and others are remarkable examples. In particular, SHRDLU
by Winograd and LUNAR by Woods showed remarkable performance in

conversations about the 'block world' and 'moon rocks', respectively.

Because these systems can give meaningful replies to certain ques-

tions or perform appropriate actions for given requests, the extent
to which the system understands the inﬁut is.reflected more directly
in the performance of the system than in other systems such as those
for machine translation. However, because different conversation
systems treat different domains of discourse and different domains
usually require different mechanisms of inference and frameworks

for representing knowledge, it is very difficult to claim that a
certain system is better in general than other systems. For example,
it is difficult to say whether SHRDLU is better than LUNAR or vice
versa. The conversational program ELIZA by J.Weizenbaum (1966)
could simulate the conversational mode of a Rogerian psychotherapist
as examplified in the following brief excerpt, without any under-
standing mechanisms (Responses from the computer are in the upper

case letters).

Well, my boyfriend made me come here.

YOUR BOYFRIEND MADE YOU COME HERE?

He says I'm depressed much of the time.

I AM SORRY TO HEAR YOU ARE DEPRESSED.

It's true, I am unhappy.

DO YOU THINK COMING HERE WILL HELP YOU NOT TO BE UNHAPPY?
Etc.

Though ELIZA showed a remarkable and very natural mode of
conversation, its internal mechanism was far from a reasonable model
of human comprehension. However, if one is limited to superficial
observations of relationships between human inputs and system's
responses, one can hardly say that the recently developed conversa-
tion systems simulate human conversational behaviour definitely
better than ELIZA. Here we encounter, the difficult problem of how
to evaluate or compare the performances obtained by different sys-
tems. One must carefully examine in detail the nature of the mech-
anisms and representational frameworks are employed, what internal

processings were responsible for producing responses, and to what

extent the internal processing simulates the human behayiour of

understanding language.

The following criteria should be useful for the evaluation

and comparison of various understanding systems :

1. Conecrete vs. Absfract : As described earlier, natural
language processings can be divided into several components such as
morphological, syntactic, semantic and pragmatic components of
analysis. These components are theoretically organized in a hier-

archical form, typically constructed as shown in Fig. I-1.

|Conceptua1 Representation
Extra-Linguistic Knowledge
(common sense knowledge,

lgonceptual Processf;;}————"inferential abilities, etc.)

Semantic Representation

Correspondence between Linguistic
Expressions and Conceptual
Content (Lexical Decompositions
of Words, etc.)

Syntactic Representation

. s Linguistic Knowledge
ISyntactzc Analysis (Grgmmar Rules) &

Sequence of Lexical Words

Rules of Writting Systems of

IMorphological ALZysiEI'—’ Language, Inflectional Rules,

etc.

ISurface Form I

Representation Processing Level Relevant Knowledge

Fig. I-1 Concrete vs. Abstract Hierarchy

The lower component level in this hierarchy is, the more dependent
the processing is on the peculiarities of the language being pro-
cessed. Because the characteristics of data and algorithms employed
in the morphological analysis are highly dependent on the writing
systems of languages, the morphological procedure for Japanese may
be quite different from that for English. On the other hand, the

structures which represent conceptual meaning of a sentence and the

inference procedures which will be applied on the conceptual struc-
tures may well proye to be independent of the actual language.
Because the understanding of a sentence is reflected in the form of
internal representation, a useful criterion for the evaluation of
understanding systems is the degree to which the representation be-
comes independent of the surface structure of a sentence. In other
words, it is desired that the two sentences which have different
surface constructions but convey the same meaning for a human be
converted to the same internal representation. When this criterion
is employed it can be safely claimed that ELIZA did not understand
the input sentences because ELIZA did not use an internal represen-
tation of any kind.

The surface forms of the sentences

Jim bought a car from John.

John sold a car to Jim.

are completely different. The syntactic parse trees for these sen-
tences may also be quite different. Therefore, through the observa-
tion of surface forms or parse trees one cannot say anything about
the relationships of the above two sentences. The method for re-
presentation of meaning developed by R.F.Simmons (1973) may explain
the equivalence of the meanings of these two sentences. The re-
presentation of meaning in his system was based on the notion of
cases developed by linguists such as C.J.Fillomre (1968), M.Celce
(1972) and so on. A set of transformation rules on case structures
was provided in his system to explain the equivalence of meaning

_of two different sentences. It can be claimed that his representa-
tion is more abstract than ordinary parse trees. In another system
for representing meaning, Schank and others (1973) proposed a certain
set of conceptual primitives. Using these conceptual primitives,
their system MARGIE represented the meanings of the above two sen-
tences in the same structure. Therefore, no transformation rules

‘were necessary to explain the equivalence. In this sense, Schank's

-8 -

representation based on conceptual dependency theory is more ab-
stract or conceptual than Simmon's representation based on cases.
Of course, the linguistic analysis component in.the Schank's system
is responsible .to transform input sentences into such abstract

structures, and may become more complicated than Simmon's.

2. ILocal vs. Global : Early language processing systems
such as those for machine translation treated each sentence as a
separate processing unit, Syntactic analysis in such systems was
applied to each sentence at a time. The result of the analysis was
usually a pégse tréé.However, the designers of recent understanding
systems believe that a more global analysis and representation
framework is needed for better understanding. The anaphoric ex-
pression given above in the soldiers and women example is a good
example which requires inter-sentential processings. The system
SHRDLU by Winograd demonstrated that, in order to resolve the
ambiguities of anaphoric references, a system must be able not only
to represent the meaning of each sentence but also to maintain a
continuity of representation regarding the situations it learns
about. The discussions by E.Charniak (1972) developed this idea

furtﬁer. He considered the following example.

Janet needed some money. She got her piggybank(PB) and

started to shake it. Finally some money came out.

To claim that a system understands the above story, it should be
able to answer correctly the following questions, which are very

easy for humans. -

Why did Janet get the PB"?
Did Janet get the money ?
Why was the PB shaken ?

In order to answer these questions, the system should have
a great deal of common sense knowledge which is not explicitly

mentioned in the story, and should utilize it in order to understand

sentences in a definite context. The descriptions based on semantic
or conceptual primitiyes mentioned aboye are chiefly concerned with
the meaning of a single word or sentence. The descriptions can be
seen to still be linguistic ones(One can easily find many similar-
ities between the descriptions based on Schank's conceptual depen-
dency theory and the descriptions developed by the linguists in the
school of generative semantics). However, the description needed
in computer models of language comprehension is more related to
pragmatics and less to linguistics. That is, the description should
include what events usually follow a certain event, for what purpose
human performs a certain action, and so on.

Recently M.Minsky (1974), Schank (1975a,b), Charniak (1977),
Wilks (1977) and others have proposed data-structures which repre-
sent human common-sense knowledge about more global and stereotyped
situations. These data-structures have been called Frames, Scripts,
Pseudo-Texts and so on. SAM (1975b), by Schank et.al.,Ms.Maloprop
(1977) by Charniak and other recently developed systems which employ
such kinds of data-structure, therefore, can be said to have the
ability of understanding texts more globally than MARGIE, SHRDLU,
LUNAR etc.

In the following section we will discuss the approach we
take towards those two questions of representation, i.e. that of
local information vs.global information, and that of representation
in terms of concrete, linguistic features vs. more abstract,concep-

tual features.

I-3 Outline of the Thesis

The ultimate goal of our research is to construct a system

which can reply appropriately in natural language sentences to ques-

- 10 -

tions posed to it also in natural language. At the present we
haye chosen the field of elementary chemistry as the micro-world of
our system. The scope of questions which our system is expected to

handle includes not only simple questions such as
'Do you know the molecular weight of hydrochlorine ?'

but also somewhat difficult questions such as shown in Fig. I-2.

Human : There exists about 10 cm3 of certain liquid in a test
tube. The pH value of the liquid is about 3. When I
put 1 gr of zinc in it, the liquid dissolved the metal,
and some hydrogen was created.

Can you imazine what the liquid is ?

Computer : Because the pH value of the liquid is less than 7,
it is acid. The acid which dissolves zinc is either
nitric acid, sulfuric acid or hydrochloric acid .

But I can not determine which one the liquid is.

Human : In order to distinguish those three kinds of chemical

material, what shall I do ?

L A A L I I I S A Y L R A R SR BN N A R N A A SN R A I A B B A SR SR Y

Human : We have 10 cc of aqueous solution in a beaker. The
solute is supposed to be sodium, and the density is

about 10 %Z. Can you calculate the mol-density ?

Computer : I can't, but if either the total mass or the

consistency is known, I can calculate it.

Fig. I-2 Hypothetical Dialogue with the System

To accomplish this goal there are many difficult problems
which must be solved beforehand. First of all we must be able to

represent knowledge about theenvironmentsbf chemical experiments,

- 11 -

and also be able to transform given questions into internal struc-
tures on which a problem solyer and/or deduction program can work
effectively. Natural 1angﬁage sentences usually contain much irre-
levant information for such tasks and necessary information is often
expressed only in very implicit forms or sometimes not at all.
Second, we must develop an appropriate framework in which we can
represent technical knowledge which is specific to elementary chem-
istry and procedures which utilize this knowledge to solve problems
and make deductions. In the chemical field there are many types of
knowledge, that is, numerical data (molecular weight,), reaction
relationships (Sulfuric acid reacts copper and prodﬁces hydrogen, ...
....), and other, more complex forms of knowledge (If a liquid dis-
solves copper and the pH of the liquid is less than 4, then the liquid
is either sulfuric acid, nitric acid, or hydrochloric acid, ...). We
must integrate these fragments of knowledge into a framework and de-
velop procedures which can utilize them efficiently during the problem
solving process.

In the following pages, we will describe these problems in

more detail and discuss our attitude to them.

We consider the process of understanding natural language as
the combined activities of extracting relevant information from sen-
tences, and of representing the extracted information in structures
which are convenient for the procedures that perform some expected
tasks. Our task is to construct a system which can answer questions
in chemical fields. Therefore, the final structure which should be
extracted from sentences is the structure which the problem solving
procedure will work on. We will describe this structure in Chapter V.
The structure has a somewhat rigid form though also a clear logical
meaning. However, it is our contention that it is very difficult to
apply such logically rigid knowledge directly to the analysis of sen-
tences. It is best to provide in the system several intermediate

levels of representation and the procedures which utilize them. It

- 12 -

is also our contention that the two issues mentioned in section I-2,
namely concrefe vs. abstract and ldcal ys. global, are somewhat inde-
pendent, and the confusion between these should be carefully avoided.
In recent research on language understanding systems it is often the
case that these two issues are confused. Thus knowledge for global
processing was represented at a highly conceptual level. Schank'é-
Scripts, Charniak's Frames and so on are examples. However, we be-
lieve that some of global processing can be performed much easier by
utilizing intermediate levels of representation and that sometimes

we can not adequately deal with a certain phenomena of natural lan-.
guage without recourse to representations at very low levels. We do
not claim that processing at the conceptual level is not important,
but that there are many useful clues in the lower levels to control
conceptual level processing. Because natural language is the only
medium by which humans can communicate their more complex ideas, it
is obviously true that the natural language sentences contain many
useful keys for guiding the interpretations of the sentences. The
reason of the failures of the early syntax-based language processing
systems is not, of course, that they used syntax, but that they relied
only on syntactic processing and thus grasped syntactic structures in
wrong ways. It is necessary to properly appreciate the role of syntax
and even the role of the surface forms of sentences. We will explain

this by a simple exaﬁfle(the meanings of the symbols in these examples
will be given in pp65 - 68). :

Though we claimed in Section 1-2 that the sentences

(1) John-WA KURUMA-O Jim-NI UTTA.
SUBJ a car OBJ IOBJ to sell(past tense)
John sold a car to Jim.
(2) Jim-WA John-KARA KURUMA-O KATTA.
SUBJ FROM a car OBJ to buy(past tense)

Jim bought a car from John.

have the same meaning, it is always difficult to judge whether two
sentences have the same meanings. This depends on what one means by

the word meaning. From the computational point of view, we provide

- 13 -

certain internal representations for processing them. If two
sentences haye different impoft and thus different influences on
certain inferential processeé, it is necessary that they be expressed
by different internal representations. Consider the following simple

sequences of sentence.

(3) John-WA KURUMA-O0 Jim-NI UTTA.

SUBJ a car OBJ IOBJ to sell(past tense)
John sold a car to Jim.
SOSHITE SONO-KANE-O Mary-NI HARATTA.
and the money OBJ I0BJ to pay(past tense)

And (someone) paid the money to Mary.
(4) Jim-WA John-KARA KURUMA~O KATTA.

SUBJ FROM a car OBJ to buy(past tense)
Jim bought a car from John.
SOSHITE SONO-KANE-0 Mary-NI HARATTA. _
and the money OBJ IOBJ to pay(past tense)

And (someone) paid the money to Mary.

The first lines of (3) and (4) are just the sentences (1) and
(2) respectively, and the second lines of (3) and (4) are identical.
In the second sentences of the texts, the specification of the person
who paid the money to Mary is omitted. We must identify from the
first sentence the person who paid the money. If we generate the
same internal representations for the sentences (1) and (2), the anal-
ysis of the second sentences in both cases will proceed in completely
the same manner, and therefore the same person would be identified
with the person who paid the money. However, in the case of (3), the
ordinary Japanese reader would definitely consider John as the person
who paid the money while in the case of (4) they would identify Jim
as the payer. These distinctions can be based solely on the obser-
vations of the surface forms of the sentences (1) and (2). The

relevant observations are:

The Japanese postposition '-WA' indicates the focus of atten-

tion and the focussed word or phrase is often omitted in succeeding

- 14 -

sentences.

In Japanese, identical case elements in succeeding sentences
are apt to be omitted. The AGENT of the first sentence in (3) is
John so that John is considered to be the most feasible candidate, for
the filler of the omitted case element in the second sentence while

the AGENT of the first sentence in(4) is Jim.

These observations are sufficient to determine who paid the
money. However, systems which are solely based on the conceptual
level of representations such as MARGIE could not understand the
above sequences of sentences properly. Systems based on logical de-
ductions may also fail to process the sentences. Such a system might

reason as follows:

If a personbuys-something from somebody, he should pay money
to somebody.

Jim bought a car from John.

Therefore,Jim should pay the money to John.

However, Jim paid the money to Mary.

Therefore, the sequence of the events in these texts should

be invalid. I can not understand what happened at all.

Wilks' system, based on the notion of Preference Semantics,
might behave much better than those just mentioned. He claims that
the approach to the understanding language through artificial intelli-
gence places too much emphasis on problem solving and logical deduc-
tion facilities. Furthermore, he feels that more intuitive modes of
reasoning are necessary to understand ordinary texts. However, his
system does not pay any attention to the syntactic structures or sur-
face forms of sentences. His system uses syntactic clues only for
the segmentation of sentences. Therefore, his system might identify
in the both cases the person who paid the money as being Jim, by
thinking roughly as follows.

If a person buys something from somebody, he probably pays

- 15 -

money for it., At least, it is more appropriate to consider that the
person who bought something as paying money than the person who sold
an article. Therefore, it is more semantically feasible that Jim

paid the money than that John did.

Because the human process of understanding natural language
may involve many different levels of processing, and each processing
level seems to require a different kind of representation, we should
provide all these levels in a language understanding system. The
systems developed so far were much biased towards performing the
final tasks of the systems. That is, they often used a single inter-
nal representation at every stage of language processing. This single
representation was chosen to be convenient for performing final tasks
such as question-answering in particularly restricted domains, para-
phrasing of sentences and so on. This is also the case in more
recently proposed systems which are equipped with data structures for
capturing the more global characteristics of natural language texts.
Schank's scripts, for example, consists of several script statements,
each of which is assumed to be expressed by his conceptual dependency
formalism. It seems that there is an implicit hypothesis that global
understanding can be obtained by only working with the conceptual
level of representations. However, as the above example shows, this
hypothesis is not always true. Syntactic structures and the surface
forms of sentences in some cases play an important roles in under-
standing the global structure of texts. At any rate, because these
examples provide useful keys to guide higher levels of processing,

we should always keep them in mind .

The above example offers another interesting problem. In the
second sentence we find the anaphoric expression SONO-KANE(the money),
though money is not explicitely mentioned in the first sentence. A
human reader can immediately understand that it refers to the money
which Jim paid John for the car. This type of reasoning, of course,

is based on human empirical knowledge and therefore cannot be

- 16 -

explained within the framework of syntax. We need certain represen-
tations at another level, and certain procedures which utilize them.
At this level of representation, it is desired that the sentences
(1) and (2) be transformed into the same structure, because the
surface verbs KAU(to buy) and URU(Zo sell) denote the same event in
the actual world and to a good approximation have the same implica-

tions at more abstract levels of consideration.

In our system, the following levels of representation are

provided at present. (see Fig. I-3)

. i —] blem Solving and
Semantic A gzguci?ono ving
Network 1 = I
‘ - - J
! - - - Semantic Analysis
Dictionary ! I
‘ Deep Case Structures "
L
! i[@urface Case Structures } -
= - - -
Augmented ' '
Transition <———Lﬁrammar RuZesJ Syntactic
Network L - — - __'Analysis
" - -Semaézkc
o Contextual i
. | Network
l Representation ‘
' !
|=igocus of Attentton]| Stack
;) Contextual
Fig.1-3 Analysis

Levels of Representation in our System

1. Surface Case Structures (SCS) : We feel that the notion
of case proposed by linguists such as C.J.Fillmore (1968) and
M.Celce (1973) are useful for bridging the gaps between syntactic

- 17 -

structures and .the semantics of sentences. However, the grammars
which they proposed were constructed for the purpose of generating
sentences from deep case structures, These methods, then, must be
carefully reconsidered before they can be applied to the problem of
sentence recognition. As we pointed out earlier, sentences which
have the same meaning, that is, which can be generated from the
same deep case structures, may have different imports in global
processing. This is natural because the speaker's intent is usually
reflected in the transformation processes from the deep case struc-
tures to the surface forms, and this intent plays a central role in
understanding global characteristics of the texts.

We provided our system with two different levels of represen-
tation based on cases. One is called surface case structure and the
other deep case structure. The surface forms of sentences are
almost directly reflected in the SCS.

The purpose of the representation at this level is as
follows :

(1) In English, the role (or case) of a noun phrase in a
sentence is usually evident in the surface ordering of phrases. 1In
Japanese, on the other hand, case is usually marked by the postposi-
tion attached to the phrase. The ordering of phrases is relatively
free. Therefore, it may not be feasible to apply such structures
as semantic templates (Wilks) directly to the surface forms of
sentences. Our SCS can be seen as a form of semantic template aug-
mented with surface case markers. Because it is rather easy to
translate Japanese postpositions into case markers, it is easier to
check whether a sentence matches a certain SCS than to attempt to
match a DCS directly to the sentence. Without this level of repre-
sentation, very complicated analyses (including perhaps inverse
applications of transformational rules) may be required to fit a

DCS to the surface form of a sentence.

(2) This representation level contains many useful clues

- 18 -

for disambiguating certain types of anaphoric expressions and for

processing omitted words or phrases. Such useful information would
be lost at the leyel of the DCS. The SCS, however, preserves them
in such a way that they can be extracted puch more easily than from

the surface form.

An important consideration in choosing the form of internal
representation is the ease with wﬁich the procedure working on the
representations can manipulate the structure and how easily relevant
information can be retrieved from the structure. We have found that
the case-frame-like structures shown in Fig. I-4 are convenient for
integrating the semantics of words in a sentence with the syntactic
structure of a sentence, and that the case-frame-like structures are
more convenient for the later utilization than the parse trees in
the conventional forms such as shown in Fig. I-5.

MOD

HEAT MELT

VIOLENTLY

UBJ

(someone) N3

Fig. I-4 Case Representation

A
[
|
S
NP vp
]]
[j : '
Np VP
mon N
I |
NUM N VMOD 14
| vio len tly l I
2 gr copper gasburner heat melt

Fig. I-5 Conventional Parse Tree

(The‘meaning of the symbols in this figure will be given in pp 65 - 68).

- 19 -

Each verb has its own usage patterns (possibly more than
one). These usage patterns are tabulated in the Verb Dictionary as
the surface case frames of the verb. One of these case frames is to
be instantiated by an actual sentence. The description for a noun
at this level is also constructed in a fashion similar to the case
frame of a verb. Some types of nouns also have several relational
slots in their descriptions which are to-be filled by other words or
phrases. We have classified the nouns which appear in the chemical
field into five groups and prepared different frameworks of expres-

sing their meanings.

2. Deep Case Structures (DCS) : In human natural language
understanding, the ability to perform intuitive reasoning plays a
central role. Such ability is based on forms of human empirical
knowledge which do not always satisfy the logical: criteria of truth.
Associative functions relating to semantic similarities between
words, semantic depth of an interpretation and probability of asso-
ciative occurrence of events are inherent factors in the process of
intuitive understanding and reasoning. Because a certain event in
the actual world can be expressed by several different surface forms,
there may be several different SCS's for an event. This is also the
case for the representation of noun phrases in SCS level. We need
another level of representations in which we can express human
empirical knowledge naturally. For this purpose, we supplied the
system with a framework of representations called Deep Case Struct-
ures (DCS). This representation level roughly corresponds to the
deep case structures of Fillmore. His case system was developed in
order to explain various kinds of language phenomena. Therefore, he
proposed a set of primitive cases (Agentive, Instrumental, Dative,
Factive, Locative and Objective) aimed at being sufficient to deal
with linguistic phenomena. We are, however, interested in the notion
of deep cases for representing various kinds of human empirical

knowledge. For this purpbse, we must reconsider Fillmore's set of-

- 20 -

primitive cases carefully and revise them, if necessary.

» Each SCS in the Verb Dictionary has a corresponding DCS.
By utilizing this description, an SCS which is instantiated by an
actual sentence may be transformed into its corresponding DCS.
Different SCS's which refer to the same event or concept are trans-
formed into a same structure at this level. Moreover, additional
information is attached to a DCS, such as, what events will be
likely to succeed the current event, what changes are expected among
the participants of the event (usually expressed by noun phrases
which are related to certain deep cases of the verb and so on),.
Utilizing this additional information it is possible to do various

types of global processing.

3. Contextual Representations by a Semantic Network :

When one cannot understand a sentence satisfactorily, one refers
back to the preceding sentences to obtain a key to its understanding.
If one cannot find what is needed, one leaves the question pending
and proceeds to the next sentence. This procedure is necessary in
order to understand linguistic structures which are longer than a
single sentence.

Both the SCS and DCS are stored in the dictionary, and in
this sense are permanent knowledge. On the other hand, in order for
the system to be able to perform certain kinds of contextual pro-
cessing, it is neccessary to supply both contextual representations
and procedures which utilize these representations. We use a
semantic network for this purpose. The network is constructed from
the DCS's of input sentences. In order to reflect information
contained in SCS's and the various associative expectations clustered
around each DCS, the network is augmented by three types of lists.
These lists contain information about what objects are currently the
focus of attention, what objects are expected to appear, what events
are expected to occur next and so on. Various heuristics are used

to arrange the ordering of elements in these lists. These heuristics

- 21 -

utilize clues from the SCS's and from knowledge attached to the DCS's
of input sentences. The procedures for contextual processings

access the semantic netowork through these lists.

4. Logical Representation in the Semantic Network S.N, :
The information attached to a DCS includes vague and empirical forms
of knowledge which are not always logically valid. However, in
order to permit the system to answer many questions a human might
ask, we should supply some procedure which performs problem solving
and/or logical deductions. Though the DCS representation and the
semantic network for contextual knowledge are rich enough for the
purpose of analysis of sentences, they contain much irrelevant
information and sometimes lack necessary information for problem
solving and logical deductions. For example, as pointed out by
L.Schubert (1976), case relationships do not have any meaningful
logical implications, though they are important in the analysis of
sentences. We have provided another type of semantic network called
S.N. for the representation of knowledge which is specific to the
field of chemistry. The S.N. shares various features in common with
recently developed network systems by G.Hendrix (1975a,b), S.Scrag
(1976), J.Sowa (1976), L.Schubert (1976), J.Mylopoulos (1975,1977),
J.Minker (1977), R.F.Simmons (1977) and so on. These are intended
to clarify the expressive power of conventional semantic networks,
by exploiting their logical properties. Their basic methods are
based on the expression of certain logical constructs within network
representations. However, perhaps too much emphasis has been placed
on the direct correspondence between the syntax of network represen-
tations and the syntax of ordinary logical formulas. As a result,
their representations have come to be basically graphical notations
for the corresponding logical formulas, though some useful ideas
were developed, for example, the partitioning of networks by Hendrix,
introduction of Lambda abstraction in networks by Schubert, and so

on. An advantage of network representation is, we believe, that

- 22 -

both the selectjion of releyant knowledge and the execution of logical
operations may be carried out at the same time Byvsimply trayersing
networks. We have developed S.N, to preserve this advantage while
preserving the logical validity of both representations

and operations. Moreover, the semantic network we devel-
oped provides a framework in which yarious kinds of knowledge, such
as procedural knowledge, knowledge about external data bases and so
on, can be naturally embedded. We have also developed a programming

language suitable for describing and constructing semantic networks.

In this thesis, we will describe in detail the organization
of each component of our question-answering system, which has been
developed in accordance with our position on the above issues. The

outline of this thesis is as follows.

As described in section I-2, a language analysis program
consists of many components, for instance,morphological, syntactic,
semantic and pragmatic analyses. It is a difficult problem to control
and invoke these subcomponenfs at appropriate times during the analy-
sis. We have developed a new programming language called PLATON(Pro-
gramming LAnguage for Tree OperatioN) for this purpose. The language
is developed to simplify the writing natural language analysis pro-
grams. Based on the model of ATN(Augmented Transition Network) pro-
posed by W. Woods (1970), PLATON is provided with various additional
facilities such as automatic backtracking, pattern matching and so
on. The pattern matching process has the facility to extract sub-
structures from an input sentence and invoke appropriate semantic and
contextual checking functions. Using this language we can easily
obtain natural and flexible interactions between syntactic and other
components. A detailed description of PLATON will be given in Chap-
ter II.

Chapter III and Chapter IV are devoted to a detailed explana-
tion of the program which analyze Japanese sentences. Chapter III is

mainly concerned with the description of word meanings (using the

- 23 -

—

SCS and DCS) in the dictionary and with procedures for analyzing noun
phrases and simple sentences. The problem of analyzing a long noun
phrase in Japanese has never been attacked prior to this research.

It is a very difficult problem because a long noun phrase usually
contains very few syntactic clues to its analysis. We will show that
the relationships among the elements of a noun phrase can be appro-
priately determined by utilizing various types semantic constraints.
These semantic constraints are expressed in case-frame-like structures
in the dictionary. In Chapter IV, we will explain howv contextual in-
formation may be represented by a semantic network and how it may be
utilized to disambiguate reference in anaphoric expressions, or to
determine omitted words or phrases. Some experimental results will

also be given in this chapter.

In Chapter V, we will describe in detail the construction of
the semantic network S.N., in which we can express specific knowledge
about chemistry. Because our question-answering system is at present
restricted to elementary chemistry, the examples of representations
given in this chapter are all taken from that field. S.N., however
isa generﬁlframework for representing knowledge in problem solving
and logical deductions. The problem solver which utilizes these
representations also has wide applicability, which permits the ex-
pression of knowledge relating to many different fields. Designers
of language understanding systems often bypass the problem of morpho-
logical analysis simply by claiming that words in texts directly
correspond to lexical entries. This is unrvealistic for Japanese,
because we have no definite word delimiters in Japanese (such as
spaces in English), and because compounding is much more frequently
used in Japanese than in English. Some morphological processing
must be applied to texts before syntactic and semantic analysis. The
morphological analysis is highly dependent on characteristics of the
language itself, especially on the writing system. Since the writing

system of Japanese is quite different from those of European languages,

- 24 -

we have had to devise our own morphological analysis procedure for
Japanese. The detailed construétion df the morphological analysis
procedure for Japanese and some experimental results are given in
Chapter VI. A large computerized Japanese dictionary (about 70,000
lexical entries) is used for morphological analysis. The data struc—
ture and some efficient access methods for this dictionary are also

discussed.

In Chapter VII, we summarize the researches in this thesis
and makes some brief comments on the future problems in this research

area.

- 25 -

246 TEK

CHAPTER 11

A PROGRAMMING LANGUAGE FOR NATURAL LANGUAGE ANALYSIS

II-1 Introduction

PLATON(Programming LAnguage for Tree OperatioN), which has
the facilities of pattern matching and flexible backtracking, is
described. The language is developed to simplify writing natural
language analysis programs. The pattern matching process hés the
facility to extract sub-strings from the input sentence and invoke
semantic and contextual checking functions. This makes the inter-
actions between syntactic and other components very easy. The
designers of natural language analysis programs have not to pay any
attention to the interactions. We think that a backtracking mechanism
is also neceésary for language understanding as in other fields of
artificial intelligence. We can set up arbitrary numbers of decision
points in the analysis programs. If processing results in a failure,
a message which expresses the cause of the failure will be sent up.
The control will be modified appropriately according to the message.
This prevents 'wasted backtrackings' during the analysis process of
sentences, and enables us to write fairly complicated non-determi-
nistic programs in a simple manner. In this chapter we describe the
specifications and control mechanisms of PLATON. An example of

structural analysis using PLATON is also described.

I1-2 Outline of PLATON

There are two key issues in analyzing natural language by

- 27 -

computer;

1) how to represent knowledge (semantics, pragmatice and the state
of the world - context ;and 2) how to advance the programming tech-
nology appropriate for syntactic-semantic, syntactic-contextual

interface.

The point in designing a programming language is to make this kind of
programming less painful.

Traditional systems which represent grammars as a set of
rewriting rules usually have poor control mechanisms, and flexible
interaction between the syntactic and other components is not pos-
sible. Systems in which rules of grammars are embedded in procedures,
on the other hand, make it possible to intermix the syntactic and
semantic analyses in an intimate way. However, these systems are apt
to destroy the intelligibility and regularity of natural language
grammars, because in these systems both rules and their control mech-

anisms are contained in the same program.

Recently various systems for natural language analysis have
been developed. T. Winograd's (1972) "PROGRAMMAR" is a typical exam-
ple of procedure oriented systems. In this system the syntactic and
other components can interact closely in the course of analyzing
sentences. However, details of the program are lost in the richness
of this interaction. LINGOL, developed by V. Pratt (1973, 1975) at
MIT, is a language appropriate to syntax-semantics interface and in
which it is easy to write grammars in the form of rewriting rules.
The TAUM group at Montreal University (1971) has evolved a programming
language named System-Q in which expressions of trees, strings and
lists of them can be matched against partial expressions (structural
patterns) containing variables and can be transformed in an arbitrary
fashion. |

In Japan, H. TANAKA et. al, (1977) developed Extented LINGOL
at ETL. The Extended LINGOL was a modified version of LINGOL and

- 28 -

equipped with additional facilities which were not provided with the
original LINGQL, such as specifying rules of ﬁhe morpﬁological analy-
sis of Japanese and so on, |

The augmented transition network (ATN) proposed by W. Woods
(1970) ,from our point of view,gives an especially good framework for
natural language analysis systems. One of the most attractive fea-
tures is the clear discrimination between grammatical rules and the
control mechanism. This enables us to develop the model by adding
various facilities to its control mechanism.

The ATN model has the following additional merits:

1. It provides power of expression equivalent to transforma-
tional grammars.

2. It maintains much of the readability of context-free
grammars.

3. Rules of a grammar can be changed easily, so we can improve
them through a trial-and-error process while writing the grammar.

4. It is possible to impose various types of semantic and
pragmatic conditions on the branches between states. By doing this,
close interactions between the syntactic and other components can

easily be accomplished.

However ATN has the following shortcomings, especially when

we apply it to the parsing of Japanese sentences:

1. It scans words one-by-one from the leftmost end of an
input sentence, checks the applicability of a rule, and makes the
transition from one state to another. This method may be well suited
to English sentences, but because the order of words and phrases in
Japanese sentences is relatively free, it is preferable to check the
applicability of a rule by a flexible pattern-matching method. 1In
addition, without a pattern-matching mechanism, a single rewriting
rule of an ordinary grammar is often to be expressed by several rules

belonging to different states in Woods' ATN parser.

- 29 -

2. An ATN model essentially performs a kind of top-down
analysis of sentences. Therefore recovery from failures in pre-

diction is most difficult.

Considering these factors, we developed PLATON (a Program-
ming LAnguage for Tree-OperatioN), which is based on the ATN model
and has various additional capabilities such as pattern-matching,
flexible backtracking, and so on. As in System-Q and LINGOL,
PLATON's pattern-matching facility makes it easy to write rewriting
rules. Moreover, it extracts substructures from the inputs and
invokes appropriate semantic and contextual checking functions.

These may be arbitrary LISP functions defined by the user, the argu-

ments of which are the extracted substructures.

A backtracking mechanism is also necessary for language
understanding as in other fields of artificial intelligence. During
the analysis, various sorts of heuristic information should be uti-
lizable. At any stage, analysis based on criteria which may relate

'to syntactic, semantic or contextual considerations taken separately
may be unreliable. An interpretation which fulfils all the criteria,
however, may be the correct one. The program should be designed

such that it can choose the most satisfactory rule from many candi-
dates according to the criteria at hand. In further processing, if
the choice is found to be wrong by other criteria, the program must
_be able to backtrack to the point at which the relevant decision

was made. In PLATON we can easily set up arbitrary numbers of deci-
sion points in the program. Then, if subsequent processing results
in some failure, control will come back to the points relevant to the

cause of the failure.

- 30 -~

IT-3 pattern-Matching in PLATON

Before proceeding to the detailed description of PLATON, we
will explain the representation schema for input sentences and parsed
trees. The process of analyzing a sentence, roughly speaking, may
be regarded as the process of transforming an ordered list of words
to a tree structure, which shows explicitly the interrelationships
of each word in the input sentence. During the process, trees which
correspond to the parts already analyzed, and lists which have not
been processed yet, may coexist together in a single structure. We
therefore wish to represent such a coexisting structure of trees and
lists. A list structure is a structure in which the order of ele-
ments is not changeable. On the other hand, a tree structure con-
sists of a single root node and several nodes which are tied to the
root node by distinguishable relations. Because relations between
the root and the other nodes are explicitly.specified, the order of
nodes in a tree is changeable except for the root node which is
placed in the leftmost position. Different matching schemas will be

applied to trees and lists.

The formal definition of such coexisting structures is as
follows. (structure)» is the fundamental data-structure into which
all data processed by PLATON must be transformed. Hereafter we
refer to this as the "structure". The formal definition of ¢ struc-

ture) is:

<structure > ;:=<tree>{<list>
<list> ;:= (*<«structures>)
<structures> ;:=|<structure><structures>
<tree> ;;:;=<node>l|(«node><branches>)
< branches> ;;=<branch>|<branchs><branches>
<branch> ::= (crelation><tree>)
<node> ::=<list>|ARBITRARY LISP-ATOM
<relation> ::= ARBITRARY LISP-ATOM L
(* in the definition of 1list is a terminal symbol.)
A simple example is shown in Fig. II-1. "

- 31 -

(A B D)
(*A (B (Rl C)) (D (R2 E)
Rl .
Rz - (R3 (* F ©)))
c E F G)
Coexisting Structure of Corresponding Expression
" Trees and Lists in PLATON

Fig. II-1 Expression of Structure in PLATON

Two lists which have the same elements but different orderings (for
example, (*A B C) and (*A C B)), should be regarded as different
structures. On the other hand, two tree structures such as (A (Rl
B) (R2C)) and (A (R2C) (Rl B)) are regarded as identical. {
Besides the usual rewrite rules which treat such strings, structural
patterns which contain variable expressions are permitted in PLATON.
The PLATON-interpreter matches structural patterns containing varia-
ble expressions against the structure under process and checks

whether the specified pattern is found in it. At the same time, the

variables in the pattern are bound to the corresponding substructures.

Variables in patterns are indicated as :X (X is an arbitrary
LISP atom). The following can be expressed by variables in the above

definition of <structure)> :

(1) arbitrary numbers of <structures)>, that is to say, list elements
in the definition if <list> (Fig. II-2, Ex. 1). We can also
specify the number of list elements by indicating variables as
:X+number. For example, the yariable ;D2 will match ﬁith two
elements in a list,

(2) arbitrary numbers of <branches>, in the definition of < tree>
(Fig. II-2, Ex. 2).

(3) <tree> in the definition of <branch> (Fig. II-2, Ex. 3).

