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ABSTRACT

This thesis deals with a theoretical and experimental study
on the collisional relaxation and transfer of multipole moments
induced by laser light in the excited state of atoms.

There has been increasing interest in collisional mixing
of atoms among Zeeman substates associated with the development
of experimental techniques such as the optical pumping. ﬁE;)
refer to this type of collisions as depolarizing collisions,

because the mixing results in the destruction of the macroscopic

polarization which is created in a Zeeman multiplet, for
e T e

fin§£éﬁce, by polarized light ihC@ optical-pumping experiment.

Early experimental studies of depolarizing collisions have
been made by using a spectral lamp as a light source whose
spectral width is generally broader than that of the atomic

absorptibn spectrum. Recently, the development of tunable

-~
\

lasers has enabled E;/to study on this subject for the excited
state which cannot be excited by using conventional light

sources. Moreover, the experiment using a laser makes a striking
contrast to that using a spectral lamp by the fact that the laser
excites atoms velocity-selectively due to the axial mode struc-
ture, so that the collisiqns of atoms excited by a laser are no
lohger isotropic. Nevertheless, almost all theories heretofore
have assumed isotropic collisions.

The first half of this thesis is devoted to the study of
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the effects of anisotropic collisions on atoms excited by a
single-mode laser light. From the argument of symmetry, it

is found that the most remarkable feature of anisotropic colli-
sions. is the appearance of the transfer between different multi-
bole components within a Zeeman multiplet, which is absent for
the case of isotropic coilisions. Tﬁeorefical calculations of
the transfer rates as well as the relaxation rate of each multi-
pole component- are made for resonant and nonresonant collisions.
Furthermore, for nonresonant collisions, numerical calculations
are made for atoms in the state with J=1. As the result, it
is shown that the effects of anisotropy are unnegligible for

the case of single-mode excitation even when the laser is tuned
around the center of the absorption line. It is suggested
that ?ﬁ?:>alculations are easily applicable to general cases

of excitations with arbitrary spectral profile.

In order to verify the theoretical predictions, we experi-
mentally investigated the magnetic depolarization in the 2p4
state of neon excited by a single-mode dye laser. The effects
of anisotropic collisions with neon atoms in their ground state
are observed as the modification of the width of the Hanle
signal and as the transfer from alignment (electric quadrupole
momemt) to orientation (magnetic dipole moment) and that from
orientation to alignment. Although the theoretical calculations

héggfbeen made for the excited state with J=1,(ye)find rather
a good agreement between the theoretical results and the ex-

perimental ones for the 2p, state (J=2).



In the latter part of this thesis, the effects of isotropic
collisions on the alignment in the excited state of neon are
studied by means of the double resonance in a multi-mode He-Ne
laser operatiné at 632.8 nm, In this experiment, the resonance
signal observed in the laser output can be attributed to the
magnetic resonance of alignment in the 2p4 state. We;have
measured the alignment destroying cross sections for the 2p4
state of neon colliding with the ground-state rare gas atoms:
He3, He4, Ne, Ar, and Kr. These experimental cross sections
are compared with those predicted by the theory in which the
van der Waals interaction is assumed. As the result,(Q%Ffind
the anomalous fact that the cross section for He3 is larger than
that for He4 and both of them are larger than that for neon,
which is inconsistent with the theory. Importance of the short-
range repulsive interaction for collisions with helium is

emphasized, rather than the long-range van der Waals interaction.
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CHAPTER I

GENERAL INTRODUCTION

I.1 Introduction

This thesis is concerned with the collisional relaxation
among Zeeman substates in the excited state of neon. Ever since
the inventions of experimental techniques such as "optical pumping"
or "double resonance", relaxation among Zeeman substates in the
excited states or in the ground states has been one of the most
interesting subjects and has been extensively studied theoretically
and experimentally. Furthermore, recént development of lasers
has made it possible to study more precisely this subject in
the excited states which are not optically connected with the
ground state. In many of these experiments, lasers have been
used as convenient light sources in place of conventional spectral
lamp. Nevertheless, besides some nonlinear effects originating
in the high spectral brightness of lasers, the spectral feature
can produce characteristic phenomena which cannot be found in
experiments with conventional light sources. Since the laser
light has an axial-mode structure, the velocity distribution of
atoms interacting with the laser light becomes anisotropic, so
that the averaged collisional effect on these atoms is anisotropic.

One of the purposes of this thesis is to study theoretically
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and experimentally the effect of anisotropic collisions on the
relaxation among Zeeman substates. Another purpose is to measure
the cross sections for collisions between the excited state neon
atoms and vafious rare-gas atoms. The measurements of cross
sections of free atoms provide some important informations about
interatomic interactions and allow us to check the validity of
the theory of atomic collisions.

As an introduction of this thesis, we first present a brief
survey on the theory of atomic collisions of our interest and,
in particular, on studies about collisional depolarizations in
the excited states. We also present a short review of experimen-
tal and theoretical studies concerning with various types of
anisotropic relaxations. We finally present the outline of the

present work.

I.2 Depolarizing Collisions

Since the earliest treatment by Lorentz in 19061), it has
become possible to investigate collisions between atoms or mole-
cules from a spectroscopical point of view. Lorentz used the
classical oscillator model for the radiating atom which has a
definite collision cross section, and assumed that each collision
changes the phase of the oscillator or interrupts the oscillation.
The Fourier integral of the radiation from this oscillator yields

the spectral profile which is the well-known Lorentzian profile

subjected to the pressure broadening caused by collisions.



Weisskopfz)

extended the classical model of Lorentz by taking
account of the temporal change in the frequency of the radiating
oscillator as the source of the phase shift, and defined the
collision radius as the impact parameter of the collion which
produces the phase shift equal to unity. As the result, the
collision cross section is related to the interaction potential.

The development of the quantum mechanics has allowed more
rigorous treatment of collisioﬁs and radiation. Foley3) developed
the phase shift theory for the two-level system and employed the
quantum.theory of radiation in estimating the spectral intensity.
He showed that there is a shift in line position as well as the
line broadening, both being proportional to the pressure,‘and
that the ratio of the shift to the broadening depends only on
the type of the interatomic interaction, which is in good agree-
ment with experimental data in the optical region.

The theories presented so far have mainly treated the spectra
in the optical region, therefore it has been assumed that no
transition is caused by collisions (the adiabatic approximation).
It is clear that these theories are inapplicable to the spectra
in the infra-red, microwave, and radiofrequency xegions, because
the transitions among corresponding states can be caused by col-
lisions (the energy separations for these spectral regions are
smaller than the thermal energy kT). Collisional perturbation
on a Zeeman multiplet, which we shall deal with in the present
work, corresponds to the problem in this region. Anderson4)

extended the theory applicable to the spectra in the infra-red



and microwave regions by taking account of the multiplet struc-
tures of the states. The inclusion of the multiplet structure
makes the problem much complicated because the interaction
Hamiltonian does not commute with itself at different time.
Anderson proposed two approximate methods, one of which was the
perturbation method with a cutoff procedure for close collisions,
and the other was to ignore the noncommutativity. This theory
has been generalized to the cases of pressure broadening of
complex molecular spectra, in which both of the colliding par-

ticles have multiplet structuress).

In optical-pumping experiments such as the Hanle effect6)’7)

8),9)

and the double resonance collisional relaxation among

Zeeman substates in the excited- or ground-state multiplet becomes

10)

important. By the term "optical pumping” , we mean the cre-
ation of large population imbalance in some multiplet by the
absorption of light with:definite polarization. Thus created
population imbalance is closely related to the macroscopic
polarization ‘in the state, namely the magnetic dipole moment .
so-called "orientation" and the electric gquadrupole moment so-
called "alignment" etc. If the pumping light is suddenly
switched off, the population imbalance relaxes to the thermal

equilibrium in which there is generally no population imbalance

in a weak magnetic field.  This relaxation is caused by inter-

atomic collisions, collisions with the container wallll)’lz),
radiation trappingl3)’142 and spatial diffusionlsz In particular,

this type of interatomic collisions is referred to as "depolar-



izing collisions".

In the earliest work, by extending the theory of Anderson
to the case of depolafizing collisions, Byron and Foleyls)treated
the pressure broadening of optical-rf double-resonance line,
and derived the expression for the cross section for the de-
polarizing collisions. More recently, many authors investigated
the depolarizing collisions by using the density-matrix formalism

17)—24)

on the basis of irreducible representation Omont

calculated cross sections for orientation and alignment of the
excited state with J=1 by using the Anderson's approximationlg).
In spite of the approximation, the results explained well experi-
mental cross sections for collisions between mercury atomszo).
However,in the case of collisions between atoms of different
species (nonresonant collisions) where close collisions become
important, the Anderson's approximation becomes less valid.