- 32 -

Structural Patterns Structures Results of Matching

Example 1
SUCCESS
(« A :K) (» A oB D BQq) (:(K.(+ B D))
R1 R2 R1 R1 R2 R1
c D c c D c
Example 2
SUCCESS
A
(B, (R))
1 R2
R1 R R2
c B D C D
Example 3
SUCCESS
(:n B)
A
R1 R2 RY 4
B ‘N ¢ D

Fig. II-2 TIllustration of Matching

We shall call such structural patterns <structure-1>. By using the
same variable several times in a pattern, we can express a structure
in which the same sub-structure appears in two or more different

places.

II-4 Representation of Grammar in PLATON

A grammar, whether generative or analytical, is represented
as a directed graph with labeled states and branches. There is one
state distinguished as the Start State and a set of states called
Final States. Each branch is a rewriting rule and has the following

elements:

- 33 -

(1) applicability conditions of the rule, typically re-
presented gs a structyral pattern ,

(2). actions which must be executed, if the rule is
applicable

(3) a structural pattern into which the input structure

should be transformed

Each state has several branches ordered according to the preference
of the rules. When the control jumps to a state, it checks the
rules associated with the state one-by-one until it finds an applic-
able rule. If such a rule is found, the input structure is trans-
formed into another structure specified by the rule and the control
makes the state transition.

In addition to the above basic mechanism the system is
provided with push-down and pop-up operations. The push-down opera-
tion is such that in the process of applying a rule, several sub-
structures are extracted from the whole structure by variable binding
mechanisms of pattern-matching. Then each is analyzed from a differ-
ent state. The pop-up operation is such that after each substructure
is analyzed appropriately, control comes back to the suspended rule

and execution continues. Using these operations, embedded structures

The detailed explanation of
push-down and pop-up operations
will be given in section II-5.

Fig. II-3 State Diagram

- 34 -

can be handled easily (See Fig. II-3).

Table 1 shows the formal definition of a grammar of PLATON.
It is shown that branches or rewriting rules in an AIN parser corre-
spond to six-tuples (i.e., <pcon> , <strx> , <con> , (<trans>),
(<acts>), <end>). «strx> corresponds to the left side of a re-
writing rule and describes the structural pattern to which a rule is

applicable. <strx> is, by definition

(1) / or
(2) <¢structure-1>

/ shows that a rule is applicable no matter what the structure under
process is. The variables used in <structure-1> are bound to corre-—
sponding substructures when matching succeeds. The results of
Example 1 (See Fig. II-2) indicate that the variable :K is bound to
the substructure (* (B (R1 C)) D).

The scope of variable binding is limited to within the realm
of the particular rule. The same variable name in different rules
has different interpretations; In this sense, :X-type variables in
<structure-1> are called Local Variables. On the other hand, we can
store certain kinds of results from the application of rules in re-
gisters and refer back to them in different rules. These are
variables which we call registers. They are represented by the sym-~
bols /X (X is an arbitrary LISP atom).

Besides the pattern-matching, <pcon> and <con> can also
check the applicability of a rule. Certain parts of the results
from the application of previous rules are contained in registeré,
not in the structure. We can check the contents of these registers
by using <pcon> -part functions like GR, GU, etc. (these functions
are listed in Table. II-2) and other LISP functions defined by the
usual LISP function, DEfINE. (See following page for Table. II-2.)

Semantic and contextualco-ordination between substructures
can bé checked by using appropriate functions in the <con>-part of a

rule. Semantic and contextual analyses cannot be expressed in the

- 35 -

£ grammar > :: («<states>)

< states > = <state> I <state> <states)>

<stated :: = (<state-named <rules>)

< rules> tr = |< rule> ¢rules>

<rule> s: = (¢ peond> ¢strx> ¢cond> (<trans>)(<acts>) <end >)
< trans> s = l < transit>< trans)>

<register-name>»

£ transit> :: ({ «<state-name > < structure-2> ? }) <errorpsy)

<variable-name>

<errorps> i = l(errorp> < errorps>

ferrorp> i: (<Lfailure-messaged> <act)p <pros>)

L Pros> HH <pro> | < Pro> <« pros>

&< Pro > HH
<end > L

(EXEC «<trans>) I(TRANS(< state-name > < stry>))

(NEXT <state-name®» < stry>)
| (NEXTB <state-name» <stry>)

|(POP < stryy)l (FM - failure-message>)

Zacts> e | < actDeacts >

1}

<act > it <form > | (SR «vegister-name> <form>)
| (SU ¢register-name> <form>)

[(SD <register-name> <form>)

< Strx> s ¢structure-1> | /

<stry> HH <structure-2> ' /

Zpeom,<econdis = <form>

(CR <register-name)>)I(GV <variable- name>)

<form> s

[(TR <structure-2>) |(TR /) | ARBITRARY LISP FORM

<variable- :: :X (X is an arbitrary LISP atom)
name

<register- :: = /X (X is an arbitrary LISP atom)

name)

Table. II-1 Formal Definition of Grammar iﬁ PLATON

Function

Argument

Effect

Value

SR

<register-name>
LISP - <form>»

SR stores the result of the
evaluation of the 2nd argu-
ment in the register.

the result of the
evaluation of the
2nd argument

sV

<variable-name>
LISP - < form)

SV stores the result of the
evaluation of the 2nd argu-
ment in the variable

the result of the
evaluation of the
2nd argument

GR

<register-name)>

GR get the content of the
register

the content of
the register

GV

<variable-name>

GV gets the value of the
variable

the value of
the variable

<structure-2>
or [/

TR transforms the variables
and registers in the struc-
tural pattern into their
values,

the transformed
structure

SuU

<register-name>
LISP - < form>

SU sets the reigster of the
hisher level processing.

the result of the
evaluation of the
2nd argument

SD

<register-name>
LISP - < form»

SD sets the register of the
lower level processing.

the result of the
evaluation of the
2nd argument

GU

<register-name>

GU gets the content of the
register of the higher
level.

the content of
the register

PUSHR

<Lregister-name>
LISP - < form)

PUSHR is defined as the
following.

(SR <register-name>
(CONS < form>
(GR «<register-
name>)))

the result of the
evaluation of the
2nd argument

Table. II-2 Functions of PLATON

- 37 -

form of simple rewriting rule. These analyses have differing re-
quirements such as lexical information about words which may in turn
represent knowledge of the world and contextual information which
may express the state of the world. We can use arbitrary LISP-forms
in the <con>-part, depending on the semantic and contextual models

we choose. For example, suppose

strx = (¥ (ADJ (TOK :N))(N(TOK :N1)) :I)
con = (SEM :N :N1)

Here TOK is the link between a word and its part of speech. :N and
:N1 are the words of an input sentence. SEM is a function defined
by the user which checks the semantic co-ordination between the
adjective :N and the noun :N1. By this function SEM, we can search,
if necessary, through both lexical entries and the contextual data
bases.

With this approach, if a certain syntaétic pattern is found
in the input structure, it is possible for an appropriate semantic
function to be called. Hence the intimate interactions between
syntactic and semantic components can be obtained easily without
destroying the clarity of natural language grammars.

Arbitrary LISP-forms can be also used in <act>-portion. They
will be evaluated when the rule is applied. If necessary, we can
set intermediate results into registers and variables by using the
functions listed in Table. II-2.

<end> comprises four varieties, and rules are divided into

four types. according to their <end> types.

1. NEXT-type: The <end> is in the form (NEXT <state-name> <stry>).
The <stry> corresponds to the right side of a rewriting rule,
and represents the transformed structure. A rule of this type
causes state-transition to the <(state-name)», when it is applied.

2. NEXTB-type: This rule also causes state-transition. Unlike
with the NEXT-type, state-saving is done and if further proces-

sing results in some failures, control comes back to the state

- 38 -

where this rule is applied. The environments, that is, the contents

of various registers will be restored, and the next rule belonging

to this state will be tried.

3. POP-type: The <end> -part of this type is in the form (POP
<stry>). When it is applied, the processing of this level is
ended and the control returns to the higher level with the value
<stry>.

4. TFM-type: The <end> -part of this type is in the form (FM
<failure;message>). The side effects of the processing at this
level, that is, register settings and so on, are cancelled (see

section II-4).

In ¢stry> we can use two kinds of variables, that is, the variables
used in <&strx> and registers. We find this structural pattern,
called <structure-2>, more suitable for writing transformational
rules than Woods' BUILDQ-operation. By way of illustration consider
the following: |

(*CDE (A (RL (*¥B))) FG)

(* :IT (A (RL:N)) :J)

(* (A (RL (* :I :N))(R2 /REG)) :J)
(G (R3 H))

input string

strx

stry
the content of /REG

As the result of matching, the variables :I, :N and :J are bound
to the substructures (* CDE), (* B) and (* F G) respectively.
The result of evaluating the <stry> is

(* (A (RL{(*CDEB))(R2(G(R3H))))FG).

If the rule is a POP-type one, then this structure will be returned
to the higher level processing. If it is NEXT- or NEXTB-type, then

the control will move to the specified state with this structure.

- 39 -

II-5 Push-down and Pop-up Operations --- Error Recoveries

By means of NEXTB-type rules, we can set up decision points
in a program. We can also do this by using push-down and pop-up
operations. A rule in PLATON finds particular syntactic clues by
its structural description «<strx>, and at the same time, extracts
substructures from the input string. From the structural descrip-
tion it is predicted that the substructures may have particular
constructions, that is, they may comprise noun phrases, relative
clauses or whatever. It is necessary to transfer the substructures
to states appropriate for analyzing these constructions predicted
and to return the analyzed structures back into the appropriate
places. In PLATON, these operétions can be described in the <trans>-

part of a rule. For example, suppose the <trans> -part of a rule is
(((SL :K :K)) ((S2 (% :I :J)/REG)))

When the control interprets this statement, the substructures cor-
responding to the variable :K and (* :I :J) are transferred to the
states S1 and S2 respectively. If the processings starting-from

these states are normally'completed (by a POP-type rule), then the
results are stored in the variable :K and the register /REG. In this
manner, by means of the push-down and pop-up mechanisms, substruc-
tures can be analyzed from appropriate states. Processing from these
states, however, may sometimes result in failure. That is, predic-
tions that certain relationships will be found among the elements of
substructures may not be fulfilled. In such instances the pushed

down state will send an error-message appropriate to the cause of the
failure by an FM-type rule. An FM-type rule points out that a certain
error has occurred in the processing. If NEXTB-type rules were used
in the previous processing at this level, control will go back to the
most recently used NEXTB-type rule. If NEXTB-type rules were not used

at this processing level, the error-message specified by the FM-type

- 40 -

rule will be sent to the <{trans> -part of the rule which directed
this push-down operation (see Fig. II-4). |

According to these error-messages, control-flow'can be
changed appropriately. For example, we can direct processing by

describing the 4trans)> -part in the following way.

(((S1 :K :XK)(ERRL (EXEC ((S5 :K :K)) ((86 (* :I :J) /REG))))
(ERR2 (TRANS (S8 /D))
((82 (* :I :J) /REG)))

In the above example, the processing of the substructure :K from the
state S1 will produce one of the following three results. According
to the returned value, the appropriate step will be taken:

(1) Normal return: the processing of :K is ended by a POP-
type rule. The result is stored in the variable :K and the next
push-down performed, that is (* :I :J) will be transferred to the
state S2,

(2) Return with an error-message: the processing of :K
results in a failure and an FM-type rule sends up an error-message.
If the message is ERR1l, then :K and (* :I :J) will be analyzed from
the states S5 and S6 respectively (EXEC-type). If it is ERR2, the
interpreter will give up the application of the present rule, and
pass the control to another state S8 (TRANS-type). If it is neither
ERR1 nor ERR2, the same step as (3) will be taken.

(3) Return with the value NIL: the processing from the state
S1 will send up the value NIL if it runs into a blind alley, that is,
there are no applicable rules. The interpreter will give up the ap-
plication of the present rule and proceed to the next rule attached

to this state.

Mechanisms which enable control flow to be appropriately
changed according to the error-messages from lower level processings
are not found in Woods' ATN parser. We can obtain flexible back-

tracking facilities by combining these mechanisms with NEXTB-type

- 41 -

Higher level processing

Push-Déwn Fai}hge-Message

NEXTB-type rules were
not applied in this level

Higher level processing

/
s

Push-Doéh
/

/

Lower level processing

This rule will be applied next.

Fig. II-4 Illustration of Backtracking

- 42 -

rules,

II-6 A Simple Example

By using PLATON, we have developed an analysis program for
Japanese sentences. The detailed construction of the program and
the examples which show how the various facilities of PLATON can be
used in writing grammars will be given in Chapter III and Chapter IV.
In this chapter, we illustrate by a rather simple example how struc-
tural analysis is performed by PLATON rules, and how the facility of

backtracking is used in the analysis process.

Japanese is a typical example of an SOV-language in which the
object and other constituents governed by a verb usually appear before

the verb in a sentence. A typical construction of a Japanese sentence

is shown in Fig. II-5.

T
v NP . V2 o

1 FIRE

FigII-5 Typical Construction of a Japanese Sentence

A verb may govern several noun phrases preceding it. A relative
clause modifying a noun may appear in the form '-- verb + noun --'.
The right boundary of the clause is easily identified by finding the
verb. The left boundary is often much more difficult to identify.

In Fig.I1-5 the noun phrase NPi+1 is a case element of the verb Vl'

2.
Because the rule of projections holds in Japanese as in other lan-

On the otner hand, the noun phrase NPi is governed by the verb V

guages, all the noun phrases between NPi+l and V1 are governed by Vl’

- 43 -

and the noun phrases before NPi are governed by V However, in the

course of analysis, such boundaries cannot be detirmined uniquely.
The analysis program fixes a temporary boundary and proceeds to the
next step in processing. If the temporary boundary is not correct,
the succeeding processing will fail and the control will come back to

the point at which the temporary boundary was fixed.

Now we will show a simple example of structural analysis by
PLATON. The example explains how the backtracking facility is used
in analyzing Japanese sentences. Because we want to visualize the
operations of PLATON without bothering with microscopic details of

Japanese sentences, we will take an imaginary problem as an example.

An input string is assumed to be a list. The elements of the
list are integers and trees of the form (X (SUM 0)). Here 'X' may
be regarded as a term modified by 'SUM O'. These two kinds of ele-
ments are arranged in an arbitrary order, except that the last element
is the tree (X(SUM 0)). The following is an example of an input

string:
(*5213 (X (SUMO)) 31 (X (SUMO)) 22 (X (SUM 0)))

The result of the transformation is expected to be in the following

form:
(* (X (SUM 4)) (X SUM 6)) (X (SUM 9)))

This result is regarded as representing the following relationships

between integers and 'X'.

e Tl
(5l13(X (SUIJO)) 31 (X (SBMlO))ZZ(X (SU}QO)))

The number associated with an 'X' by the relation 'SUM' shows the sum
of the integers which are governed by the 'X'. We can look upon the
relations between integers and an 'X' as the relations between noun

phrases and the verb in Japanese sentences. The result of the

- 44 -

analysis is assumed to satisfy the following conditions.

(1) Governor-governed relationships between integers and an 'X'
must obey the projection rule (i.e., clauses do not overlap).

(2) As a simulation of a semantic restriction, we attach a condition
that the sum of the integers governed by an 'X' should not ex-
ceed ten.

(3) As a simulation of a contextual restriction, we attach the con-
dition that a result (* (X (SUM num-1)) (X (SUM num-2))
(X (SUM num-N))) should maintain the relation, num-1 £ num-2<

« « + o Znum-N.

A set of rules is shown in the following. The corresponding

state-diagram is shown in Fig. II-6.

NEXTB

NEXT

POP

Fig. II-6 State Diagram of a Simple Example

- 45 -

SUMUP

I
=
|

BACKTRACK
o

strx:
con:
act:

end:

strx:
con:
act:
end:

strx:
con:
act:
end:

strx:
con:
act:
end:

strx:
con:

nmu

(* :I :I1 (X (SUM :N)) :J)
(GREATERP 10 (PLUS :N :I1))
((SV :N (PLUS :N :I1))
(PUSHR /REG :I1))
(NEXT SUMUP (* :I (X (SUM :N)) :J))

(* :I (X (SUM :N)) :J)

(CONTEXTCHECK /RESULT (TR (X (SUM :N))))
NIL

(NEXT BACKTRACK /)

(* :I (X (SUM :N)) :J)
T

NIL
(FM ZERROR)

(*)
T

((SR /RESULT (CONS 'X /RESULT)))
(POP /RESULT)

(* :I (X (SUM :N)) :J)

T

act:=((SR /REG NIL)

end:

strx:
con:
act:

end:

The input

(SR /RESULT (APPEND /RESULT (TR (X (SUM :N))))))

(NEXTB SUMUP (* :1I :J))

(* :I (X (SUM :N)) :J)
T
((POPR /TEMP /REG)
(SV :N (MINUS :N /TEMP)))
(NEXT BACKTRACK (* :I /TEMP (X (SUM :N :J))

string is the list shown in FiglI-6. Since the start

state is SUMUP, the first rule attached to this state is applied.

This rule will find the leftmost 'X' and an integer just before the

'X' (by SUMUP -1-, strx). The variable :I1 is bound to this integer.

This integer is added to the sum of the integers, :N, if the total

does not exceed ten (SUMUP -1-, con). PUSHR, used in the <act> -part,

is a PLATON function which puts the second argument on the head of

the first argument which is the register /REG(SUMUP -1-, act).

After this rule is applied, the control will enter the state SUMUP

again (SUMUP -1-, end). That is, this rule is applied until there

- 46 -

are no integers before the first 'X' or the sum of the integers

exceeds ten. As the result, the environment is the following:

structure under processing
= (*5 (X (SUM 6)) 31 (X (SUM 0)) 2 2 (X (SUM 0)))
relation?hig temporarily fixed between integers and 'X'
= (52 {—§=§ 31X22%X%)
content of /REG
=(213)

The second rule of SUMUP will be applied next. This rule checks by
its <con> -part whether the result at hand satisfies the third con-
dition, that is, the contextual restriction. Because the content of
/RESULT is NIL, the function CONTEXTCHECK returns the value T (sumupP
—-2-, con). So this rule is applicable. Control makes the state-
transition to the state BACKTRACK (SUMUP -2-, end). Because the
first rule of BACKTRACK is a NEXTB-type rule, state-saving is per-

formed. That is, the following environment is saved:

content of /REG = (2 1 3)
content of / RESULT = NIL

structure under processing =
(*5 (X (StM6)) 31 (X (SUMO)) 22 (X (SUM O)

By this rule, the registers /REG and /RESULT are set as follows
(BACKTRACK -1-, act).

/REG : = NIL
/RESULT: = ((X (SUM 6)))

And the structure is transformed to
(*531 (X (SUMO0)) 2 2 (X (SUM 0))).

A NEXTB-type rule causes a state transition as does a NEXT-type rule.
So control returns to the state SUMUP (BACKTRACK -1-, end). At this
state, a process similar to the one described above is performed. As

a result, the following governor-governed relationships are

- 47 -

established.

[T

(5213X31X22X)

Here the bold lines indicate the newly established relationships.

By the first rule of BACKTRACK the following environment is saved.

content of /REG = (53 1)
content of /RESULT = ((X (SUM 6)))
structure under processing = (¥ (X (SUM 9)) 2 2 (X (SUM 0)))

And /REG and /RESULT are set as the following (BACKTRACK -1-. act).

/REG. = NIL
/RESULT = ((X (SUM 6)) (X (SUM 9)))

The transformed structure is (BACKTRACK -1-, end)
(* 22 (X (suM0)))

The control is transferred to the state SUMUP. By applying the first
rule of this state repeatedly on the above structure the following

structure is obtained.
(* (X SUM 4)))

However, this result does not satisfy the contextual restric-
tion. So the application of the second rule of SUMUP fails because
the function CONTEXTCHECK used in <con > -part returns the value NIL
(SUMUP -2-, con). That is:

contextcheck [((X (SUM 6))(X (SUM 9))) : (X (SUM 4))] = NIL

The third rule, therefore, will be applied next. Because this rule
is an FM-type rule (SUMUP -3-, end), it causes an error and control
comes back to the point at which a NEXTB-type rule was applied most

recently. The saved environment is restored. This is:

/REG: = (5 31)
/RESULT: = ((X (SUM 6)))

- 48 -

sructure under processing: = (¥ (X (SUM 9)) 2 2 (X (SUM 0)))

Then by applying the second rule of BACKTRACK, the governor-governed
relationship established lastly in the previous process is cancelled.
The structure and the register /REG are changed as below (BACKTRACK
-2-, act):

/REG: = (3 1)
structure under processing: = (¥ 5 (X (SUM 4)) 2 2 (¥ (SUM 0)))

Control enters the BACKTRACK state again. The application

of the first rule saves the environment:

content of /REG = (3 1)
content of /RESULT = ((X (SUM 6))
structure under processing = (* 5 (X (SUM 4)) 2 2 (X (SUM 0)))

That is, the relationship indicated by the dotted line in the follow-

ing is cancelled:

|
' |
|)
(5 2 1 3 X 3 1 X 2 2 X)

Control transfers to the state SUMUP (BACKTRACK -1-, end) and
a similar process is performed. However, because the governoi-govern-
ed relationship between the integer 5 and the second 'X' is cancelled,
the sum of the integers governed by the first 'X', (213), is
greater than that of the second 'X', (31). The contextual condi-
tion, therefore, is not fulfilled, and the application of the second
rule of SUMUP will not succeed. So the temporarily established

relationships will be cancelled one-by-one as follows.

i |
(5 21 3 X 31X 2 2 X)

T_f 1 ¥
(5 21 3 X 3 1 X 2 2 X)

- 49 -

- ——

[} .
(5 21 3 X 31X 2 2 X)

After these relationships have been cancelled, the desired result is

obtained by the following sequence.

(5 2 1 ;__§ 3 {-k 2 2 X)

]
J

(5 2

w
5
=
>
N
N

X)

d
“7
:;-J_ |

(5 2 1

w
<

N

(%]

Nc—-—-

H—

-

() =

el

L
-

N

N

i

~

=
1
d]

w
»~
=
>
N ey
N
e
-

4

| | Ty [0 =
(5 2 1 3 1 2 2 X))
At the final stage of the processing, the fourth rule of
SUMUP, a POP-type rule, is applied and returns the value

(* (X (SUM 4)) (X (SuM 6)) (X (SuM 9))).

- 50 -

II-7 Conclusion

We have described in this chapter a programming language
called PLATON for natural language processing. The language has
several additional capabilities beyond the ATN parser of W. Woods.

Grammars written in the language not only maintain clarity of
representation but also provide adequately a natural interface bet-
ween the syntactic component and other components. By means of the
pattern-matching facility, we can write grammars in a quite natural
manner. And because of the PLATON variable binding mechanism, seman-
tic and contextual LISP functions are easily incorporated in syntac-
tic patterns. |

Flexible backtracking mechanisms and push-down operations
make complicated non-deterministic processing possible in a very
" simple way.

We have developed an analysis program for Japanese using this
language. The program can accept fairly complicated sentences in a
téxtbook of elementary chemistry. It can utilize the lexical and
contextual information of chemistry adequately during the analysis.
We will explain the detailed construction of the analysis program in
the following chapters (Chapter III and Chapter IV).

Perhaps, PLATON itself must be equipped with more semantics
and context-oriented operations such as specified lexical descriptions
and functions using them. However, which description method is most
efficient, and moreover, what semantic information must be stored in
the lexicon, are not yet entirely clear. So, as the first step,
PLATON leaves many parts of these problems for the user to specify
by LISP programs.

- 51 -

CHAPTER III

DESCRIPTION OF MEANING AND SEMANTIC ANALYSIS OF JAPANESE SENTENCES

III-1 Introduction

In this chapter and the following chapter (Chapter IV) we
describe the organization of the natural language parser. This forms
an important part of our question-answering system. The parser can
transform fairly complex sentences into abstract structures marked
for case. It utilizes detailed semantic dictionary descriptions
and contextual information abstracted from the preceding sentences.
Some intuitively appealing schemas of representation for the seman-
tic descriptions of words are discussed. Meanings of verbs are
described by using case concept. Additional information is at-
tached to case frames of each verb to indicate what changes the case
elements in the frame may undergo and what events may occur in suc-
cession. Meanings of nouns are also expressed in case-frame-like
descriptions. Nouns also have relational slots which must be filled
in by other words or phrases.

Several new techniques based on heuristically admissible
operations are presented in this chapter to analyze: 1) complex
and long noun phrases 2) conjunctive phrases and 3) a simple

sentence.
For the present, we have confined the domain of the system to

the field of elementary chemistry where we can describe the semantic

world in rather concrete terms. At the same time, various complex

- 53 -

events occur in this field. For example, substances which partici-
pate in particular events may disappear, new substances may emerge,
or some properties of the substances may be altered. To treat these
complex situations, it is necessary to formally repfesent relation-
ships between events and changes of state and to devise an appropri-

ate schema for representing context.

In most approaches to the understanding of natural language
through artificial intelligence, schemas which entail rigid logical
operations are used to represent both knowledge and context. Logical
operations appear to be necessary for solving some kinds of problems
in natural language, especially at the deep deductive level of under-
standing. However, intuitive reasoning is not easily formalized in
terms of logical operationms. It is our contention that intuitive
reasoning is completely based on the language activities in the human
brain. Associative functions relating to semantic similarities
between words, semantic depth of an interpretation and probability of
associative occurrence of events are inherent factors in intuitive

understanding and the reasoning process.

Y. Wilks (1975) in his system carries out intuitive reasoning
by employing the notion of semantic preference. His system seems to
work well cn;analyzing local relationships among words. However, in
order to analyze more global relationships (e.g., in dealing with
complex cases of anaphora) we require access to more information than
can be contained in formulas (templates) associated with the lexicon.
We find Wilks' use of CS-inference rules rather awkward. The system
would be much improved if accompanied by an appropriate schema for

representing context.

Case grammar sentence-analysis theories such as those of C.J.
Fillmore (1968) and M.Celce et.al.(1972) are based on the semantic
relationships between verbs. and nouns -- events and concepts.

R. F. Simmons (1973; 1975), D. A. Norman (1973), D. E. Rumelhart

(1973) and so on follow these theories to represent knowledge and

- 54 -

context in their systems. We also adopted case grammar and modified
it to account for Japanese sentences., We represent context in the
form of a semantic network. An input sentence is transformed into
a corresponding deep case structure. This structure is assimilated

with the semantic network constructed from previous sentences.

Japanese is a typical SOV language. The word order is rather
arbitrary except that the main verb comes last. Cases such as sub-
jective, objective and dative are syntactically indicated by post-
positions, but a postposition can be used for several deep cases
ambiguously. Hence the determination of underlying sentential struc-
tures rests heavily on an understanding of the semantic relations
between the main verb and nouns. Moreover in Japanese the words
which are essential in understanding a sentence are often omitted
without pronominal reflexes. Our system can infer from the semantic
descriptions of words what kinds of phrases should be supplied to
fill lexical gaps and search the contextual representation to find

appropriate fillers.

The final analysis produced by our parser is a semantic net-
work. This is to be used for the internal representation of data in
a question-answering system or as an intermediate expression in
machine translation. We will transform this semantic network into
more logically rigid structure called S. N.. The construction of the
S. N. and problem solving procedures based on it will be explained

in Chapter V.

The parser consists essentially of four fixed components:

1) The grammar consists of rules written in PLATON. A gram-
matical rule in PLATON consists of two parts: pattern rewrite which
is expressed as a pair of syntactic patterns, and semantic and con-
textual check which is an arbitrary LISP function. When a rule is
to be applied, the semantic and contextual check is employed to
determine whether the rule is semantically and contextually feasible.

For the present we have about two hundred rules for the analysis of

- 55 =

Japanese sentences. These rules are devised to combine various
syntactic patterns in Japanese with appropriate semantic and context-

ual checking functions.

2) In the dictionary are stored words along with their
vartous semantic relationships. We express the meaning of a word in
terms of how it may be related to other words. The meaning of a
verb is described in the form of case frames in the verb dictionary.
Two different levels of case frame descriptions are prepared for a
verb. One is called SCS (Surface Case Structure) and the other is
called DCS (Deep Case Structure). An SCS corresponds to a usage
pattern in the surface level of the verb. The diversity of the mean-
ings of Japanese postpositibns are resolved by this description. On
the other hand, a DCS describes an activity pattern of the action
denoted by the verb. The DCS roughly corresponds to the deep case
structures of linguistics. The DCS describes which case relations
the activity entails and what kind of referents will be appropriate
for each case slot. Additional information is provided with a DCS,
which feeds into the change or causative component used by D.A.Norman
(1973) . Such information indicates how one activity pattern may be
related to another by causal relationships and what related change
may occur in the semantic network representing context. From such
information we can infer what activities and changes will follow the
present activity.

The meanings of nouns are also expressed in the case-frame-
like descriptions. They also have relational slots which will be
filled in by other words or phrases. The formats of meaning descrip-

tions for a noun and a verb are given in section III-2.

3) Contextual representation in a Semantic Network. The
contextual representation is similar in form to the semantic network
of R. F. Simmons (1973; 1975) or the node space of Norman (1973)

In this representation there are two kinds of nodes. The C-node cor-

responds to a concept typically expressed by a noun. The S-node

- 56 -

corresponds to an event. An event is a realization of an action
pattern and each argument of the pattern is assigned a C-node. C-
nodes are related to S-nodes by the case-labeled relations. These

relations are bidirectional.
The following list shows the relations used in the network:

(1) Deep Case Relations: ACT, OBJ, PLACE, TIME -- A deep
case relation connects an S-node with its argument C-node.

(ii) Attributive Relations: VOLUME, COLOR, MASS, SHAPE —— An
attribute relation connects a C-node with its value. We can distin-
guish two C-nodes associated with the same lexical entry but different
values of attributes.

(iii) Token substitution: TOK -- TOK is used to connect a
node with a lexical entry.

(iv) Event-Event Relation: CAUSE, IMPLY -- Two S-nodes are
sometimes connected by a particular relation. The relations are
sometimes expressed explicitly in the surface sentence by a special

conjunction such as NODE (because), NARABA (if) and so on.

In our system the semantic network is accompanied by special
lists (Noun Stack-NS, Hypothetical Noun Stack-HNS, Trapping List-TL).
We call these lists Intermediate Term Memory. Contextual functions
work on these lists fo search appropriate nodes of the semantic net-
work which correspond to the referents of anabhorié expressions or
the unexpressed elements of sentences. These are described in Chapter
Iv.

(4) Semantic and Contextual functions are programmed in
LISP. These functions are incorporated in the PLATON rules along
with rewriting patterns. A contextual function takes as arguments
the semantic constraints a target node must satisfy and returns the
appropriate node if it is found in the semantic network. A semantic
function checks déscriptions in the dictionary to determine whether
the combination of two words is semantically permissible. For ana-

lyzing noun-noun combinations, we provide sixteen semantic functions.

- 57 -

ITI-2 LEXICAL DESCRIPTIONS OF WORDS
III-2-1 Noun Description

Most nouns have a definite meaning by themselves. We call
these Entity Nouns. An entity noun is considered to represent a
set of objects, and therefore is taken as a name of the set. The
objects belonging to the set may share the same properties. By
introducing another property the set may be divided into a number of
subsets, each of which is expressed by another noun. We describe
such set-inclusion relationships and set properties in the noun
dictionary.

We represent a property of a noun by an attribute-value pair
expressed as (A V). For instance, the dictionary entries for the

nouns 'material' and 'liquid' are :

material : ((SP) (ATTR(STATE) (MASS) (COLOR) (SHAPE) ———--——-=)
liquid : ((SP material) (ATTR (STATE *LIQUID) (SHAPE NIL)

The descriptions (STATE) (MASS) and so on in the definition of
'material', lack values (V) showing that 'material' may have arbi-
trary values of these attributes. In the definition of 'liquid',
there is an SP-link to 'material', which means that 'material' is a
super-set concept of 'liquid', or that 'liquid' is a subset or a
lower concept of 'material'. Objects belonging to a subset are con-
sidered to have the same properties as the objects of the super-set,
in addition to the properties described explicitly in its defihition.

By the above descriptions, we can see that the value of the
attribute STATE of 'liquid' is *LIQUID, and that of SHAPE is the
special value NIL. The *LIQUID is one of the primitive value mark-
ers. The primitive value markers are indicated by the preceding *.
The value NIL indicates that 'liquid' can not have any value of

SHAPE. By tracing up the SP-links, we can retrieve all the (A V)

- 58 -

pairs of an object. We assume the value of an attribute of a lower
concept has precedence over that of the upper concept. For instance

we can obtain the following full description of 'liquid'.
liquid : ((ATTR (STATE *LIQUID) (SHAPE NIL) (MASS) (COLOR) ~-—-))

These upper-lower relationships among entity nouns are not
expressed by a tree structure. Some nouns may share properties with
more than one noun. ‘Water' is such an example. 'Water' has the
properties of both 'liquid' and 'compound'. Since we permit a noun
to have several upper concepts, the relationships are represented by

a lattice as shown in Fig. III-1.

—‘_______ﬂ_ﬂ____———MATERIAL—_____________‘__‘__-_~
MIXTURE) COMPOUND

LIQUID GAS SOLID
SOLUTION ‘
WATER OXYGEN- METAL ONIA SODIUM
//// \\\\\ CHLORIDE
WATER ZINC COPPER
SOLUTION S =L 2D
LIQUID SALT

AMMONTA SOLUTION

Fig. III-1 Upper-Lower Relationships among Nouns

Although most nouns are regarded as entity nouns, there are
a few nouns which have relational functions. We call them Relational
Nouns; 'Father' is a familiar example. In order to identify a person
indicated by the word, we have to know whose father he is. 1In the
chemical field we can easily find such nouns (e.g., 'weight', 'tem-
perature', 'color', and 'mass'). These are called Attribute Nouns.

Their meanings are described in a different way from that of ordinary

- 59 -

nouns. Fig. III-2 shows some examples. Here, A-ST designates the
standard attributive relation which is expressed by the word. The
description (NF N-A) shows the noun belongs to the group of attrib-

ute nouns.

(OOKISA ((NF N-A) (A-ST VOLUME MASS LENGTH AREA)
size (SP ZOKUSEIL RYO)))
: attribute quantity
(IrO ((NF N-A)(A-ST COLOR) (SP ZOKUSEI SHITSU)))
color attribute quality

* An attribute noun may express more than one standard attribute.
OOKISA (size) expresses VOLUME, MASS, LENGTH or AREA. The attrib-

ute it expresses in context depends upon what entity noun is used
with it.

%% Attribute nouns are further classified into two groups, quanti-
tative and qualitative. A qualitative attribute noun cannot be a
case element of a verb which requires quantitative nouns. The verbs
FUERU (increase) and HERU (decrease) are such examples of verbs.

Fig. III-2 Attribute Nouns

'Liquid' is another relational noun. The Japanese word
which corresponds to 'liquid' is EKITAI. While 'liquid' in English
can be either a noun or an adjective, EKITAI in Japanese is cate-
gorized syntactically as a noun. But semantically EKITAI has two
different meanings, one corresponding to the noun usage of 'liquid’,
the other corresponding to the adjective usage of it. The noun
EKITAI in the adjective usage is called é Value Noun with the attrib-
ute STATE. Another word AKAIRO (red color) is also a value noun of
the-attribute COLOR. Fig. III-3 shows the descriﬁtion of these nouns

in the noun dictiomnary.

(EKITAI ((NF N-E) (SP BUSSHITSU)(ATTR (STATE *LIQUID) (SHAPE NIL))
liquid material

((NF N-V) (V-DESCRIPTION (STATE * LIQUID)))

- 60 -

(ARAIRO ((NF N-E)(SP IRO))
red color

((NF N-V) (V-DESCRIPTION (COLOR *RED))))

Fig. III-3 Value Nouns

There are other kinds of relational nouns: Action, Preposi-
tional, Anaphoric and Function nouns. An action noun is the nomi-
nalization of a verb. For example, KANSATSU (ébservation) is the
nominalization of the verb KANSATSU-SURU (observe). We describe
this in the dictionary by giving a link to the original verb and by

adding other information.

There are not postpositional particles in Japanese for every
preposition in English. Some special nouns play the role of English
prepositions. We call such nouns Prepositional Nouns. Because a
prepositional noun usually has more than one meaning just as an
English preposition has, we attach semantic conditions to help
disambiguate them. Fig. III-4 shows examples of lexical descriptions

of prepositional nouns.

(MAE ((NF N-P) (F-DESCRIPTION

before

in front of ((CAT ACTION) TIME BEFORE)

((AND (CAT N-E)(LOWER DOUGU
instrument
BUSSHITSU)) PLACE IN-FRONT-OF))))
material

(NAKA ((NF N-P) (F-DESCRIPTION

((OR (LOWER YOUKI) (LOWER
container

- 61 -

EKITAI)) PLACE IN))))
liquid

Fig, III-4 Prepositional Nouns

Corresponding to each meaning we give a triplet. The first element
is the semantic condition. If the condition is satisfied, the
corresponding second element is adopted as the meaning. If not, the
next triplet is tried. The second element of a triplet represents
the whole meaning of the phrase. For example, the whole meaning of
the phrase TSUKUE [desk-entity noun] NO [of] UE [on-prepositional
noun] (on the desk) is PLACE. The third element of a triplet ex-
presses the relationship by which the other noun in the phrase may

specialize the whole meaning.

III-2-2 Verb Description

Verbs, adjectives, and prepositions in English have rela-
tional meanings with nouns. A verb represents a certain activity,
while the agent associated with the activity is not inherent to the
meaning of the verb (neither is the object which the activity af-
fects, nor the other components). These components appear in a,
sentence with certain loose relations to a verb. In our system the
meaning of a verb is described by setting up several relational
slots which will be filled in by nouns. In this sense the meaning
of a verb is not confined to itself, but is related to nouns.

We describe these relations by using the case concept intro-
duced by C. J. Fillmore (1968). Case may be looked upon as a role
which an object plays in an activity. Because several objects usual-
ly participate in an activity, there are several cases associated

with an activity. An object is expressed by a noun phrase, and an

- 62 -

activity by a verb. A sentence instantiates an activity by supplying
noun phrases to the cases associated with the activity. We call

such instantiated activity an Event. The problem is to decide what
case a noun phrase holds in relation to a verb in any particular

event.

Though there are usually some syntactic clues in a sentence
as to how it instantiates an activity, they are not enough to decide
the case relationships between noun phrases and a verb. To establish
these relationships we need both syntactic and semantic information.
A verb has its own special usage patterns. That is, certain surface
cases are necessary for the verb and certain objects are preferable
as fillers for the case. We call these labeled patterns SCS's or
Case Frames for Verbs, and express them as a list of case pairs such
as (CASE NOUN). A verb usually has more than one case frame corre-

sponding to different usages. A typical description of a verb is
shown in Fig. III-5(The meanings of the symbols ACT, OBJ and so on

will be given in pp 65 - 68),

(TOKASU (cr
melt ((ACT NINGEN)(OBJ KOTAI)(IN EKITAI))
dissolve human being solid liquid
((ACT NINGEN) (OBJ KOTAI) (INST))
human being solid
((ACT NINGEN) (OBJ KINZOKU) (INST SAN))
human being metal aeid
((ACT SAN)(OBJ KINZOKU)) »
acid metal

Fig. III-5 A Typical Description of a Verb

According to this description, we understand the surface verb

TOKASU (melt, dissolve) has four different usages. In the first three

- 63 -

usages the verb takes the ACTOR case, and prefers to take the sub-
concepts of the noun NINGEN (human being) as the case element. In
such a way case frame descriptions are closely tied to noun descrip-
tions, especially with the upper-lower concept relationships among

nouns.

Notice that the verb TOKASU refers to two different activi-
ties. One refers to an activity which is usually expressed by the
English verb dissolve and the other refers to an activity expressed
by melt. We express these two activities by *DISSOLVE and *MELT
respectively. *DISSOLVE and *MELT are the verbs in the DCS level.
The first case frame is for the activity *DISSOLVE and the others
are for the activity *MELT. We attached a DCS to each case frame.
The meaning description of the verb '"TOKASU (melt, dissolve)' with
DCS's is shown in Fig. III-6.

(TOKASU (cr
melt ((ACT NINGEN) (OBJ KOTAI) (IN EKITAI))
dissolve human being solid liquid
—«((*DISSOLVE (ACT IN) (OBJ O0BJ)))
((ACT NINGEN) (OBJ KOTAT) (INST)
human being solid
— ((*MELT (ACT /)(OBJ O0BJ)))
((ACT NINGEN) (OBJ KINZOKU) (INST SAN))

human being metal actid
—((¥MELT (ACT INST) (OBJ OBJ)))

((ACT SAN)(OBJ KINZOKU)
actd metal
—— ((*MELT ((ACT ACT)(OBJ OBJ)))))

Fig. ITI-6 A Typical Description of a Verb with DCS's

There are two types of cases, Intrinsic and Extrinsic cases.

- 64 -

The intrinsic cases of a verb are essential ones for the activity,
but extrinsic cases are not. For example, the cases of TIME and
PLACE, which express when and where an event occurs, are extrinsic
for ordinary verbs. Most activities can be modified by these ex-
trinsic cases, but the kinds of nouns preferred for these case
elements do not strongly depend on the kinds of activities. There-
fore, we describe only the intrinsic cases in the verb dictionary.

We set up following fourteen cases for the analysis of sentences in

a textbook of elementary chemistry.
(1) ACT : ACTor is responsible for action.
(a) KARE-GA I0U -0 SHIKENKAN-NI IRERU.
he-(ACT) sulfur +OBJ)test tube-(IN, PLACE, ets.)put in
He puts sulfur in a test tube.

In the chemical field, a chemical object is often regarded
as ACTor of an action, though it does not exercise intention in
regard to action. For example, the underlined word in the following
sentence is regarded as ACT.

(b) ENSAN ~-WA DOU -0 TOKASU.
hydrochloric acid -(all cases) copper -OBJ melt

Hydrochloric acid melts copper.

(2) SUBJ : SUBJect is the primary topic of a sentence.

(a) KITAI-NO TAISEKI -GA .FUERU.
gas volume -(SUBJ) increase
The volume of the gas increases.
(b) I0U -WA KIIROI.
sulfur -(SUBJ) yellow

Sulfur is yellow.

(3) OBJ : OBJect is the receiving end of an activity. It is affected
by the activity.

(a) KARE-GA MIZU -0 NESSURU.
he-(SUBJ) wdter -(0BJ) heat

He heats the water.

- 65 -

(b) ENSAN -GA AEN -0 TOKASU.
hydrochloric acid -(ACT) zinec =-(0BJ) melt

Hydrochloric acid melts zinc.

(4) I0BJ : This case is semantically the most neutral case. It is
an object or concept which is affected by an activity, and
which is not OBJect. This case is usually specialized by
the other cases such as PLACE, TO, IN and so on, depending
on the semantic interpretation of the verb itself.

(a) DOU -0 ENSAN ~NI TSUKERU.
copper -(0BJ) hydrochloric acid -(10BJ) dip

(Someone) dips copper in hydrochloric acid.

(5) FROM : FORM describes a former position or state in time or space
of the entailed SUBJect or OBJect of the verb.

(a) SHIKENKAN -KARA BIIKAA'W -E EKITAI-O UTSUSU.
test tube -(FROM) beaker -(PLACE) 1iquid-(OBJ) pour

(Someone) pours the liquid from the test tube into the
beaker.

(6) RESULT : RESULT is to the future as FROM is to the past. It
describes the resultant position or state as the entailed
SUBject or OBJect of the verb.

(a) MIZU -GA SUIJOUKI -NI NARU.
water ~(SUBJ) steam -~ (RESULT) become

The water becomes steam.

(7) INST : INSTrument is an object used as the tool or device by
which an activity is carried out.

(a) GASU~BAANAA -DE MIZU -0 NESSURU.
gas burner - (INST) water -(0BJ) heat

(Someone) heats water by a gas burner.

(8) TO : This is the destination in time or space of something in the
action.

- 66 -

(a) SUIBUN -GA NAKUNARU TOKI MADE NESSHI TSUZUKERU,.
water -(SUBJ) be gone time-(TO)till heat continue

(Someone) continues to heat (it) till the water is gone.

(9) FACT : FACT is used to indicate sentential complement.

(a) KORE -0 SHITSURYOUHOZON-NO HOUSOKU 729 IU.
it -(0BJ) the conservation of mass law -(FACT) call

(We) call it the law of conservation of mass.

(10) PLACE : PLACE is used to indicate locations in space of the

action.
(a) ARUCOORU-RANPU-NO YOKO jgl BIIKAA: -0 OKU.
alcohol lamp side -(PLACE) beaker -(0OBJ) put

(Someone) puts a beaker on the side of an alcohol lamp.

(11) IN : IN indicates a more specific relation to PLACE.

(a) MIZu -0 SHIKENKAN -NI IRERU.
water -(0BJ) test tube -(IN) pour

(Someone) pours water in a test tube.

(12) SOURCE : This shows constituent materials of compounds.

(a) ENSOSANNATORIUMU -WA ENSO, SANSO, NATORIUMU
sodium chlorate -(SUBJ) chlorine oxygen sodium
-KARA DEKITEIRU.

- (SOURCE) consist

Sodium chlorate consists of chlorine, oxygen and sodium.

(13) CAUSE : This shows a reason or cause of the activity.

(a) NESSHITA-TAME -NI HAGESHIKU KAGOUSURU.
heat -reason -(CAUSE) wiolently react

Because (someone) heats (them), (they) react violently.

(14) TIME : TIME indicates location in time of the action.

- 67 -

(a) NESSHITA -TOKI ~-NI SANSO -GA HASSEISURU.
heat time -(TIME) oxygen -(SUBJ) be generated

Oxygen is generated when (someone) heats (it).

In order to resolve some kinds of ambiguities, it is also
necessary to utilize contextual information obtained from preceding
sentences. When one knows a certain event has occurred, he can an-
ticipate successive events that will occur and what changes the
objects participating in the event will undergo. This kind of ex-
pectation plays an important role in understanding sentences.
Various kinds of associations cluster conceptually around individual
activities. One can perform contextual analysis of language by ex-

plicating these associations.

We append this kind of experiential knowledge to the DSC's of
verbs. The following two items are described for each verb in the

verb dictionary :

(1) CON : this refers to the consequent activities which are likely
to follow the activity of the verb, but not necessarily.

(2) NTRANS : this refers to the resultant effects on objects in view
of how the objects are influenced by the activity. In our
system the influence on the objects is described by the

following three expressions:

(a) (ADD case a-set-of-(A V)-pairs)

(b) (DELETE case a-set-of-attributes)

(¢) (CREATE lexical-name-of-an-object a-set-of-(A V)-
pairs)

(a) means that the object in the case indicated by the

second element comes to have a set of properties indicated

by the third element. (b) is for the deletion of a set of

properties from the object. (c) shows that some objects

will be created by the activity.

A typical example using a CON expression is shown in Fig.

- 68 -

I1I-7.

(IRERU (CF
put in

(((ACT NINGEN) (OBJ BUSSHITSU) (IN YOUKI))
human beings material eontainer

—»((*PUT (OBJ OBJ)(IN 1IN))
(CON (*EXIST (SUBJ #0OBJ))(PLACE (IN #IN)))))))

*The function # retrieves the designated case-element of the

current DCS. #*EXIST and *PUT are the verbs in the DCS

level.

Fig. III-7 Example of Lexical Description

When we have completed the analysis of the sentence

10U -0 SHIKENKAN -NI IRERU.
sulfur -(OBJ) test tube -(IN, RESULT, etc.) put in

Someone puts sulfur in a test tube.

each case of the case frame of the verb IRERU (put in) is instan-

tiated by an object referred to in the sentence, and therefore, the
corresponding DCS is instantiated. Then we can instantiate the ex-
pression of CON, and the result is 'the sulfur is in the tube.' Fig.

I1I-8 shows an example using an NTRANS expression.

(TOKASU (CF
melt
dissolve
((C ACT NINGEN) (0BJ KOTAI) (INST))

human beings solid
—»((*MELT (ACT /) (0OBJ OBJ))
(NTRANS (ADD OBJ (STATE *LIQUID)))))

(((ACT NINGEN)(0BJ KOTAI)(IN EKITAI))
human beings solid liquid

- 69 -

— ((*DISSOLVE (ACT 1IN)(OBJ OBJ))

(NTRANS (CREATE YOUEKI
solution

(SOLVENT #ACT)
(SOLUTE #0BJ)))))))

Fig. III-8 Example of an NTRANS Expression

In this expression one can see the verb TOKASU has two different
meanings. One corresponds to 'melt', and the other to 'dissolve in'.

When we analyze the sentence,

DOU -0 TOKASU.
copper-(0BJ) - dissolve, melt

(Someone) melts copper.
We adopt the first case frame of TOKASU (melt) because it gives the
highest matched value against the sentence (see section III-3-4).
As the result of evaluating the NTRANS expression in the case frame,
we conciude tHe copper is now in the liquid state. In the lexical
description 'coppér' is a lower concept of 'solid', so that copper
in general behaves as a solid object. But the copper in the above
sentence comes to have the attribute value pair (STATE *LIQUID) and
will behave as 'liquid' in the succeeding sentences.

On the contrary, when we analyze the sentence

SHIO -0 MIZU -NI TOKASU
salt -(0BJ) water -(IN, PLACE, etc.) melt,
dissolve

(Someone) dissolves salt in water.
the second case frame of TOKASU (dissolve in) gives the highest
matched value. After the sentence instantiates the case frame, a
new object (i.e., a solution which consists of salt and water) will
be created.
CON and NTRANS are thus important in the contextual analysis

of sentences. The detailed analysis procedure using these expres-

- 70 -

sions will be described in Chapter IV.

”III—3 Analysis of Noun Phrases

ITI-3-1 Properties of a Noun Phrase
In Japanese, two or more nouns are often concatenated by the

postposition NO to form a noun phrase. Because there are many dif-
ferent semantic relationships among nouns concatenated by NO, we
must decide what relationships may hold among the nouns. Typical
examples are shown in Fig. III-9.

EKITAI -NO JOUTAI -NO SANSO -NO TAISEKI

liquid state oxygen volume

the volume of the oxygen in the state of liquid

HANNOU -NO ATO -NO NATORIUMU -NO TAISEKI -NO
reaction after sodium volume

HENKA

change

changes of the sodium's volume after the reaction

Fig. III-9 Examples of NOUN+NO Phrases

The phrase NOUN+NO can modify, in principle, any or all of the suc-
ceeding nouns in the extended NO construction so that many different
patterns of modification relationships are syntactically permitted.
We must decide which one is correct by considering semantic restric-
tions.

We have identified the following sixteen semantically accept-
able NOUN NO NOUN combinations.

(1) (value noun)+(attribute noun)

(ex) KOTAI -NO JOUTAI
solid state

- 71 -

(2)

(3)

(4)

(5)

(6)

€))

(8)

9

(value noun)+(entity noun)
(ex) EKITAI NO IOU

liquid sulfur
(entity noun)+(attribute noun)

(ex) EKITAI -NO 1IRO
liquid eolor

(noun)+(prepositional noun)

(ex) HANNOU -NO MAE
reaction before

(anaphoric noun)+(noun)

(ex) MOTO -NO BUSSHITSU
former material

(attribute mnoun)+(entity noun)
(ex) (TAKAI) ONDO -NO EKITAI*
high temperature liquid

*In this usage,. the attribute noun
should be modified by another noun or ad-
jective, which specifies the value of the
attribute.

(noun)+(action noun)

(ex) SANKADOU -NO KANGEN
oxidized deoxtdization
copper
IRO -NO HENKA
color change

(time)+(noun)

(ex) (HANNOU -NO) MAE -NO DOU
reaction before copper

(place)+(noun)
(ex) (SHIKENKAN -NO) NAKA -NO EKITAI
test tube in liquid

%*The noun-noun combination, 'test
tube-NO in' expresses the 'place' in the
test tube.

(10) (noun)+(conjunction noun)

(ex) SANKA -NO TAME*
oxidization in order to
by reason of

*In Japanese, some nouns are used to
elucidate the case relationships between a
noun phrase and verb. The noun TAME in
this example expresses cases such as CAUSE
or PURPOSE.

(11) (entity noun)+(entity noun)

(ex) NATORIUMU -NO KAGOUBUTSU*
sodium compound

*The first entity noun is a constitu-
ent element of the object expressed by the
second noun.

(12) (entity noun)+(entity noun)

(ex) SANKADOU -NO SANSO*
oxidized copper oxygen

*The second noun is a constituent
element of the object expressed by the
first noun.

(13) (entity noun)+(entity noun)

(ex) SHIKENKAN -NO SOKO*
test tube bottom

*The second noun refers to part of
the object expressed by the first noun.

(14) (entity nouns)+(entity noun)

(ex) KARIUMU, NATORIUMU ~NADO -NO KINZOKU
potassium, sodium etc. metal

*The nouns 'potassiwn' and 'sodium'
are lower concept nouns of the last noun

'metal’.
(15) (name)+(noun)
(ex) SHITSURYOUHOZON -NO HOUSOKU
the conservation of mass law
(16) Others
(ex) 1lcm? ATARI -NO CHIKARA
per Iem? pressure

- 73 -

Corresponding to these relationships we prepared sixteen primitive
functions. These functions are applied in turn to a noun phrase to
decide what relationship holds between two nouns. The order in
which these functions are applied is based on the frequency and the
tightness of the relations. Each function checks only one semantic
relation. In order to illustrate how these functions perform their
tasks, the following example of 'noun + prepositional noun' phrase
is given.

The noun MAE is a prepositional noun, and its semantic
description is shown in Fig. I1I-4. We note that this word has two
different'meanings.

JIKKEN -NO MAE

experiment _ time : preceding

place : in front of

The function for the analysis of this kind of phrase checks at
first whether the second noun MAE is a prepositional noun. If it
is not, then this function fails and returns the value NIL. In this
example, because the word MAE is a prepositional noun, the checking
proceeds further. The description in Fig. III-4 shows that if the
preceding noun is an action noun (i.e., if it is a nominalization
of a verb) then MAE has the first meaning. Because the noun JIKKEN
(experiment) satisfies this condition, the checking succeeds and the
function returns the value T. The result of the analysis is shown
in Fig. III-10(a). On the other hand, if the input is

TSUKUE -NO MAE

desk before, in front of
then the word TSUKUE (desk) satisfies the condition of the second
meaning, and the result is as shown in Tig. III-10(b).

(a) JIKKEN -NO MAE

experiment before : time
in front of : place

- 74 -

TIME

efore oexperiment
(b} TSUKUE -NO MAE
desk before : time
in front of : place
PLACE
in front of odesk

Fig. IT1I~10 Results of Analysis of Noun and
Prepositional Noun Phrase

In this way the sixteen checking functions not only test
whether a certain semantic relationship holds among input words, but
also disambiguates the meanings of input words.

ITI-3-2 Analysis Procedure for a Noun Phrase

We analyze a noun phrase by using the above sixteen checking
functions subject to the limitation that related noun groups may not
overlap. As stated before, 'noun + postposition NO' phrases and
adjectives can modify only the succeeding nouns. We stack in the
temporary stack noun phrases and adjectives for which the nouns to
be modified have not been determined. The analysis of a noun phrase
is carried out by scanning words one-by-one from left to right. If
we scan an adjective or a determiner, we stack the word in the tem-
porary stack and check whether it can modify the noun. This
checking is done by the above functions if the stack word is a noun.
We also have the checking functions relating nouns to adjectives or
determiners. The dictionary content of an adjective is just the
same as that of a value noun. The semantic checking function be-
tween an adjective and a noun will test whether the noun can have

the attribute which is modifiable by the adjective. The checking of

- 75 -

the determiner differs somewhat and is explained in a later section.
The checking process will stop when there are no words in
the temporary stack or a word is picked up that fails to modify the
noun being scanned. The noun is then stacked in the temporary
stack. If the temporary stack contains only one noun and there are
no words to be scanned in the noun phrase, the analysis succeeds
and returns the noun in the stack. The returned noun is called the
Head Noun of the noun phrase. These processes are illustrated as

follows.

SHIKENKAN -NO NAKA -NO AKAIRO ~NO EKITAI
test tube in red liquid

(1) Temporary Stack = empty
test tube . -NO in -NO red -NO Iliquid

scanned word

(ii) TS = |test tube

test tube -NO 1in -NO red -NO Iliquid

scanned word

*A check of the semantic relationship between 'test tube' and
'in'! is performed.

**The phrase 'test tube -NO in' is transformed into the form
PLACE .

1 test tube

(iii) TS = |place

test tube -NO in -NO red -NO liquid

scanned word

%A check of the semantic relationship between 'place’ and 'red'
is performed, but it failed to establish a new concept.
Therefore, 'red’ is placed on the top of TS.

- 76 -

(iv) TS = |red| place

test tube -NO in ~NO red -NO liquid

stnned word

*The next scanned word is 'liquid'. Since it is a noun, a check
of the relationship between the noun and the words in TS is
performed. The check succeeds because the combinations (value
noun)+(entity noun) and (PLACE)+(entity noun) are semantically
permissible.

(v) TS = (liquid

test tube -NO in -NO red -NO Iliquid

scanned word

*There are no words to be scanned, and the TS contains only one
word. Hence, the analysis of this noun phrase succeeds.

%*The result is as follows. (The head noun of this noun phrase
is 'liquid’.)

PLACE

If there are no words to be scanned next and the temporary
stack contains more than one word, then the analysis fails and
backtracks to the decision points of the program. A decision point
in the analysis of a noun phrase is any point at which two words
have been related semantically. The relationship between two words
established during the analysis is the one determined by the func-~
tion which succeeds first. Because the order of checking functions
is somewhat arbitrary, in some cases a relationship which has not
been checked may be preferable to the established relationship.
This is illustrated in the examples below.

- 77 -

EKITAI -NO JOUTAI -NO HENKA

liquid _ state change
the change of state of the liquid

EKITAI -NO JOUTAI -NO SANSO
liquid state oxygen

oxygen in the liquid state

In the first example the word JOUTAI (state) designates an
attribute of EKITAI (IZiquid) and EKITAI corresponds to a visible,
real object. JOUTAI (state) in the second example disignates an
attribute of SANSO (oxygen), and the word EKITAI does not correspond
to a real object but is used to specify the attribute 'state' of the
oxygen. These examples show that the word EKITAI (IZiquid) has two
different uéages. According to these usages, there are two different
semantic constructions of the phrase EKITAI-NO JOUTAI as shown in
Fig. III-11.

EKITAI (liquid) -NO JOUTAI (state)

(1) STATE (2) STATE
TATR-ATR (VALUE
liquid *LIQUID

an indicated

object

Fig. III-11 Two Different Deep Structures
for the Phrase EKITAI NO JOUTAI

Because we analyze a noun phrase from left to right, we cannot
determine which usage is correct until we recognize the rightmost
word HENKA (change, transition) or SANSO (oxygen). However, a seman-
tic checking function disambiguates the multiple meanings of the word
EKITAI. If the disambiguation is recognized to be incorrect in sub-
sequent processing, we must be able to backtrack to the decision point
at which this temporary disambiguation was made. We implemented such
a process by using PLATON's backtracking facilities. This process is

illustrated as follows.

- 78 -

Input ; EKITAI -NO JOUTAI -NO HENKA
liquid state trangition

result
Transition

SUBJECT
state

TATR~-ATR
liquid

Input ; EKITAI -NO JOUTAI -NO SANSO
liquid state oxygen

Steps of Analysis:

(1) TS = empty
ligutd -NO state -NO oxygen

scanned word

(i1) TS

iquid

liquid -NO state -NO oxygen

scanned word

(iii) TS = |state

liquid -NO state -NO oaxygen

scanned word

*At this point, the first meaning of 'liquid' has been adopted
because the checking function for (entity noun)+(attribute noun) is
applied before the function for (value noun)+(attribute noun). That
is, the word 'liquid' indicates a physical object.

**The semantic check between 'state' and 'oxygen' fails, be-
cause the attribute noun 'state' has been linked to the liquid by the
relation IATR-ATR and an attribute noun cannot be linked with two
different entity nouns.

**%So the program will go back to step (ii).

(iv) TS = [liquid

liquid -NO state -NO ozygen

scanned word

- 79 -

*The semantic check between 'Iiquid' and 'stqte' proceeds
further. The semantic checking function for (value noun)+(attribute
noun) succeeds, This function adopts the second meaning of ‘liquid’.

(v) TS = |state

liquid -NO state -NO oxygen
——
scanned word
*At this time, because the noun 'state' is only linked to the
value *LIQUID, the check between 'state' and ‘oxygen' succeeds. The

result is as follows. Notice that the noun 'liquid' does not express
a real object but the value of the attribute ‘state’.

oxygen

STATE
*1,IQUID

- 80 -

III-3-3 Analysis of Conjunctive Noun Phrases

The words in Japanese which correspond to 'and' and 'or' are
categorized as special postposition ; some of them are shown in Table

III-1. We call them Conjunctive Postpositions.

| postposition corresponding English |
TO and (closed listing)
YA and (open listing)
MO and (also)
KA or

TABLE III-1 Conjunctive Postpositions in Japanese

In Japaneses as well as inbEnglish, it is difficult to determine the
scope of a conjunction. There are some phrases which have the same
syntactic structure, but semantically different constructions. Some
examples are shown in Fig. III-12. On the other hand, some phrases

have different surface structures but convey the same meaning as is

illustrated in Fig.III-13. As there are few syntactic clues in these

examples, we must analyze them by using semantic information.

At the first stage of the analysis of a noun phrase, we try
to find conjunctive postpositions. If we cannot find them, the nor-
mal analysis sequence described above is applied to the noun phrase.

If there is a conjunctive postposition, the following steps are per-

formed:

- 81 -

(1) RYUKADOU -NO DOU ~TO 10U
copper sulfide copper (and) sulfur
— I
(2) RYUKADOU -NO DOU -TO SANSO
copper sulfide copper (and) oxygen
1) copper (2) copper
PARA PARA
ELEMENT ELEMENT
sulfur oxygen
ELEMENT

copper sulfide
copper sulfide

* ' || |
(1) SuUIso -TO SANSO -NO TAISEKI -NO HI
hydrogen (and) oxygen volume ratio

[| |
(2) SUISO -T0 BITKAA -NO j1\1A1|<A]

-NO EKITAI
hydrogen (and) beaker

in liquid
(1) number (2) hydrogen
RATIO PARA
(wolume volume) \\\ liquid
Iﬁ}R—ATR IATR-ATR PLACE
hydrogen o%ygen rplaee
IN
Lbeaker

Fig. III-12 Examples of Conjunctive Phrases
(The meanings ofwsyﬁbols will be given in p 95.)

- 82 -

(1) SANSO -NO TAISEKI +TO SUISso -NO TAISEKI -(TO)*

oxygen volume (and) hydrogen volume
(2) sANsO -To SUIS0 ~-NO TAISEKI
oxygen (and) hydrogen volume
vo lume
IATR-ATR PARA
volume
oxygen IATR~-ATR
hydrogen
(1) SANSO -NO SHITSURYOU -TO SANSO ~NO TAISEKI -(TO)
oxygen . - mass (and) oxygen volume
(2) SANSO -NO SHITSURYOU -TO TAISEKI -(TO)
oxygen mass (and) volume
mass
IATR-ATR PARA
volume
IATR-ATR
oxygen

*(TO) is an optional element in these sentences.

Fig. III-13 Examples of Differing Surface
Structures Conveying the Same Meanings

Step 1. The conjunctiye postposition TQ 1is often followed
by another postpoéition TO in the succeeding part (Fig. III-13).
Hence if we find TQ in the phrase, we do the following; if not, go
to Step 2. We search for the second postposition in the succeeding
part. If it is found, then the noun phrase before the first postpo-
sition and the noun phrase interposed between the first and the
second postpositions are paralleled. We employ the normal noun phrase
analysis to the interposed noun phrase, then go to Step 4, 1If we
cannot find the second postposition, we then go to Step 2.

Step 2. If a conjunctive postposition is not TO, or there is
no second TO, we execute the following substeps. (Noun-1 designates
the noun before the first postposition.)

a. Search for a noun identical to Noun-1 in the
succeeding part. If found, let it be Noun-2, and
go to Step 3.

b. If Noun-1 is not an entity noun, then search for
a noun which belongs to the same category as
Noﬁn—l. If found, let it be Noun-2, and go to
Step 3.

¢. Search for a noun which has an upper concept in
common with Noun-1. If found, let it be Noun-2,
and go to Step 3.

Step 3. The phrase between_the postposition and Noun-2 are
analyzed by the normal noun phrase analysis. This is now the second
of the two parallel phrases under consideration.

Step 4. The phrase before the postposition is analyzed by
the normal noun phrase analysis.

Step 5. It is necessary to determine what portion of the
phrase before the postposition relates exclusively to Noun-1l. To
determine the left end of the Noun-1 phrase (e.g., in Fig. ITI-14
below), we pick words one-by-one from left to right, and check whether

each word can modify Noun-2. The first word found which cannot modify

- 84 -

Noun~2 is considered the left end of the first phrase (Noun-1 phrasé)f

SHIKENKAN -NO NAKA -NO ENSAN TO DOU -(TO)
test tube in hydrochloric acid copper
(a) hydrochloric actid (b) hydrochloric acid
PLACE PARA PLACE PARA
place copper place copper
IN IN PLACE
test tube ~ test tub place

the hydrochloric acid in the test the hydrochloric acid and copper
tube and the copper in the test tube

Fig. III-14 Two Different Constructions According to the
Two Different Determinations of the Left End of the Conjoined Phrase
Step 6. Words to the right of Noun-2 are checked to determine
their relation to the conjunctive phrase and its conjuncts. Checking
proceeds from left to right.

The analysis of the following phrase is illustrated in Fig.
ITI-15(See the next two pages).

RYUKADOU -~-NO DOU =TO 10U ~NO SHITSURYO -NO HI
copper sulfide copper (and) sulfur mass ratio

the ratio between the mass of the copper and the sulfur which con-
stitute copper sulfide

ITII-4 Analysis of a Simple Sentence

Japanese is a typical SOV language in which ACTOR, OBJECT and
other case elements usually appear before the verb. The construction

of a typical Japanese sentence is shown in Fig. III-16.

- 85 -

PHRASE:

meaning:

RYUKADQU -NO DQU -TO

copper sulfide copper (conjunctiye pp---and)
10U -NO SHITSURYOU ~NO HI

sulfer mass ratio

the ratio of the masses of copper and sulfur of copper
sulfide

sequence of analysis:

(1) Step 1. Find the conjunctive postposition TO.
RYUKADOU -NO DOU TO IOU -NO SHITSURYOU -NO HI
copper sulfide copper sulfur mass ratio
L J
former part succeeding part
(2) Step 2c. Find from the succeeding part the noun which
belongs to the same category as 'copper’.
In the above phrase, the noun ’sulfur’ is found.
RYUKADOU -NO (DOU -TO IOU -NO) SHITSURYOU -NO HI
copper sulfide lcopper l mass ratio
temporarily determined
scope of the conjunctive
phrase
(3) Step 3. not applicable
(4) Step 4. Analyze the phrase before the postposition TO.
(DOU - TO0 1I0U -NO) SHITSURYOU -NO HI
copper sulfur mass ratio
ELEMENT
copper sulfide
(5) Step 5. The second noun of the conjunctive phrase, 'sulfur’

is checked against the leftmost noun of the phrase
before the postposition 'copper sulfide'’. This
noun is related to the first noun of the conjunc-
tive phrase, 'copper'. 'copper sulfide' is also

Fig. III-15 Example of the Analysis of Conjunctive Phrase

- 86 -

seen to be related to 'sulfur'. This places the
left boundary of the Noun-1 phrase immediately
to the left of 'copper'.

(rcopper -TO rsulfur -NO) SHITSURYOU -NO HI

mass ratio
ELEMENT ELEMENT

I | |

succeeding part

copper sulfide
I 1

conjunctive phrase

(6) Step 6. The two nouns, 'copper' and 'sulfur', in the
conjunctive phrase are checked against nouns in
the portion following Noun-2. Because the noun
'mass' can be related to only individual physical

objects, the noun 'mass’ is duplicated for ’copper’
and 'sulfur’'.

(omass mass) ~-NO HI
T ratio
TATR-ATR IATR~-ATR
copper sulfur
ELEMENT ELEMENT

copper sulfide

The noun 'ratio'’ is related to the conjunctive
phrase as a whole. Hence, we obtain the
following result for the entire conjoined

phrase.
number
RATIO
(mass mass)
TATR-ATR TATR-ATR
eopper sulfur
ELEMENT ELEMEN

copper sulfide

Fig. ITI-15 continued

- 87 -

NI Nli Nitl A ?Igl

| "]
(ex 1) KARE -WA GASU-BAANAA -DE SHIKENKAN -NI IRETA
He (all cases) gas burner (INST) test tube (PLACE)put-in

L-relative clause-————J

EKITAI -0 NES%&RL.
liquid (OBJ) heat

meaning: He heats the liquid which is put in the test tube.

(ex 2) ENSOSAN-NATORIUMU -0 GASU-BAANAA -DE (ENSOSAN[&ATORIUMU—O)*
sodium chlorate (OBJYgas burmer (INST)sodium chlorate (OBJ)

SHIKENKAN -NI IRETE NESSURU.
test tube (IN, PLACE, etc.) put in heat

meaning: (someone) puts sodium chlorate in a test tube
and heats it.

(*)Usually this phrase is omitted.

Fig. III-16 Typical Japanese Sentences

A verb may govern several noun phrases -- case elements —- preceding
it. A relative clause modifying a noun may appear in the form

'——— verb + noun —--'. The right end of the scope of the clause is
easily identified by finding the verb, but the left end is harder to
identify. 1In Fig. III-16 the noun phrase NPi+l is a case element of
verb Vl' The noun phrase NPi is governed by verb V2. Because the rule
of projections holds (i.e., clauses do not overlap) in Japanese as

in other languages, all noun phrases between NPi+1 and Vl are

- 88 -

governed by V,, and the noun phrases before NPi are governed by V2.
However, boundaries as between NPi and NPi+1 cannot be determined
uniquely by syntactic clues alone. To determine them we must use
semantic relationships such as case relationships between noun
phrases and verbs.

In English case in surface structure is generally evident in
the order of phrases. In Japanese, the ordering of noun phrases is
relatively free. A postposition attached to a noun phrase usually
" shows the case which the noun phrase plays in the sentence. The
postpositions usually used in Japanese and the surface cases in the

case frames(SCS) corresponding to them are tabulated in Table ITI-2.

postposition case

~GA ACT, SUBJ

~-NO NMOD (ACT, SUBJ)

-0 0BJ

-NI RESULT, IN, IOBJ, TO, PLACE, CAUSE, TIME
-HE TO

-TO FACT, RESULT, TAISHO

-KARA FROM, SOURCE, CAUSE, METHOD, PLACE, TIME
~YORI FROM, SOURCE

-DE ’ INST, SOURCE, CAUSE, METHOD, PLACE, TIME
-MADE " TO

-WA all cases

-DAKE

-MO all cases

-SHIKA

TABLE III-2 Postpositions in Japanese and (Case Relationships

From this table one can see that a postposition invsurface
structure does not necessarily correspond to a unique case. 1In the
course of analysis we must assign appropriate case labels by consid-
ering the case frames of the main verb along with meanings of the
head nouns of the noun phrases.

A postposition also plays the role of a delimiter which shows
the right boundary of a noun phrase. The outline of the analysis of

a simple sentence is as follows:

- 89 -

(1) At first the program looks for a verb in the input sentence.
Because there may be embedded sentences which modify nouns in the main
sentence, there is usually more than one verb in the input sentence.

The program picks up the leftmost verb of the sentence.

(2) The string before the verb is segmented by locating post-

positions.

(3) Since each segment is assumed to constitute a noun phrase,

each is passed to the program which analyzes noun phrases.

(4) When all the segments are analyzed and the head nouns are
determined, the program checks each noun phrase against the verb ask-
ing whether a case relationship will be satisfied between the noun
phrase and the verb. The checking is carried out right to left start-

ing with the phrase nearest to the verb.

(5) When there are no more noun phrases to be checked, or when a
noun phrase which cannot be a case element of the verb is found, the
checking is terminated. If there remains an intrinsic case éidt df the
verb which has not been filled, we search for an appropriate noun to
fill the slot from the context. This searching process will be explain-
ed in Chapter IV. We determine whether a noun phrase can be a case

element of a verb by the following syntactic and semantic clues:

(1) The type of postposition which follows the noun phrase.
This marks case in the surface structure.
(2) The case frames of the verb.

(3) The meaning of the head noun of the noun phrase.

The postposition delimits a set of possible cases by which the noun
phrase may be related to a verb. We must choose an appropriate one
from this set by using the second and third types of information.

The case slot fillers in a case frame of a verb are relatively upper

- 90 -~

concept nouns. A sentence is considered to be an instantiation of a
case frame, and the nouns employed will generally be lower concept
nouns of the nouns in the case frames.

Suppose we analyze the sentence:

SHOKUEN -0 MIZU -NI TOKASU. .
salt (OBJ) water (IN, RESULT, TIME, etc.) melt, dissolve

(Someone) dissolves salt in water.
We can check whether the sentence matches the case frame of TOKASU:

TOKASU : ((ACT human) (OBJ material) (IN liquid)
melt
dissolve

The checking is performed by considering whether 'sqlt' is a lower
concept noun of 'material', and whether 'water' is a lower concept
noun of 'liquid'. |

Because a case frame contains only intrinsic cases of a verb,
we check extrinsic ones when a noun phrase is found not to be an in-
trinsic case element of the verb. That is, we check whether the
postposition can mark the TIME or PLACE, and whether the noun phrase
is an instance of the noun 'place' or 'time'.