In order to study about nonesonant collisions without this

2)

approximation, Berman and Lamb2 made numerical calculations
by taking account of the noncommutativity of the interaction
Hamiltonian, and found good agreements with experimental results
for some of nonresonant collisions as well as for resonant col-
lisions, while it has been pointed out that their theory might
be invalid for the collisions with light atoms such as helium.

In cases of collisions between alkali atoms and rare-gas
atoms, there have been many experimental observations of depolar-

izing cross sections for collisions with helium anomalously

larger than those expected from the theory assuming the van der



25)—322 33)

Waals interaction Oon the other hand, Faroux and Brossel
observed an anomalous temperature dependence of depolarizing
cross section for Hg-He collisions: the experimental cross sec-
tion is nearly independent of the temperature, while the theory
using the van der Waals interaction predicts the dependence T—l/s.
As the result, they showed that the hard-sphere model is better
than the van der Waals interaction for Hg-He collisions.
Recently, similar ahéﬁ;iéiijtemperature dependence of cross

section has been observed for collisions between neon and helium
by Carrington et al.23)’34)'352

Another anomaly in the case of collisions between neon and
helium has been found in the pressure-induced gJ—shift of the

excited-state neon36)'37)'38)

which cannot be explained by the
above theory. The pressure-induced gJ—shift of the 2p4 state
of neon perturbed by collisions with helium has been firstly
observed by Yabuzaki et al. as the pressure shift of magnetic
resonance line in the double resonance of the He-Ne laser36),
while such shift has not been observed in the case of collisions
with neon within the relative experimental error. Recently,
Hermann et a1.37)’38) have observed similar shift of the 2p4

39),40) of the He-

state by measuring the mode-crossing signal
Ne laser in axial magnetic field, while no pressure shift has
been observed in the experiments concerning the 2s, state of 'neon.
Rare—-gas-induced gJ-shifts, which are much smaller than the 95~

shift of neon, have been found in some alkali atoms in their

ground states, and they have been explained by means of semi-



1)

empirical calculations by Herman4 . However, this explanation
cannot be used to explain such a large gJ—shift of neon in the
excited state.

It should be pointed out that the short-range repulsive
interaction becomes important in place of the van der Waals inter-
action in cases of collisions with light atoms -such as helium.

Some aﬁthors have pointed out that the deviation from the straight-
line trajectory caused by the short-range interaction becomes

important for alkali-rare-gas collisions42)'43)'44).

The
origin of the short-range repulsive interaction is -thought to
be the exchange force induced by the overlap of electron clouds

of colliding atoms.

1.3 Anisotropic Relaxation of the Excited State

In almost all théories heretofore, it has been assumed
that all directions of relative trajectories for coliisions are
equally probable, that is, collisions occur isotropically.
As has been discussed by many%authorsl7)'19)’222 this isotropic
situation simplifies the expressions for collisional depolariza-
tions in the Zeeman multiplet such that each multipole components
in the multiplet relaxes independently without coupling with
each other. In optical-pumping experiments, multipole moments
are created by polarized light: the orientation and the alignment

are created by the absorptions of circularly and linearly polar-

ized light, respectively. If collisions are isotropic, the



fluorescence from atoms excited by linearly polarized light has
no circularly polarized component, because there is no transfer
from alignment to orientation . In general optical-pumping
experiments ﬁsing a spectral lamp as a pumping light source,
‘the condition of isotropic collisions is generally satisfied.

On the other hand, in experiments using a laser, this
cohdition of the isotropic collisions is not always 'satisfied.
In order to elucidate the anisotropic situation, let us consider
the simplest case that atoms are excited by a single-mode laser
tuned around the transition frequency v, from the ground state
to an excited state. The velocity distribution of the ground-
state atoms is given by an'isotropic Maxwellian distribution as
is shown by a Gaussian function in Fig. 1.1. When the ground-
state atoms are irradiated by a single-mode laser light with
the frequency v propagated along the z direction, only the atoms
moving with velocities, which compensate the detuning (v-ve) by
the Doppler effect [ v, = c(v-vg)/ve ], are effectively excited.
As the result of the velocity-selective excitation, the velocity
distribution of the excited atoms ;is no longer isotropic as
seen in Fig. 1.1, so that the average effect of collisions with
the ground-state atoms (perturbers), whose vélocity distribution
is isotropic, becomes anisotropic.

The most remarkable feature of anisotropic collisions is
that these collisions cause the transfer between different multi-
pole components, which is absent in the isotropic case.

Especially, the transfer from alignment to orientation should
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Fig. 1.1 The velocity distribution of emitters (c), and
that of perturbers (e). The emitters are excited from
the lower state (d) by a single-mode laser light with a
frequency v (a) detuned from the center frequency vo of

the absorption line (b).



be manifested in the circularly polarized fluorescence from
atoms excited by linearly polarized 1light. Conversely, the
reverse transfer should be manifested in the linearly polarized
fluorescence from atoms excited by circularly polarized light.
In spite of the importance of anisotropic collisions in
experiments using a single-mode laser, there have been a few
number of studies of anisotropic relaxations and none of them
are applicable directly to the case of single-mode excitation.
The earliest experiment on anisotropic collisions is that

made by Nedelec et a1.45).

They attributed the anomalous magne-
tic-resonance signal of mercury vapour to anisotropic collisions
due to the convection of aligned mercury atoms in the cell which
had a temperature gradient. However, Lombardi has pointed out
the invalidity of their explanation of the experimental resuls462-
Rebane has made the theoretical calculations of the effect of
anisotropic collisions for the simple case that the rest atoms

are perturbed by atoms moving along a particular direction, and
has estimated the efficiency of conversion of incident linearly
polarized light to circularly polarized fluorescence472 Recently
Carré et al. have observed the transfer from alignment to orien-
tation in the 41D state of helium, excited by an accelerated Na+
beam, under the influence of anisotropic collisions with the
ground-state helium atoms48)'49)'50).

Recently, some authorsSI)'sz)have investigated the effect of

anisotropic collisions on the correlation between Doppler and

collisional broadening of optical spectral line profile. As is
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well known, the translational motions of radiating atoms produce
frequency shift due to the Doppler effect. As the result, the
over—-all spectral line profile is generally given by a convolution
integral of homogeneously broadened line and the Doppler profile
given by a Gaussian function. In this context, each Doppler-
shifted component of the spectral line is homogeneously broadened
by anisotropic collisions. They have derived the deviation of
the line profile from the well-knowen Voigt profile.

On the other hand, Gough53)has pointed out th&t, in the
experiment of the sensitized fluorescence concerning the coherence

transfer54)’55),

the ‘anisotropy should be taken into account

in averaging over all collisions unless multiple scattering is
negligible. For instance, the case of the Hg-Cd collisions of

the second kind which are exothermic, only the sensitized fluo-
rescence arising from collisions along the direction of observation
is effectively observed, since it undergoes less multiple scatter-
ing because of the high recoil velocity after the collision.

As the result, the observed collisions cannot be treated iso-
tropically.

Now, it may be suggestive to review some studies of depolari-
zations in different types of anisotropic situations other than
the anisotropic collisions. Lombardi has observed the transfer
from alignment to orientation in the excited state of helium
which is initially aligned by rf capacitive discharge46). In

his experiment, the situation has only axial and plane-reflection

symmetries because of the presence of the oscillating rf electric
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field of the capacitive discharge. On the other hand, Gay
has shown theoretically that, when the static magnetic field
applied to atoms is so strong that the Larmor precession cannot
be neglected during-each collisional interaction, the decay
rates of multipole moments become dependent on the strength of
the magnetic field56)_59). This is the result of the axial
symmetry of the system, which appears even when collisions are
isotropié. This axial symmetry gives rise to the transfer
between alignment and population.

Another mechanism of transfer between different components

has been studied by Rebane and Rebane60).

They have shown that,
in the presence of hyperfine structures, the transfer between
orientation and alignment becomes possible under the influence
of a weak magnetic field even when collisions are isotropic.
If atoms are initially aligned, this alignment is transferred
to the alignment of hyperfine coherence by isotropic collisions,
then this alignment of hyperfine coherence is transferred to
the orientation of this coherence by a weak magnetic field, and
this orientation is transferred to the orientation within a
Zeeman multiplet. by isotropic collisions.