The above process may appear straightforward. But sentences
can have several possible interpretations for the following reasons.

(1) A verb may have more than one usage (i.e., a verb may

have several possible case frames).

(2) A postposition can indicate more than one case. Some

postpositions can occur with almost any case; WA is an exam-

ple.

(3) A noun modified by an embedded sentence is usually a

case slot filler of the embedded sentence. But we may have

no syntactic clues as to what case to assign to the noun.
In the event of multiple interpretations the program derives labeled
interpretations showing all possible case relationships between spec-
ific nouns and verbs. We choose the interpretation showing the pref-

erable matching of nouns and case by using an evaluation function

- 91 -

below which has been established expirically.
_ 6xCl + 2XC3 c2
-S-(CFN, ci, €2, €3) = CEN +3

CFN : number of intrinsic cases in a case frame
Cl : number of intrinsic case elements which are filled by
noun phrases in the sentence.

number of extrinsic case elements which are filled

.o

c2

’ by the noun phrases in the sentence.

C3 : number of intrinsic case elements which are filled by

the noun phrases in the preceding sentences.

The value of this function indicates the degree of matching between
a sentence and the case frame of the verb in question. The trial
frame which gives the highest matched value is selected. We then
proceed to the analysis of the remaining strings. If the selection
is found to be wrong during the succeeding analysis, control comes
back to the point at which the decision was made, discards it, and

chooses the pattern which gives the next highest matching value.

- 92 -

CHAPTER IV

CONTEXTUAL ANALYSIS OF JAPANESE SENTENCES

IV-1 1Introduction

Our view of the process of sentence understanding is roughly
as follows. One reads sentences from left to right and understands
them in succession. When he cannot understand a sentence satisfac-
torily he refers back to the preceding sentences to obtain a key to
understanding. If he cannot find what is needed, he leaves the
question pending and proceeds to the next sentence. If a phrase or
a sentence is found which seems to solve the question, then he checks
whether it can really resolve the question. If so the sentence is
properly organized into the previous context and the question is dis-
missed. In any case the pending question is likely to be dismissed
as time passes.

We feel this process of sentence understanding is not espe-
cially complex. It can be realized through an artificial intelligence
approach. While we recognize that some kinds of problems may be
solved only by using complicated logical operations, we think most
problems in understanding sentences can be solved by relatively simple
operations. Logical operations may only be effectively applied on a
complete data base in which all the necessary axioms (corresponding
to human knowledge) are declared and no contradictory axioms exist.
In the course of reading sentences, one has only partial knowledge
about the context, and therefore, his knowledge is not complete.
However, a person understand the meaning of sentences before he reads
through the entire set. This means that one is sometimes content

with incomplete deductions for understanding sentences. For this

- 903 -

reason, rather than logical operations we employ heuristically
admissible operations which use an intermediate term memory structure
and semantic relationships described in the dictionary.

We conceive of three types of memory. Long term memory in-
corporates knowledge of the world, not considered here. Short term
memory is for immediate recall of unanalyzed strings under consid-
eration. Intermediate term memory is limited but contains a struc-
tured representation of recently analyzed strings and strings under

analysis. We summarize our approach as follows:

(1) Context is entered into the intermediate term memory.

(2) Two kinds of intermediate term memory are prepared. One
is for representing the current contextual content, and the
other is to sustain pending questions. The former is further
divided into the noun stack (NS) and the hypothetical noun
stack (HNS). The latter is called the Trapping List (TL).
(3) Contextual analysis is performed after the processing of
each syntactic unit such as a noun phrase or a sentence

which conveys a unitary idea.

(4) NS is organized such that theme words of sentences can
be easily retrieved. Here 'theme words' mean the key subjects
mentioned in the sentences.

(5) Sometimes we have to refer to the succeeding sentences
in order to understand a sentence. In such cases we do not
immediately refer to the succeeding sentences, but instead
hold a pending question in TL to be resolved in the course of

analyzing the succeeding sentences.

IV-2 Memory Structure for Contextual Information

The analysis of a sentence is primarily grounded in the

- 94 -

semantic description -~ case frame -- of a main vefb. Contextual
analysis is mainly grounded in accumulated information about nouns.
The objects or concepts that are the themes of the sentences, and
what has been predicated of them can usually be characterized in
terms of the nouns appearing in the sentences, and these offer impor-
tant clues for contextual analysis.

We assign a different LISP atom (produced by the LISP function
'gensyn') to each noun which appears. Information about each is
entered on the respective property list. The flags tabulated in
Table IV-1 are used.

relation content

LEX link to the dictionary lexical descriptions

SATR (A V) pairs which specify this object

CASE link to the case-frame in which the object appears
PRE link to any noun atom which appears in the previous

sentence, and which represents the same object as
this atom

POST the inverse relation of PRE

SMOD 1link to any relative clause which modifies this
object

PARA link to any noun atoms which appear in a conjunc-

tive phrase together with this object

Table IV-1 Information Attached to a Noun Atom

We can retrieve all the descriptions given for an object to which a
noun has been assigned. We stack these LISP atoms called Noun Atoms
on NS and HNS.

IV-2-1 Noun Stack (NS)

When we start to analyze a sentence, we stack a list of noun

- 95 o

atoms which are assigned to the nouns in the sentence. These noun
atoms are re-ordered according to their degrees of importance. NS

has the construction shown in Fig. IV-1l.

((noun-atom-1, - - = = = , noun-atom-i)(- - = =) (- - =))
L

list of noun atoms corresponding to nouns
which appear in the most recent sentence

Fig. IV-1 Construction of NS

To decide how important a noun is, we use the following
heuristics.
(1) In Japanese a theme word is often omitted or expressed
by a pronoun in succeeding sentences after it appears once.
In other words, the word which is omitted or expressed by a
pronoun is an important word for the understanding of a sen-
tence.
(2) A theme word may appear as SUBJ in the surface case
structure. To emphasize a word which is OBJ-case in deep
case structure, or to de-emphasize a word in the ACT-case
which is not worth mentioning, the passive voice may be used.
This places a stressed word in the subject position of the
sentence which would otherwise appear as object or indirect
object.
(3) The importance of a head noun in a noun phrase is greater
than that of other nouns.
A simple example of ranking by importance is shown in Fig. IV-2; zimc

appears in all the sentences and is the theme word.

- 96 -

Input sentence:

N1
RUTSUBO
melting pot

-NI

N4
AEN -0 IRETE ,
zinc (0BJ, IOBJ) put in
NESSHI, TOKASHITA.
heat melt (PAST TENSE)

Meaning of the input sentence:
S1:
S52:

S3: (Someone) melted it.

Changes of NS
Beginning of the analysis of S1:

End of the analysis of S1: ((N4
Beginning of the analysis of S2:
End of the analysis of S2: ((N4

Beginning of the analysis of S3:

End of the analysis of S3:

(PLACE, TIME, IOBJ, etc.)

GASU-BAANAA
gas burner

N2 N3
100gr-NO SHITSURYOU-NO
mass

N5
-DE
(PLACE, INST, etc.)

(Someone) put 100g of zine in a melting pot.

(Someone) heated it by a gas burner.

((N4 N3 N2 N1))

N1 N3 N2))

((N5)(N4 N1 N3 N2))

N5) (N4 N1 N3 N2))

(NIL (N4 N5)(N4 N1 N3 N2))

((N4) (N4 N5)(N4 N1 N3 N2))

Fig. IV-2 Changes of NS

- 97 -

IV.~-2-2 Hypothetical Noun Stack (HNS)

We first show examples which cannot be properly analyzed

without HNS.

(a)

(b)

SUISO -TO SANSO -0 2:1 ~NO WARIAI -~DE KONGO-SHI,
hydrogen oxygen (OBJ) two to one ratio intermix

KONO KONGOUKITAI ~-NI - =----

thts gas mixture (PLACE) - - - - -

(Someone) intermixes hydrogen and oxygen in the ratio of two to

one. - - - - - in this gas mixture - - - - -
SHOKUEN 5gr -0 MIZU 100cc -NI TOKASU.
salt five grams (OBJ) water (IN) dissolve

KONO SUIYOUEKI WA - - - - -

the solution

(Someone) dissolves & grams of salt in 100cc of water.
The solution is - - - - -

In these two examples, though the demonstrative KONO (the, this) is

used, the object referred to does not appear explicitly in the pre-

ceding sentence. The object referred to is produced as the result of

the event which is expressed by the preceding sentence. As mentioned

before, we append to case frames in the verb dictionary descriptions

of any objects which may be created if the verb is used.

TOKASU (dissolve) has the case frame:

((ACT human) (OBJ material)(IN 1liquid))
corresponding DCS is:

(*DISSOLVE (ACT 1IN)(OBJ O0BJ))

and this DCS has the additional description:

(NTRANS (CREATE 'solution ('solvent (# ACT))
('solute (# OBJ)))).

- 98 -

The symbol # in this description is a LISP function which fills the
specific case elements indicated in the argument from the current
realization of the case frame. The sentence

SHOKUEN b5gr -0 MIZU 100cc -NI TOKASU.

salt (0OBJ) water (IN) dissolve
associated with the above case frame results in the following inter-
pretation: a new object, a solution whose solvent is water and whose

solute is salt results. We represent this newly produced object in

HNS instead of NS for the following two reasons.

1. As the description is based on uncertain knowledge, it is likely,
but not necessarily so that the object is produced in the real
world. If we find some descriptions of this derived object in
the succeeding sentences, we will decide it really exists and
transfer the representation from HNS to:-NS..

2. Because the newly produced object is referred to in the succeeding
sentences sometimes by different words or by syntactically dif-

ferent forms, it is convenient to stack them individually in HNS.

IV-3 Estimation of the Omitted Words

In the analysis of a Japanese sentence it is important to
supply omitted words drawing from preceding or succeeding sentences.

To do this we must be able to:

1. recognize that a word is omitted and

2. search for an appropriate word to fill the gap.

Our contention is that an individual syntactic unit such as a noun
phrase or a simple sentence conveys a definite idea; a noun phrase
may designate a certain definite object, a concept, or whatever, and

a simple sentence may describe a definite event. In order that a

- 99 -

simple sentence describes a definite event,each intrinsic case element
of the case frame must be specified by particular objects. We can
detect an omitted word by searching for unspecified case elements in

a case frame. Moreover, we can guess from the case frame what kind

of nouns should be supplied to fill any gaps.

In this manner we can detect and supply omitted words by using

the semantic descriptions in the dictionary.
IV-3-1 Omitted Word in a Simple Sentence

When we have finished the analysis of a simple sentence, we
check whether there remain some intrinsic cases to be specified. If
there remain some, we search for appropriate fillers in the preceding

sentences. The searching process is carried out in the following way.

(1) We search through HNS first, because an object newly
created by the preceding event is often the theme object of the pre-
sent event.

(ii In Japanese, identical case elements in succeeding sen-
tences are apt to be omitted. So the previous sentence is searched
for elements having the same case relation as the one under consider-
ation through NS.

(iii) 1If the above processes fail, then we check the words in
NS or all the words that have appeared in the three previous sentences
one-by-one until we find a semantically admissible word.

(iv) If we cannot find a suitable word, we set up a problem
in the trapping list TL (mentioned in the next section).

Some results of the processing are shown in the followings.

- 100 -

(a) Example 1

Input sentence;

AMMONTA -0 MIZU -NI
ammonia (0OBJ) water (PLACE, TIME, IOBJ, etc.)

TOKASHI, RITOMASUSHI -0 TSUKERU.
dissolve, melt litmus paper (0BJ, I0BJ) soak, put, ete.

meaning: (Someone) dissolves ammonia in water and puts
litmus paper (in it).

Analysis Process:

*result of the analysis of the first sentence

-V TOKASU (dissolve)

ACT
ammonia water
(someone) (ND) &5
NS = ((N1 N2)) HNS = ((N3))
ammonia water ‘mixture
solute - N1
solvent- N2

*intermediate result of the analysis of the second sentence

= TSUKERU
ACT OBJ PLACE
(someone) itmus paper (liquid)
N4

*final result obtained after searching

V<& TSUKERU (soak, put in)

ACT OBJ

(someone) Zi?@?S paper Ngixture

- 101 -~

(b) Example 2

Input sentence;

NAFUTHARIN -0 SHIKENKAN ~NI

naphthaline (0BJ, IOBJ) test tube (PLACE, IOBJ, IN, etc.)
IRE, GASU-BAANAA ~-DE NESSHITE, TOKASHI,

put in gas burner (INST, METHOD) heat melt
KANSATSUSURU.

observe

meaning: (Someone) puts naphthaline in the test tube.
(Someone) heats (it) by a gas burner. '
(Someone) melts (the naphthaline).
(Someone) observes (the naphthaline).

Analysis Process:

*result of the analysis of the first sentence

(someone) naphthaline test tube
NS=((N1 N2)) HNS = NIL
temporary assertion:
| EXIST
SUBJ IN -
N1 . N2

*intermediate result of the analysis of the second sentence

HEAT

{ someone) (material) N3
gas burner

- 102 -

*final result after searching

HEAT
ACT OBJ INST
N N3\\‘°
(someone) naphthaline gasburner

NS: = ((NI N3)(NL N2))

*Though the third and fourth sentences also have empty case

makers, they are properly filled in. The following result
is obtained.

XIST
SUBJ
/}LEEE\ IN HEAT MELT _ OBSERVE

ACT OBJ N AC INST ACT, OBJ ACT OBJ
// L (someone) (someone)
(someone) LEX

gas’burner
naphthaline

- 103 -

IV-3-2 Omitted Word in a Noun Phrase

A noun is classified as either an entity word or a relational
word. Most nouns have definite meaning by themselves, and are re-
-garded as entity words. However, some kinds of nouns have relational
meaning. That is to say, they have slots in their meaning to be
filled in by other words, in order that they express definite ideas.
Sometimes a relational noun is used alone in a noun phrase. In this
case the relational noun must be semantically connected with other
words which are omitted in the present noun phrase. Such examples
are shown in Fig. IV-3 below.

(1) T1oU -0 NESSURU TOKI 1IRO -GA HENKASURU.
sulfur (0BJ, I0BJ) heat _ when color (SUBJ) change
meaning: When (someone) heats sulfur, the color changes.

*The phrase 'IRO -GA ' 1is a noun phrase but it is incom-
color (SUBJ)

plete by itself. We can easily understand the color means 'the
color of the sulfur'.

(2) ENSAN -0 SHIKENKAN -NI
hydrochloric acid (OBJ) test tube (PLACE, TIME, etc.)

20cc IRERU.
put in
meaning: (Someone) puts 20cc of hydrochloric acid in a test tube.

*The word 20cc is put in a separate position from ENSAN (hydro-
chloric acid) in the sentence. It, however, specifies an
attribute of the acid, VOLUME.

Fig. IV-3

As the final step in the analysis of a noun phrase, we check
whether there remain relational nouns which have no definite meaning.
If found, we search through NS for words which are suitable to fill
in the slots of the nouns. The searching process is:.the same as for

omitted words in simple sentences. Sometimes the omitted words exist

- 104 -

in succeeding sentences, so we can set up a problem in TL, if we

cannot find an appropriate word in the preceding sentences.

. IV-3-3 Detailed Description of the Trapping List (TL)

Most anaphoric expressions and omitted words are well ana-
lyzed by searching through the preceding sentences. However, we need
sometimes to refer to succeeding sentences in order to analyze a sen-
tence properly. The sentences shown in Fig. IV-4 are examples.

(1) NESSERARETE, JOUTAI -GA HENKASURU KAGOUBUTSU -0 - -
be hggted state (ACT, SUBJ) change compound (0BJ) -

'what' is heated| |Jof 'what' state changes

meaning: - - - - the compound which is heated and whose state
changed - - -

(2) ONDO -0 ITTEI -NI SHI, ATSURYOKU -0
temperature constant (PLACE, RESULT, etc.) keep pressure (OBJ)

KUWAETA TOKI, KITAI ~NO TAISEKI -~-WA - - -

increase when gas volume
|
of "what' temperature is kept constant of 'what' pressure

is increased

meaning: When the temperature is kept constant and the pressure
18 increased, the volume of gas - - -

Fig. IV-4 Examples Where Omitted Words Appear in
Succeeding Sentences
Because the preceding sentences have already been analyzed and both
HNS and NS have been set up, it is easy to refer to the preceding
sentences. On the other hand we cannot immediately refer to the
succeeding sentences if this is called for.

To solve this problem we set up a trapping list TL. The basic

- 105 -

organization of TL is shown in Fig. IV-5. A trapping element is a

(EﬁN (F1 arguments)(F2 arguments)) — — - ~ -)
J

a trappiﬁ% element
N: number
Fl: arbitrary lisp function

F2: arbitrary lisp function
Fig. IV-5 Construction of TL

triplet and corresponds to a pending problem. When we cannot find an
appropriate word in the preceding sentences for an omitted word or an
anaphoric expression, we put a new trapping element in TL. At this
time the first of the triplet, N, is set to zero. When a noun phrase
in a succeeding sentence is analyzed, we pick up nouns from the noun
phrase one-by-one and check whether the present noun can resolve a .
pending problem in TL by evaluating the function Fl1 in the trapping
element.

We have defined several LISP functions for the function Fl.
These functions work as follows

(i) They check whether a noun at hand can solve the problems in
TL.

(ii) 1If it can do so, they update the data (for example, if the
function F1 is the function which searches the words in TL for fill-
ing in the omitted case element, then the function will put the pres-
ent noun in the case frame), and return the value 'DELETE'. Then the
system will delete the trapping element from TL.

(iii) If it cannot do so, the system adds 1 to N, the first ele-
ment of the trapping element. When N exceeds five, the trapping
element is deleted from TL. That is, itiis decided that the problem
corresponding to the trapping element can'not be solved at all.
Before the deletion of a trapping element its third element, the
function F2, is evaluated. Thus far F2 has only been used to provide

default values to allow some interpretaion for pending problems.

- 106 -

By using the idea of TL, we can separate various checking
mechanisms from the main program. They can be invoked automatically
when a noun appears in a sentence. The idea of TL resembles that of
E. Charniak's 'demon' (1972). When his system encounters a certain
word, for example, 'piggy bank', it creates a demon which tries to
catch from the succeeding sentences any word (e.g., money) related
to the key word. We fear that unnecessary knowledge will clog the
system with a 'combinatorial explosion' resulting from the prolifer-
ation of demons. Our trapping element is put in TL only temporarily
to compensate for any missing elements to be retrieved from succeed-

ing parts. Hence the unnecessary proliferation of elements may be

avoided.

IV-4 Processing of Anaphoric Expressions

In Japanese anaphora is expressed by using the articles KONO,
KORE, or KORERA which correspond roughly to "the', 'this' and 'these'
in English. The pronoun KORE is used to designate a single object
in the preceding sentences, and the pronoun KORERA is used to desig-
nate plural objects. The article KONO is used as a constituent of a
noun phrase. Though the articles in English modify the first suc-
ceeding noun, KONO often modifies a noun at some distance. An example

is given in Fig. IV-6.

noun noun noun
KONO SHIKENKAN -NO NAKA -NO DOU
this test tube in , eopper

{the copper in this (inside of) the test tube
this copper in the test tube

Fig. IV-6 Example of the Article KONO which
Modifies a Noun at Some Distance

- 107 -

In this example there are three nouns following the article
which can be modified by it syntactically. We must decide the pref-
erable modification pattern by using contextual information. In the
analysis of a noun phrase, we scan the words one-by-one from left to
right. When we catch the article KONO, we put it in the temporary
stack. The word will then be checked to see whether it can modify a
noun in the following noun phrase. When we scan the noun SHIKENKAN
(test tube) in Fig. IV-6, we check whether the object indicated by
it was already mentioned in the preceding sentences. If it was, then
the article KONO is regarded as modifying the noun 'test tube'. If
not, the article is stacked again. In this way the article will be
checked against the nouns in the noun phrase until the noun modified
by it is found.

The article KONO is used in the following two ways:

(1) SANSO -GA ARU. KONO SANSO -0 = - = -
oxygen (SUBJ, ACT) exist oxygen (OBJ)
There is oxygen. The oxygen - - - -

The noun SANSO modified by the article KONO is the same entity noun

which appears in the first sentence.

(2) SANSO -GA ARU. KONO TAISEKI -0
oxygen exist volume (0BJ)
There is oxygen. The volume of the oxygen - - - -

In this case KONO alone designates the entity noun SANSO which appears
in the first sentence. This usage is permitted only if the noun mod-
ified is a relational noun. If the noun has only a relational mean-
ing, the second usage appears more often than the first.

The meaning descriptions of articles and pronouns like KONO
are procedually expressed by LISP functioms. The functions in the
dictionary will be evaluated if we find such words in a sentence.

The function for KONO operates in the following way.
Step LA check is made to see if the succeeding noun is relational. If
the noun has only a relational meaning, it is first assumed that

the article KONO is of the second usage and we go to Step 3.

- 108 -

If not, we go to Step 2.
Step 2,The first usage of KONO has the following three varieties.

(i) SANSO -GA ARU. KONO SANSO -0 - - - -

There is oxygen. The oxygen - = = =

The noun modified by the article is the same noun which appears

in the preceding sentence.

(ii) SANSO -GA ARU. KONO KITAI -0

There is oxygen The gas - - - -

The noun 'gas' modified by the article is an upper concept noun

of the referent noun 'oxygen'.

(iii) SANSO -TO SUISO -0 KONGOUSURU. KONO KONGOUKITAI
oxygen and hydrogen (0BJ) mix The das mixture
-0 - - =
(0BJ)

(Someone) mixes oxygen and hydrogen. The gas mixture

The article modified a nominalized form of .the fitst sentence.
The first sentence instantiates the case frame of the verb 'mix'. We
evaluate the NTRANS description of the case frame and obtain a new
inferenced object 'mixture', whose elements are the oxygen and the
hydrogen. The noun KONGOUKITAI modified by the article is a lower
concept noun of the inferenced noun (mixture) in HNS.

According to these three varieties, we provide the following
three check routines., The order of checking is sﬁown in Fig. IV-7.

NS ; (i e)
(1

\\\zi\\\j\\\ij\‘\ |
HNS; (YO 3) 5) L)

Fig. IV-7 The Order of Checking

- 109 -

(check 1) Is there in the list the same noun as the noun modified
by KONO.

(check 2) 1Is there in the list a lower concept noun of the noun
modified by KONO.

(check 3) 1Is there in the HNS list an upper concept noun of the
modified noun, and are its properties consistent with
those of the modified noun.

If we can find a noun which satisfies one of these three conditions,

we decide that it is the referent noun. If we cannot, the function

for KONO returns the value NIL.
Step 3.If the noun which follows the article has a relational meaning,

the meaning description of the noun has slots which must
be filled in by other words. What kind of noun is preferable
for a slot is described in the meaning description. We search
in NS and HNS for an object which satisfies the description.
For example suppose the input is

SANSO -GA ARU, KONO TAISEKI - - —

oxygen (ACT SUBJ) exist volume

The noun TAISEKI is an attribute noun. So we look for a noun which

may have the attribute and recognize that oxygen is appropriate.

Another example is

SHIKENKAN -GA ARU. KONO NAKA -NI - - -
test tube (ACT SUBJ) exist in (PLACE, RESULT)
There 1s a test tube. In the (test tube) - - -

The noun NAKA (in) is a prepositional noun which requires a 'contain~
er' or 'liquid'. We can easily recongnize the test tube as a lower
concept noun of 'container'. Therefore we assume the word KONO is
used for the test tube. If we find no such nouns, we suppose that
the article KONO is not of the second usage but of the first. So we
will go to Step 2.

'~ The pronoun KORE (this, it) is used in sentences as a case

element. We can predict the kind of objects designated by the

- 110 -

pronoun by using the case frame descfiption of the verb in a sentence.
The postposition attached to the pronoun indicates a set of possible
cases. By taking from the frames the cases which belong to the set,
we can obtain the semantic descriptions which are satisfied by the
object designated by the pronoun. So we search through HNS and NS

for an object which satisfies the descriptions. Consider the follow-

ing:
MIZU 500cc -GA ARU. KORE ~NI SHOKUEN
water (ACT, SUBJ) exist (PLACE, RESULT, salt
TIME - - -)
2gr -0 IRERU
(0BJ) put in
There are 500ce of water. In this (water) (someone) puts in

2 grams of salt.

The set of possible cases for the postposition NI is (PLACE, RESULT,
TIME, BENEFICENT - - -), and the case frames of IRERU (put in) have
the case PLACE. We can predict that the pronoun KORE (this, <t)
fills the PLACE case in the sentence. The semantic description says
that a lower concept noun of 'container' or 'liquid' is preferable as
the PLACE case of the verb IRERU (put in). The object 'water’',

which is a lower concept noun of 'liquid', is found in NS, and is
determined to be the object designated by the pronoun.

We have some other pronouns and articles in Japnese which are
analyzed in the same way. We provide different LISP functions for
different pronouns and put them in the dictionary definitions of
these words.

T. Winograd treated the same problems in his excellent system
SHRDLU (1972). However, the world which his system can deal
with is very limited. In order to construct a system which can treat
a wider range of sentences, the system should be equipped with the
schema representing the relationships between events and objects (an

event may imply the occurrence of new objects or changes in the

- 111 -

properties of objects). In real world sentences, there exists more
complex phenomena about anaphoric expressions and omissions of words
than those treated in SHRDLU. We do not claim that our system can
treat such complex phenomena, but we hope that our system can be
evolved to cover such phenomena by means of combining contextual

analysis procedure with semantic descriptions of words.

IV-5 Analysis of Complex Sentences

In the previous sections we described the semantic and
contextual analysis procedure of our system. In this section we
explicate by using example sentences how these functional units are
organized in order to analyze fairly complex sentences.

Suppose the input sentence is

ASSHUKU-SARETE TAISEKI -GA HENKA-SURU TOKI ~NO SANSO
be compressed wvolume (SUBJ,ACT) change time oxygen
when
-NO JOUTAI -0 KANSATSUSHI, SONO ATSURYOKU -0 SOKUTEISHI,
state (OBJ) observe the pressure (OBJ)measure
SORE -0 GURAFU ~NI ARAWASU.

it (0OBJ) graph (PLACE, RESULT) express

(Someone) observes the state of the oxygen when it is compressed and
the volume (of it) changes, measures the pressure, and expresses it
by a graph.

The sentence is analyzed by the following steps.

1. The program first tries to find the leftmost verb, and
analyzes the clause governed by the verb. The sentence ASSHUKUSARETE
(be compressed) is analyzed first. This sentence has an irregular
structure in the sense that there are no explicit case elements

before the verb. All case elements are omitted in this sentential

- 112 -

part. By checking the inflection of the verb (ASSHUKU-SURU (to com-
press) —-- ASSHUKUSARE (fo be compressed)), we recognize that the
sentence is in the passive voice. The lexical description of the
verb in the word dictionary indicates that it takes two intrinsic
cases, that is ACTOR and OBJECT. In a Japanese sentence especially
in the field of chemistry, the case element ACTOR is apt to be neg-
lected. Therefore we adopt a dummy filler for the ACTOR to represent
the author of the sentence or some other human being. As there are
no preceding sentences, we cannot fill in the OBJECT case immediately.
So we set up the pending problem in TL which watch the analysis of
the succeeding strings to fill the gap.

2, The clause TAISEKI-GA HENKA-SURU will be analyzed next.
The verb HENKA-SURU (change) requires only SUBJ case. The postposi-
tion GA attached to the noun TAISEKI (volume) possibly implies the
case SUBJ. The noun TAISEKI is a lower concept noun of 'attribute',
which satisfies the semantic condition for the case element. So this
sentence is analyzed in a straightforward manner. However, because
the noun TAISEKI is an attribute noun, we must find the corresponding
entity noun. That is, we must identify the object whose volume is
being referred to. As we cannot find such an object in the preceding
sentences, we set up a pending problem in TL. By checking the inflec-
tion of the verb HENKASURU (change) and noting that it is immediately
followed by a noun, it is recognized that the sentence is an embedded
sentence modifying the following noun TOKI (fime, when). We then
connect this sentential part with the noun TOKI by using the relation
SMOD (MODified by a Sentence).

3. When we analyze the next clause,

TOKI -NO SANSO -NO JOUTAI -0 KANSATSU-SURU

time oxygen state (OBJ) observe

when
We first perform the analysis of the noun phrase TOKI-NO SANSO-NO
JOUTAI. The combination of the two nouns TOKI (¢ime) and SANSO

- 113 -

(oxygen) is semantically permissible because 'ozygen' is a lower
concept noun of 'material', and can be modified by a word which des-
ignates a special point of time. The noun TOKI (time) is modified by
the sentential part analyzed at Step 2, and designates the time when
the event expressed by the sentential part occurs. The combination
of SANSO (oxygen) and JOUTAI (state) is also permissible.

The nouns TOKI (time), SANSO (oxygen) and JOUTAL (state) in
the noun phrase activate the trapping elements in TL. The noun SANSO
(oxygen) satisfies the conditions of the two trapping elements set up
by Step 1 and 2. That is, SANSO (oxygen) fills in the case OBJ of
the first clause. TAISEKI (volume) in the second ¢lause is regarded
as the volume of the oxygen in the current clause.

4. The next clause ATSURYOKU-O SOKUTEISHI presents no new
problems. However a referent for the noun ATSURYOKU (pressure) must
be found. 'oxygen' in the preceding sentence is easily found to sat-
isfy the conditions for having the quality ATSURYOKU (pressure) .

5. The remaining steps follow along similar lines. The
results of the parsing of the expression are shown in Fig. Iv-8.

The next example shows how HNS is used. Suppose the input sen-

tence is
(1) Input sentence:

ASSHUKUSARETE, TAISEKI -GA HENKASURU TOKI -NO
be compressed volume (ACT SUBJ) change when

SANSO -NO JOUTAI -0 KANSATSUSHI, SONO ATSURYOKU -0
oxygen state (OBJ) observe the pressure (OBJ)

SOKUTEISHI, SORE -0 GURAFU -NI SURU.
measure it (0BJ) graph (I10BJ, RESULT, etc.) represent

meaning: (Someone) observes the state of owxygen which is com-

pressed and whose volume changes. (Someone) measures
the pressure and represents it as a graph.

- 114 -

result of the

measurement
state SLEX
IATR-ATR OBJ [STRUCT STRUCT
10BSERVE MEA U
oxygen <LEX ACT T 0BJ ¢

TIME
(someone) (someone)

time 4-1EX
IATR - ATR %f

SMOD

%I‘RUCT %STRUCT

Lgfmpnxssl (cHANGE |

SUBJ
(someone) IATR-ATR
voZume

0BJ

pressure

graph

'Fig. IVf8.fGraphica1 Representation of the Analysis Result

SUISO -TO SANSO -0 KONGOUSHI, KONO KONGOUKITAI -NI
hydrogen and oxygen (OBJ) mix the gas mixture
TENKASURU -TO BAKUHATSU-SHI, MIZU -GA DEKIRU.
fire (2f, when) explode water (SUBJ, ACT) be made

If (someone) mixes hydrogen and oxygen, and fires the gas mixture,
then (it) explodes and water results.

- 115 -

The following steps are performed.

1. When the analysis of the first clause SUISO-TO SANSO-O
KONGOUSHI is complete, the case frames of the verb KONGOUSHI are
instantiated. The NTRANS expression of the case frame which obtains
the highest matched value is determined. As the result a new object
"mixture' is created and the elements of the mixture are hydrogen
and oxygen. This newly created object is put into HNS.

2. The noun phrase KONO KONGOUKITAI-NI (to the gas mixture)
"in the clause is modified by the anaphoric determiner KONO (this)
which requires a referent. The noun KONGOUKITAI (gas mixture) is a
lower concept noun of 'mixture' having as components gaseous objects.
We search in the HNS and HS and find the object 'mixture' in HNS
whose elements are the hydrogen and the oxygen.

3. The object 'gas mixture' is the theme of the succeeding
sentences. It fills in the omitted case ACT of the third clause and
FROM case of the fourth clause. Fig. IV-9 shows the result of the
parsing.

Table IV-2 below shows the score obtained b, applying our
parsing program to the sentences in a junior high school chemistry

textbook.

(2) Input sentence:

SUISO -TO SANSO -0 KONGOUSHI

hydrogen (conjunctive pp - - — and) oxygen (OBJ) mix

KONO KONGOUKITAI -NI TENKASURU -TO

this gas mizture (OBJ, IO0BJ, PLACE, etc.) ignite (conjunctive
PP = - =
if, when)

HAGESHIKU KAGAKUHENKASHI, MIZU -GA DEKIRU.

violently react water (ACT SUBJ) be produced

meaning: If (someone) mizes hydrogen and oxzygen and ignites 1t,
then the gas reacts violently and water is produced.

- 116 -

52 3

STRUCT LEX ‘ STRUCT STRUCT
miaﬂ(mre IGNIT REACT be PRODU:
o ' :
ACT O0BJ ELEMENT ACT OBJ INST SUBJ MANNER FROM SUBJ
[]
(someone) ; ' @
violently /-
LEX
water
’;EX
gas mixture
Fig. 1IV-9 'Graphical Representation of the‘Anaiysis Resulp
total no. tried | successes failures
noun phrases 312 286 26
conjunctive phrases 372 349 23
sentences 280 254 26

Table IV-2 Successes and Failures Schema

IV-6 Conclusion

We can summarize our interpretive procedure as follows:

)

Through the use of grammatical case we describe patterns of

- 117 -

activity in the verb dictionary. The descriptions also contain
information as to how activities are connected with each other
and how activities change objects.

(2) The meaning descriptions of nouns are based upon the upper and
lower concept relationships and attribute value pairs. Some
kinds of nouns are regarded as having relational meanings.

Their meaning descriptions are similar to those of verbs, adjec-
tives, and prepositions. By using these descriptions we can
analyze fairly complex and long noun phrases where there are

few syntactic clues.

(3) We do not use logical expressions to represent context. Con-
textual information is represented in the form of what we call
intermediate term memory. This in combination with the semantic
descriptions of words has enabled us to perform efficient ana-
lyses dependent on contextual information.

(4) We have developed a programming language which makes it easy to
‘write grammars for natural language and to control the analysis
procedure. By using this language, we can incorporate naturally
semantic and contextual analyses into syntactic analysis. We do
not need a large and involved program which is responsible for
the semantic interpretation of the output given by the syntactic
analysis component. Instead, we provide many simple and small
functions for semantic and contextual analyses.

We have obtained fairly good results with our approach. The
contextual analysis program on the other hand can treat only local
contexts. In order to treat more global contexts, we feel the follow-
ing improvements will be necessary.

(i) We must provide our system with an appropriate schema
corresponding to human long term memory in order to represent the
state of the world. The system must have frameworks to express spa-
tial relationships among objects, time relationships among events and
so on.

(ii) At the present stage we have only one relationship CON

- 118 -

to connect one activity with another. However, human knowledge of
the world accommodates various kinds of relationships among activi-
ties, such:as cause, purpose, reason, etc. These relationships may
play an important role not only in the analysis of sentences, but
also in the inference processes in answering a question.

(iii) The descriptions of verb meanings using case work rather
well for analyzing verb-centered sentences. However, the results of
analysis depend on what verbs are used in surface sentences. Hence,
the sentences which convey the same meaning but are expressed by
using different verbs may be transformed into different internal
representations. This is a serious drawback when constructing ques-
tion-answering systems or other kinds of intelligent systems.

(iv) In order that a system be able to communicate with people
in a flexible and natural manner, it must be able to derive inferences
from incomplete data bases. Therefore we must design a procedure
other than the uniform proof procedure such as the resolution proof
procedure.

(v) It is necessary to apply our method in fields different
from chemistry and to test whether our semantic description method

should be changed or not.

There are many scholars who are interested in using case
structures as a representation of natural language utterances.
B. Bruce (1975) offers a good survey and a unified point of view in
favor of case systems. We also believe that the case system is a
promising approach to the representation of meanings in natural lan-

guage.,

- 119 -

CHAPTER V

SEMANTIC NETWORK AS INTERNAL KNOWLEDGE REPRESENTATION

V-I Introduction

Many researchers are convinced that various kinds of back-
ground knowledge which are not linguistic, play important roles in
the process of language understanding. As we chose elementary
chemistry to be the micrc world of our question-answering system, we
should provide our system with real-world knowledge of this field.