Recently, in the field of astrophyéics, a great interest
has been aroused by interstellar maser emissions (see, for instance,
the review articles Refs. 61-63). The most remarkable feature
of hydroxyl maser emissions with the wavelength 18cm from certain

regions of ionized hydrogen ("HII regions") is a great predominance

of circular polarization over linear one. Although many authors
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have already attempted to account for the predominance of circular

polarization by supposing various types of pumping mechanism564)

or by taking account of some nonlinear phenomenass)'es)'67)

68)

or
Zeeman effects . there has been no satisfactory explanation
so far. It has been believed that most of sources of circularly
polarized maser emissions are associated with regions of star
formation. In such regions, the presence of anisotropic radi-
ation, shock-fronts from protostars, and weak magnetic field are
reasonable, so that the maser sources seem to be under consider-
ably anisotropic circumstances. Therefore, it will be rather
rational to consider the intermolecular collisions in such regions
to be anisotropic. We suspect that the above-mentioned trans-
fer from alignment to orientation caused by anisotropic collisions
may give some explanation about the predominance of circular
polarization of interstellar masers.

It may be worthwhile to note that the collisional depolari-
zation is one of the most important processes which determine the
polarization of a gaseous laser with no anisotropic elements

such as Brewster-angled windows. Fork et al.69)

70)

and de Lang
and Bouwhuis have reported stable circularly polarized oscil-
lation of a sing;e—mode He-Ne laser operating at the 252(J=1)—
2p, (J=0) transition in a weak magnetic field. It has been

suggested 71),72)

that this predominance of circular polarization
in a weak magnetic field is related to the fact that depolarizing
collisions are more effective in the decay of orientation than

of alignment. According to this suggestion, Wang et al.73)
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have measured the cross sections for destructions of alignment
and orientation by measuring the critical magnetic field for

the transition from circular polarization to linear one. In
_their analysis, they have assumed isotropic collisions. However,
in such experiments, the anisotropy of collisions seems to become
important because of the single-mode operation of the laser as

is mentioned before. Perhaps, the transfer between alignment
and orientation must more or less play some important role to
determine the polarization property of the laser without aniso-

tropic elements.

1.4 Outline of the Present Work

In this thesis, we study the depolarizations in the excited
state of neon atoms under the influence of collisions with atoms
in their ground state. 1In the first place, particular attention
is paid on the anisotropy of averaged collisional effects on
atoms excited by a single—mode laser (Chapter II and II).
Secondly, we study the effects of anisotropic collisions on the
magnetic-depolarization signals in optical-pumping experiments
using a single-mode laser (Chaptér v). On the other hand,
we study the effects of isotropic collisions on the magnetic-
resonance signals by means of the optical-rf double resonance
in a multi-mode He-Ne laser, and we report the results of the

measurements of alignment destroying cross sections (Chapter v).
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We here describe in more detail on the study discu;sed in each
chapter.

Chapter I is devoted to present some mathematical formalisms
which will be found to be useful in treating optical-pumping
signals and anisotropic collisions in the following chapters.

At first, we review the density matrix formalism and its repre-
sentation on the basis of irreducible tensorial sets. In almost
all cases of usual experimental conditions, the situations are
more or less related with some symmetry, so that it is rational
to simplify the expressions by using the irreducible represen-
tation rather than the conventional magnetic quantum number
representation. Next, we present the equation of motion for

the density matrix on the irreducible basis. This master
equation is the generalization of the well-known Bloch equation
for the spin-1/2 state, and is applicable either to the magnetic
depolarization or to the double resonance for the state with
arbitrary total angular momentum. In addition, the irreducible
representation generally provides by far the simplest and the
most physical expressions for the relaxation terms in this master
equation because of the high symmetry of the relaxation process.
We study various symmetry properties of the relaxation matrix

for multipole moments regardless of particular origins of re-
laxations. Particular attentions are paid on axial and plane-
reflection symmetries, which will be encountered in the following
chapters.

In chapter IO, we investigate theoretically the effects

- 15 =-



of anisotropic collisions on multipole moments in the excited

74). Calculations

are carried out along the line of the work of Berman and Lambzzl

state of atoms excited by a single-mode laser

in whch the electrostatic dipole-dipole interaction is assumed.
In these calculations, their assumption of isotropic collision
is removed. Apart from isotropic collisions, the velocity
distribution of excited atoms along the laser beam is assumed
to be given by a delta function as seen in Fig 1.1, while the
transverse velocity distribution is given by a two-dimensional
Maxwellian. Before considering the single-mode laser excitation,
we first investigate the effects of anisotropic collisions on
atoms moving in a fixed direction, which will be relevant to
the collisions in atomic-beam experiments. In the next place,
after averaging over the velocity distribution of the excited
atoms, we consider the case of single-mode laser excitation.
We calculate the transfer rate between orientation and alignment
as well as the relaxation rates of multipole moments for the
excited state with J=1 perturbed by nonresonant collisions.
These rates are obtained as functions of the detuning of the
laser frequency from the center of the absorption line. The
results can easily be extended to the case of the excitation
by light with arbitrary spectral profile.

In chapter IV, we propose some experimental methods which
allow us to observe the effects of anisotropic collisions74).
By taking account of the anisotropic relaxations discussed in

chapter Il, we analyse the magnetic-depolarization signals for
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each excitation by linearly- or circularly-polarized laser beam.
The experiments are carried out with respect to neon atoms in
the 2p4 state (J=1) excited by a single-mode dye 1aser75).

The effects of anisotropic collisions are manifested in the

change in the width of the Hanle signal when the degree of an-
isotropy is changed by changing the detuning of the laser.
However, the observed change in the width has been so small ,

as has been expected from the theory, that we could not obtain
reliable informations about anisotropic collisions.

On the other hand, the transfer between alignment and ori-
entation is a mbre clear manifestation of anisotropic collisions,
since it is completely absent in the case of isotropic collisions.
We observed the transfer from alignment to orientation in cir-
cularly polarized fluorescence emitted by atoms excited by linear-
ly polarized laser beam. The experimental results are compared
with the theoretical calculations where the existence of two
isotopes in natural neon is taken into account, and a relatively
good agreement is found. We also observed the reverse process,
i.e. the transfer from orientation to alignment, by observing
the linearly polarized fluorescence emitted by atoms excited
by circularly polarized laser beam.

In chapter V, we study the effect of alignment destroying
collisions onthe double-resonance signal observed in the output
of the multi-mode He-Ne laser operating at 632.8 nm. In this
experiment, the observed resonance is due to the magnetic reso-

nance in the 2p4state of neon. In order to investigate the
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collisions of neon atoms with various rare-gas perturbers, we
used a He-Ne laser tube, adulterated with argon or krypton in
some cases. The alignment destroying cross sections of neon
in the 2p4 state for collisions with He3, He4, Ne, Ar, and Kr
were measured from the pressure broadenings of the double-reso-
nance signals76). These experimental results are compared
with the cross sections estimated from the isotropic-collision
theory in which the van der Waals interaction is assumed.
Particular attention is paid on the difference between the meas-
ured cross section for collisions with He3 and that for He4.

A relatively large discrepancy is found beéween the measured
cross sections for collisions with He3 and He4 and the theory
assuming the van der Waals interactions. As a cause of this
discrepancy, we emphasize the importance of the short-range

repulsive interaction rather than the van der Waals interaction

‘for collisions with light perturbers such as helium atoms.
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CHAPTER I

IRREDUCIBLE REPRESENTATION OF DENSITY MATRIX

AND THE MASTER EQUATION

m. 1 Introduction

Symmetry property is of a great importance in atomic and
nuclear physics. In particular, rotational symmetry allows
some convenient frame works for many problems concerning with
the angular momentum. It is worthwhile noting that optical
pumping is a technique to create some anisotropy in the internal
States of atoms by anisotropic irradiation of polarized light.
Although the optical-pumping process is not fully isotropic, there
remain some lower symmetries such as axial symmetry and plane-
reflection symmetry. On the other hand, most of the relax-
ation processes are isotropic or highly symmetric. The main
purpose of the present work is to study the anisotropic relax-
ations which retain axial and plane-reflection symmetries.

Since all physical systems which we are going to deal with
have some rotational symmetry (i.e. axial symmetry), the formal-

ism based on the irreducible tensorial sets77)'78)

allows very
convenient expressions for optical pumping and relaxation.
In this context, the internal states of atoms are expanded in

terms of multipole moments which are irreducible with respect
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to rotation. This multipole representation mékes much simpler
the relation between the atomic internal states and the polari-
zation of light, which is absorbed or emitted, than the magnetic
quantum number répresentation.

In this chapter. we review the density matrix formalism
for the optical pumping and relaxation processes on the basis
of irreducible representation. We at first present the way of
expanding the density matrix of the system in terms of irreduci-
ble components. It should be noted that the irreducible repre-
sentation simplifies the transformation properties of the system
with respect to the rotation of coordinates, compared with the
ordinary representation. We give the master equation for the
density matrix in the irreducible representation for the optical
pumping in the excited state.

The latter half of this chapter is devoted to discuss about
the general properties of the relaxation matrix for the density
matrix, which come from different types of symmetries. It
should be emphasized that the symmetry properties of the relax-
ation matrix hold good, irrespective of the origin of the relax-
ation process. Almost all of the conventional theories have
assumed isotropic relaxations (i.e. spherical symmetry).

However , since we are interested in anisotropic collisionS'for
atoms excited by a single-mode laser, axial and plane-reflection

symmetries become important.



m. 2 Irreducible Representation of the Density Matrix

The density matrix is now a very well-known concept79).
The use of_the density matrix to describe the internal state of
atoms or molecules allows an illuminating way in interpreting
the optical signals from the ensemble of atoms, and almost in-
evitable in the study of relaxation processes.

When one deals with the relaxation of the ensemble of atoms
(a large systemi, not an individual atom, it is convenient to
introduce the density matrix. The use of the density matrix

simplifies the expression for the mean value of some atomic

observable A as
<A>="Tr[ pA ], (2.1)
where the density matrix p is defined by
1 N
p = ﬁz |wi><wilr (2.2)
i=1

where |wi> is the wave function of the i-th atom and N is the
number of atoms in the ensemble.

If one represents the density matrix using the standard
basis of angular momentum |aJM> where J and M are the total
angular momentum and its projection on the quantization axis,

and allabéﬂgé.seUOf the other quantum numbers to specify the

state, this matrix can be written as
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p =7 paJM'a.J.M.|aJM><a'J'M'|, (2.3)
adM
alJlMl
where
PadM,a'3'M' = <aJM|pla'd'M'>. (2.4)

In this representation, the diagonal component p is :the

aJM,adM
probability of finding the atoms in the Zeeman substate specified
by {aJM}. On the other hand, the off—diagonal component means
the quantity so called atomic coherence. In particular,
paJM,aJM'is called Zeeman coherence, and paJM,a'J'M‘ is called
optical coherence between the states {aJM} and {a'J'M'} connected
by an optical transition.

Many physical systems, some of which we shall deal with in
the following chapters, usually have some simple symmetry prop-
erty such as spherical or axial symmetry. Accordingly, the
irreducible tensorial technique provides a very convenient frame-

77) ,78)

work for the present work Although the basis |aJM> is

irreducible with respect to rotation, the dyadic product basis
| 0adM><a'J*M'| seen in Eq.(2.3) becomes reducible, and the
transformation of this dyadic basis under rotation is the same

as that of the product of two angular momentum eigenvectors

[V R
(-l)J M |cdM>|a'T'-M"'>. Using the vector coupling technique

80)

of two angular momenta , we can transform this reducible basis

to irreducible tensorial basis T:(aJ,a'J'):"

[ RV ]
8 (ad,0'3") = T(-1)7 M <g3'M-M' |kg> |adM><a'T'M' |, (2.5)
q -
_22_



where < J J' M M'| k g > is the Clebsch-Gordan coefficienteo)

which is related to the 3-j symbol [ ﬁ g:j;] by the relation

[ J Ik ] _ _(-1JI'Ha

<JJ'MM| k q>. (2.6)
V2k+1

These Tg's form an orthonormal basis system in the sense that

they satisfy the condition

k k' too
Tr| Tq(aJl,a'Ji)qust,B'Ji) ] = Gaﬁda's'lestJiJi

X8, . ,86 (2.7)
k kk qq ’
and the Hermitian conjugate of Tq is

Tg(aJ,a'J')+ = (-l)J_J-'+q TE}G'J',GJ). (2.8)

It should be noted that our definition of Tg is widely used by
many authors but some Russian authors such as D'yakonov and

Perel'17)

use a different definition of Tg which is different
in its normalization.
Using this irreducible basis, we can expand the density

matrix as follows:

p = 2 pk(aJ,a'J')Tg(aJ,a'J'). (2.9)

aatJgr 9
kq
Irreducibility of this representation makes the rotational

transformation of the density matrix in a rather simple form

given by
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-1,k _y ok Kk e 4
[Dpr O Iq é'bqq" pgr (@3,a'3%), (2.10)

where E)gq' is the rotation matrixgo).

The Hermiticity of the density matrix is expressed as

-1 *
pg(aJ,u'J') = (-1)J J +qp]fq(a'J',aJ) . (2.11)

From Egs. (2.3) and (2.9), the relation between PoIM. o' T'M" and
14

pg(aJ,u'J') is

p];(ocJ,a'J') I (-1 Mg M M kap gy gy (2-123)
MM

or

i

RS DR I O RVl kq>p];(ocJ,a'J') .

p YoM
aJM,a'd'M Kq

(2.12b)

For the most part of the present work, the discussion is

confined within a particular Zeeman multiplet, so that we use

pg instead of pg(aJ,aJ) for the sake of simplicity. We note
again that the density matrix fg defined by D'yakonov and Perel’

is related to our pz by the equation

p’; = Y{2KFD) 7 (23+D) f}_‘q . (2.13)

The relations between pg and Py for Zeeman multiplets with
J=1 and J=2§:e{tabu1ated in Table 1.1.

The physical meaning of pg is rather clear than that of
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Table 1.1 The Relations Between pg and Prnm?

We can obtain pg for g<0, using the relation Eq. (2.11).

0 - /173

J=1  py = (P11 * Poo ¥ Poy-y)
o% = V172(pyq = p_y_7) pi = =/172(pyy + Pg_q)
pg = /1/6(py) = 2P0 + P_q_7)
oi = =/172(pyy = Pg_1) pg =Py

] 0 _

=2 P /T7§(922 017+ Pgg t Pogo1 t P_oly)
Po = ~YI/I0(20,, + pyy = 0 33 = 20_,_5)

py = /I710(/§p21 + /§p10 + /§p0_1 + /fp_l_z)

2p

og = /171820, - P11 "2Pgo = Po1-1 * 2P 5 5)
Py = ~VI718(8pyy + Py = Pgoy = YOP_q_5)

pg = YI/T(/20, + V3py_; + /750-2)

pg = VI/1G(p,, - 20y, *+ 20_7.1 T Poplp)

o3 = -/T7T5(/§p21 - /Eplo - /fpo_l + /?p_l_z)
pg = /175(020 = Pg-3)

pg = ~VI72(p, 1 + p;_,)

pg = /I7I6(p22 = 4Py * 6pgg = 4o y_q +P_55)
pi = ~/I7T&(py; = Vo1 + VEpo_y = P_q_,

p2 = VI7TA(/3p, - 2/2py_q + V3p,_,)

Py = ~/1/2(p,_; - P1_o)

03 T Py
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Pum? * The component with k=0 is called "population” since

the sum of populations over the Zeeman substates z P mM is ex-
M

pressed only by pg. The components with k=1 are called "ori-

entation" since they are related to the three standard components
of the expectation value < JF > which is proportional to the
magnetic dipole moment of the state. Thus we obtain the three

components asel)

It

pé /I73EF (234 0< 3 > .

p}I +/3725 3+ (23+1) < J3 > , (2.14)

where J; = Jx x in , and the z direction is taken to the quanti-

zation axis. The components with k=2 are called "alignment"
and their five components are related to the five standard com-
ponents of the electric quadrupole moment. These five components

81)
are expressed as

2 _ Y5/J3(J+1) (2J-1) (2J+1) (2J+3) < 3J§ - J(J+1)>,

o
p2 = ¥/IB/23(3+1) (25-1) (23+1) (23+3)< 3,33 + 333, >
02 = /I5725 3+ D) (23-1) (23+1) (23%3)< 35 > . (2.15)

The component with k>2 are called Zk—pole moment, i.e. "octupole

moment" for k=3, "hexadecapole moment" for k=4, etc.
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As the components pg are related to the projections of ob-
servables on the z axis, they are called "longitudinal compo-

nents". As is seen in Table 1.1, can be expressed with the

k
)
populations of Zeeman sublevels. On the other hand, the com-
ponents pg with g#0 are called "transverse components" and can

be expressed with off-diagonal components of the density matrix

{(Zeeman coherence Pum? where M-M'=q).