In Chapter III and Chapter IV, we explained the forms of description
used in the Noun Dictionary and the Verb Dictionary of this micro
world, and also described how they are utilized in order to dis-
ambiguate the analysis of sentences. The meaning descriptions in the
dictionary reflect the possible relationships in the real world
between objects and objects (in the Noun Dictionary) or objects and
events (in the Verb Dictionary). They are, however, organized in a
form which is convenient for being utilized during the analysis of
sentences. So the descriptions contain much information which is
irrelevant for doing deductions or problem solving and, moreover,
lack necessary information for doing deductions and problem slovings.
An appropriate framework of representing knowledge must be devised
for such purposes.

In this chapter, we will introduce the idea of the semantic
network as a representation scheme for use in deduction and problem
solvings. Then we will give a specification of our semantic network,

and show how to implement and use it in the problem-solving processes.

- 121 -

V-2 Internal Knowledge Representation -- Survey of Related Research

Works

The term semantic network means different things to different
people, because the definitions of semantic network given so far
have been vague. Many different kinds of representation schemes are
called by the name 'semantic network' and there are also many re-
presentation schemes called by names other than semantic network
which share the same basic ideas of our system. In the following,
we will describe some of them in comparison with our semantic net-

work.

1. Quillian's semantic network : R.Quillian is the first man who
proposed the semantic network as an internal knowledge representa-
tion. His program (TLC - Teachable Language Comprehender) can deduce
the relationships between two words in a phrase by traversing the
net to find the visual immediacy of interrelationships between con-
cepts denoted by the words. For example, from a phrase like

'"lawyer's client', the program can derive the following explanations.

'"The client who employs the lawyer who gives advice about

legal matters to the client'

His program is based on the notion of associativity between concepts.
Associativity between any pair of concepts is represented by a link.
In his system, both soundness and completeness of the system in the
logical sense are ignored. The conclusion or the explanation derived

by his system is not always logically correct.

2. Raphael's SIR : Raphael did not ever claim that his represen-
tation was a semantic network. However, the structure in which his
system represents information shares many features in common with the
currently developed networks. His main interests are how to repre-
sent logical relationships such as set-membership, part-whole, owner-

ship and so on, and how to utilize these relationships to deduce a

- 122 -

conclusion from given facts. The conclusions deduced by his system
are guaranteed to be logically correct. Fig. V-1 shows some examples

of tasks which were performed by his system.

(... Every boy is a person)

(I understand)

(... A finger is part of a hand)

(I understand)

(... Each person has two hands)

(The above sentence is ambiguous .. Please re-phrase 1it)
(... There are two hands on each person)
(I understand)

(... How many fingers does John have Q)

(I don't know whether finger is part of John)
(... John is a boy)

(... Every hand has five fingers)

(... How many fingers does John have Q)

(The answer is 10)

Fig. V-1 Sample Dialogue of SIR

The above two systems are typical of early approaches to the
semantic network as scheme for representing knowledge. The semantic

network approach has the following two notable characteristics:

1. Retrieving relevant information by traversing the network:.
In this context, links in the network express mainly the associative

relationships among concepts.

2. Performing logical deduction or problem solving by traversing
the network. In this context, as compared with the first one, links

in the network are regarded as expressing the logical relationships

among concepts.

- 123 -

Recent research efforts have attempted to make clear the
properties of the semantic network in the second context. R.F.
Simmons (1977), L.K.Schubert (1976), G.G.Hendrix (1975a, 1975b, 1977),
J.Mylopoulos (1975, 1977), J.Minker (1977) and others are interested
in the expressive power of semantic networks. They examined the
logical properties of conventional semantic networks, developed a
more rigid representation format, and some of them formulated the
logically adequate operations on the network. Some people, especial-
ly psychologists like D.E.Rumelhart and D.A.Norman, are interested in
the associative property of semantic networks (Norman, 1975).

These approaches are very interesting, but from the point of view
we now occupy, we will exclude the psychological topics from the
current discussion because it is out of our interests in this thesis.

Before discussing the network we have recently developed, we
will first examine the advantages and disadvantages of semantic

networks by considering more primitive network systems.

SIR developed by B.Raphael (Raphael 1968) and the kinship
system (SAD-SAM) by L.Lindsay are typical of these primitive systems.
Lindsay's system is a highly specific one oriented toward kinship
relations. This point illustrates both the advantage and disad-
vantage of semantic networks. One can construct an efficient problem
solving or deduction system for a specific domain at the sacrifice
of generality. The program interpreting the network gives the
semantics of the representation. That is, what the nodes and links
in the network really represent are determined by the program which
utilizes the network. In the early stage of network systems, the
designers constructed the program in forms convenient for their
specific purposes, so that the semantic networks in different systems
have different semantics. This is the reason why the term semantic net-
work has had different meanings for different people. Though such kinds
of systems are efficient for their own purposes, for different purposes

one have to design completely different formats for networks and the

- 124 -

procedures that interpret them. Lindsay's kinship system is typical,
in the sense that his system shows remarkable performance but can

only be applied to a very limited field, i.e. kinship relationms.

The purpose of Raphael's system was to develop a representa-
tional format for more general knowledge. He declared his attitude

in his paper (Raphael 1968) as follows.

'The SIR system is based on a single model which captures
some of the advantages of various specific models while permitting
uniform procedures as well as the storage and retrieval of arbitrary
facts ...'

In his system, all the factual knowledges represented in
relational statements and they are organized in a kind of network
structure. A link in the network expresses a certain kind of rela-
tionship between objects and classes of objects, such as ownership,
part-whole relationship, left-right spatial relationship, set-
inclusion relationship,or set-membership. The links in his system
are, therefore, considered as predicates. Because every predicate
in his system must be expressed by a link, one cannot express pre-
dicates which have more than two arguments. In this sense, his
representational format is restricted. However, this restriction
enables his system to have an interesting characteristic, namely
that both retrieving relevant knowledge and performing logical deduc-
tions are done at the same time by traversing the network. A more
serious disadvantage of his system follows the fact that although
each factual datum is represented by a certain network structure, the
axiomatic information for each relation is expressed in the form of
program. Each separate information storage or retrieval operation
for each different relation is controlled by a different subprogram.
Because the axioms about a relation usually bear reference to other
relations, each subprogram is highly dependent on other subprograms.
Moreover, if the user wants to define a new relation, he must not

only write a new subprogram for the relation but also modify the

- 125 -

other related subprograms. As mentioned before, in the early network
systems the meaning of links and nodes, that is, the semantics of
networks were given by the programs which interpret the networks.
Raphael cleverly noticed this fact. His system can be changed to be
applicable for any problem domains by adding subprograms for the
relations which are useful in that domain. His system is general in
this sense. But this means only that one can theoretically write

a program to do whatever one wants. The important consideration is
what kinds of useful mechanisms the framework provides the programmer,
and how easily the programmer can express what he wants in this
framework. The SIR system has very few provisions for programming
the subprograms. It is also an important factor whether the system
provides useful mechanisms for extension and enhancement. The SIR
system has very few provisions for adding new subprograms.

Any discussion concerning a general framework for represent-
ing knowledge would be incomplete without a mention of predicate
calculus and recently developed AI languages, though they are not
semantic networks. Predicate calculus seems to give the most comp-
lete and rigorous framework for representing knowledge. 1In particu-
lar, the first order predicate calculus was used by some researchers
as the internal representation of knowledge in their question-answer-
ing systems, because an efficient proof procedure for this kind of
logic has been developed. The procedure is complete in the sense
that if a theorem is logically deduced from the given axiom, the
procedure can eventually prove it. However, the procedure has the

following disadvantages when applied to a question-answering system.

1. 1t is obvious that the procedure should have the ability to
select the facts (axioms) relevant to the given question because
there may be a great number of facts which are not relevant to the
current problem. We believe that, in the computer memory, similar
facts should be grouped together. However, the proof procedure

itself has no such ability to cluster relevant knowledge.

- 126 -

2. In order to apply the proof procedure to a question-answering
system, all kinds of information must be expressed as predicate
calculus formulas. People, however, use various kinds of knowledge
other than those that can be expressed in logical formulas. For
example, we know not only a theorem itself but also how to use it,
when the theorem is useful, and so on. These kinds of second order
knowledge should be reflected in the control of the deduction or

problem solving processes.

3. Finally, in a question-answering system, we must accept natu-
ral language sentences as input. Then we have to translate them into
formulas of the first order logic. In the analysis and translation
of input sentences, we must refer to general knowledge. If we re-
present general knowledge in logical formulas, it must be logically
consistent. Usually our knowledge is locally consistent but very
often violates consistency globally. So it is very hard to keep the

entire knowledge base always consistent.

Because the last problem was discussed in the previous chap-
ters, we will express here our attitude to the first two problems.
In the SIR system, one can embed arbitrary heuristics in the sub-
programs for interpreting the links, because the system provides no
strong framework for programming. As a setback, it has the dis-
advantage that one must prepare by himself all the implications of
the representation which he chooses. On the contrary, the system
based on the predicate calculus formulas and the proof procedure
imposes strong constraints on the programmer as to how to encode his
knowledge. Because the system provides a general procedure for
interpreting the expressions, the semantics of the expressions in
which the programmer encodes his knowledge are completely specified
by the system. Moreover, the general proof procedure can theoret-
ically deduce whatever logically follows the given facts. One does
not have to anticipate how the given facts will be used. A certain

facts can be used in the way which the designer never anticipates.

- 127 -~

On the other hand, because the way to select releyant facts
from the set of given facts are completely left to the general proof
procedure, many irrelevant proof paths are generated during the
proof process. Though several refinements of the general proof
procedure to suppress the generation of irrelevant proof paths have
been proposed, these refinements are not satisfactory. They are
based on only the surface forms of the formulas. However, the pre-
dicate calculus formula imposes such a rigid and limited representa-
tional framework that various useful types of knowledge, especially
the knowledge about how to control the proof process, cannot be
expressed. That is the reason why such refinements are not so
successful (C.L.Chang 1973).

Procedural approaches which are popular nowadays are frame-
works which make it easy for the designer to directly control which
facts will be used when. The procedural approaches exhibit remark-
able performances in a certain restricted domain. However, the
approaches have more or less the same disadvantage that the early
representation schemes had. Though AI languages prepare various
kinds of useful programming tools such as automatic backtracking
in PLANNER, a context mechanism in CONNIVER and so on. The frame-
works which such languages provide are much richer than those in
early systems, but the designer of a system must still provide too
much advice for interpreting his expressions. The pattern directed
invocation of a procedure is one of the commonly used techniques in
the AI languages. By virtue of this technique, the appropriate
procedures are invoked at appropriate times without writing any
explicit calling processes. Therefore, one can evolve his system
simply by adding new procedures with the patterns which describe
when they are needed. However, because the method of representing
the purposes of procedures by using patterns are completely dependent
on the designer, the semantics of patterns are not determined by

themselves. The semantics of patterns are determined only by the

- 128 -

procedures which are invoked by those patterns. It is often the

case that two different patterns convey the same meaning in a certain
context and therefore they can be applicable to a certain kind of
problem, or conversely that two procedures with the same invocation
pattern have different implications in a certain context.

Though in these AI languages the patterns are organized by
some index structures which are convenient for retrieving them, the
index structures are constructed only by considering the syntactic
structures of patterns so that the programming system is not sensi-
tive to subtle implications of the pattern's meaning. In other
words, the designer should still pay attentionm to the implications
of the patterns which he uses (D.G.Bobrow 1974).

We think that the framework must provide much richer index
structures which reflect the semantic meaning of patterns and the
framework must also provide some general abilities. By the word
'general abilities' we mean the abilities which are universally ap-
plicable to any domain, that interprets and manipulates the patternms.
Throughout this discussion, we used the term 'pattern' to indicate
some descriptions attached to a procedure. The 'pattern' in the
present AI languages means a simple list structure that has no mean-
ing by itself. It plays only the role of a handle for retrieving
procedures. However, our contention is that a much richer descrip-
tive framework is necessary for more complicated systems. It is also
desirable that the descriptive expressions convey some meanings of
their own. Our semantic network can be seen as a certain semantical
index structure for various kinds of knowledge domain whether it be
procedural or descriptive. By traversing the network, the system
not only retrieves relevant knowledge but also performs certain kind
of deductive operations at the same time.

Though the resolution-based general proof procedure is in-
efficient, many logical operations can be well explained and for-
mulated by using the predicate calculus. We will examine by using

predicate calculus formulas, what traversing our network logically

- 129 -

means and whether a certain operation on the network is logically
valid. In other words, we wili examine the correspondence between
the notation of predicate calculus and our semantic network re-
presentation.

Recenf research efforts on semantic networks have attempted
to clarify the logical properties of semantic networks and to extend
the expressive power of networks in order to cover the expressive
power of first order or higher order predicate calculus. We are
also interested in examining the parallelism between the operations
on the network and predicate calculus. The main purpose of the
notations which have been developed by G.Hendrix, L.Schubert and so
on is to extend the expressive power of networks so that their net-
work notations can be interpreted as logical formulas. In a sense,
their networks are the graphical notations of logical formulas.
Hendrix developed a proof procedure by using his representations,
but the procedure does not utilize the advantage which network re-
presentétions have in general. The advantage of network representa-
tions, we think, is that both the selection of relevant knowledge
and the execution of logical operations are carried out at the same
time simply by traversing networks. We are much more interested in
constructing a network which has the form convenient for this pur-
pose. We are presently not so much interested in constructing a
network which has the same expressive and deductive power as the
predicate calculus. The network which we have developed gives the
framework in which various kinds of knowledge, such as procedural
knowledge, knowledge about external data bases, and so on, can be
naturally embedded. The validity of the format of the network re-
presentations and the validity of the operations on the network will
be examined by logical expressions. A programming 1anguagé by which

we can define the network will be also given.

- 130 -

V-3 Definition of the Semantic Network - S.N.

In the following, the semantic network which we define will
be called S.N. to distinguish it from the other kinds of semantic
network. We are going to define the S.N. in comparison with ordinary

predicate logic. We have the following basic node types in the S.N.:

Predicate Node
. Funection Node
Variable Node

. Constant Node

wnn &~ W N =

. Logical Comnective Node

These node types directly correspond to the predicate, func-
tion, individual variable, individual constant, and logical connec-
tive in predicate calculus, respectively. In order to embed in the
S.N. additional information which cannot be expressed naturally in a
predicate calculus formula, we will further sub-divide them according

to the functions which the nodes perform.

V-3~1 Variable Node and Constant Node

In the first order predicate calculus, we have a unique set
of elements which is called Domain. All the constants and variables
are assumed to be elements in the domain. However, there are usually
more than one domain as in many-sorted logic (Sandwall 1970). 1In the

present system, we have the following three domains.

1. Domain of Materials
2. Domain of Markers

3. Domain of Numerals

- 131 -

A variable or a constant node in the S.N. belongs to one of these
three domains. The graphical notation of a variable and a constant

node is given in Fig. V-2.

CONSTANT NODE L , o ®
(type = MATERIAL) (type = MARKER) (type = NUMERAL)

VARIABLE NODE ®) O O
(type = MATERIAL) (type = MARKER) (type = NUMERAL)

Fig. V-2 Graphical Notation for Constant Nodes and Variable Nodes

V-3-2 Function Node

A function defines a mapping that maps a list of constants
to a constant. In the S.N., we will subdivide the function node
into the following two types according to the type of the value of

the function.

1. Function Node (type = Material) : The value of a function of
this type is the element which belongs to the domain Material.

2. PFunction Node (type = Attribute) : The value of a function of
this type is an element which is a marker or which belongs to the

domain Numeral.

The following links are attached to a function node.
1. Argument link : notated in the S.N. as ARGl, ARGZ,
2. Value link : notated in the S.N. as VALUE.

A graphical notation of a function node is shown in Fig. V-3.
Note that in a graphical notation every link is represented as a uni-

directional link but in a real implementation a link was represen-

- 132 -

ed as a bi-derectional.

Fig. V-3 Graphical Notation for a Function Node

V-3-3 Predicate Node

Predicate symbols are the most important type of symbols in
the first order predicate calculus. Various kinds of information are
expressed by using predicates. For example, the expressions LOVE(x,
y), HUMAN(x), and ON(x, y) in the ordinary predicate calculus are
written in the same format using predicate symbols. Therefore,
all the expressions are stored in the same storage structure and used
in the same manner during the deduction process. This is one of the
reasons why the universal proof proecedure is inefficient when it is
applied to the real world problems, namely that it may attempt to use

any fact at all in constructing a proof.

In the S.N., we classify the predicates into the following
five types and provide a different storage structure and a different

proof procedure to each different type.

. Concept predicate ... Concept Node
Arithmetic predicate ... Arithmetic Node

Relation predicate ... Relation Node

Boolean predicate ... Boolean Node

v &~ W N

. Event predicate ... Event Node

- 133 -

All these predicate nodes, however, are expressed in the
same graphical notation. The graphical notation for predicate nodes

is given in Fig. V-4.

Fig. V-4 Graphical Notation for a Predicate Node

V-3-3-1 Concept Node

A concept predicate is a one-place predicate anc specifies
a certain set in some domain. For example, the predicate 'chemical-
compound' specifies the set in the domain MATERIAL which consists of
the elements being chemical compounds.

According to the notation of S.Oshuga (Oshuga 1977), the

formula of the ordinary first order predicate logic
(¥x) (Wy) [A(x) AB(y) /™ P(x, y)I

is expressed by
(¥x/AM Fy/B)P(x,),

In this notation, the ranges of values that the variable x and y can
take are restricted to the sets A and {B which are specifi=d by the
predicate A and B, respectively. To make the reasoning process effi-
cient by introducing a hierarchical relationship among the sets is
one of the frequently used techniques in semantic networks and other
recently developed systems. Concept nodes in the S.N. are used to
realize this basic mode of reasoning(see section V-4).

Examples of concept nodes are shown in Fig. V-5.

- 134 -

NITRIC-ACID CHEMICAL~COMPOUND

ARG1 ARG1

Fig. V-5 Example of a Concept Node

V-3-3-2 Arithmetic Node

 As pointed out by G.Hendrix(Hendrix 1977), for many appli-
cations it is important for the system's knowledge base to include
sources of information such as relational data bases or arithmetic
algorithms which are external to the network. Some types of predicates
in the first order predicate calculus are used to describe a certain
dependency relationship between elements in domains. By the term
'dependency relationship' we mean a relationship like 'functional
dependency' in the theory of relational data bases. An arithmetic
predicate is one of such types of predicate.

An arithmetic predicate(node) shows that there exists a

certain computable relationship between the arguments. We have the

following arithmetic nodes in the S.N. at present.
1. DIVide/MuLTiply
2. ADD/SUBtract

3. EXPonential

The fact

'if x is a solution, then there exists the ADD/SUB relationship
between the mass of x, the mass of the solute of x, and the mass of

the solvent of x'

- 135 -

is represented in the S.N. as shown in Fig. V-6. Note that this

representation can be interpreted as the following ways.

'if x is a solution and both the mass of the solute of x and the
mass of the solvent of x are known, then you can compute the mass of
x by adding them.'

'if x is a solution and both the mass of x and the mass of the
solvent of x are known, then you can compute the mass of the solute

of x by subtracting them.’

@ S % 5 000404600000 E0EL 000000 seLOLEEEEGEELEDLIEOIEIEEIEOEOBSIOEUTETS

MASS

SOLVENT ADD/SUB

SOLUTION

ARG1

Fig. V-6 Example of Arithmetic Nodes

V-3-3-3 Relation Node

An arithmetic node indicates that there exists a certain
computable relationship between the arguments. However, we have
many other relations that are not arithmetic. The relations between
a chemical material and the molecular weight, and a material and the
color are such examples. We represent these relationships as predi-

cate nodes in the S.N.. These predicate nodes are called relation

nodes. A relation node indicates that there exists a certain de-

- 136 -

pendency relationship between arguments, and it plays the same role
as an arithmetic node does in the reasoning process. Though in the
case of arithmetic node we know how to compute the value of the un-
known argument from the known values of the other arguments, we
usually do not know about a relation node the way how to calculate
the value of a certain argument from the values of the other argu-

ments. A simple fact like
'A11l human beings have fathers'

can be expressed by the formula

(¥x) (3y) [HUMAN (x) ——FATHER (x,)1

This formula is transformed by using a Skolem function into

(¥x) [HUMAN (x) ——FATHER (x, f(x))]

The Skolem function 'f' in the above formula indicates the dependency
relationship of the variable y on the variable x in the first formula.
Instead of using Skolem functions, we express such dependency re-

lationship by a relation node. The above formula is expressed in the

S.N. as shown in Fig. V-7.

(O FATHER
[Dependency : ARGl-—s ARG2]

Fig. V-7 Representation of the Fact
(¥x) (HUMAN (x) —FATHER (x, f(x)))

In the reasoning process, we need to know not only that a
certain dependency relationship exists but also the real corre-

spondence between elements. The real correspondences of elements

- 137 -

are considered to give partial interpretations of the Skolem func-
tion. Suppose that we have the following four formulas.

(¥x) (3y) [HUMAN (x)
FATHER (JIM, JOHN)
FATHER (MIKE, JOHN)
FATHER (TOM, STEVE)

FATHER(x, v)]

In this case, the first formula is transformed into the Skolem

standard formula
(¥x) [HUMAN(x) —/= FATHER(x, f(x))]

and in the S.N. it is expressed by the network shown in Fig. V-7.

The node 'FATHER' is a relation node. The remaining three formulas
give the real correspondences between elemehts. In order to answer

a certain type of questions, we can determine who is the father of a
given person by using this partial interpretation of the Skolem func-
tion. We will assume such an interpretation is stored in an external
data base, because the number of these correspondences may be very
large in a real application. Therefore, a relation node gives us an
entrance from the S.N. to the external data base as an arithmetic
node gives us an entrance to an arithmetic algorithm. We assume that
external data bases are contructed based on the relational data model.
The above four formulas are represented in the S.N. as shown in

Fig, V-8.
HUMAN

@ FATHER
[Dependency : ARGl—#ARG2]

ARGl ARG2
JIM JOHN
MIKE JOHN
TOM STEVE

Fig. V-8 Link to an External Data Base

- 138 -

The links attached to a relation node are named ARGi (i=0,
1, 2 ...). The link ARGO is the special link which points to the
name of the table in the external data base. A relation node con-
tains a dependency relationship among the arguments as the internal
description of the node.

It is possible to create several relation nodes for a single
table. 1In this case, each relation node describes a different de-
pendency relationship among the columns of the table. Note that the
word 'column' has the same meaning as the technical term 'domain' in
the relational data base theory. An example in which two relation

nodes are created for a single table is shown in Fig. V-9.

MOLECULAR~

WEIGHT
COMPOUND ﬁ/
C
O ARG1 ARG3

[ARGI~=ARG3]
CHLCMICAL~- @

ARGl | ARG2 | ARG3

LT

External Data Base

Fig. V-9 Example of Two Relation Nodes for a Single External Data Base

V-3-3-4 Boolean Node

" In the reasoning process, the dependency relationship shown
by an arithmetic node or a relation node is utilized to determine the
unknown values of a certain argument from the known values of the
other arguments. On the other hand, a boolean node is mainly evalu-

ated when the values of the all arguments are determined. The result

- 139 -

of evaluation of a boolean node is true or false.

An example of a boolean node is given in Fig. V-10.

BOILING-
PO

type :NUMERAL

LIQUID TEMPERATURE

type : NUMERAL

] Nt

ARG1

CONGELATION-
POINT

Fig. V-10 Example of a Boolean Node

V-4 Generalization Hierarchy

Current research on semantic networks tends to introduce
rigorous notations in networks in order to extend their expressive
power. However, introduction of rigorous notations in networks
carries with it a cost in the directness of the associative paths
for retrieving relevant knowledge. The only advantage of the current
semantic network-based approaches over other representational frame-
works seems to be that it can retrieve relevant knowledge by uti-
lizing certain hierarchical structures among concepts. We mean here
by the word 'concept' a set of objects which satisfy a certain con-
dition. In other representational systems, the only things which can
be expressed by such a hierarchical structure are very simple in-

ference rules such as the following.

(¥x) (VA (¥B) [x€ANACB) — x ¢B]

- 140 -

Note that the relationships € and C are called by different names in
different networks. For example, the relationship € is called by

the name such as IS-A, ELEMENT-OF, MEMBER and so on, and the relation-
ship <C by the name such as'SUBSET—OF, SUBCONCEPT, and so on.

Many facts which express certain relationships between con-
cepts but cannot be represented by this simple-minded framework are
easily found. 1In the chemical field we have, for example, the fol-

lowing statements that express certain relationships among concepts.

1. All chemical materials are either gas, liquid or solid.

2. The material whose temperature is between the boiling point
and the congelation point is liquid.

3. Hydrochloric acid is a strong acid.

4. The acid which melts copper is either hydrochloric acid,

nitric acid or sulphuric acid.

All the above statements express relationships among concepts.
But because a simple-minded concept hierarchy cannot express these
statements in its framework, one cannot help but express them in
ordinary logical formulas. In the S.N., we can embed these facts in
the concept hierarchy more naturally and therefore they can be uti-
lized efficiently in the reasoning process. For this prupose, we

will introduce the two new types of nodes called SELF and DISJOINT.

V-4-1 Concept Hierarchy and SELF Node

Before we describe the role of a SELF node, we will first
mention our concept hierarchy. The following links are used to re-
present the inclusion relationship among the sets (We follow the

notation developed by J.Sowa (1976)).

1. SORT
2. SUBSORT

- 141 -

These two links represent the inclusion relationship between

two sets which are specified by two concept predicates. An illust-

ration is given in Fig. V-11.

SUBSORT

Fig. V-11 Generalization Hierarchy

If a chemical material can be identified with the variable
node y in the figure, that is, if a chemical material satisfies the
predicate B, then the material can be automatically identified with
the concept node A by traversing the SORT link. If a certain thing
is identified with a certain variable node, it means that the know-
ledge attached to the node becomes applicable. A SORT link can be
traversed without any checking so that any knowledge attached to the
upper concept nodes (the nodes which are linked by SORT links with
the current node) is always applicable. However we cannot traverse
a SUBSORT link unconditionally.

The concept nodes usually correspond to the sets that are
specified by single predicates. However, in some cases the speci-
fication of a set is expressed by a noun phrase, that is, a compound

formula. The phrase in sentence 2

'material whose temperature is between the boiling point and

the congelation point'

and the phrase in sentence 3

- 142 -

'strong acid’

cannot be expressed by single concept predicates, but they indicate
useful clusterings of materials. 1If we can express such clusterings
by single concept nodes in the S.N., we can attach any predications
to the nodes. Otherwise, we must make predications for each material
in the clusterings.

We will extend the definition of a concept node from the
restriction that a concept node represent a set specified by a single
concept predicate to the definition that a concept node represents a
useful clustering of objects, even when the exact members of this
cluster may not be known. According to this definition, we can ox-

press sentence 2 and sentence 3 can be expressed such as Fig. V-12.

: STRONG-ACID
LIQUID MATERIAL
SORT
SUBSOR SUBSORT
SORT SUBSORT
© 3
Material whose temperature 18 ®
between the boiling point and
the congelation point HYDROCHLORIC~
ACID

Fig. V-12 Graphical Notations for Sentence 2 and Sentence 3

In this figure, one can see that the concepts which are ex-
pressed by the phrases correspond to the single concept nodes in the
S.N.. The graphical notations given in Fig. V-12 are, of course,
insufficient. We should specify the condition that describes when a
certain object can be identified with the concepts.

The TCRUS system which has been developed at the University
of Toronto utilizes a semantic network for the interface between data
bases and casual users. In the semantic network of TORUS, it is
possible to attach to each node the function which is called the

'recognition function' for the node. However, we want to express

- 143 -

various kinds of information in the network structure itself as much
as possible, because representing knowledge in networks has the

following obvious advantage :

A single network can be utilized for various purposes so that
the condition for identification can also be used for other purposes.
On the other hand, as pointed out by Winograd (1975), in procedural
representations a single fact would have to be represented different-
ly for each different purpose.

We use a SELF node for describing the identification condi-
tion in the S.N.. Fig. V-13 shows the notations in the S.N. for
sentence 2 and sentence 3.

LIQUID MATERIAL BOILING~
POINT

SUBSORT

SELF-node

CONGELATION-

POINT
ACID
SUBSORT
pH
T
SORT N -
(e -1/“
ARGL
O] STRONG-AC1D LESS
ARG
SORT SUBSORT

(O HYDROCHLORIC-ACID

Fig. V-13 The Notations for Sentence 2 and Sentence 3

- 144 ~

The format of the description attached to a SELF node is the
same as those attached to a concept node. Therefore, when a material
is identified with a concept node, the description attached to the
SELF node can be utilized in the same manner that the description
attached to the concept node is used. For example, when the follow-

ing two different definitions of concept 'liquid' are given :

'A liquid is a material whose temperature is between the

boiling point and the congelation point'’

and
'Liquid is a material whose state is *LIQUID'

Then the network becomes like that shown in Fig. V-14., When a materi-
al satisfies the description of a SELF node, the description attached
to the other SELF node becomes applicable to the material. That is,

the network in Fig. V-14 can be interpreted in the following ways:

'If the temperature of a material is between the boiling point
and the congelation point, then the material is liquid and the state
of the material is *LIQUID.'

"If the state of a material is *LIQUID, then the material is
liquid and the temperature is between the boiling point and the

congelation point.'

MATERIAL

BOILING-
POINT

TEMPERATURE

BETWEEN

*LIQUID

LIQUID

Fig. V-14 Two Different Definitions for the Concept 'Liquid’

- 145 -

V-4-2 Concept Hierarchy and DISJOINT Node

Both sentence 1 and sentence 4 express mutually exclusive
relationships among concepts. Suppose we express 'x is material',
'x is liquid', 'x is gas', and 'x is solid' by MATERIAL(x), LIQUID
(x) , GAS(x) and SOLID(x), respectively. Then we can express sentence
1 by the formula
(¥x) [MATERIAL (x) ——» LIQUID (x)VGAS (x)VSOLID(x)]
(¥x) [LIQUID(x)— ~GAS (x)V~SOLID(x)]

(¥x) [GAS (x)— ~SOLID (x)v~LIQUID(x)]
(¥x) [SOLID (x) — ~LIQUID (x)V~GAS(x)],

And we can also express sentence 4 by the formula

(¥x) (¥y) [COPPER (x)AMELT (x, y)AACID(y)—’HY—ACID(X)VNI—ACIDVSU—ACID(X)]
(¥x) [HY-ACID (x) —» ~NI-ACID (x)V~SU(x)]

(¥x) [NI-ACID (x) — ~SU-ACID(x)v~NI-ACID(x)]
(VX)[SU—ACID(X)——&MVNI—ACID(X)VNHY—ACID(x)].

The predicates used here have obvious meanings.

Though there often appear the mutually exclusive relation-
ships such as those expressed in sentence 1 and sentence 4, the
logical formulas for expressing them are very complex, and therefore
it may be very time consuming for the general proof procedure to
utilize them during the deduction.

We call a set of concepts 'disjoint set', if the concepts in

the set satisfy the following conditions :

1. If an object is identified with a certain concept in the set,
the object can never be identified with the other concepts in the set
2. If an object cannot be identified with the other concepts in

the set except one, the object is automatically identified with it.

In the S.N., we represent a disjoint set by a node called
DISJOINT node. Because the set (liquid, gas, solid) in sentence 1

and the set (hydrochloric acid, nitric acid, sulphuric acid) are

- 146 -

GAS

disjoint sets, sentence 1 and sentence 4 are represented in the S.N.
as shown in Fig. V-15. DISJOINT node are often useful to inhibit
assertions and general axioms that are semantically irrelevant to

the search from entering into the deductive search(see section V-8-
1).

MATERIAL SUBSORT

COPPER

SORT SUBSORT

DISJOINT-node

Fig. V-15 Examples of DISJOINT - nodes ——— Representation

of Sentence 1 and Sentence 4

V-5 Path Merging and Assimilation of New Knowledge

The procedure for problem solving or deduction is to traverse
the network to find knowledge relevant to the current problem. If a
certain object in the current problem is identified with a certain
concept node in the S.N., the knowledge attached to the node becomes
applicable to the object. However, there are many paths (sequence of
nodes and links) leaving from a concept node. The more independent
paths leave from a node, the less searching is efficient. A new
statement should be properly assimilated with the statements already

stored in the network. The process called 'path merging' is per-

- 147 -

formed, when a new piece of knowledge is entered.

In the S.N., the predicate nodes except for concept nodes
express certain relationships among their arguments. The path from
a concept node to one of these nodes gives a path of reference to
the relationship. Therefore, the process of path merging is applied
to the sequence of concept nodes, variable nodes and function nodes.
A simple example is shown in the following. Suppose that the follow-

ing knowledge has already been stored in the S.N..
<{mass of a solution> = <mass of the solute> + <¢mass of the solvent>
And the new knowledge

<density of a solution)=<mass of the solute /Kmass of the solution>

is entered.
The stored knowledge is in the form shown in Fig. V-16(a).
The new knowledge can be represented by the network given in Fig. V-
16(b) .One can recognize that the two paths in the new knowledge are
identical to those already stored in the S.N.. That is, the node v'
and w' in Fig. V-16{b) correspond to the following formulas.
'

v! = mass (x)

wi mass (solute(x)) |SOLUTION(X)

il

On the other hand, the nodes v and w also represent the
concepts such as (in Fig. 16(a))

v = mass (x)

w = mass {(solute 'x)) SOLUTION(x)

By considering these formulas, it is obvious that v and v',
w and w' are identical. 'Therefore, the paths can be merged. The
resultant structure is shown in Fig. V-17

Thus the two pieces of knowledge which are given separately
are combined together in the resultant network, and the various re-
lationships among the concepts <mass of a solution$, <density of a
solution), ¢mass of the solvent and ¢ mass of the solute > are ap-

propriately represented so that one can get the desirable formula

- 148 -

{(n)

SOLUTION

ADD/SUB

SOLUTE

{b)
DENSITY
. .
SOLUTION SOLU}? MASS
Or—) =O——-J
X L L
P 4=<Q;=7
MASS
Fig. V-16 Stored Knowledge and New Knowledge
MASS
SOLUTLON

©) DIV/MLT

DENSITY

Fig. V=17 Assimilated Form

- 149 -

from this network without any transformation of formulas. TFor ex-
ample, if one wants to calculate the density of a solution from the
mass of the solvent and the solute, the.following formula is easily
generated from the network.

¢density of a salution)=<mass of the solute) / (¢mass of the
solvent?+¢mass of the solute))

V-6 Generic Node and Occurrence Node

There is an important distinction of nodes in the S.N.. That
is the distinction between the generic nodes and the occurrence
nodes. The generic node for a predicate contains general information
or a definition of the predicate i.e., how to evaluate the expres-
sions that contain the predicate, when the predicate is satisfied,
what knowledge becomes applicable if the predicate is satisfied, and
so on. On the other hand, an occurrence node for a predicate is the
node which indicates that the predicate is used in a certain state-
ment. It is easy to understand the distinction between a generic
node and an occurrence node for a concept. Because a concept node
in the generization hierarchy gives the definition of a certain con-
cept, it is a generic node for the concept. On the contrary, the
concepfé'liquid' and 'water' in the statement such as 'solvent of a
solution is liquid', 'if the solvent of a solution is water, the
solution is aqueous solution' play the same roles as boolean pre-
dicates. These statements do not give the definition of liquid and
water. So the concept liquid in these statements is expressed in the
form of occurrence nodes.

Representation of the statement 'The solvent of a solution is
liquid' is given in Fig. V-18. The node x in this figure is an oc-
crrence node which shows the predicate LIQUID is used there. Without

the occurrence node x, the network looks like Fig. V-19. 1In this

- 150 -

T i SUBSORT

SOLVENT

Knowledge B

SUBSORT

DIV/MLT

Knowledge A

Fig. V-18 Distinction between Generic Nodes
and Occurrence Nodes

[}
SUBSORT
SORT
SOLVENT ‘
SOLUTIO)\éb——.-(,L *-I\ Knowledge B
SUBSORT

v

DIV/MLT

Knowledge A

Fig. V-19 Network without Occurrence Nodes

- 151 -

network we cannot distinguish the applicability conditions cf know-
ledge A and knowledge B. Knowledge A consists of the predications
which are applicable only to the object which is the solvent of a
certain solution, while knowledge B consists of the predications which
are applicable to liquid in general. As shown in Fig. V-18, an occur-
rence node is linked to the generic node with an occurrence-of link.
By traversing this link, the problem solver utilizes any knowledge
which is attached to the generic node. Therefor both knowledge A

and knowledge B are applicable to the object which is the solvent of

a solution. On the contrary, because it is prohibited to traverse

an occurrence-of link from the generic node to a certain occurrence

node, knowledge A is not applied to liquid in general.

Fig. V-20 shows ancther example of occurrence nodes.

SORT
SOLUTION ATER
Q 8%CURENC2:' SUBSORT
SUBSORT //
SOLVENT /
ARG1
1u®s
{ESELF—node WATER
AQUEOUS-
SOLUTION

Fig. V-20 Example of an Occurrence Node in a SELF Description

In this example an occurrence node appears in a SELF description.
Suppose that a certain object has already been identified with
SOLUTION. And suppose that from some reasons the problem solver is
going to identify it with AQUEOUS-SOLUTION. 1In this case, the occur-
rence node plays the role of a boolean predicate. That is, the prob-
lem solver tries to prove that the solvent of the solution is water.

Not only the knowledge which are applicable to water in general but

- 152 -

also the methods how to prove that an object is water are attached
to the generic node. Those methods will be tried.

The boolean nodes such as BETWEEN, GREATER et. al. and the
arithmetic nodes such as ADD/SUB, DIV/MLT et. al. which appear in
the networks given previously are all occurrence nodes. The generic
node for an arithmetic node contains the procedure which calculates .
the uuxknown value from known ones, while the generic node for a
boolean node contains information about how to evaluate the predicate.
The relation nodes in the network given so far are all generic nodes,
because they contain the information about the corresponding external
data bases. That is, they describe which external data bases are

relevant, how to access the data bases and so on.

V-7 Description Language for the S.N.

For representing all the knowledge in a certain specific
domain such as the field of chemistry,the size of the S.N. becomes so
large that one cannot represent it all at once. It would be convenient
if the user could express his knowledge as he normally expresses
it in natural languages, and the system were able to construct the
network with data gathered from inputs separately given by the user.
We provide a convenient programming language for defining networks.
Though the language by no means looks like natural languages such as
Japanese, it has various characteristics in common with natural
languages. The user may express his knowledge in highly descriptive
forms. 1In this section, we will give the specifications of the lang-
uage.

Each concept node in fact represents a class of objects.
And therefore, each concept node must contain the criteria to decide
whether a certain object belongs to the class or not. In section V-4,

we use the word 'generalization hierarchy' to describe the relation-

- 153 -

ship between concepts. During the deduction process, the generaliza-
tion hierarchy plays an important role in selecting relevant knowledge.
It also plays an important role in defining a concept. One often
describes a concept in.comparison with the other concepts, especially
its super-concepts. In the description language, one can define a
concept by specifying what conditon is necessarily satisfied for an
object to be identified with the concept. The specification of the
condition is often done by_comparing the concept with the super -

concepts. The followings are simple examples of definition of concept

nodes.
Example 1
(CONCEPT NAME= LIQUID
SORT= [(CONCEPT NAME= MATERIAL)
(BETWEEN (! BOILING-POINT)
(! TEMPERATURE)
(! CONGELATION-POINT)]])
Example 2

(CONCEPT NAME= AQUEOUS-SOLUTION
SORT= [(CONCEPT NAME= SOLUTION)
((CONCEPT NAME= WATER) (! SOLVENT))l)

The above two examples are represented in the 5.N. as shown in Fig. V-14
and Fig. V-20 respectively. The super concepts of LIQUID and AQUEOUS-
SOLUTION in the above examples are MATERIAL and SOLUTION, respectively.
The framed expressions in the above definitions are the expressions
which specify the conditions when an object that has already been
identified with the super-concept can be identified with the concept.
Each concept can have a unique name for the later reference to the
node. The expression NAME= gives the unique name to the concept.

Note that a concept node can be used as a boolean predicate. The
expression (CONCEPT NAME= WATER) in the second example plays the same
role as the boolean predicate BETWEEN does in the first example. The
arguments of BETWEEN and (CONCEPT NAME= WATER) are designated by the

paths. A "!" in the path descriptions refers to the current concept,

- 154 -

and BOILING-POINT, TEMPERATURE, CONGELATION-POINT, and SOLVENT are

all the names of functions.

We can define a concept without a unique name.

Example 3
(CONCEPT
SORT= [(CONCEPT NAME= ACID)
(LESS (! pH) 5) 1)
In this example, the acid whose value of pH is less than 5 is
defined as a sub-concept of ACID. Any knowledge can be attached to
this concept, if it is applicable to the object which is acid and
whose pH value is less than 5. Because we can use the expression
(CONCEPT) recursively in the defintion of concepts, the follow-

ing expressions are admissible.

Example 4
(CONCEPT NAME= NITRIC-ACID
SORT= [(CONCEPT NAME= STRONG-ACID
SORT= [(CONCEPT NAME=ACID)

(LESS (! pH) 3)]

QD) |

In the earlier example, the predicates in the condition is rather
simple. However, one can also specify the condition by using arbitrary
concept’descriptions instead of (CONCEPT NAME=WATER) .

As mentioned earlier, some concepts have more than one super-

concept. Several SORT descriptions can be given for a single concept

such as shown in the following.

SORT= [(Super-concept) (SELF-description)]
[(Super-concept) (SELF-description)]

L R R 2 I N I B R A A A A N I Y e o0 000 s e 00

[(Super-concept) (SELF-description)]

Disjoint sets are also declared in the definition of a concept.

- 155 -

The following is an example.

Example 5
(CONCEPT NAME= MATERIAL

SUBSORT= [(CONCEPT NAME=SOLID) (EQ (! STATE) *SOLID)]
[(CONCEPT NAME=LIQUID) (EQ (! STATE) *LIQUID)]
[(CONCEPT NAME=GAS) (EQ (! STATE) *GAS)]

DISJOINT= (SOLID, LIQUID, GAS))

Some dependency relationships between various properties of a
concept can be given in the definition of the concept node by using

the path descriptions.

Example 6
(CONCEPT NAME= SOLUTION
COMPUTATION ;
(! MASS)=(! SOLUTE MASS) + (! SOLVENT MASS)
(! DENSITY)=(! SOLUTE MASS) / (! MASS)
Example 7
(CONCEPT NAME= COMPOUND

RELATION ;

(! MOLECULAR-WEIGHT)= [TABLE= TAB]
/ (! CHEMICAL-NAME) %))

The S.N. representations of the above examples are shown in
Fig. V-17 and Fig. V-9 respectively.
There exists a certain kind of useful knowledge which describes

only incidental relationships and may not be directly useful for

calculating or searching for unknown values from known ones.

Example 8
(CONCEPT NAME= ALCOHOL
DECLARATION ;

(LESS (! BOILING-POINT) ((CONCEPT NAME= WATER)
BOILING-POINT)))

- 156 -

The second argument of GREATER in the above is an example of
the path which starts from a concept other than the current concept.

The network for this example is given in Fig. V-21.

SORT
SORT

BOILING-POINT BOILING-POINT

) ARG ARG2 _ A . On
HOL a®; * C OMATER
ALCO O >'—---’O"—'©'——"CLESS i \

SUBSORT

SUBSORT

Fig. V-21 Example of Representations of Incidental Relationships

V-8 Operations of the S.N.

\

The problem solver performs its task by traversing the S.N..
There are several basic modes of reasoning in the S.N.. In this
section, we will describe these basic operations. The validity of
each operation will be examined by considering the corresponding

logical formulas.
V-8-1 1Identification of Objects with Concepts

During the problem solving process, the system is often
required to identify an object with a certain concept. Identification
of objects with the concepts in the S.N. will be performed in the

following cases.

- 157 -

1. When a problem is given to the system, the system first begins
to locate in the S,N. the objecté which appear in the problem descrip-
tion. This is carried out in order to restrict the applicable knowl-
edge to these objects which are known to be pertinent.

2. Concept descriptions are sometimes used as boolean predicates
in the S.N.. 1In this case, identification is carried out for proving
that a certain object satisfies the identification condition of some

concept.

In both cases, identification of an object with a concept in
the S.N. requires proving that an object satisfies the predicate
which corresponds to the concept. We will explain here the operations

by considering the following simple example.
We have the description

(CONCEPT NAME= SOLUTION
SUBSORT : ((CONCEPT NAME= AQUEOUS-SOLUTION
((CONCEPT NAME= WATER) (! SOLVENT)))
Cetsenessrsessesensseannnnanes)
The problem description is

(OBJECT-1 NAME= SOLUTION

(! SOLVENT)= (OBJECT-2 NAME= WATER)
S
Because of the existence of the expression NAME= SOLUTION in

the description of the object 07 5 O1 can be identified with the
concept SOLUTION in the S.N.. We will next try to prove whether
01 can be identified with one of the sub-concepts of SOLUTION. 1In
the description of the concept SOLUTION, we find AQUEOUS-SOLUTION as
a subconcept of SOLUTION, and also find the additional condition for
traversing from SOLUTION to AQUEOUS-SOLUTION. This condition is

- 158 -

((CONCEPT NAME = WATER) (! SOLVENT)), that is, if the solvent of a
solution can be identified with the concept WATER, the solution is
acceptedas an AQUEOUS-SOLUTION. Because ! in the path description
represents the current object that is identified with the concept,
we will try to prove ((CONCEPT NAME = WATER) (0O; SOLVENT)) is true.
The result of the evaluation (O, SOLVENT) becomes O,. In the above
example, it is easy to prove thét 0, is WATER because the object Oy
can be identified immediately with fhe concept WATER by using the
-description (OBJECT-2 NAME = WATER) in the problem description. As
the result, the solution 0, can be identified with AQUEOUS-SOLUTION.

In the general situation in which the description of the
object O, is (OBJECT-2 NAME = Cg4). The following operations
will be performed in order to identify the object 0, with the concept
WATER.

STEP 1. The object O, is located in the S.N. by using the NAME = de-
scription. That is, the object will be identified with the concept
Cy in the S.N..

STEP 2. The super concepts of the object 0; are listed up by trav-
ersing SORT-links from CQ. The list of the super concepts is noted
as (C,, Cys Cyy vvnns C,). (See Fig. V-22).

STEP 3. 1If the concept WATER is in the list, ((CONCEPT NAME = WATER)
0;) is true (see Fig V-23). Otherwise, go to the next step.

STEP 4. The super concepts of the concept WATER are enumerated in
turn by traversing SORT-links from WATER. If a concept C. in (C,, C,,
ceeenny Qn) is encountered, then C! is a common super concept of.the
object 0, and the concept WATER. Go to Step 5. If no such common
super concepts can be found, the predicate ((CONCEPT NAME = WATER) Oz)
is assigned NIL.

STEP 5. The conditions attached to the SUBSORT-links from the common
super concept C; to the concept WATER will be evaluated in turn. If
all the conditions are satisfied by the object 0,, then O, can be con-

sidered as an instance of the concept WATER (see Fig. V-24).

- 159 -

SORT X WATER
»?SORT
Q) ®
SORT SORT
Ok,
ATs-A
OBJECT-2 ‘ OBJECT-2
Fig. V-22 Step 2 Fig. V-23 Step3(WATER is one of

the super concept of C,)

Is-A/’
4 =" T 1S-A °
.V ~. - O waATER
OBJECT-2 ~——— T

Fig. V-24 Step 5(Cy is the common super
concept of 0, and WATER)

- 160 -

OBJECI!;

Fig. V-25 The path from C{ to WATER will be
tried at Step 5 in the algorithm,
because it is natural to expect that
the proof path from C; to WATER is
easier to be accomplish than the
proof path from Cé to WATER.

- 161 -

((CONCEPT NAME = WATER) 02) becomes T. Otherwise it becomes NIL.

If there are several such common super concepts, the concept which
has the shortest path length from the concept WATER will be tried
first. 1If this fails, then the next shortest path will be tried next
and so on. 1In such a way, the control tries first the proof path

which seems the easiest (see Fig. V-25).

If ((CONCEPT NAME = WATER) 02) becomes T, the object 0, can
be identified with the concept AQUEOUS-SOLUTION. That is, ((CONCEPT
NAME = AQUEOUS-SOLUTION SORT = [(CONCEPT NAME = SOLUTION) ((CONCEPT
NAME = WATER) (! SOLVENT))]) O0;) becomes T. Thus the identification
process is performed recursively.

We will explain the validity of the above whole process by
examining the corresponding logical operations. Let us begin from
the point at which initial problem, to identify O, with the concept
AQUEOUS-SOLUTION has been already established. At first, we do not
know what knowledge in the S.N. is relevant to the current problem.

So the initial problem can be formulated by the following formulas.
SOLUTION(O,)

? ‘ AQUEOUS-SOLUTION(O,) ?

By examining the SELF-node description attached between the concept
SOLUTION and the concept AQUEOUS-SOLUTION, we notice the fact that if
the solvent of the solution is water, then the solution is AQUEOUS-

SOLUTION. That is,
SOLUTION(0,)

(¥x) [SOLUTION (x)AWATER (solvent (x))-»AQUEOUS-SOLUTION (x)
AQUEOUS=

? SOLUTION (0,)
?

- 162 -

We search through the problem description to find the solvent
of 0,. It is 0,. And in the step 1 described above, 0y is identi-

fied with the concept Cy. So the problem is transformed into

SOLUTION(O‘)

(¥x) [SOLUTION (x) AWATER (solvent (x))~» AQUEOUS-
SOLUTION(x)]| _

EQ(SOlVent (O')9 02.) éggﬁg&lgﬁ(()) ?
Co(03) |

?

The reasoning process which is performed in Step 1, 2 and 3

roughly corresponds to the following logical operations if it succeeds

at Step 3.
Cy(0,)
(¥x) (Cq(x)—*C, (%))
(A) (Vx)(C,(x)-*Cz(x)) — WATER(OI)

(¥x) (Ci (x)= WATER (x))

And if the reasoning process succeeds at Step 5, the process

in Step 4 and 5 corresponds to the logical operations:

(C4) (0,)
(¥x) (Ca(x)—C, (%))
(¥x) (G, (2)~Cq (x))
(B) (¥x) (C;, ()—Cy () | WATER (03)
(¥x) [(C¢ (X)ATEST (x)==C{, (x)) JATEST, (0y)
(¥x) [(Cy, (x)ATEST, (x)~C;, (x))JATEST, (0,)

(’»’x)[(C‘:‘-l (x)ATEST“(x)-VWATER(x))]/\TEST (0,)
Here TEST; represents the SELF-node description which is attached to
the SUBSORT-1link between the concept node CL_ : and Céi (c (o = Ciés
-

- 163 -

C »

(e = WATER) .

I1f one of the above two operations succeeds and WATER(Og) is
proved, then the initial problem has completely solved. The whole

process can be expressed by the following logical formulas.

SOLUTION(O‘),
AQUEOUS-
¥ SOLUTION ATER
(“x)[ON (x) AW. (solvent(x)) ——m SOLUTTON (x)) —
EQ(solvent(0,), 02) AQUEOUS-

‘SOLUTION(O,)

(A) or (B)

From the above discussions, one will be able to understand
how both the processes of selecting relevant knowledge and performing
deduction are carried out by traversing the network. It will be also
well recognized what role the SELF node descriptions play in the
deduction. We have another group of nodes in the generalization
hierarchy, i.e. the DISJOINT nodes. In the following, we will de-

scribe how the problem solver treats this type of node.

In order to include DISJOINT nodes in the previous algorithm,

we will revise the step 2 and step 4 as follows.

STEP 2 The super concepts of object 0. are listed up by trav-
ersing SORT-links from C,. The list of the super concepts is noted
as (C; C, C,). And the DISJOINT nodes which are encountered
during the traverse are also listed. The list of the DISJOINT nodes
is called DISJOINT-1list.

STEP 4 The super concepts of the concept WATER are enumerated
in turn by traversing SORT-links from WATER. 1If a concept C; is en-
countered which is also super concept of O, then Cp is the ;ommon
super concept of the object O, and the concept WATER. Go to Step 5.
If a DISJOINT node is encountered which is in the DISJOINT-list cre-
ated at Step 2 before a common super-concept is encoqntered, then the

proof of ((CONCEPT NAME = WATER) O0,) fails. That is, ((CONCEPT NAME

= WATER) O04) = NIL. If no such common supper concepts can be found,

- 164 -

((CONCEPT NAME = WATER) 0,) becomes NIL.

Because a DISJOINT node represents a certain disjoint set and
the concepts which are the members of the disjoint set do not have
any objects in common, the meaning of the revised part in Step 4 can

be seen from Fig. V-26.

0 DISJOINT-node

©) Q)

4
SORT ¢/ \ SORT
/ \
/ \

@{ |
}@ WATER

IS-A /
«

OBJECT-2

Fig. V-26 The Role of a DISJOINT-node in
the Deduction Process

By this revision, we can avoid further futile operations which
we may have done otherwise whenever we encounter a common DISJOINT
node. The revised portion in Step 4 roughly corresponds to the fol-

lowing mode of reasoning.

Co(0,)
(¥x) (Co (x)—C, (%))

(¥x) (C‘.’ (x)—.C;_ (x)) L~ WATER(O;)
(¥x) (WATER (x) +Cy (x))

(¥x) (Cp (x)—=Cen{x))
(Vx)(C,&x)—-NC;(x)A. S

- 165 -

V-8-2 Calculation of Property Value§

When an object is identified with a certain concept, the
knowledge attached to the concept node becomes applicable to the
object. By using the knowledge we can calculate the values of cer-
tain properties of the object. We will show the operations on the

S.N. for the calculation of values by considering the following sim-

ple example.

Suppose the following descriptions are given.

(CONCEPT NAME = SOLUTION

COMPUTATION : (! MOL) = (! MASS)/(! MOLECULAR-MASS)

RELATION : (! MOLECULAR-MASS) = [TABLE = TAB]
(/ / (! CHEMICAL-NAME) * /)

(CONCEPT NAME = SODIUM

DECLARATION : (EQ (! CHEMICAL-NAME) 'SODIUM)
B

Suppose we will also be informed by traversing SORT-links that SODIUM
is a sub-concept of CHEMICAL-MATERIAL. The corresponding S.N. is
shown in Fig. V-27. The description about CHEMICAL-MATERIAL shows
that the mol of a certain CHEMICAL-MATERIAL can be calculated from
the values of the mass and the molecular-mass of the chemical-mate-
rial. It also shows that the molecular-mass can be discovered from

the external data base named TAB if the chemical-name is known.

- 166-

CHEMICAL~-MATERIAL

CHEMICAL-

NAME

| SODIUM ,

IS-A : .| arc3 | arca]...]
§ / s SODTUM 2/——-'

\ SORT External Duta Base

. SOLUTION MOL-DENSITY

OBJECT-2
SOLVER

Fig. V-27 Example of Calculation of Property Values

The problem description is given as follows.

(OBJECT-1 NAME = SOLUTION
(! SOLUTE) = (OBJECT-2 NAME = SODIUM
(! MASS) = 20 gr.)
(! VOLUME) = 200 cm3)

- 167 -

(a)

(b)

()

(CALCULATE (04 MOL-DENSITY))

i
(CALCULATE (0, MOL))
(CALCULATE (04 MOL-DENSITY))
(CALCULATE (0 MOL))
(CALCULATE (0, MOLECULAR-MASS))
(CALCULATE (04 MOL-DENSITY))

\
(CALCULATE (02 MOL))

\
(CALCULATE (0 +MOLECULAR-MASS))
(RETRIEVE (0;, CHEMICAL~NAME))

}

Fig. V-28 Problem-Subproblem Hierarchy

- 168 -

The description tells us that there exists a certain solution, that
the solute of the solution is SODIUM, that the mass of the solute is
20 gr and that the volume of the solution is 200 cm®. Suppose that
we want to calculate the value of the mol-density of the solution.
By the description NAME = SOLUTION and NAME = SODIUM, the object-1l
and object~2 are identified with the concept SOLUTION and SODIUM,
respectively. Because a calculation method of mol-density is attached
to the concept SOLUTION, the problem-solver tries the method first.
In order to calculate the mol-density of a solution, this method
requires the values of the mol of the solute of the solution and the
volume of the solution. That is, in order to calculate the mol-
density of 04 we need to know both the mol of the solute of Oy and
the volume o£ 04. By traversing the network given by the problem
description, ituis discovered that the volume of 0, is 200 emd and
the solute of 04 is 0. However, at this point thé mol of the solver,
that is, the mol of 0, is still unknown. The subproblem (CALCULATE
(0, MOL)) is created for calculating the mol of 0, (see Fig. V-28(a)
).

Because the object O, is linked to the concept SODIUM by an
IS-A 1link, the knowledge attached to this concept is applicable. How-
ever, we cannot find any knowledge for the calculation of the mol of
0, in this set. The generic node for the function MOL is examined
in order to retrieve the calculation method of this function. The
generic node returns the list of the concept nodes in which certain
calculation methods are described. This list is called the WAITING-
LIST for the subproblem (CALCULATE (0, MOL)). Because a calculation
method appears in the set of knowledge attached to the concept CHEM-
ICAL-MATERIAL, the WAITING-LIST looks like

(¢, Cuy +veveveen. .CHEMICAL-MATERIALCp)

where C,, Cy, and C,, are concept nodes.

The problem-solver traverses the SORT-links from the concept

- 169 -

SODIUM to retrieve the super-concept of SODIUM. Whenever a concept
node is encountered, the problem solver checks whether the same con-
cept node is in the WAITING-LIST. 1If it is in the list, a calcula-
tion method of the property MOL is supposed to be there which can be
applied to the current object 0. The method will be activated. 1In
the above example, the concept CHEMICAL-MATERIAL will be encountered
and the concept node is in the WAITING-LIST. The retrieved method is

'If both the molecular-mass and the mass of a chemical-mate-
rial are known, then the mol of the material can be calculated by
dividing the mass by the molecular-mass.'

In the above example, the mass of Oz is known to be 20 gr but
the molecular mass of 0; is unknown. So the subproblem (CALCULATE
(0, MOLECULAR-MASS)) is created (see Fig. V=28 (b)).

The same process will be performed for solving this subprob-
lem. The two methods for calculating the molecular-mass will be found
in the knowledge about a chemical-material. One method uses the mass
and the mol of the material, and the other uses the chemical-name of
the material and the external data base TAB (see Fig. V-27). The
first method cannot be applied to the current problem because the
problem of finding the MOL of the material is a subproblem currently
under consideration and may not appear twice in a subproblem chain.

So the second method is applied. Because the method requires the
chemical-name of the material, the subproblem (RETRIEVE (Oz CHEMICAL-
NAME)) is created (see Fig. V-28 (c)).

The declarations and calculation methods attached to the con-
cept nodes and SELF nodes that were traversed are all applicable.
Therefore, SODIUM is returned as the chemical-name of 0. The sub-
problem (RETRIEVE (O, CHEMICAL-NAME)) can then be solved immediately.
As a result, the problem (CALCULATE (05 MOLECULAR-MASS)) becomes
solvable. The problem is solved by accessing the data base with the
chemical-name = SODIUM. The result makes the next super-problem solv-

able and so on. Finally the whole problem becomes solved.

- 170 -

However, it should be noticed that there are usually several
possible calculation methods for a certain problem and it is required
to solve several subproblems before applying a certain method. 1In
the above example there is only one possible method discovered for
each subproblem and only one problem is created for each method. For
general cases, the problem-subproblem hierarchy such as shown Fig.

V-28 becomes an AND-OR tree.
V-8-3 Evaluation of Boolean Expressions

At Step 5 in the algorithm given in section V-8-1, the expres-
sions attached to the SUBSORT-links, that is, the SELF-node conditions
are evaluated in turn. The evaluation of the expressions results in
either T or NIL. Therefore, we call the expressions boolean expres-
sions and the predicates used in the expressions boolean predicates.
We will describe here how to evaluate such expressions.

As described in section V-8-1, a concept node may be used in
the descriptions attached to a SELF node. In this case, the concept
node plays the role of a boolean predicate, that is, the expression
((CONCEPT NAME = WATER)(! SOLVENT)) 1in the example given in section
V-8-1 is boolean. Because we discussed in detail how these expres-
sions are treated in section V-8-1, we will explain the other predi-.
cates.

The predicate BETWEEN is a typical boolean predicate. We will

see a simple example. A given description is as follows.

(CONCEPT NAME = CHEMICAL-MATERIAL
SUBSORT ; ((CONCEPT NAME = LIQUID)
(BETWEEN (! BOILING-POINT)
(! TEMPERATURE)
(! CONGELATION-POINT)))

- 171 -

The description means

'If the temperature of a chemical material is between the
boiling-point and the congelation-point, the material is liquid’.
The condition for identifying a material with the concept LIQUID is

expressed by using the predicate BETWEEN. The problem description is

(OBJECT-1 NAME
(! TEMPBRATURE)

WATER
15°Cc)

The object 0, is first identified with the concept WATER.
Here the problem is to prove that 0, is liquid. Suppose the concept
WATER is linked in the S.N. to the concept CHEMICAL-MATERIAL by a
certain sequence of SORT-1links, because CHEMICAL-MATERIAL is the
common super concept oﬁLIQUIDand the object 0, (see Fig. V-29).

CHEMICAL-MATERIAL «c+--- Common Supep Concept
SORT [(BETWEEN (! BOILING-POINT)
4 , (! TEMPERATURE)
/
/ (! CONGELATION-POINT))]
WATER LIQUID

Fig. V-29 A Boolean Node in a SELF Description

In order to prove that 0, is LIQUID we must prove the temperature of
0y is between the boiling-point and the congelation-point. Before the
evaluation of the expression, we must evaluate the path descriptions
in the argument positions of BETWEEN. Therefore the problem hierarchy
becomes the tree in Fig. V-30. The value of the first and the third
path descriptions will be calculated by using the techniques de-
scribed in section V-8-2. They may be retrieved from a certain exter-
nal data base with CHEMICAL-NAME = WATER. The second subproblem can

be solved simply by retrieving the value from the problem description.

- 172 -

(PROVE ((CONCEPT NAME= LIQUID) O0,))

!

(PROVE (BETWEEN (0, BOILING-POINT)
(0, TEMPERATURE)
(0, CONGELATION-POINT)))

:7~§§§§~§"“--_

(CALCULATE (0, CONGELATION-
POINT))

(CALCULATE (0, BOILING-
POINT))

|
(CALCULATE (0, TEMPERATURE))

Fig. V-30 Problem-Subproblem Hierarchy

After these problems are solved, it is easy to determine whether the
expression (BETWEEN (! BOILING-POINT) (! TEMPERATURE) (! CONGE-~
LATION-POINT)) is satisfied or not. This sequence of operations is
controlled by the descriptions in the generic node of the predicate
BETWEEN. Whenever BETWEEN is used as a boolean predicate, the above
sequence of operations is performed. The descriptions in the generic

nodes for BETWEEN and GREATER are roughly as follows.

[Description in the generic node for BETWEEN]

make-subgoal [(PROVE (GREATER ARGl ARG2));END]
make-subgoal[(PROVE (GREATER ARG2 ARG3));END]

END return [NIL]

[Description in the generic node for GREATER]

If TYPE(ARGl) = (NUMERIC, CONSTANT)
then If TYPE(ARG2) = (NUMERIC, CONSTANT)
then return [eval [greater [ARGl ; ARG2]]
otherwise u = make-subgoal[(CALCULATE ARG2) ; END]
return [eval [greater [ARGl ; U]]]
otherwise If TYPE(ARG2) = (NUMERIC, CONSTANT)
then u = make-subgoal [(CALCULATE ARGl) : END]

- 173 -

return [eval [greater [U ; ARG2]]]
otherwise u = make-subgoal [(CALCULATE ARG2) ; END]
v = make-subgoal [(CALCULATE ARGl) ; END]
return [eval [greater [V 3 U]]l]

END ceseererienenan oo

Notice that MAKE-SUBGOAL and TYPE are the LISP functions
which are provided by the system for defining generic nodes. MAKE-
SUBGOAL creates a subproblem which is specified by the first argument
in the problem hierarchy. If the subproblem can be solved, the value
of MAKE-SUBGOAL is the value which is returned as the solution to
the subproblem. If the subproblem cannot be solved, the value of this
function is NIL and the control will be transferred to the statements
specified by the second argument.

The generic node for GREATER in the above description is
somewhat simple. Sometimes certain subproblems cannot be solved but
the expression can be easily evaluated. For example, suppose that the
boiling-point of WATER is not given directly in the S.N. but only the

following declarations are given.

(CONCEPT - NAME = WATER
DECLARATION : (GREATER (! BOILING-POINT)

((CONCEPT NAME =ALCOHOL) BOILING-
POINT)))

(CONCEPT NAME = ALCOHOL
DECLARATION : (GREATER (! BOILING-POINT) '80°C))

Even in such a situation, human problem solver can solve the problem,
because he can logically draw an inference by utilizing the properties
of the predicate GREATER. In oder to do this in the S.N., we should
describe the axioms about the predicate as the content of the generic
ndde. It is easy to encode such programs in LISP. The properties of
the predicates (BETWEEN, EQ, GREATER, LESS) which are built in the
current version of the S.N. are rather simple. However there are

various kinds of predicates which have more complex properties so that

- 174 -

it becomes difficult to encode them as LISP programs. Moreover be-~
cause the axioms of several predicates intimately interact with each
other, the programs in the generic nodes become intolerably compli-
cated. We are now designing a new framework which makes it easy to
encode the axioms about this type of predicate. 1In the current ver-
sion of S.N. the only thing that we can do is to encode them by
using a few LISP system functions like MAKE-SUBGOAL or TYPE. The
current version of the description language is only capable of
defining the properties of concept hodes in a descriptive form. There
are many situations for which the system must be augmented. For ex-
ample, one knows how to calculate the molecular-mass of a chemical
compound from the chemical formula if he knows the molecular mass of
each element of the compound. This knowledge should be represented
as an arithmetic node. However, the definition of this arithmetic

node cannot be expressed by a pure descriptive form.

V-9 Conclusion

We discussed in this chapter the problem of internal knowledge
representation for our question-answering system. The semantic net-—
work, S.N., we have proposed here,has many desirablé characteristics.

Some of them are listed in the following.

1. The description language for the S.N. can be seen as a
programming language for problem-solving and knowledge representation
in general. This programming language provides a powerful internal

data structure in the form of the semantic network S.N..

2. The S.N. gives us useful frameworks for clustering rele-
vant knowledge. Though recently developed A.I. languages have also
the abilities of clustering relevant knowledge, the abilities are

mostly based on the syntactic structures of expressions. Hash-

- 175 -

indexing used in PLANNER, CONNIVER and so on are typical examples of
such index structures. On the contrary, the S.N. provides seman-

tically meaningful index structures for relevant knowledge. There-
fore, the process of retrieving relevant knowledge becomes itself a

certain mode of reasoning.

3. The technique of pattern-directed function invocation 1is
popular in recent A.I. languages. However, the pattern which is
attached to a certain procedure does not necessarily reflect the .o
content or the effect of the procedure. Because the structures of
patterns do not have any logical implications, one can choose arbitra-
ry pattern forms to express the same content. 1In the S.N. each func-
tion or procedure does not have any special external handles such as
subroutine names, patterns and so on. On the contrary, each piece of

knowledge is indexed by the content of the knowledge.

4. Various kinds of knowledge which are external to the net-
work are naturally included in the S.N.. External data bases and
arithmetic algorithms are examples. They are invoked when they are

necessary during the problem solving process.

5. Because the representation of knowledge in the S.N. is
highly descriptive, the same knowledge can be used for different
purposes. For example, the statements which are attached to a SELF

node can be used as both check conditions and declarations.

The curyent version of the S.N., however, is still insufficient

in various aspects. Especially the following points are essential.

1. We must provide much more powerful and descriptive frame-
work for defining new predicates in the S.N.. Certain kinds of know-
ledge can hardly be expressed in pure descriptive forms. It is not
desirable to encode them directly by LISP, because the interactions
between programs become intolerable for the designer to maintain.

Some framework should be prepared to express them in more natural,

- 176 -

modular, and descriptive forms.

2. 1In the current version of the S.N., the local logical
telationship can be properly represented. However, we cannot embed
more global relationships between knowledge chunks in the S.N.. We
should provide the ability for defining certain kinds of strategies

or problem solving script in the S.N..

- 177 -

/78 BHK

CHAPTER VI

DICTIONARY ORGANIZATION AND MORPHOLOGICAL ANALYSIS

VI-1 Introduction

Nontrivial automatic processings on natural language texts
invariably involve an operation called morphological analysis, in
which the individual words in texts are recognized. We use the
term, 'morphological analysis' which is somewhat more pretentious
than the commonly used 'dictionary consultation', because we want
to stress that there is more in recognizing words than just consult-

ing a dictionary.

Most of the recently developed systems which attempt to
analyze 'natural' language sentences can eventually treat only very
limited subsets of the set of all natural sentences. First of all,
these systems usually look on an input sentence as a sequence of
words whose meanings are well defined in the dictionary. Syntactic
and semantic analyses are directly applied to the input sentences.

The term 'word', in common usage, refers to a sequence of
letters that is bounded by spaces or punctuation marks in text.
According to this view, 'walk', 'walking', 'walks' and 'walked' are
different words and therefore carry different meanings from each
other. But common usage also allows all these to count as instances
of a same lexical word, because they belong to the same lexical
entry in an ordinary dictionary. According to this view, the above
four words basically carry the same meaning, together with the ad-
ditional information such as 'progressive', 'past' and so on.
Hereafter, we will refer to a word which appears in texts and car-
ries such additional information as a textual word, and a word which

appears as headings in anordinary dictionary as a lexical word.

- 179 -

Textual words are derived from underlying lexical words by morpho-
logical processes. From the computational point of view, we should
be able to determine the corresponding lexical word from the given
textual word. This restoration process is referred to as morpho-

logical analysis.

In English, textual words can be easily recognized, because
they are usually separated from each other by spaces or punctuation
marks in texts. However, there are many languages in the world in
which there are no such separators, and textual words are simply
juxtaposed. A sentence in these cases is just a sequence of letters
at a glance. In these languages, therefore, the separation of each
string into a sequence of textual words, and the determination of
lexical words from textual words are very difficult tasks. Morpho-
logical analysis procedures for these types of languages must there-
fore be able to separate consecutive strings of letters into the
units which are supposed to correspond to lexical entries and other
interesting grammatical units. Japanese is one such language.

Before applying morphological analysis to Japanese written texts,

we must first extract 'textual' words from the texts.

In this chapter, we will describe a morphological analysis
procedure for Japanese written texts together with a procedure which
separates consecutive strings of letters into textual words. Be-
cause these procedures require dictionary consultation, we will also
describe a storage structure for a large Japanese dictionary and

methods for accessing it.

VI-2 Dictionary Organization

A dictionary is an important tool for language processing.

- 180 -

Various forms of dictionaries have been developed for mechanical
processing of natural language. Most of them have been constructed
tentatively in the course of developing experimental systems and
intentionally adapted to specialized needs. The sizes of the vocab-
ularies have been very limited. However, to establish techniques
of language processing suitable for real applications such tech-
niques should be validated for a large corpus of text data by
testing them on a large dictionary.

Until recently there have been no attempts to computerize
a large Japanese dictionary because of the complex writing system
of the Japanese language. We have done extensive research on hand-
ling Japanese character strings by comﬁuter, and have computerized
a large Japanese dictionary. We have developed convenient access
methods for the dictionary in order to utilize it during the morpho-
logical analysis. The structure of this computerized Japanese
dictionary has many interesting characteristics when considered as
a data base. We shall explain these characteristics and the design
of an efficient data structure for a Japanese dictionary in this

section.

VIi-2-1 The Computerized Dictionary

Algorithms for natural language processing must be verified
by a large corpus of text data from various different fields.
Therefore, the dictionary to be provided for the algorithms must
necessarily be large enough to cover these different fields. But
it is unthinkable in such a large dictionary to associate each word
with detailed semantic descriptions which a computer can utilize
efficiently. Therefore, we decided to computerize a conventional
dictionary which is currently published and daily used. The dic-

tionary we adopted is 'Shimmeikai Kokugojiten' published by Sansei-

- 181 -

do Publishing Co., which contains about 70,000 lexical entries(see
Table VI). The definitions of most words in the dictionary were

very poor, and almost unusable by computer.

Part-of-Speech Type of Inflection Number of Entries
Transitive Verb Type 1 88
Transitive Verb Type 2 4673
Transitive Verb Type 3 1208
Intransitive Verb Tvpe 1 57
Intransitive Verb Tvpe 2 726
Intransitive Verb Type 3 1351
Intransitive Verb Tvpe 4 271
Intransitive Verb Tvpe 5 12
Interjection 146
Prefix 51
Suffix 64
Adjective 1 Adjective Type | 626
Adverb T 1387
Pronoun 119
Noun _”,,,,——"”' 46279
Adjective 2 Adjective Tvpe 2 1103
Adjective 2 Adjective Type 3) 252
Nominalization 6760
Form of Verb

Postpositions, Inflectional Postpositions and Conjunctives

are omitted from this table.

Table VI-1 Content of the Dictionary

The only information that could be utilized by computer were the
spellings, the pronounciations, and the parts of speech of the

lexical words.