.3 Master Equation for the Density Matrix

It is well known that the optical pumping of the state with
J=1/2 of an ensemble of ‘atoms can be characterized by a magneti-
zation (i.e. orientation). The time evolution of the macro-
scopic magnetization can be described by the Bloch equationgz)
which was formulated to describe the motions of nuclear magnetic
moments in the presence of external magnetic fields. In more
general cases ( J>1 ) where the internal state cannot be charac-
terized only by a magnetization, we must introduce multipole
moments that can be expressed in terms of the density matrix.
The time evolution of the density matrix is governed by an

equation of motion:

dp i dp dp
5z = - [ +R_, , p ] + [——] + [——] . (2.16)
dt 57} 0" "r dtj,..; ldt pump

This equation is considered to be a quantum mechanical generali-

zation of the Liouville equation.
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In Eq. (2.16), RO is the Hamiltonian of an isolated atom,
}QF is the Hamiltonian of interaction of atoms with an external
magnetic field H. The explicite form of }{F is given by }fF=
ﬁguBE-ﬁ where g is the g-factor of the Zeeman multiplet and Ug
is the Bohr magneton. For the most part of this work, our dis-
cussions are confined within a particular Zeeman multiplet.
Hence, the term (—i/ﬁ)[}{o, p] on the right-hand side of Eq. (2.16)
can be eliminated by means of the use of the interaction repre- ‘
sentation. In spite of the use of the interaction representation,
as far as this equation is projected onto a single Zeeman multi-
plet, Eq. (2.16) is subjected no change except for the elimination
of the term (—i/ﬁ)[}eo, pl. This is because of the fact that
all Zeeman substates in a multiplet have the same secular fre-
quency <aJM|}Q0|aJM>/ﬁ which is independent of the magnetic
quantum number M. Thus the first term of Eq. (2.15) is reduced
to that of the interaction with the external magnetic field
(—i/ﬁ)[éﬁF, pl. This term can be expressed with the ‘irreducible

representation through Egs. (2.12) :

. k _ . k k
(-i/h) [ Ry, p]q = igug{V/(k-q) (k+q+l)/2 HyPos1™ quoq
k
-V (k+q) (k-g+1) /2 H_lpq_l}, (2.17)

where the standerd components of # are defined as

Hy = -/I7§(HX+iHy), Hy = H, , H_ )= V1/2(H ~iH ). (2.18)
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The second term on the right-hand side of Eq. (2.16) re-
presents the effect of relaxation due to randomly fluctuating
perturbations such as interatomic collisions which are discussed

in chapter M, collisions with walls of the containerll)'lz),

trapping of resonance radiationl3), spontaneous emission, etc.
These effects cannot be expressed by a simple Hamiltonian.

This term is expressed by using the Liouville operator which is

represented by the relaxation matrix T :

[dp ml] z I‘nn' (2.19a)
3 = = 1 p 1 . a
dt rel ngt T’ Tnn

where m, m', n, and n' are the magnetic quantum numbers. The

minus sign in the right-hand side is chosen for the convenience
in order to obtain positive decay rate when T' can be diagonalized.

In the irreducible representation, Egq. (2.19a) becomes

dpk
1 ]
[at_q] == 7 rk}(;, ko (2.19b)
rel k'q' ! d

The symmetry properties will be discussed in the next section.
The last term of Eq. (2.16) describes the optical pumping

by the resonant light field. Optical pumping effects in the

excited state and the ground state have been extensively studied

quantum~mechanically by Barrat and Cohen-Tannoudji83)'84).

When the excited state with J=j is pumped from the ground state

with J=jg by the resonance light, the optical pumping term is

given by



ap__ > >
[ dr:._lm = Fo z <jm|e'dl:|

*
] ' -gu>puu,<jgp'|é «d|3m'>, (2.20)
pump nt :

where & is the polarization vector of the light, d is the elect-
ric dipole operator of the atom, puu. is the ground-state density
matrix, and Fois defined as follows :

Fo= u(w) £ (v)dvdw. (2.21)

0

1 Yeg
wh? (w—weg+ﬁ-3)2 + ng
In Eq. (2.21), w and k are the angular frequency and the wave
vector of the light, u(w) is the energy spectrum of the light,
f(v) is the velocity distribution of the ground-state atoms,
w is the energy seperation of the optical transition in angular

€g
frequency units, and Yeg is the decay rate of the optical co-

herece. If we assume that the ground state is not polarized,
puu' is diagonal so that
dpml - . 5%
— =F,'}) <jm|e-d|j _u><j nle d|im'>. (2.22)
dt 0 g g
pump H

After the transformation to the irreducible representation,

Eg. (2.22) becomes

=F_ , (2.23a)
and

k _ I+ig : s 5127 11k
Fq =(-1) V2k+1 <3| 4 ||Jg>|

oK (2
{ jjjg}FO 9g(®,  (2.230)
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where < j dlljg > is the reduced matrix element of d and the

80)

curly bracket is the 6-j symbol , and ¢g(g) is defined as

1 1k]
r

*
e (e [ _ - (2.24)
qlqz ql qz ql q2 q

where eq is the standard compoment of ¢ defined in the similar
manner as in Eq. (2.18). From the property of the 3-j symbol,
k should have the values, 0, 1, and 2 in order to have non-
vanishing @:. In other words, only population, orientation,
and alignment can be created by a single photon process .

It should be noted that in Eq. (2.20) the Zeeman splittings
of the excited and ground states have been assumed to be much
smaller than the spectral width of the exciting light, and that
Eq. (2.20) has been derived by the perturbation method up to
the second order with respect to the light field, so that the
higher-order effects have been neglected. If we consider the
higher-order effects, the multipole moments with k>2 must be
created in the states with J>2. Recently, the hexadecépole
moment (k=4) in the 2p4state of neon has been observed85), but

we neglect these higher-order effects .

II. 4 Symmetry Properties of Relaxation
Before dealing with the collisional relaxation process in
detail, this section is intended to show a number of general

properties of relaxation matrix which always hold good, irrespec-
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tive of the origin of relaxation. Most of the relaxation pro-
cesses occur in a highly symmetric system: isotropic (spherically
symmetric) or axially symmetric. The formalism based on the
irreducible représentation provides by far the simplest expres-
sions for the relaxation term in Eq. (2.16) because of the sym-
metry properties, and it makes the physical interpretations of

the relaxation matrix clear.

II.4.1 Rotational Transformation of the Relaxation Matrix

Whatever symmetry exists, the Hermiticity of the density

matrix imposes a constraint on the relaxation matrix. I1f we
*
combine Eq. (2.1%9a) and the Hermiticity relation P’ = Pm'm ’
we find
nn'* _ n'n
I (2.25a)

Irreducible equivalent for Eq. (2.25a) can be obtained from Eq.

(2.19b) combined with Eg. (2.11) :

kk'
aq’

kkl*

a-q'
-1 T
(-1 -g-q'

r . (2.25b)

Equation (2.25a) also implies that the population transfer rates
nn

me between Zeeman sublevels are always real. it follows that
kk*'
POO must be real.

In order to find other general properties of the relaxation
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matrix ascribed to rotational symmetries, it is necessary to
obtain the transformation of the relaxation matrix under an ar-
bitrary rotation of the system. The relaxation matrix F;;: are
transformed in a complicated way under the rotation, while the
irreducible representation-yields. more simple relation. 1If the
density matrix is transformed to p by a rotation, it is easily

shown from Eq. (2.10) that Eq. (2.19b) can be transformed as

dpt
_H] - - TRk'=k' 2.26
[dt ol qu- aq'Pq’ (2.26)
where
—k k k
= 2.27
pq g.‘@qq' pqll ( )
and
=kk' k k k' ~tk'
T = 3 ro o, Ve (2.28)
aq’ qpa} 99 qlql£> ;4

The coupling of two rotation matrix can be expanded in the form

86)

of the' Clepsch-Gordan series , thus we obtain
] L}
—=kk' q -ql
Tgq' = . L =1 < kk'qg-q'|Kg-q'><kk'q -q)| Kqyq)>

Kq q;

K k k'
x r . (2.29
i)q-q’ql-qi 4,9 )
This is the transformation of the relaxation matrix under an
arbitrary rotation. If the system has a symmetry under a certain

_ ]
rotation, F:g, must be invariant under this rotation.
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Imr.4.2 Axial Symmetry
We now consider the case that the system has an axial symetry.
In this case, it is convenient to take the quantization axis (the

z axis) in the direction of the axis of symmetry. If the rota-
K
9-q9'q;-9;
in Eq. (2.29) equals to exp{-i(g-g')al. From the invariance

. '
of Fgg. of Eq. (2.29) under an arbitrary rotation about the z axis,

it can be shown that the relaxation matrix must be diagonal with

tion angle about the z axis is o, the rotation matrix {)

respect to q:

kk' kk'
= § T . 2.30
aq’ qq'"qq ( )
This equation, combined with Egs. (2.3) and (2.19), gives the

relation as

kk' m+m' . . .o m' m'-gq

= - - > ' g-m' >T ,
qu Z.(l) <jjmg-m | kg>< jjm' gm' | kg mm-q
(2.31)

where j and m are the total angular momentum and its projection
on the z axis.

As thé relation given by Eq. (2.30) gives only the conser-
vation of g, there generally exists the coupling between the
multipole moments with different values of k. The coupling be-
tween orientation (k=1) and alignment (k=2) will be studied in
more detail for the atoms excited by a single-mode laser, subjected

to anisotropic collisions with the ground-state atoms.
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IT.4.3 Spherical Symmetry

Spherical symmetry is the highest one among all rotational
symmetries, and the system having such symmetry is mentioned to
be isotropic. In fact, this brings about further constraint
on fhe relaxation matrix in addition to that given by Eq. (2.30).
Since ng: in Eq. (2.29) should be invariant under any rotations-
specified by arbitrary Euler angles because of the spherical sym-
metry, the rotation matrix in the right-hand side of Eg. (2.29)
should be independent of the Euler angles. Consequently, only

the terms with K=q-q'=q1—q1=0 contribute to the sum of the right-

hand side of Eq. (2.29). Then we obtain

<kk' _ : =9 ~ _ kk
Iﬁq'"sqwamvl( 1) <kk q ﬂ00><kk%_qﬂ00>¢%gl
9
1 k k
=68_ S 4) 5 T . (2.32)
aq' kk q, 2k+1 9,9,
. . . —=kk kk
From the rotational invariance, qu should be equal to qu .
then it is easily found that
kk' _ kk (2.33)

= §_  ,8..,T ,
Taq aq' "kk'"qq

and that the relaxation matrix Fgg is independent of the value of

q. From Egs. (2.31) and (2.33), we obtain the relation between

kk nn'
qu and me, :

kk m+m' . . s m'm'-q

r = -1 < - kqg> m' g-m'| kg>T

qq = L, 1 jimaem |kg><jjm g-m'[kq>Tp o
(2.34)
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Equation (2.33) shows that each multipole component decays in-
dependently and does not couple with anyioﬁﬂéiﬂédhponéntsl

' - - I
Moreover, all multipole components with the same order k decay

with equal decay rates.

II.4.4 Symmetry with Respect to Plane Reflections

Axial symmetry is often accompanied with the symmetry under
reflections with respect to planes containing the axis of symmetry.
The reflection with respect to a plane is considered as the product
of inversion and the rotation with angle n about the axis perpen-
dicular to the plane. Since pg is invariant under inversion
as is the general case of the angular momentum, the relaxation.
matrix should be invariant under rotations with angle w about
ali axes perpendicular to the axis of symmetry (the z axis).
Then we inﬁroduce the rotation matrix f)gq,(a,n,—a) where a is
an arbitrary azimuthal angle of the axis :0f the rotation. Sub-
stituting this rotation matrix into Eq. (2.28) and using Eqg.(2.30),
the arbitrarity of o yields

kk' k+k'rk k!

r = (-1)

. (2.35)
a9 -9-9

kk

. 1
Equation (2.35) implies that qu =0 for odd k+k'. This relation,

combined with the Hermiticity relation (2.25b), leads to the

relation given by

1 ' t %
pkk' | _p k¥R Kk
aq g9

’

) | (2.36)
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kk

[ ]
From this relation, we find that qu is real for even k+k', and

pure imaginary for odd k+k'. Therefore the diagonal compo-
nents rgg of the relaxation matrix are always real.

II.5 Concluding Remarks
In this chapter, we have introduced the irreducible tensor
by which the density matrix can be expanded. On this irreducible
basis, we derived the master equation for the density matrix
of the atomic internal state excited by polarized 1light.
Furthermore, we have studied on the symmetry properties of
the relaxation matrix, which are applicable
to any types of relaxations irrespective of their origin: inter-
atomic collisions, collisions with the walls of the container,
spontaneous emission, trapping by multiple scattering‘of resonance
radiation, etc. If the situation is isotropic, each multipole
components decays without coupling with each other, and the relax-
ation rates are the same for all components of a multipole mo-
ment. On the other hand, if the situation is anisotropic, the
coupling between different multipole components appears, and the
relaxation rate depends not only on the order k but also on the
component q of the multipole. In the following chapters, par-
ticular attentions may be given to the transfer between orien-

tation and alignment of atoms excited by. a single-mode laser.

[y
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In this case of single-mode laser excitation, the situation is
no more isotropic, but has only axial and plane-reflection sym-

metries.
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CHAPTER IO

DEPOLARIZATION OF THE EXCITED STATE

BY ANISOTROPIC COLLISIONS

.1 Introduction

Collisional relaxation among Zeeman substates of the excited
states has been extensively studied theoretically and experimen-
tally in past two decades. In most of these experiments, the
atoms were excited by the light from a spectral lamp or by colli-
sions with electrons in a weak rf discharge, so that the velocity
distribution of the excited atoms can generally be described
by an isotropic Maxwellian function when self-absorption of the

incident light can be neglected. ‘As a result, the collisions
of the excited atoms (emitter atoms) with the ground-state atoms

(perturber atoms) are considered to be isotropic, i.e., all col-
lision directions are equally probable. It is obvious from the
argument of symmetry given in Sec. I .4.3 that isotropic colli-
sions cause the independent relaxation of each multipole compo-
nent of the excited Zeeman multiplet without coupling with each:.

other such that

dpk .
2 = -r¥ p’; ; (3.1)
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This equation also implies that each relaxation rate Fk is in-
dependent of the value of g which characterizes the component
of each multipole. In recent years, gas lasers have been used
to study the relaxations of orientation and alignment of the

laser levelss7)_93),

and now tunable lasers such as Dye lasers
are considered to be powerful light sources because they remove
the limitations on the levels to be studied.

When atoms are excited by laser light, the velocity distri-
bution of excited atoms along the axis of the laser propagation
is generally different from the Maxwellian distribution whose
width is determined by the gas temperature, because of the axial-
mode structure of the spectrum of the laser light. Therefore,
the averaged collisional effect on the excited atoms is no longer
isotropic

In this chapter, we would like to present the theoretical
treatment of the collisional relaxation of. atoms excited by a
single-mode laser light. Since the spectral width of the éingle—
mode output of a laser is generally much narrower than the Doppler
width of the absorption spectrum, the velocity disfribution of
excited emitters along the light axis generally becomes narrower
than the distribution perpendicular to the light axis which are
given by a two-dimensional Maxwellian function. Consequently,
the collisions with perturber atoms become anisotropic, and the
degree of anisotropy can be changed by changing the detuning of
the laser frequency from the absorption line center. In case

of anisotropic collisions, the relaxation of pg is no longer
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given by Eq. (3.1), and can generally be expressed as

dpk
q .- _ rkk' k! 3.2
dt qu. ag' Pq' ’ (3.2)

which shows that the transfer among multipole components with
different orders becomes possible as has been mentioned in the
previous chapter.

The purpose of the present chapter is to calculate the re-
laxation matrix Fgg: for atoms excited by a single-mode laser.
the calculations are made mainly along the line of the work of

Berman and Lambzz)

, by removing their assumption of isotropic
collisions. Thg next section is devoted to present the assum-
ptions which we have made in the present calculations and to
discuss about their validities. In Sec. II.3, before considering
the average collisional effect, we derive the time-evolution
matrix for the wave function for a single completed collision.

The calculations have not been only for the excited state with

J=1 but also for the excited state with J=2. The latter results
will actually be applied to the alignment destroying cross sec-
tions of neon in the 2p4state perturbed by rare gases, which have
been measured in the present work. We calculate the averaged
relaxation matrix for emitters moving with a definite velocity,
which is obtained by averaging over the perturber velocity distri-
bution. These results may be applicable to the atomic collisions

in atomic beam experiments. Finally, we obtain the relaxation

matrix for emitters with J=1 excited by a single-mode laser,

- 41 -



after averaging over the emitter velocity distribution.

Although we have analyzed the case of the single-mode exci-
tation, the results obtained here are easily applicable to the
more general case that atoms are excited by the light with

arbitrary spectrum.

1.2 Assumptions and Approximations

We intend to obtain the explicit equation of motion for
the density matrix of atoms in an excited state which are per-
turbed by collisions with other atoms. The collisions which
we are interested in are those between an excited atom and another
atom in its ground state, because most of atoms are in their
ground state at any time. The atoms in the excited state are
called "emitters", and the ground-state atoms which pefturbe the
emitters are called "perturbers". The mechanism of atomic col-
lision is too complicated to treat completely, so that a number

of assumptions and approximations must be made.

Iom.2.1 The Impact Approximation

We make use of the "impact approximation", in which colli-
sions with perturbers experienced by a single emitter are assumed
to be well separated to each other. As the result, each colli-
sién is assumed to be independent from the others. This implies

that the collision time Tor which is defined as the average du-

ration of a collisional interaction, is much shorter than the
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the mean time between collisions, so that only the binary col-

lisions are important. Many authors, for example Andérson4),
Omontlg) and Berman and Lambzz), made clear the conditions under
which this impact approximation is valid. In our experiments

discussed in the latter part of the present work, the effective
interatomic distance for a collisional interaction is about
10—7cm, which leads to Tc~10-lzsec for the temperature T~400K.
While, the mean time between collisions which is defied as

PR R
relative velocity, and o is the cross section, is of the order

(n_v o)_l, where np is the perturber density, v_ is the mean

of 10-7sec for the pressure (~1 Torr). This implies that the
validity of the impact approximation is justified for our purpose.
Due to this approximation, the collisional process is determined

by the form of the interaction.