- 182 -

VI-2-2 Data Structure for Japanese Dictionary

Entries in a Japanese dictionary are typical examples of
multi-key records. That is, more than one key can be used to re-
trieve an entry. A word in Japanese usually has two different
forms of spellings, a Kana-spelling and a Kanji-spelling. Because
both spellings appear in ordinary texts, we need both of these be
usable to identify entries in the dictionary. These are typical
keys for the lexical entry. However, a key does not usually cor-
respond to a single entry. It is often the case that there are
several ectries with the same key value. One way of finding en-
tries by using keys is to prepare index files for these key values.
The access request for a Japanese dictionary has another charac-
teristic that makes the data structure more complex. It is allowed
to use several different mixed spellings of Kana-and Kanji-charac-
ters to represent the same word (see Fig. VI-1). It might prove
necessary to use any of these spellings as keys to identify an

entry dquring the morphological analysis of some particular text

sample.
Kanji-Spelling Kana-Spelling: Mixed Spelling Meaning
= ALg
* =) 12 v B3 < rZ W= University
X H <

Fig. Vi-1 Example of the Kanji-, Kana-, and Mixed-Spellings

We decided to provide index structures for both the funda-

mental spellings, that is, Kana-and Kanji-spellings, and not to

- 183 -

provide any independent index structures for mixed spellings. A
special complex search procedure is prepared for mixed spellings
instead of index structures. When a mixed spelling is given, a
procedure is activated to search the entries which have the speci-
fied mixed spellings. If the procedure were required to look up
through the whole dictionary, the search time would be quite leng-
thy. In order to make the search easy, the index structures for
Kana-spellings or Kanji-spellings are utilized to give the position
for starting the search. The mixed spellings do not occur very
often in a real text. To provide the dictionary system with the
indices for mixed spellings greatly increases the quantity of
secondary storage. Thus there is a trade off between the size of
the dictionary storage and the time needed to locate the required

entries.

In the sequel, we have the following keys for an entry in

the dictionary.

A. Fundamental keys

frequently used, but they do not

1. Kana-spelling } These two types of keys are most
usually identify a unique word.

2. Kanji-spelling

B. Modified keys

3. Mixed spelling whose first character is a Kana.

4, Mixed spelling whose first character is a Kanji.

5. Inflectional variant : This type of modified keys must
first be transformed into lexical forms by the morpho-
logical analysis procedure using grammatical knowledge.
The dictionary system provides only the procedure which
identifies entries from the roots of the words or the
words of their generic forms. '

6. Variant of inflectional suffix : The inflectional suffixes

- 184 -

of some words are not unique. Fig. VI-2 shows such examples. Each
one of these variants is stored as a lexical word in the diction-

ary and we can access it by simple means.

Kanji-Spelling Kana-Spelling Mixed Spelling Meaning
® B 7 COMAT CDES to Repeat
®ORT L= N A

BOMAY

Fig. VI-2 Example of words which have several variants

of inflectional suffixes

FCT
Kana- = = FFCT ~
character \\\
‘ s e —
1T Meaning Description
Kanji-
character ScT

FCT : First Character Table
FFCT : First Five Characters Table
SCT : Second Kanji Character Table

IT : Item Table

Fig. VI-3 Overall Construction of the Dictionary System

- 185 -

Fig. VI-3 shows the overall construction of the dictionary
system. The tables First Character Table (FCT), First Five Char-
acters Table (FFCT), and Second Kanji Character Table (SCT), are
all index tables. An entry in the item table (IT) contains infor-
mation about the lexical word such as the spelling (both in Kanji
énd Kana), the part of speech, type of inflection if the word is
inflectional, and so on. A pointer to the meaning description of
the word is also included in the entry. The IT can also be viewed
as one of the index tables for retrieving the meaning descriptions.

The tables, FCT, FFCT and IT form a multiple level index
for Kana-spellings. On the other hand, the tables FCT and SCT form

a multiple level index for Kanji-spellings.

1. FCT (The first character table) : This table consists of
4,096 entries each of which corresponds to a character (In our sys-—
tem, each character in Japanese is encoded by 12 bits). The index
entry in FCT for a Kana-character will give the address of the head
of the entries in FFCT, which begins with that character. The
entry for a Kanji-character gives the address of the bucket in SCT

for the character.

2. FFCT (The first five characters table) : An index entry in
this table is prepared for every bucket in IT. A bucket in the IT
contains 40 items, and the index entry in FFCT which contains the
first five characters of the top key in that bucket is prepared.
The entries in this table are sorted by the Kana-spellings. The
reason why we restricted the key length of this table to the first
five characters is that most of the lexical words in the dictionary
are not longer than five characters (92.1%). Table VI-2 shows the

distribution of the length of lexical entries in Kana-spellings.

3. SCT (The second character table) : The Kanji-spellings of
the lexical words in the dictionary mostly consist of two Kanji-
characters. The first Kanji-character is used as the first level

index, that is, the entry of the FCT. The second Kanji-character

- 186 -

is stored in this table.

Length of 5 6 7
Kana-Spelling 1 2 3 b 2
Accunulated 391 4217 17891 42449 53043 55932 57557
Frequency

Relative 0.6 7.3 31.0 73.7 92.1 97.1 100
Frequency (%)

Table VI-2 Distribution of the Length of Lexical

Entries in Kana-Spellings

The entry in this table is a pair of the second character and the
pointer to an item in IT. If there are two lexical items which
have the same first two characters, two pairs whose first elements
are the same (the second Kanji-character) but the second elements
(pointers to the items in IT) are different are stored in this

table.

4. 1IT (Item table) : The format of the item in this table is
illustrated in Fig. VI-4. The items in this table are sorted by
the Kana-spellings.

The relationship between these index tables is illustrated
in Fig. VI-5. The storage requirements for each index table is

given in Table VI-3.

Length of Kana-Spelling Length of Kanji-Spelling Code of Part of Speech

Kana-Spelling Kanji-Spelling l '

1
Type of Inflection

Pointer to the
Description of Meaning

Fig. VI-4 Data Format of an Entry in IT

- 187 -

Kana~Character Kanji-Character

rer | & |, jo %
1
FFCT
H) Bl | HL| \ SCT B, | B / |y
% EARIATA IR £ 25w N N C--Ued N I -"AT=E NVUN I :-22AL O M
IT - e e])
i :é: 3 Tﬁ ’IE i SEL

Fig. VI-5 Relationship between Index Tables

Index Table Storage Requirement
FCT 24 KB
FFCT 18.6 KB
SCT 700 KB
IT 4.3 MB

Table VI-3 Storage Requirement for the Index Tables

VI-3 Morphological Analysis of Japanese Written Texts

Designers of speech understanding systems, who aimed at

- 188 -

interpreting consecutive phonetic symbols by using linguistic
knowledge, have been faced with the problem of how to segment
consecutive phonetic symbols into linguistically meaningful units
before applying linguistic analysis on the input. In a natural
utterance of sentences even in English, there are no stable clues
for the extraction of textual words, which correspond to delimiters
in written text. At the first stage of processing, the string of
the input phonemes is roughly segmented into several disjoint parts.
Each of the parts is enclosed with silent frames stably detected

by preceding phonological processings. Each segmented part may
contain more than one textual word because consecutive words are

often pronounced together without any pauses.

In the‘morphological analysis of Japanese, we have been
faced with the same problem. There are no spaces between textual
words in written Japanese texts so that it is more difficult to
extract textual words from written Japanese than from English texts.
A great many characters are used in Japanese written texts (We can
find about 2,000 - 3,000 different characters in ordinary texts) .
These characters are classified into two types. One is the type
called Kana (Japanese phonetic character), and the other is the
type called Kanji (Chinese character). Changes of character types
as well as punctuation marks give us useful clues to boundaries
where it is possible to separate a long character string (a sen-
tence) into shorter, manageable units. A 'Pause group' in Japa-
nese grammar is a fundamental unit in a Japanese sentence, and
contains only a single independent word (see section VI=3-1, Nouns,
verbs, adjeetives, adverbs and conjunctives are all independeilt
words). Each unit obtained by detecting a change of character type
may contain several pause groups, as the parts enclosed by silent
frames in speech utterances may contain more than one textual word.
It is necessary to segment the units further by consulting a dic-
tionary. If we restrict our domain of discourse to a certain very

limited field, the consultation of a dictionary and subsequent

- 189 -

morphological analysis would be very straightforward processes.
However, when the vocabulary is very large, and the domain of dis-
course 1s not specifically limited, a lot of ambiguities may appear
in the morphological analysis. 1In any case 2 computer-usable dictio-
nary and a strong algorithm for the morphological analysis are

necessary.

In this section, we will describe the way of segmentation
of texts into pause groups, the way of utilizing the dictionary in
the process, the strategy for the morphological analysis of Japaese
written texts and the segmentation of long compounds of Chinese

characters.

VI-3-1 Basic Characteristics of Japanese Texts

Before proceeding to the detailed description of morpho-
logical analysis of Japanese, we must make a brief sketch of the
characteristics of Japanese which are relevant to the understanding
of the following sections. The reader who is not familiar with
Japanese may consult Kuno's work, (Kuno 1973), which explains some
of the basic characteristics of Japanese in comparison with English.

First, we will have to explain the concept of 'Pause Group',
PG for short, which plays the central role in the sentence construc-
tion of Japanese. In conventional grammar of Japanese, words are
classified in two groups. One is the group of independent words
which are nouns, verbs, adjectives, pronouns, adverbs, conjunctives
and interjections. The other is the group of dependent words which
are postpositions and inflectional postpositions (or auxiliary
verbs). The distinction of independent words and dependent words
roughly corresponds to the distinction of content words and function

words. The unit we called PG consists of a single independent word

- 190 -

and several dependent words which follow the independent word.

Fig. VI-6 shows the general construction of a PG.

(IW)'(le)'(DWZ)-----(DWn)

Iw

Independent Word

DW

Dependent Word

The sequence of dependent words can be null,
Fig. VI-6 Typical Construction of a PG

As Kuno pointed out in (Kuno 1973), Japanese is a typical SQV
language and, therefore, postpositional. 1In English, the case in
surface structure is generally evident in the order of phrases. In
Japanese a postposition attached to a noun phrase shows the case of
the phrase in a sentence inste;d of ordering of phrases. A post-
position in Japanese actually does more than simply plays a case
marker. In a certain context the postposition, 'DAKE', when it is
attached to a noun phrase, plays the role of the English adverb
'only', for example.

The underlined PG in the following is an example which

contains more than one postposition.

(noun — he) =% (postposition - emphasis of he) si(postposition - case

marker of AGENT) #tf(noun - school) ~(postposition - case marker of

DESTINATION) {7--(verb - to go) 7(inflectional postposition - past).

Meaning : It is he that went to school.

meaning of the postposition 'z %'

- 191 -

In the above sentence, we have another postposition which
has a different role from case markers, that is, the inflectional
postposition '.'. This postposition shows that the tense of the
sentence is past or present perfect. The following sentence shows

another example of the inflectional postpositions.

(1) # (noun - he) t(postposition - case marker of AGENT)
#1% (noun - school) ~(postposition - case marker of DESTI-

NATION) 474 (verb - go, inflectional form 1) ##- (inflection-

al postposition - negation, inflectional form 1) 7 (inflec-

tional postposition - past).

meaning : He did not go to school.

(2) ¢ (noun - he) i+ (postposition - case marker of AGENT)
2¢#5 (noun - school) .~ (postposition - case marker of DESTI-

NATION) #7#:(verb - go, inflectional form 1) tevs (inflection—

al postposition — negation, inflectional form 3) #A5 (inflec-

tional postposition - conjecture).

meaning : He may not go to school.

From the above two examples, one can recognize that a
certain inflectional postposition requires that the preceding
inflectional word should have a certain specific inflectional form.
The postposition '7='in Example (1) requires that the preceding
textual word form be the inflectional form 1. On the contrary, the

postposition '7:55' in Example (2) requires the word of inflectional

- 192 -

form 3. Generally speaking, a (inflectional) postposition requires
a certain condition that the immediately preceding word must satis-
fy. That is, a postposition restricts the part-of-speech and
inflectional form of the preceding word. These conditions are
checked during the morphological analysis procedure. We call the

checking 'compatibility test'.

Another thing that we must mention before proceeding to the
detailed description of the morphological analysis procedure is the
writing system of Japanese. The Japanese language has no definite
delimiters of words such as spaces in English. How is it possible,
therefore, to recognize the boundaries of words?

We have two types of characters in Japanese, Kanji-
characters and Kana-characters. All (inflectional) postpositions
are definitely written in Kana-characters. On the other hand,
independent words are often written in Kanji-characters. Because
an independent word comes in the left-most position in a PG, it
can be expected that a PG begins from the position where the type
of characters changes from Kana to Kanji. Though many independent
words are written in Kanji-spellings, some independent words are
written in Kana-spellings or in mixed-spellings. Even the same
independent words are written in both Kana- and Kanji-spelling
according to individual taste. So the attempt to detect PG bound-
dries is not always successful. In spite of this fact, the change
of character types (from Kana to Kanji or vice versa) gives us

useful clues for segmenting an input string into PG's.

VI-3-2 Morphological Analysis of Japanese

A procedure for morphological analysis of Japanese consists

- 193 -

of some or all of the following components :

1. Detection of Boundaries between PG's

2. Analysis of Inflections

3. Dictionary Llook-up

4. Testing Compatibility of Words in PG's

5. Segmentation of Compound Words Composed of Kanji Characters

We will discuss the first four components in this section.
The problem of segmentation of long compounds will be discussed in
the next section.

Morphological analysis is usually performed as the first
step of the whole language processing task. Errors in this step
can have damaging effects on the following processings. Our main

objectives in morphological analysis are as follows :

1. All possible interpretations, instead of a single interpre-
tation, must be given as the output of the processing.

2. We do not divide the analysis procedure into a definite
sequence of distinct phases such as detection of PG
boundaries, analysis of inflections, compatibility testing
and so on. The components just described above are used
intermixedly as the analysis procedes.

3. For the convenience of later improvement of the program,
we carefully discriminate the rules against the general
procedure that uses them. The discrimination makes it
possible to improve the analysis program by changing only
the rules, without having to change the procedure.

4. TIdiomatic expressions are treated naturally in the program.

The analysis procedure operated as follows.

- 194 -

Step 1. Detection of Boundaries between PG's

Using the information of character types and punctuation
marks, we first segment an input sentence into several substrings,
each of which is expected to be a PG. We refer to these substrings
as EPG's (expected PG's). In the following steps, the EPG's are
the basic unit of the processing. See Fig. VI-7.

input sentence:

WEERBRECDODELIT- I

{& * noun - he

{& : postposition - case marker of AGENT
35 5§ ¢ noun - experiment

correct segmentation: % : postposition - case marker of OBJECT
< N & L : verb - to repeat, inflectional form 2

‘This verb is written in the mixed spelling.)
1? -5 % verb - to .0, inflectional form 1

1z @ inflectional postposition - past

Extracted EPG's (After STEP 1)

rel PG2 p ;

s o (3 r PG4 r
|) 1 ™ >
" B £ B & < O E L 1T o fol
——r 1 + 1 T T ' 1 + 1 1
L. Je ol . ol
" T | 1 -

EPG1 EPG2 EPG3 EPG4

Fig. VI-7 Examples of EPG's

Step 2. Interpretation of Kana-part

General construction of an EPG created at Step 1 is shown

- 195 -

Kanji-String ~Kana-String

Fig. VI-8 Ceneral Construction of an EPG

If the boundaries marked at Step 1 are correct, an EPG should have
the construction of a PG as shown in Fig. VI-6. We assume tenta-
tively that the boundaries are correct, and at this step we will
decompose each EPG into lexical words and associate information
from the dictionary with each word. As mentioned earlier, a
textual word is not usually the same as a lexical word. Therefore,
we must transform it to the lexical form before consulting the
dictionary. In Japanese, each PG contains a single independent
word. The remaining part of a PG is a sequence of dependent words.
Every dependent word (postposition and inflectional postposition)
is always written in Kana-characters, and the inlfectional suffixes
of verbs, adjectives and other inflectional words are also written
in Kana-characters. The stems of independent words are often
written in Kanji-characters. So the Kana-part of an EPG consists
of an inflectional suffix of an independent word if it is inflec-
tional, and a sequence of dependent words.

We tabulated all inflectional suffixes, postpositions,
inflectional postpositions, inflectional variants of irregular
verbs, and the independent words which are usually written in Kana-

spellings. These tables and their sizes are shown in Table VI-4.

Let us first assume that the Kanji-part in an EPG is a
non~inflectional independent word (noun, adverb) or the stem of an
inflectional independent word. Because consulting the dictionary

of independent words is time-consuming, we do not refer the dic-

- 196 -

Table Number of Entries

(Inflectional) Postposition 152
Independent Words usually 269
written in Kana-Spelling

{nflectional Suffixes of 254
Verbs

Inflectional Variants of 94
Irregular Verbs

Independent Words which 60

contain Kana-characters

Table VI-4 Sizes of the Tables for Inflectional Suffixes,
(Inflectional) Postpositions, Inflectional Variants
of Irregular Verbs and Independent Words which are

usually written in Kana-spellings.

rPG
oA S5 oI 1. Noun
1 10 2. Stem of Adverb 1
3. Stem of Adverb 2
2 11 4, Stem ot Verb, Inflection Type 1
R 5. Stem of Verb, Inflection Type 2
3 = 6. Stem of Verb, Inflection Type 3
4 13 7. Adverh
%. stem of Adverb 2
2 1 9, Inflectional Suf(lx for Inflectional Form 1
6 15 of Verb (Inflection Type 1)
10, Intlectional Suffix for Inflectional Form 1
7 16 of Verb (Inflection Type 1)
8] 11. Postposition (for Question)
12. Postposition (for Conjunction)
9 17 13, Inflectional Sutfix for Inflectional Form 2
of Adjective 2

14. Inflectional Suffix for Inflectional Form 2
of Verb (Inflection Type 2)

15. Inflectional Suffix for Inflectional Form 2
of Verb (Inflection Type 1)

16. Inflectional Suffix for Inflectional Form 1
of Verb (Inflection Type 2)

17. Postposition (Case marker)

Fig. VI-9 Example of Interpretations of Substrings in an EPG

- 197 -

tionary to determine the interpretation of the Kanji-part of an
EPG at this step. Instead, we will first interpret the Kana-part
of an EPG by using the above tables. At this step, all possible
interpretations of each substring, which may begin from arbitrary
positions in the Kana-part are given. An example is shown in

Fig.VI-9.

inflectional
form

IP & Inflectfonal Postposition

Fig. VI-10 Data Structure for the Table

The tables used at this step are represented by Eﬁg tree-
structures shown in Fig. VI-10 and are stored in the mainimemory.
This is because the number of items which must be stored in these
tables is relatively small and the consultation to these tables are
very frequent. By using these tables, we can get all possible .
postpositions, inflectional postpositions, inflectional suffixes

of . independent words, and also independent words usually written

- 198 -

in Kana-spellings, which match with substrings starting at arbi-

trary positions in the input EPG.

44
3.

Step 3 Compatibility Testing

As mentioned in section VI-3-1, a (inflectional) post-
position has a certain condition that the immediately preceding
word must satisfy. By using this condition, we can eliminate
invalid interpretations of the EPG. Because most of the spellings
of dependent words and inflectional suffixes consist of less than
3 Kana-characters, many possible interpretations of substrings are
generated at Step 2. However, most of them are rejected by this
compatibility testing. If the boundaries marked at Step 1 are not
correct, there will be no interpretation which satisfies the whole
EPG. When we cannot find any valid interpretation, we assume that
the boundary detection was wrong, and will go to Step 4 to recover
from the errors of the boundary detection. Otherwise, we will go

to Step 5. B s

%W

Step 4 Recovery from Erroneous Boundary Detection
The causes of errors which occur at Step 1 are classified

into the following three types.

1. There is an independent word in the EPG which is written
in Kana-characters. Though we have a table of the inde-
pendent words which are usually written in Kana-spellings
and use it in Step 2 to interpret EPG's,we have not
listed the spellings of all independent words.

In this case, the EPG consists of more than one PG (See 1,
2 in Fig. VI-11).

2. There is an independent word in mixed-spelling. In this

case, the independent word is broken into two different

- 199 -

EPG's. 1If the first half of the word is written in Kana-
characters, it is merged in the preceding EPG (see 3 in

Fig. VI-11). 1If the second half of the word is in Kana-
characters, we cannot interpret the Kana-part in the EPG

at step 2 and 3 (see 4 in Fig. VI-11).

3. The preceding PG consists of only an independent word in
Kanji-spelling. It is possible for a PG to have a null
sequence of dependent words. We did not segment the
string of Kanji-characters at the previous stages. There-
fore we cannot detect that two independent PG's are merged
(see 5 in Fig. VI-11). Because compounding in Japanese is
very productive and several independent lexical words are
concatenated to make a new compound, we will first assume
a long string of Kanji-characters as a single compound.
But in the example 5 in Fig. VI-11l, the two consecutive
independent words do not produce a compound and it is

natural to think of it as the two independent PG's exist.

The errors of the third type were not discovered by the
previous steps. They will be detected and recovered at Step 5
where a compound is segmented into primitive lexical words. Step
4 is responsible for recovery from the first two types of errors.

We assume therefore that the last Kana-character in the
.EPG eventually belongs to the succeeding PG, and delete the charac-
ter from the current EPG. The remaining Kana-part will be re-in-
terpreted by Steps 2 and 3. If the interpretation succeeds, then
the independent word in the succeeding PG is assumed to be in the
mixed-spelling or Kana-spelling and the deleted Kana-character is
attached to the front of the next EPG. Then, the string created
by the concatenation will be matched against lexical words at Step
5 (the way of matching an independent word in the mixed-spelling
against lexical words has been discussed in section VI-2). 1If a

lexical word which has a string of the mixed-spelling is found in

- 200 -

L EPG q
I

(1) ======= o st 359 3 = 18 ¢ 3 8B B-=—=--

adjective 2

— primitive
L EPG |
(Dm==——— £ F L 3 U & £ B IC emmeeea-
verb
— to begin
i EPG 1 EPG |
Vmmmem=n®E B & < O B F I & --——--- -
verb
— to repeat
L EPG 1 EPG M |
(y======- £ B &2 B M X § I & ademmee
verb
— to repeat
| EPG]
(5)=—==== E’E £ XK B M BE B UL K-
noun noun
— last year — United States

Fig. VI-11 Examples of Erroneous Boundary Detections

the dictionary, then the recovery from the error is completed.
Otherwise, the last Kana-character is deleted again from the
current EPG and the same steps will be repeated until the re-inter
pretation succeeds or the remaining part contains no Kana-charac-

ters. If there are no Kana-characters to be deleted and valid

- 201 -

interpretation has not been found, error cannot be recovered and

the EPG has no interpretations.

Step 5 Dictionary Look-up

Because consulting the dictionary is very time consuming,
it is desirable that the consultation is performed as rarely as
possible. Moreover, the dictionary of independent words is never
complete, that is, most of vocabulary in a specific domain such as
the chemical field, electrical engineering, and so on are usually
not in an ordinary dictionary. The same is true for most of com-
pounds which often appear in a real text, but which are not regarded
real words. On the other hand, it is possible to list all the de-
pendent words and inflectional suffixes in the tables. Therefore,
we interpret the Kana-part before the interpretation of the Kanji-
part.

Several possible interpretations of the Kana-part may be
produced by the above processing. Each interpretation makes
certain assumptions about the Kanji-part in the EPG. For example,
if an interpretation of the Kana-part begins with the inflectional
suffix of a verb,then the interpretation of the Kana-part assumes
that the Kanji-part is a stem of a verb. In this case, the generic
form of the verb can be restored from the suffix information.
Therefore, it is an easy task to check whether the assumption is
fulfilled by looking up the verb in the dictionary.

The interpretation whose assumption about the Kanji-part
is fulfilled by the dictionary is more feasible than the interpre-
tations whose assumptions are not fulfilled, An example is given
in Fig. VI-12,

However, if the Kanji-part is not a single lexical word
but a compound which contains several lexical words, the process
of consulting the dictionary becomes much more complicated. The

detailed process of segmentation of compounds will be described in

- 202 -

input EPG: & &£ LU I

(a) Interpretation 1

B K U 1

verb — to appear, inflectional postposition — past

inflectional form 1

(b) 1Interpretation 2

* & L 1c
Vinflectional postposition — past
adverb — ? verb — to do,

inflectional form 1

Fig. VI-12 The above two interpretations are equally feasible
before consulting dictionary because both of them pass
the compatibility test. However, consultation of dic-
tionary indicates that the first interpretation is more

feasible than the second.

section VI-4. The procedure for segmentation of compounds will also

find the errors of the third type which are mentioned at Step 3.
Even if the independent word of an EPG is not found in the

dictionary, the processing of the EPG does not fail. In this case,

the interpretations proposed by the previous steps are considered

as equally feasible. We consult the dictionary only to order the

interpretations in terms of feasibility.

VI-3-3 Experimental Result of Morphological Analysis

- 203 -

Table VI-5 shows the results of the morphological analysis

procedure when it is applied to the sentences from an
chemistry text book. Some analysis results are shown
The processing time is also shown in Table VI-5. The

system which we utilized for this experiment is shown

elementary
in Fig. VI-13.
computer

in Fig. VI-14.

The mini-computer has a 64 KB core memory. The output device of

Kanji and Kana characters is a dot printer by which each character

is expressed by 24 x 24 dots. We have dot patterns for about 2,000

characters, which is sufficient for this experiment.

Most of the

programs were written in FORTRAN and the input and output programs

for Kanji and Kana characters were written in assembler language.

Correct Rate of Analysis (%)

Single Correct Result Plural Results are obtained. Failure
Correct one 1s contained.
Word Pause Group Word Pause Group Word |Pause Group
Before Comsultation | ;5 g 61.4 20.9 - 33.2 6.1] 5.4
of Dictionary
After Consultation | g; g 74.8 9.5 20.0 3.5 | 5.2
of Dictionary
(*) 500 PG's are processed by the procedure.
Average Processing Time (second)
per a sentence per a PG per a word

Without Dictionary

Consultation 4.6 0.43 0.17

With Dictionary 35.3 3.32 1.30

Consultation

(*) The processing time include the times for MT 1/0.

Table VI-5 Result of Morphological Analysis

- 204 -

FCRRWEAL SNL0RMErve izl (RS2 MANL, ELVNREBEI LB ST 20004 2

©

Analysis Result :

*
3 AL (BTM) 22 (Wwtk) / (3) %

*WREH (B Your Gl) . (GkA) S {0) oo
::.n(ﬂii’: Yobh (151 Yo (KM Y (1) %

:KIIL'I (& Y A& (WM) vl (BHWMYL () T) (0 %
E,ﬁ'.—% (& Y E (m) S (1)

3 (@ Ya (MEMY 2 (0)
*faa (BHER) 7 (0) .7
(1)

$ia (BEM) ‘g

* .

* 0 (%) da (RFRD) B Gk A) (0) ~

*fida (5 VN (n'n Yy 2 (0) 7 The part-of-speech and the inflectional form of .

kMt (WBTH) . (Gt Y S (1) s each character string are given in () which follows

$Td (MEG) . (S)/ (0) the strin

w i (BEMB) . (G)/ (0) 4 &

*

*iE (4 YL (v Wy v (Wem) (1) 7

I (&)L(I&'J*HT])V‘(IUJ.L m) .~ (0)/

#IEL(UJEH])\'(IUJJ:HI) (1)

#ELY (BHEM) ~ (0) /S

*IEL Y (BHEMKE) (1) /=%

*

A (4) E (BM) (1)

ES

20 (MHTH) &) () & (M y (1) ~ %

Ed

*HBh (& Y3 A (WHk) Lt (K&) (MWM) 35 (MAEK), (HAH Y (1) /

#*Zh (& Y3 5 (MY k) b (B)¢ (#BM)&s (BHE#)., (98)/ (1) /
Fig. VI-13 Examples of Analysis Results -- Example 1

- 205 -

gy AR ROGFRER T LML T Iy Vorhlz 3L HL
AT e XM EEW YL v n WHhESS ST D,

Analysis Result :

*
#7939 viB8l (4 yur (@M) . (aks) T (0) ok
£
* K (4 Yo (1) /(1) 7%
* .
x5 F (& Yy (M) /(1) 7%
B
it (& Yok (Wi)y oo (HEM [/(1)/
SR (BE#Kk) ro GEk)/ (C) /%
£
s @maz (B#k) (0) /%
[}
[]
[]
[)

'
xATh e (B@tk) - (0) /*
*-

) w3 (fhLk#).

YW (fE#).

- 206 -

(Ay

(%) s

Sm (s) (M) ez (&)T YR (M) TR
*ﬁgéi)/)z<mm Y mw (@) & (E¥k) L (MEM) T (&M

*&agé)/)a(mm) anE (MER) A (M@HM) T (EM) ez (BER). (95)/ (3
) /%

This substring was initially assumed to be a sequence of
independent words, because it is written in Kana-characters.
However, the compatibility test at Step 3 rejected this assumption.
The substring was restored at Step 4 to be a verb in the Kana-spelling.

Fig. VI-13 (Continued) -- Example 2

TOSBAC 40

mini-
computer
(64KB)
LP
- Dictionary
Dot Patterns for
DISC Kanji- and Kana-
(100 MB) Characters
Dot Printer Average Seek Time
' = 38 msec
¢
OUtpuc —m
Devices
for
Kanji- and { MTX3
Kana- CRT Display
Characters
\

Multiplexer Selecter Channel
Channel

Fig. VI~14 Computer System

If there are several possible interpretations, the procedure
outputs all of them. The PG underlined in Example 1 has two alter-
native interpretations. Example 2 illustrates that an embedded
independent word in an EPG is well recognized by the error recovery
procedure at Step 4.

Some kinds of ambiguities cannot be resolved by morpholog-
ical rules alone. Syntactic, semantic and even pragmatic analyses
would be required to resolve them. Certain simple heuristic crite-
ria may be conceivable for selecting the most feasible interpreta-

tion. One such criterion is to select the interpretation which

- 207 -

contains the longest independent word. However, as mentioned at
the beginning of this section, we prefer obtaining all possible

interpretations to selecting the most feasible one at this stage.
Disambiguation will be done at the succeeding stages such as syn-

tactic, semantic, and pragmatic analyses.

VI-4 Compound Noun in Japanese

In the past many systems of automatic processing of English
text intentionally avoided the problem of inflectional variants, and
simply declared each of them to be an independent lexical word.

This has an apparent advantage of eliminating the distinction be-
tween textual and lexical words and the morphological analysis
reduces to a simple process of looking up forms in a dictionary.
However, this solution is unfeasible in languages like Japanese and
German, because compounding of words, which is very productive in
these and many other languages, makes it'impossible to consult a
dictionary in a simple straight manner. There are lots of compounds

in Japanese such as,

23 U @) L)) o A
Literal English —r
Translation - large hygg%g%ic generator of electricity
_ capacity motor

Compounds of a few words which are composed of more than 10 Kanji-
characters are by no means extra-ordinary in Japanese. Many noun
phrases, which must be written using prepositional phrases, infini-
tive phrases and so on in English, can be represented by single

compounds of Kanji-characters in Japanese. Therefore, if we list

- 208 -

up all possible textual words in a dictionary, the size of the dic-
tionary would be incredibly large.

The morphological analysis procedure of Japanesé must be
provided with the ability of separating a compound textual word into

lexical words. We shall discuss this problem in the following sec-

tions.

VI-4-1 Segmentation of Japanese Compounds

A phrase in English, 'weakly ionized plasma' corresponds to

a single compound in Japanese,
Y77 X~
weakly ionized plasma

At Step 5 in the morphological analysis procedure, we consult the
dictionary to find the lexical entry of g3 g #f » 3 x - . This
compound is probably not listed in the dictionary. Before consulting
the dictionary, we should segment a compound into elementary lexical
entries. Moreover, we should be able not only to segment compounds
into lexical entries but also to discover the relationship among
them, if we aim at translating Japanesé into another language. That
is, if we want to translate the compound : ' (weakly or weak) il
(to be ionized or to ionize) 35 x- (plasma)' correctly, we must
select the structure of elements which means 'plasma which is weakly
fonized' from other possible structures corresponding to the meaning
: 'plasma which ionize weakly', 'weak plasma which is tonized' and
so on.

The problem of selecting the proper structure is closely
related to the problem of semantics and pragmatics. The analysis

of a long noun phrase concatenated by the particle 'NO' (of) is

- 209 -

relevant to this problem. We described in Chapter III how semantic
and pragmatic knowledge interplay with each other to relate each
component word of a phrase without syntactic clues. We will concen-
trate in this section on how to segment a compound into elementary

lexical words.

'Japan Information Center of Seience and Technology', JICST
for short, delivers a quick report of current scientific papers
twice a month, called 'Current Bibliography on Science and Techno-
logy'. We used this as the data for investigating the nature of
Japanese compounds. This bibliography contains not only the bibli-
ographic information, but also the abstract of each paper in Japanese
language. We used the materials published from June through Nbvem—
ber 1975 as our corpus for experiment.

We extracted all the strings in the abstracts which consisted
of consecutive Kanji-characters. We gathered 74,127 different Kanji-
strings from the corpus. As the extraction was done only by finding
the change of character types (Kana to Kanji, etc.), there were some
strings which are not single compounds, but are composed of two com-

pletely independent words.

(%)

Length 3 4 5 6 7 8 9 10 11 12 13
JICST 17.6 34.8 20.5 14.2 6.7 3.4 1.5 0.6 0.3 0.2 0.2
Newspapers | 47.8 | 34.9 | 10.1 4.4 1.9 0.7 0.1 0.1 0 0 0

JICST : Compounds extracted from the abstracts in
'Current Bibliography on Science and Technology'.
68,021 different Kanji-character strings are examined.
Newspaper : Compounds extracted from newspapers. 1505 different

strings are examined.

Table VI-6 Distribution of the Length of the Compounds

- 210 -

However, most of the extracted strings (987 were single
compounds. Table VI-6 shows the distribution of the length of the
compounds. We can easily recognize that the vocabularies in
scientific papers tend to be longer than those in ordinary news-
papers and magazines. This is because technical terms usually
express more specific and complex concepts than those in normal
texts. In English, a specific and complex concept is often ex-
pressed by a phrase in which a fundamental concept is modified
by several adjective and prepositional phrases. In Japanese, this
is expressed by a long compound. Therefore, in order to apply
linguistic techniques to the areas of information retrieval, auto-
matic abstraction and so on, we should be able to deal with these

long compounds.

Most Japanese nouns are expressed by concatenating two
Kanji-characters. As a result compound nouns can be easily seg-
mented by separating them into two-character components. However
there are some Kanji-characters which have definite meaning of
their own. The characters, % (heat), ¥ (light), B (nation) are such
examples. There are the other types of characters which have
certain functions by therselves such as prefixes and suffixes. 'k’

(large, big), 3k (prefix of negation) are typical examples of pre-
fixes and #) (suffix which makes an adjective), {t (suffix which
makes a noun) are typical examples of suffixes.

Fig. VI-15 shows examplesAof correctly segmented compounds.
The underlined characters are prefixes or suffixes.

The existence of these special characters gives us useful
clues to segment a Kanji-string. But it is not always true that
these characters are used as prefix or suffix. Very often they
are used in ordinary nouns. For example, all of the following
Kanji-strings begin with the character 'k' which are often used

as a prefix to mean 'large'’, 'heavy', 'big' or 'great'.

- 211 -

E = A B & F &t B R

F
111
i

g LE S it i

Prefix Sufrlix suffix
(regular etv) (shape ete) (-ing)

triangle to sample pictare

— X FI Y s | T ® & B

-

suffix

Prefix {machine, etc)

(large, big, etc)

capacity hydraulic motor Lo generate
power electricity

Fig. VI-15 Examples of Correctly Segmented Compounds

Kifl heavy rain

KB big man

Kk finance ministry
KE emperor

Rt final scene

Kk generous

However, the character is used as a prefix only in the first two
examples. The character in the other strings is used in the
spelling of ordinary nouns. We can reconstruct the whole meaning
of kB (big man) from the meanings of x (big, large, etc.) and %
(man). On the contrary, we cannot reconstruct the whole meaning
of Xik (finance ministry) from the meanings of X and i (warehouse,
storehouse). 1t may be possible but very difficult for a computer

program to suppose the meaning of k& (emperor) from the meanings

- 212 -

of X (big, large, great, etc.) and B (king, etc.). Though each
Kanji-character originally has its own meaning (as in Chinese),
and therefore, the meaning of a word consisting of several char-
acters can theoretically be reconstructed from the meanings of the
characters, we treat a string of Kanji-characters as a lexical
entry if it conveys a certain concrete and indivisible meaning.
The length of such Kanji-strings is usually two. The above exam-
ple shows that the Kanji-characters which are used as prefixes and
suffixes in Japanese cannot be clearly discriminated from other
ordinary Kanji-characters. Every Kanji-character, even the ones
which have a strong tendency to be used as suffixes or prefixes,
occurs in the spelling of ordinary lexical words.