Im.2.2 The Classical-Linear-Path Approximation

The relative motion of the two colliding atoms is assumed
to follow a classical trajectory, while the internal state of atom
is treated quantum-mechanically. This semi-classical treatment
was widely accepted by many authors. It is generally simpler

94),95) in which the

than the fully quantum-mechanical theories
atomic motion is also freated quantum-mechanically. The latter
is nebessary particularly when the close or slow collisions are
important. However, in the present case, collisions occur in

the gas temperature of about 400K at most, so that the semi-
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classical theory seems to be valid. In the semi-classical theory
we can think of the motion of atoms only in terms of packets of
translational wave functions.

In addition to this, we assume that the relative motion of
colliding atoms is not affected by the collisions, namely the
relative trajectory of the perturber with respect to the emitter
is a linear path. This "classical-linear-path approximation™
holds good for collisions with the effective cross section larger
than the kinetic cross section. On the other hand, it is neces-~
sary to consider the modification of the relative trajectory from
the linear path when the repulsive interaction due to the overlap
of electron clouds of two colliding atoms are dominant. The
modifications are very complicated because of the fact that they
are dependent on the internal states of atoms. In fact, the
relative trajectories are modified in different manners for col-
liding atoms in different magnetic -substates because of the
anisotropic nature of the interaction between two colliding atoms.
Here, we use the classical-linear-path approximation for the sake

of simplicity.

or.2.3 The Electrostatic Dipole-Dipole Approximation
The collisional interaction is assumed to be electrostatic
for the low-energy collisions which we are interested in. This
6)

interaction can be expanded by the multipole expression9 .

Since we consider collisions between neutral atoms, the leading
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term, which is the lowest order with respect to the inverse
power of the interatomic separation R, is the electrostatic

dipole-dipole interaction which is given by

V(R(t)) = 5d, 3 - 3<ae.a)<ap.3)}, (3.3)

R(t)
where R(t) is £he interatomic separation at time t, U is the unit
vector along the interatomic axis directed to the perturber, and
Ee and 3p are the electric dipole operators of the emitter and
the perturber, respectively. 'This interaction Hamiltonian is
transforméd under rotation in the same manner as the second-order

irreducible tensor, so that Eq. (3.3) can be expressed in terms

of the spherical harmonics Yé(6,¢), as

1/2

> _ 1 24w q (3.4)

V(R(t)) = ————3[———] z( 1 2 Y (e ¢) .
R(t) >\ 3 e

where 6 and ¢ are the polar angies of ﬁ, and Vé is the second-

order irreducible tensorial product of ae and Ep defined as

2
vo = <11 2 >d_d_ . (3.5)
q qEq a 9l 2 a>4,,a
172
In Eqg. (3.5), deq and dpq are the standard components of Ee and
Ep, respectively. This shows the anisotropy of the interaction
of a single collision, which is the cause of the complicated

relaxations of multipole moments of the excited states. This

approximation becomes invalid for close collisions.
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Collisions between emitters and perturbers are classified
into two types. The first type is the "resonant collision”
which cause the excitation transfer from the emitter to the per-
turber and occurs.only between the same kind of atoms. In this
type of collisions, the dipole-dipole interaction contributes
to the relaxation in the first order. Furthermore, this type
must be considered only when the emitter is in the resonant
state connected to the ground state by the allowed dipole tran-
sition, which collides with the same kind atom in the ground
state. ' The second type is the "nonresonant collision" which is
sometimes called "foreign gas collision", because this type of
collision is important when the emitter and the perturber are
different atoms. However, this type of collision occurs even
for the same kind atoms when the emitter is in the excited state
other than the resonant state. In this type , the lowest-order
contribution of the dipole-dipole interaction is in its second

order, which gives rise to the van der Waals interaction (~R-6)

6 de-

(the induced dipole-induced dipole interaction). The R
pendence of this interaction leads to the relatively short
effective range of interaction that occasionally becomes comparable

to that of repulsive interaction. In such cases, the dipole-

dipole approximation becomes invalid.

Ir.2.4 The Sudden Approximation

Finally, we make use of the "sudden approximation", in
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which the life time for the spontaneous decay is assumed to be
much longer than Tor and the external magnetic field is assumed

to be weak such that the Larmor precession of the excited state

can be neglected during a single collision. The former condition
is satisfied in the case of our interest, because the radiative
lifetime is about 10_8 sec, while 'rc--lo—'12 sec. The latter
condition is equivalent to the assumption that the Zeeman splitting
of the excited state is much smaller than Tc-l, which enables

us to treat a collision as a nonadiabatic process with respect

to collisional transitions among Zeeman substates. Gay et al.
have shown that this assumption becomes invalid in the presence

of a strong magnetic field stronger than several kilogauSSSG)—sg).
In the present experiments discussed in Chap. IV and V, the

external magnetic field (s 0.1 kG) is so weak that the latter

condition is satisfied.

or.3 Collisional Depolarizations of Emitters Moving with
a Definite Velocity

In this section, before investigating the anisotropic colli-
sions between emitters excited by a single-mode laser and pertur-
bers, we consider simpler anisotropic collisions between emitters
moving with a definite velocity and perturbers whose velocity dis-
tribution is given by an isotropic Maxwellian distribution.
The situation has an axial symmetry with respect to the axis along

the direction of the emitter velocity. Such a situation may
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c =1 (M)

J=j(m)

]
o

J=j(m) ¢ J
EMITTER PERTURBER

Fig. 3.1 Schematic diagrams of energy levels of the emitter

and the perturber to be considered.
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be approximately realized in the atomic-beam experiments in which
a well-collimated beam is optically excited to the excited state
and passes through gaseous atoms.

We consider mainly nonresonant collisions. Our procedure
of theoretical calculations follows closely the work of Berman

and Lamb22)

who have treated the isotropic collisions. In our
case, we have to average the collisinal effects over the perturber
velocity distribution, in stead of averaging them over the iso-

tropic relative-velocity distribution of colliding atomic pairs.

ITr.3.1 The effects of a single collision

The model of energy schemes of the emitter and perturber
is shown in Fig. 3.1. | Between the upper and lower states of
the emitter and perturber, the electric dipole transitions are
assumed to be allowed. Consider the case that the emitter is
initially in the excited state a with the total angular ﬁomentum
J=j, while the perturber is in the ground state s' with J=0.-
During a single collision, the emitter and perturber undergo
virtual transitions to intermediate states s with J=j' and c
with J=1, respectively. The intermediate state s of the emitter
is, of course, not necessary to be the ground state. After the
single collision, both of the two atoms return to the initial
states a and s', but the final state of the emitter within the

Zeeman multiplet a may differ from the initial state.
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A part of the wave function of our interest can be exbanded

as follows :

ly(e)> = % am(t)Iajm;s'00>exp(—iEms,t/ﬁ)

A .
+m2ucm.u(t)|53 m';clp>exp ( 1Em,ut/ﬁ)

+ ] dp, (t) [ajmsclu>exp (1B t/h)
my --
+ Y e ,(t)]|sji'm';s'00>exp(-iE_,_,t/h), (3.6)
ot m's
where |aJM;BJ'M'> is the product of the kets for the eigen states
of the emitter |oJM> and the perturber |BJ'M'>, and the total

energy Eyp.. is defined as

1
1

<dJM|}Qe|aJM>1-<BJ'M'|3€plBJ'M'>,

= E + (3.7)

oJM EBJ'M' !

where }{e and Hp are the Hamiltonians of isolated emitter and
perturber, respectively.
The time evolution of this wave function is governed by the

Schr8dinger equation :
. d '
ihgg v (£)> = [ R, + 3, + V(B)] |y (t)>, (3.8)

where V(t) is the interaction Hamiltonian of the colliding atoms
given by Eq. (3.3),

It is obvious from the selection rules of dipole transitions
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that the interaction Hamiltonian V(t) can be represented in a

matrix form :

ajx;s'00 sj'x;cl*x ajx;clx sj'*;s'00

aj*;s'00 [ o Z (t) 0 0 )
sjtezelr | 2oyt 0 0 0

V(t) =
ajxclx 0 0 0 G(t)
sj's;s'00| 0 0 Gy’ o J,

(3.9)
where the asterisks represent sets of magnetic quantum numbers
of the associated states, and hence Z(t) is a (2j+1)x3(2j'+1l) sub-
matrix and G(t) is a 3(2j'+1l)x(2j+1l) submatrix. As we consider

the case that the atomic system is initially in the state

|aj*;s'00>, we are interested only in the submatrices 2 and ZT.