A string of three Kanji-characters has the construction of
either a prefix followed by a lexical word or a lexical word
followed by a suffix., If either the first two characters or the
last two characters of a string is matched with a lexical entry in
the dictionary (the dictionary which is used here is that described
in Section VI-2), and not the both simultaneously, we can almost
safely segment the string into 2-1 or 1-2 respectively (we applied
this algorithm on 1,632 strings which satisfy the above condition,
and the results were compared with the manually segmented results.
The algorithm gives the correct segmentation for 1,503 strings(98.2%))-
The remaining one character is supposed to be used as a prefix or
suffix. Based on this assumption, we measured automatically the
frequency that a certain character is used as a prefix or a suffix.
The Table VI-7 shows the result which is obtained by applying the
above method to 11,963 strings. The frequency in this table
reflects to some extent the characteristic of each character, that
is, how often the character is used in the spelling of ordinary
lexical words, and how often it is used as a prefix or a suffix.
We will refer this table as Prefix and Suffix Table (PST for short)
in the following. The PST will be utilized in the process of the

segmentation of long compounds described in the next section.

- 213 -

Prefix Table

Relative frequency (%)

in which the character
is used as a prefix

097 .00 4 4.
085 0007
0800005
-~ 00 0 4.
7~ 0055
/0003

075,
070,
066

o
H &

¥k =
Bt ==
E:
8 =

) = M
- i O
L= 2=]
[—I =]
NN\
O© N O
Lo o]
L= =T]

098 006 7
090.,0031
080,0005

mowonn
NERKEY

O W0~
S 00 O N oo
S~mOO0OO0OQ
cCoOooo0ocoCo
NNNNNN
SO NOG
O Moot~
- OO0OO0OO0OO0o

mowuonn
Hdme e

- %1¢ -

number / number

A=

66 0003
o
0
0
0
0

0
0
0
0
0
0

([| | A T

FEREEES

OO w0t
CSwvwNaO W
~OoO OO0 O0Oo
cooooo

NNNNNANY

O PNO -
W W WYL Ww
coooeo

o
HE UK

N o0 o0 b
- b OO0 O =~
COO0mOO
cCoOoOO0O0O0Oo

Total frequeALy of

the character

0500010
0500061
0500002

B =
R =
7N
¥

Bwon
2R

0NN
o0 oo
o oo
SCooo

NONNNNNNNNN

ONLNOtM O OO
WWWOWLWWINW

(= — I — = =

T I T

Sooo

PHREELHEREK

Ot~ O

O OO mt ©
ooococo o
coocooo
NONONCN Y N
QNN = DO
D o <
coocoeo
L T O (Y |
EEYER:
NN W WW
OO wmOD
ccocooo =
cooo o=
NN N NN N
OO0 MmmOCS
WD
coocooo=
| N I T I
BEE®EK3E
O WO~ 0 0
OO mNNO
coooo >
coocooo
NNNN NN
QO N -~O
010 W N b b
oo

ARSI G BEFR

— £

0021

3 8 .~
035,001 4
034.70026¢6

03700038

0

1

?
K =
M=

038 0013

0380013
034,7018¢0

036 70011

i =
il =
5 =
jc:

03870013

Table VI-7 Prefix and Suffix Tables

Suffix Table

- 61¢ -

o
[
(=3}
-3
~h Y
&R o
A d
o] =)
e A 2
=33 g—® g o
0w 3 3o
=2 o oY
o« U o
[T =] ~ oM
N U X - o«
Uy o~ 1] =)
o2& 3 g°
>%8 5] PV
- (] =] o o
PO = =]
e
— o]
U .Cn
%3 o <
0O MmDO O LD DN DO WO
HA NN OOON MmO
DOO MO0 CODOSOOD~O
CODOoOOCD LCoocoOoDODOOOROO
NNNNNN NN RSN ON N NN
O WA -~OO0 W MM~ 0 WO
0060 00000 ISEISISinIsiel WO W
CooCcOoOe ococooocoooo
(I V| I 1 R U A N A (AN O P 1
— G a—
REELECY JHWHASESZSHELI
OO ONWLN DN FO WO OO
CONNHY OO DMHONMD
CONOODO ~oOONOODONOO
ocCoocoo o cCoocoooose o
ANANNNNN O ONNNNOUN Y O
OO DOWLFEONNS G O
00 0000 00 00 00 t=isBninitstsiSis W
[= T o T B e B) [== = Y o T e Y e I e Y o B Y - T e
|1 TV R I | | | R 1 A T |
= = P — >
EFHELE SNy ERIRES
NO et DN SN RO~ DN
Dt OO O ~OWONNMNW O
OSCNO~OO Coo0OCN~NTOO O
OO0 coooo0O0ocoo

)
NONNNNN

DS ™= O
) 00 00 00 &0
(== = — = I —]

[T
WEER

NNNNNNNNNN
VW EMN O ©
[o S O N S S o T T~)
OCOoOo0oooo0o O

I T T T T
MERKERYESOR

M MNOOMmwo
COo v Wt~
oo ococoaa
cCocooocoo
ANANENENENENEN
664.3211
O O WWWW:w
Coococococo
[R T it il
EREEREE
M MON W -
©C O 00 rm < 00
ocoocooocs
ocooooc oo
U N
O OLW PN ro—
W W WWwWwY-w
So0c0oo0ozs 2
1 1| N A [A
EERNEESER

N MO W
C OO N m ~x
OO0 OO m N —
(= — i i — I i e e}
NNNNNN N
DWONDN ~
O W WW WY
CoLoocoo

I I O T TR
EHREREL

i =

=

06 00005

e
]

060 - 0005

w e~
(=R
oo
oo

©
O wn
(=R =]

no
o R

[Fo 20 o
o
>0
o0
NN
oo
O wn
oo

-

Table VI-7 (Continued)

VI-4-2 Segmentation Procedure of Long Compounds (1)

Procedure without Dictionary Consultation

Based on the PST, we manually classified Kanji-characters

into the following five categories :

1.

2.

Prefix characters (PC) : The characters which are often
used as prefixes and not used as suffixes.

Suffix characters -1 (SC-1) : The character which are often
used as suffixes but not used as prefixes.

Suffix characters -2 (SC-2) : The same as above 2 except
that the string which has this type of suffix becomes an
adjective.

Independent characters (IC) : The characters which are
often used both as suffixes and prefixes. These characters
convey definite meanings by themselves.

Ordinary characters (OC) : The character which are rarely

used as suffixes and prefixes.

Examples of these categories are tabulated in Table VI-8.

Cateypory fixamples

pC .. %. W, . . R, BT

sc-1 g, . F. AL R . W, BB oo

2. 4}-\— N

-

0n
(9]
[}
N
mr
T
=4

f

Ic fe. B, K. E, F.OW, BB

X
.%
B
B

oc g, @, . ¥.

-

Table VI-8 Examples of the Characters of the Categories

- 216 -

The Kanji-characters in the input string are marked as PG,
SC-1, SC-2, IC or OC according to the above classification. Then
the procedure sees if there are any impossible sequences of char-
acters like PC-SC-1, PC-SC-2 and so on, and checks if there is an
OC sequence whose length is odd. If such sequences are found, then
the procedure decides which attached marks should be changed to
more reasonable ones according to the frequencies in the PST.

We applied the procedure to the data which consists of
74,127 Kanji-strings. The results are compared with the manually

segmented results. The success rates are shown in Table VI-9.

Length of
Compounds

Success Rate 82.6 87.2 80.0 81.2 66.8 63.4 54.0
%

Table VI-9 Results of Segmentation of Compounds

(Procedure without Dictionary Consultation)

VI-4-3 Segmentation Procedure of Long Compounds (2)

Procedure with Dictionary Consultation

The segmentation procedure (1) gives rather poor results,
especially for long compounds. Therefore, we revised the procedure
by augmenting it with dictionary consultation. Given a string of
Kanji-characters, the revised procedure first looks for any portions
of the string to be matched with lexical entries by the dictionary
look-up. The procedure tries to segment the string using this
result. However, the segmentation at this stage may be ambiguous,

because

- 217 -

1. many terms in scientific papers, especially technical
terms, are not listed as entries in the dictionary, and
2. a certain sequence of Kanji-characters may have more than

one interpretation by lexical entries (see Fig. VI-16).

(1) Input String :

x % % t : F % T ot '

»
prefix stgble suffix uneasiness qualitative

unstability

(2) Input String :

B & 3 B : £ = % H
telephone suffix telephone ingenuity
suffix(machine)
4
telephone
)

(something) for a telephone

Fig. VI-16 Ambiguous Kanji-strings

- 218 -

If the segmentation result is not unique, the part of the
strings which cannot be uniquely segmented will be analyzed fur-
ther by a certain set of rules which utilize the PST. The flow-
chart of the procedure and the rules are shown in Fig, VI-17, and

Fig. VI-18, respectively.

- Input : A string of Kanji-characters

Dictionary Consultation

Every portion of the strings

is tested to be matched with

a lexical entry

<<: Are there any ambiguous _¥7 NO

substrings in the string?

o

YES

Rules (Fig. VI-18) are
applied to the ambiguous

substrings.

END

Fig. VI Flow Chart of the Procedure

- 219 -

A, B, C, D, E : Kanji-Characters
a, b, ¢, d, e : The Value (%) of the Suffix Table for the Kanji-Character
a',b',c',d",e': The Value (%) of the Prefix Table for the Kanji-Character

(1) Rule for a String Composed of Three Kanji-Characters
Input String : .../ ABC / ...
If max(a, a') > max(c, c'),

then /A/BC/ —» the character A is supposed to be a
suffix or a prefix character.

otherwise /AB/C/ — the character C is supposed to be
a suffix or a prefix character.
(2) Rule for a String Composed of Four Kanji-Characters
Input String : .../ ABCD / ...
1f min(max(a, a'), max(d, d')) > max(b, b', ¢c, c"),

then /AB/CD/ —»> the characters A, B, C and D are
supposed to be ordinary characters.

otherwise /A/BC/D/ —> the characters A and D are
supposed to be suffixes or
prefixes.
(3) Rule for a String Composed of Five Kanji-Characters
Input String : ... /ABCDE/ ...
1f max(a, a') > max(c, c', e, e'),

then /A/BC/DE/ —» the character A is supposed to be
a prefix or a suffix.

otherwise If max(c, ¢') > max(a, a', e, e'),

then /AB/C/DE/ —= the character C is supposed
to be a prefix or a suffix.

otherwise /AB/CD/E/ —> the character E is
supposed to be a
prefix or a suffix.

Fig. VI-18 Rules for Segmentation

We applied this revised procédure to the same data that the .
precedure (1) was applied. The score of the results is given in
Table VI-10. From this table, we can see that the new procedure
works far better than former one. The dictionary which we have
used is by no means adjusted for scientific texts. It contains
only the words which appear in the ordinary texts, but hardly

appear in scientific literatures. Examples of the failures which

- 220 -

are caused by this reason are shown in Fig. VI-~19, Examples of
the failures caused by the reason that even a few popular techni-
cal terms are missing in the dictionary are also given in Fig.

VI-20.

Length of
Compounds 3 4 5 6 7 8 92
Success Rate 94.1 93.6 92.7 91.5 90.0 84.9 78.0
(%)

Table VI-10 Results of Segmentation of Compounds

(Procedure with Dictionary Consultation)

Input String : 25} = %'% Fﬁ *7} *’I’

The word %% F 1is registered

Result : = 52 Fﬁ M, ﬂ

in the dictionary.

ingenuity
Correct Segmentation : & EF 52 B
telephone machine suffix material

(for)

material for a telephone

Fig. VI-19 Example of Erroneous Segmentations

- 221 -

Input String : 3§ {5 8% 33 &

Result : & E 8% = E {The value (%) of }& in the PST=26
- The value (%) of & in the PST=50
Correct Segmentation ﬁ {.:,
communications channel word length

word length in a communication channel

Fig. VI-20 Example of Erroneous Segmentations

If we could use a dictionafy of scientific terms, the score would
be greatly improved. We believe that this revised procedure is

practically usable, if an appropriate dictionary is available, as
a preprocessing component of some application systems in language

processing, such as automatic translation of scientific papers,

automatic indexing and so on.

- 222 -

L3

CHAPTER VII

CONCLUSION

VII-1 Summary of the Thesis

In this thesis, various problems which we encountered during
the development of a question-answering system have been discussed.
A question-answering system is a typical integrated system. There-
fore, aiming at the construction of a question-answering system with
natural language input, we have developed several subcomponents of
the system such as an analysis program of Japanese sentences (in
Chapter IIT and IV), notations of a semantic network as the internal
knowledge representation framework (in Chapter V), a problem solving
program using the network (in Chapter V) and a morphological analysis
program (in Chapter VI). The primary focus of this thesis has been:
on the development of an analysis program which utilizes various
semantic and contextual information during the analysis process. For
the systematic development of the analysis program, we have first
developed a new programming language for natural language analysis.
The programming language PLATON has several convenient facilities for

this purpose (in Chapter II).

Principal results obtained in this research are summarized as

follows :
Programming Language PLATON

1. PLATON was developed mainly based on the model of ATN proposed
by W. Woods (1970). The language has the attractive feature that the
grammatical rules and the control mechanism are clearly discriminated.

This enables us to evolve the grammar simply by adding new rules and

- 223 -~

to develop the model by adding facilities to its control mechanism.

2. Pattern-matching facility in PLATON makes it easy to write re-
writing rules. Moreover, it extracts substructures from the inputs
and invokes appropriate semantic and contextual checking functions.
The flexible interactions between syntactic and semantic analyses or

syntactic and contextual analyses can be easily obtained.

3. PLATON is provided with a flexible backtracking facility. A
backtracking mechanism is, we think, necessary for language under-—

standing as in other fields of artificial intelligence. In PLATON, ‘.
we can easily set up arbitrary numbers of decisién points in the
program. Then, if subsequent processing results in some failure,)
control will come back to the points relevant to the cause of the

failure.
Analysis Program of Japanese Sentences

4. Because the grammar in the analysis program was written in

PLATON, we could easily evolve the grammar through experiments.

5. The lexical descriptions of verbs adopted in the program were
based on Case Grammar. Each verb may have one or several activity
patterns which actually correspond to case frames of the verb. The
descriptions of nouns were based on almost the same notion as the case
frames of verbs. Nouns were classified into several categories such
as entity nouns, attribute nouns, value nouns, prepositional nouns and
action nouns. Different forms of lexical descriptions were devised

for different categories. L

6. It has been demonstrated that a simple sentence and a long noun
phrase in Japanese could be well analyzed through the utilization of
the lexical descriptions. Because a verb may have several possible
activity patterns, a sentence could instantiate more than one activity
pattern. We devised a heuristic function for the selection of the

most feasible interpretation of a sentence. There are no sytactic

- 224 -

clues in long noun phrases in Japanese to analyze the relationships
among the nouns in the phrases. Therefore, it has been considered

for a long time that it was dimpossible to analyze such long noun
phrases by computer. We have demonstrated in this thesis it is pos-
sible by utilizing the detailed description of meanings of constituent

nouns.

7. We have proposed a semantic network as a representation of con-
textual information. Events are described in the network by deep case
structures (DCS's). We have also devised a structure similar to a
DCS for the descriptions of concepts in the network. The network
contains various linguistic clues such as case relationships and so
on, though the semanti~ network for problem solving which has been

discussed in Chapter V does not contain.

8. The semantic network for contextual information are provided with
three kinds of stacks, that is, the noun stack (NS), the hypothetical
noun stack (HNS), and the trapping list (TL). We have shown that a
certain types of anaphoric expressions and omissions of words or

phrases can be treated properly.
Semantic Network as Internal Knowledge Representation

9. The semantic network for the contextual analysis has been organ-
ized in the form which is convenient for the utilization in the ana-
lysis of sentences. So the descriptions are rich for semantic or
contextual analysis of sentences, but sometimes lack necessary infor-
mation for doing deductions and problem sloving. We have devised a
representational framework for such purposes. The representational
framework is called S.N.. The S.N. has several advantages over the
other frameworks. Various kinds of knowledge, such as algorithmic
knowledge, knowledge about external data bases and so on can be natu-

rally embedded in the S.N..

10. The description language for defining the networks has been

- 225 -

given. The description language can be seen as a programming lan-
guage for problem solving and knowledge representation in general.
This programming language is provided with a powerful internal index
structure for invoking relevant knowledge in the form of the semantic

network S.N..

11. Generalization hierarchy of concepts is a commonly used technique
for clustering relevant knowledge. However, the notation of hierarchy
developed so far was incomplete in the sense that various complex
relationships among concepts cannot be expressed. Aiming at extending
the expressive power of generalization hierarchy, we have introduced
in the S.N. two new types of nodes, SELF and DISJOINT nodes. These
nodes have important role in the process of identifying objects with

concepts.

12. The validity of both representation and operations on the net-

works has been discussed by the corresponding logical formulas.
Morphological Analysis of Japanese Written Texts

13. A dictionary is an important tool for language processing. How-
ever, because of the complex writing system of Japanese, there have
been no trials until recently to input a big Japanese dictionary in a
computer. We have computerized the dictionary 'Shinmeikai Kokugo
Jiten' which contains about 70,000 lexical entries, and developed an
efficient storage structure for it. In order to utilize the diction-
ary during morphological analysis, we have provided flexible access
methods for the dictionary. We can retrieve a lexical entry by spec-
ifying the Kana-, the Kanji- or the mixed spellings of a word.
Various variants of inflectional suffixes have been also treated by

the dictionary system.

14. Morphological analysis procedure is usually dependent on the
specific characteristics of the writing system of a language. The
morphological analysis of English mainly concerns about the processing

of inflectional variants. Japanese does not have any definite word

- 226 -

4

separators such as spaces in English. However, Japanese has two
different types of characters (Kana and Kanji), and the changes of
character types give us a useful clue to segment a long string of
characters into smaller and manageable units. We have developed a
morphological analysis procedure based on this conception. It has
also been demonstrated that the procedure works well on the real

texts.

15. Because compounding in Japanese is very frequently used for the
expression of complex notions, it is unrealistic to list up all com-
pounds in the dictionary. A morphological analysis procedure of
Japanese, therefore, must be provided with the ability of separating
a compound word into the constituent lexical words. We have measured
the ratios of how often a character is used in real texts as a suffix
or a prefix. The segmentation procedure based on the measurement has
been developed and the procedure has obtained good results for real

texts.

VII-2 Areas for Future Work

We have summarized above the research and experimental results
obtained in our study. We hope that this work will give a hopeful
future to language understanding systems. However, we admit that
there still remain a lot of difficult problems to be solved before
computer systems become to be able to communicate in fluent natural
language with human users. At the same time, we also admit that there
are many improvements which can be made within the framework of the

current research. Possible improvements are listed below :

1. Introduction of the abilities of. logical deductions or problem
solving to the analysis of sentences. The present analysis program

does not utilize the abilities of logical deductions or problem

- 227 -

solving based on the S.N.. The introduction of such abilities to the
analysis program is expected to be useful for resolving certain types

of ambiguities.

2. Development of a framework for the representation of more global
knowledge. Such framework should be needed for both the analysis
program and the problem solving program. For the analysis program,
we need a framework which corresponds to Scrip, or Frame by Schank or
others. For the problem solving program, we need a framework in

which we can define strategies.

3. Augmentation of the description language for the S.N.. There are
several deficiencies in the current version of the S.N.. Especially,
we must provide a much more powerful and descriptive framework for

defining new predicates in the S.N..

4. Development of more flexible control mechanisms for problem
solving. The current version of problem solving program is construct-
ed basically on the notion of the backward reasoning and the conven-
tional AND-OR hierarchies of problems. We should provide more
flexible and powerful mechanisms such as parallel computation, mixed

mode of backward and forward reasonings, and so on.

5. Introduction of semantic information to the analysis of a long
compound in Japanese. The results of the segmentation of long com-
pounds are relatively good. However, in order to determine the
relationship among the constituent words of a compound, we must pro-
vide each lexical entris in the dictionary with a certain description

of the meaning in a computer usable form.

Although there will be many difficult problems in the develop-
.ment of the model of language understanding, we hope in conclusion
that our research will be helpful in developing more powerful and

comprehensive language understanding systems in future.

- 228 -

REFERENCES

[Bobrow 1974] D.G.Bobrow, ''New Programming Languages for Artificial
Intelligence Research," Computing Survey, Vol. 16, No. 3, 1974

[Bruce 1975] B.Bruce, "Case System for Natural Language," Jour. of
Artificial Intelligence, Vol. 6, 1975

[Celce 1972] M.Celce, "Paradigm for Sentence Recognition,' SDC
Report HRT-15092/7907, 1972

[Chang 1973] C.L.Chang and R.C.Lee, "Symbolic Logic and Mechanical
Theorem Proving," Academic Press, 1973

[Charniak 1972] E.Charniak, '"Towards a Model of Children's Story
Comprehension," ph.D Thests, MIT, 1972

[Charniak 1977] E.Charniak, "Ms. Maloprop, A Language Comprehension
Program," Proc. of 5th IJCAI, Cambridge, 1977

[Chomsky 1957] N.Chomsky, "Syntactic Structure," Mouton, The Hague,
1957 J

[Chomsky 1965] N.Chomsky, "Aspects of the Theory of Syntax," MIT Press,
Cambridge, 1965

[Coles 1969] L.S.Coles, "Talking with a Robot in English,'" Proec.
of 1st IJCAI, Washington D.C., 1969

[Colmerauer 1971] A.Colmerauer, '"Les System-Q ou un Formalisme pour
Analyser et Synthetizer des Phrases sur Ordinateur," Project
de Traduction Automatique de l'Montreal, TAUM 71, 1971

[Fillmore 1968] C.J.Fillmnre, "The Case for Case," in Universals in
Linguistic Theory (eds.Bach and Harms), North Holland, 1968

[Hendrix 1975a] G.G.Hendrix, 'Partitioned Network for the Mathematical
Modeling of Natural Language Semantics," ph.D Thesis, University
of Texas, 1975

[Hendrix 1975b] G.G.Hendrix, "Expanding the Utility of Semantic Net-
works through Partitioning," Proc. of 4th IJCAI, Tbilisi, 1975

[Hendrix 1977] G.G.Hendrix and R.Fike, "A Network-Based Knowledge
Representation and Its Natural Deduction System,'" Proc. of 5th
IJCAT, Cambridge, 1977

[Kuno 1963] S.Kuno and A.G.Qettinger, "Syntactic Structure and
Ambiguity of English," Proc. of AFIPS 1963 FJCC, Vol. 24, 1963

[Kuno 1966] - S.Kuno, "The Augmented Predictive Analyzer for Context-
Free Languages - Its Relative Efficiency," C.ACM, Vol. 9, No. 11,
1966

[Minker 1977] J.Minker and J.McSkimin, "The Use of Semantic Network
in a Deductive Question-Answering System," Proc. of Sth IJCAI,

- 229 -

Cambridge, 1977

[Minsky 1975] M.Minsky, "A Framework for Representing Knowledge,"
AI Memo 306, MIT, 1974

[Mylopoulos 1975] J.Mylopoulos, "TORUS - A Natural Language Under-
standing System for Data Management System," Proc. of 4th
IJCAI, Tbilisi, 1975

[Mylopoulos 1977] J.Mylopoulos, "An Overview of a Procedural Approach
to Semantic Networks," Proc. of 5th IJCAI, Cambridge, 1977

[Norman 1973] D.Norman and D.E.Rumelhart, "Active Semantic Network
as a Model of Human Memory," Proc. of 3rd IJCAI, Stanford, 1973

[Norman 1975] D.Norman and D.E.Rumelhart, "Exploration in Cognition,"
Freeman, 1975

[Pratt 1973] V.R.Pratt, "Linguistic Oriented Programming Language,"
Proc. of 3rd IJCAI, Stanford, 1973

[Pratt 1975] V.R.Pratt, "LINGOL - A Progress Report," Proc. of

4th IJCAI, Tbilisi, 1975)

[Quillian 1968] R.Quillian, "Semantic Memory," in Semantic Informat-
ton Processing(ed. Minsky), MIT Press, 1968

[Quillian 1969] R.Quillian, "The Teachable Language Comprehender,"
C.ACM, Vol. 12, No. 8, 1969

[Raphael 1968] B.Raphael, "A Computer Program for Semantic Informat-
. . .g 3 »
ion Retrieval," in Semantic Information Processings(ed. Minsky),
MIT Press, 1968

[Sandewall 1970] E.Sandewall, "A Set-Oriented Property Structure Repre-
sentation for Binary Relationms,' Machine Intelligence 5, American
Elsevier, 1970

[Schank 1973] R.C.Schank, N.Goldman, C.Rieger, and C.Riesbeck,
""MARGIE : Memory, Analysis, Response, Generation, and Inference
on English," Proc. of 3rd IJCAI, Stanford, 1973

[Schank 1975a] R.C.Schank, R.P.Abelson, "Scripts, Plans and
Knowledge," Proc. of 4th IJCAI, Tbilisi, 1975

[Schank 1975b] R.C.Schank, "SAM - A Story Understander," Research
Report 43, Yale Univ., 1975

[Schank 1975¢] R.C.Schank, "Conceptual Information Processing,"
North Holland, 1975

[Schubert 1975] L.K.Schubert, "Toward a State Based Conceptual Repre-
sentation," Proc. of 4th IJCAI, Tbilisi, 1975

[Schubert 1976] L.K.Schubert, "Extending the Expressive Power of
Semantic Networks,'" Artificial Intelligence, Vol. 7, 1976

- 230 -

[Scragg 1976] G.Scragg, "Semantic Nets as Memory Model," in Com- '

putational Semantics {eds. Charniak and Wilks), North Holland,
1976

[Simmons 1973] R.F.Simmons, ''Semantic Network : Their Computation
and Use for Understanding English Sentences," in Computer Models
of Thought and Language(éds. Schank and Colby), Freeman, 1973

[Simmons 1975] R.F.Simmons et. al., "Semantically Analyzing an
English Subset for the Clowns Micro World," American Jour. of
Computational Linguistic§ Microfiche 18, 1975

[Simmons 1977] R.F.Simmons and D.Chester, "Inferences in Quantified
Semantic Networks," Proc. of 5th IJCAI, Cambridge, 1977

[Sowa 1976] J.Sowa, '"Conceptual Graphs for a Data Base Interface,"
IBM Jour. of Research and Development, Jul. 1976

[Tanaka 1977] H.Tanaka, T.Sato, F.Motoyoshi, "A Programming System
for Natural Language Processing - on Extended LINGOL," Trans.
IECE Japan, Vol. J60-D, No. 12, 1977

[Weizenbaum 1966] J.Weizenbaum, "ELIZA - A Computer Program for the
Study of Natural Language Communication between Man and
Machine," C.ACM, Vol. 9, No. 1, 1966

[Wilks 1975a] Y.Wilks, "An Intelligent Analyzer and Understander
of English," C.ACM, Vol. 18, 1975

[Wilks 1975b] Y.Wilks, "A Preferential, Pattern-Matching Semantics
for Natural Language Inference,'" Artificial Intelligence, Vol.
6, 1975

[Wilks 1976] Y.Wilks, "Frames, Scripts and Fantasies,'" Proc. of
6th ICCL, Ottawa, 1976

[Wilks 1977] Y.Wilks, "Knowledge Structure and Language Boundar-
ies," Proc. of 5th IJCAI, Cambridge, 1977

[Winograd 1972] T.Winograd, "Understanding Natural Language," Acade-
mic Press, 1972

[Winograd 1975] T.Winograd, "Frame Representation and the Declarative/
Procedural Contraversy," in Representation and Understanding(
eds. Bobrow and Collinsg), Academic Press, 1975

[Woods 1970] W.A.Woods, "Transition Network Grammar for Natural
Language Analysis," C.ACM, Vol. 13, 1970

[Woods 1972] W.A.Woods, '"The Tunar Sciences Natural Language
Information System," BBN Report No. 2378, 1972

[Woods 1975] W.A.Woods, "What's in a Link," in Representation and
Understanding (eds. Bobrow and Collins), Academic Press, 1975

- 231 -

PUBLICATIONS AND TECHNICAL REPORTS BY THE AUTHOR

PUBLICATIONS

(1)
(2)
(3)

(4)
(5)

(6)
(7)
(8)

€))
(10)

(11)

(12)

M.Nagao and J.Tsujii, 'Mechanism of Deduction in a Question-
Answering System with Natural Language Input,' Proec. of 3rd
IJCAI, Stanford, Aug. 1973(in English)

M.Nagao aqd-J.Tsujii, "A New Programming Language for Natural
Language Analysis," Jour. of IPS Japan, Vol. 15, No. 9, 1974
(in Japanese)

M.Nagao and J.Tsujii, "PLATON - A New Programming Language for
Natural Language Analysis,'" Proc. of 2nd USA-JAPAN Computer
Conference, Tokyo, Aug. 1975(in English)

M.Nagao and J.Tsujii, "Semantic Analysis of Japanese Sentences,"
Jour. of IPS Japan, Vol. 17, No. 1, 1976(in Japanese)

M.Nagao, J.Tsujii and K.Tanaka, '"Contextual Analysis of Japanese
Sentences,'" Jour. of IPS Japan, Vol. 17, No. 1, 1976(in Japanese)

M.Nagao and J.Tsujii, "Analysis of Japanese Sentences by Using
Semantic and Contextual Information," American Journal of Com-
putational Linguistics, Microfiche 41 » Jan. 1976(in English)

M.Nagao and J.Tsujii, "PLATON - A New Programming Language for
Natural Language Analysis," American Journal of Computational
Linguistics, Microfiche 37, Jan. 1976 (in English)

M.Nagao and J.Tsujii, "Analysis of Japanese Sentences by Using
Semantic and Contextual Information,' Proc. of 6th ICCL, Ottawa,
Jul. 1976(in English)

J.Tsujii, "Problem Solving Techniques in Robotics," Special
Issue for Robot, Bit, Jul. 1976(in Japanese)

J.Tsujii, "Computers and Language," Mathematical Sciences, No.
168, Jun. 1977 (in Japanese)

M.Nagao and J.Tsujii, "Survey of Current Computational Linguis-
tics and Natural Language Understanding Researches," Jour. of
IPS Japan, Vol. 18, No. 1, 1977(in Japanese)

M.Nagao, J.Tsujii, A.Yamagami and S.Tatebe, "Dictionary Organi-
zation and Morphological Analysis," Jour. of IPS Japan(in Japan-
ese, to appear)

TECHNICAL REPORTS

(13)

T.Sakai, M.Nagao and J.Tsujii, "Information Network for Binary

‘Relations and a Question-Answering System Using it,'" National

Convention Record of IECE Japan, May 1972

- 232 -

r

'«/

(14) M.Nagao and J.Tsujii, "Deductive Question-Answering System,"
Technical Report of the Professional Group on Automata and
Language of IECE Japan, AL72-118, Jan. 1973

(15) M.Nagao and J.Tsujii, "A Deductive Question-Answering System,"
National Convention Record of IECE Japan, May 1973

(16) M.Nagao and J.Tsujii, "A Programming Language for Natural Lang-
uage Analysis and its Application for Japanese Noun Phrase Ana-
lysis," Technical Report of the Professional Group on Automata
and Language of IECE Japan, AL73-71, Jan. 1974

(17) M.Nagao, J.Tsujii and K.Nakamura, "Analysis of Japanese Sen-
tences Based on Case Grammar," Technical Report of the Profes-
stonal Group on Computational Linguistics of IPS Japan, CL4-1,
May 1974

(18) M.Nagao, J.Tsujii and K.Tanaka, "Contextual Analysis for a
Noun Phrase," National Convention Record of IPS Japan, Dec. 1974

(19) M.Nagao and J.Tsujii, "Natural Language Analysis and Question-
Answering Systems," 1975 Joint Convention Record of Four Insti-
tutes of Electrical Engineers of Japan, Sept. 1975

(20) M.Nagao, J.Tsujii and K.Tanaka, "Analysis of Input Sentences
in a Question-Answering System," National Convention Record of
IPS Japan, Nov. 1975

(21) M.Nagao, J.Tsujii and K.Tanaka, "Question-Answering System and
the Analysis of the Input Sentences," Technical Report of the
Professional Group on Automata and Language of IECE Japan, AL75-
51, Nov. 1975

(22) M.Nagao and J.Tsujii, "Survey of Current Computational Linguis-
tics," Technical Report of the Professional Group on Computational
Linguisties of IPS Japan, CL7-1, Sept. 1976

(23) M.Nagao, J.Tsujii and A.Terada, "Internal Data Representation
of a Question-Answering System," Technical Report of the Profes-
stonal Group on Automata and Language of IECE Japan, AL76-45,
Oct. 1976

(24) M.Nagao, J.Tsujii, A.Yamagami and S.Tatebe, '"Support System
for Natural Language Processing II," Technical Report of the
Professional Group on Automata and Language of IECE Japan, AL77-
25, Jul. 1977

(25) M.Nagao, J.Tsujii, A.Yamagami and S.Tatebe, "Dictionary Organ-
ization for Morphological Analysis of Japanese Written Texts,"
National Convention Record of IECE Japan, Aug. 1977

(26) M.Nagao, J.Tsujii, A.Yamagami, S.Tatebe and M.Hoda, "Analysis
of Japanese Long Compounds," National Convention Record of IECE
Japan, Aug. 1977

(27) M.Nagao, J.Tsujii, A.Yamagami, S.Tatebe and M.Hoda, "Morpho-

- 233 -

(28)

(29)

(30)

logical Analysis of Japanese Written Texts,' National Convention
Record of IECE Japan, Aug. 1977

M.Nagao and J.Tsujii, "Algorithms for Natural Language Under-—
standing," 1977Joint Convention Record of Four Institutes of
Electrical Engineers of Japan, Oct. 1977

M.Nagao, J.Tsujii and A.Terada, "Expressive Power of a Semantic
Network and Problem Solving Techniques by Using it," Technical
Report of the Professional Group on Automata and Language of
IECE Japan, AL77-43, Oct. 1977

M.Nagao, J.Tsujii and A.Terada, "Deduction Process Based on a
Semantic Network," National Convention Record of IPS Japan,
Nov. 1977

- 234 -

	page1
	page2
	page3
	page4
	page5
	page6
	page7
	page8
	page9
	page10
	page11
	page12
	page13
	page14
	page15
	page16
	page17
	page18
	page19
	page20
	page21
	page22
	page23
	page24
	page25
	page26
	page27
	page28
	page29
	page30
	page31
	page32
	page33
	page34
	page35
	page36
	page37
	page38
	page39
	page40
	page41
	page42
	page43
	page44
	page45
	page46
	page47
	page48
	page49
	page50
	page51
	page52
	page53
	page54
	page55
	page56
	page57
	page58
	page59
	page60
	page61
	page62
	page63
	page64
	page65
	page66
	page67
	page68
	page69
	page70
	page71
	page72
	page73
	page74
	page75
	page76
	page77
	page78
	page79
	page80
	page81
	page82
	page83
	page84
	page85
	page86
	page87
	page88
	page89
	page90
	page91
	page92
	page93
	page94
	page95
	page96
	page97
	page98
	page99
	page100
	page101
	page102
	page103
	page104
	page105
	page106
	page107
	page108
	page109
	page110
	page111
	page112
	page113
	page114
	page115
	page116
	page117
	page118
	page119
	page120
	page121
	page122
	page123
	page124
	page125
	page126
	page127
	page128
	page129
	page130
	page131
	page132
	page133
	page134
	page135
	page136
	page137
	page138
	page139
	page140
	page141
	page142
	page143
	page144
	page145
	page146
	page147
	page148
	page149
	page150
	page151
	page152
	page153
	page154
	page155
	page156
	page157
	page158
	page159
	page160
	page161
	page162
	page163
	page164
	page165
	page166
	page167
	page168
	page169
	page170
	page171
	page172
	page173
	page174
	page175
	page176
	page177
	page178
	page179
	page180
	page181
	page182
	page183
	page184
	page185
	page186
	page187
	page188
	page189
	page190
	page191
	page192
	page193
	page194
	page195
	page196
	page197
	page198
	page199
	page200
	page201
	page202
	page203
	page204
	page205
	page206
	page207
	page208
	page209
	page210
	page211
	page212
	page213
	page214
	page215
	page216
	page217
	page218
	page219
	page220
	page221
	page222
	page223
	page224
	page225
	page226
	page227
	page228
	page229
	page230
	page231
	page232
	page233
	page234
	page235
	page236
	page237
	page238
	page239
	page240
	page241
	page242