We will consider a collision in the reference frame §ly chosen as
seen in Fig. 3.2, in which the emitter is fixed at the origin

while the perturber moves with relative velocity 3R in the -Xg

direction and with the impact parameter b in the zg direction.

It is the same as Berman's collision frame which is different

from the frame used by Carrington et al.24)

Staceysz). [To transfer from our frame to that of Cooper and

and Cooper and

Stacey, a rotation given by the Euler angles (w,7/2,T) is re-
quired.] If we choose t=0 as the time for the closest approach

of two atoms, we find that

R=D + v.t, (3.10)
and
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Lc

EMITTER

X

Fig. 3.2 Reference frame Q¢ in which the emitter is fixed
at the origin and the perturber moves with relative
velocity %R in the X, direction. The z, axis is chosen

along the direction of the impact parameter b.
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: vRt : b
sinf = -R—-(t—)- ’ cosf = R—(U . (3.11)
where 6 is the polar angle of the vector R.
In the case that j=1 and j'=0, we can represent the inter-
action matrix Z in our reference frame, using Egs. (3.3)—(3.5),

as
<alx;s'00|2|s00;clx>

A -3/2B 3cC

= -——l——§<al"deﬂsO><s'0|dp|cl>[-3/5B 22 3/2B |,

6R(t)
3c 3/2B A

(3.12)
where <aJj|d|B7'> is the reduced matrix element of the electric
dipole operator, the rows and columns are arranged in decreasing
order of magnetic quantum numbers, and

A=2 - 3sin26; B = sinfcosf, C = sinze. (3.13)

In the cases those j=2 and j'=1l, and j=2 and j'=2,

<a2%;s'00]|Z|slx;cls> = -_KE___§<a2udensl><s'ond le1l>B,
60R (t) P
(3.14)
1) — /g 1
<a2x;s'00|2|s2%;clx> = -———<a2||d_||s2><s'0fa [ c1>E,
« 60R(t) € P
(3.15)

where the explicit forms of matrices D and £ are shown in Tables
3.1.

The probability amplitudes an and cm'u in Eq. (3.6) can

. > > .
be considered as the components of column vectors a and ¢, which

are expressed as
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Table 3.1(a) The Matrix Elements <a2m;s'00]| D |slm';clu>

The factors A, B, and C are defined by Egs.(3.13).

_vg_

~ m';u
D
1;1 | 1;0 I 1;-1 I 0;1 | 0;0 I 0;-1 ] -1;1 I -1;0 —I -1;-1
2| 2/3n -6/6B  6/3C 0 0 o 0 0 0
1| -6/3B -2/6a = 6Y3B V6n -6v3B 3v6C 0 0 0
ml| o 3/2¢ -6B v2a -12B -4/2a  -12B V2A -6B 3v/2c
-1 ) 0 0 3/6c 6v3B Yea -6/3B -2/6A 6/3B
-2 0 0 0 0 0 0 6v3c 6/6B 2/3n




Table 3.1(b) The matrix Elements <a2m;s'00| E |s2m';clu>

The factors A, B, and C are defined by Egs.(3.13).

sS

m' sy
21 ] 2:0 | 25-1 [ 11 | 10 [ 11| on [ 0,0 | 0;-1 | -1:1 [ -1;0 [ -1;-1 [ -2,1 | -2:0 ] -2;-1
2| -128 -47/2a 128 -2a  6/2B -6C o 0 0 0 [ o 0 0 0
_1- 6c /2B 2 -6B  =2/2a 68 -/6A &3B -3/6C o [ [ 0 0 0
_o [ [ o iec  6/38 /6A 0 0 o -/6a  6/3B  -3/6C [ 0 0
—-T 0 o 0 (4 [ o 3/6Cc  6/3B /6n [5:) 2/2a -6B ~2n  6/2B -6C
2| 0 [ [:} [ o [+} 0 0 0 6C 6/2B 2a 128 4/2A  -12B




3 ¢ 3
aj (t) cjll(t)

- as_ (t) > C._ (t)

2= |37t , &=L (3.16)
\a_j(t) ) Lc—j.l(t) ’ J

The time evolution of 2 and ¢ are governed by the time-depehdent

Schr®dinger equation in the interaction representation given by

ihd =2(m&, ind =203, | (3.17)
where the matrix Z(t) is given by
Z(t) = exp{i( ¥+ a(p)t/ﬁ}Z(t)exp{—i( ot }Qp)t/ﬁ}. (3.18)
Since the emitter is in the excited state a before the

collision (t=-«), the initial conditions for Eg. (3.17) are given

by

i
(=)
.

C (=) (3.19)

The formal integration of Eg. (3.17) gives the integral equation

for the wave vector a :
-7 ' P B—
a(t) = 3, + (ih) 2jfmdt'2(t')J”fmdt"]z(t")*g(tn)j (3.20)
R ]
Substituting Eg. (3.18) into Eq. (3.20), we obtain
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- L
+(10) 72T atrz(en) [ aemz (et expl-ite (et FE(e") ,
(3.21) .
where Aw is the energy separation between the initial and inter-

mediate states of the emitter-perturber system :

Aw = (Ecs - Eas.)/h. (3.22)
Here we have assumed that the Zeeman splittings are so small that
the Larmor precessions are negligible during the single collision
(the "sudden approximation"). Namely, the differences in the
phase factor exp{-i/( Re+ Rp)t/ﬁ} in Eq.(3.18) for the Zeeman sub-
states are negligibly small, hence Aw has been assumed to be in-
dependent of magnetic quantum numbers.

In the case of nonresonant collision, the energy separation

Aw is always much larger than T;l. In our typical case to be

16 rad/sec while Tc~10—12 sec, then

considered in Chap. V, |Aw|~10
the inequality [Aw|:»T;l is satisfied. Accordingly, both z (e
and 3(t") are slowly varying functions of time, compared with
exp(—iAwt"). Then the integrand in the integral with respect
to t" in Eq.(3.21) contributes only when t"=t'. Hence, the
double integral is reduced to a single integral :

A = 3; - GR%aw) THE atzenzent Fen. (.23
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If we introduce a‘time evolution matrix M defined as.

we can

where

a(t) = M(t)?{0 , M(-») =

rewrite Eq.(3.23) in the

AL = sy (em(e),
¥(t) = 5 — z(0)z(e) .
Hh"Aw

1, (3.24)
form of a differential equation
(3.25)

(3.26)

Using the transformation from t to 6 given by Egs. (3.11), Eq.(3.25)

can be

where

rewritten as

ante) - 1% em(e),
?(9) =—"—b—7“ Y(t),
chos 0

(3.27)

(3.28)

with the initial condition M(8=-1/2)=1. For some typical values

of j and j', the matrix Y(0) is expressed as follows :

(a) j=1, 3'=0 ;

2+43sin26  3/3sinbcos® -3sinZe

2B

Yoy = —g——cos46 3/3sinbcosb 2(4-3sin?6) -3/3sinbcoss |,

b Va

—3sin29

-3/3sinbcosd 2+3sin?e

(3.29)

where the rows and columns are arranged in decreasing order of

magnetic quantum numbers, and
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B = —5—|<allla|s0><s" 0] _flc1>|2. (3.30)
36h°Aw P
(b) j=2, j'=1 ;
. 12B) 4 .
YD(e) = ———cos 6D+D , (3.31)
b v
R
— l [] 2
By = ————[<a2||d ||sl><s'0fd |lc1>|“. (3.32)
7208%Au ) P
(c) j=2, j'=2 ;
12B
7,(0) = —g—gcos4eE-E*, (3.33)
b™v
R
- 1 . 2
By = —5—j<a2|d_||s2><s'0] 4 |c1>]”. (3.34)
7208%A0, € p

The explicit form of the matrices D+D and E+Bl

are shown in
Table 3.2.

Here, we introduce the density matrix of the emitter-per-
turber system. However, as the perturber has been assumed to
be in the nondegenerate ground state before and after the colli-
sion, the densiﬁy matrix of the emitter-perturber system is

deduced to the density matrix of the excited state of emitter,

*
,=a_a The change in the density mat-

which is defined as p ndm* *

mm
rix caused by a single completed collision in the reference frame

Qo is given by
8P (Dr VR, Bo M) =M (t=o) p (==, MM (t=)T]__,=p  (-=h), (3.35)
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Table 3.2
(a) The Matrix Element <a2m;s'00|5-§-Ia2m';s'00>

The factors B and C are defined by Egs.(3.13).

~ ~F . et
> 2 | 1 | o [ 1 T =
2 | 2(2+3C) 6B -/6C 0 0
1 6B 10-3C /6B -3C 0
m 0 -/6C /6B 6(2-C) -/6B -/6C
-1 0 -3C -/6B 10-3cC -6B
-2 0 0 -/6C -6B 2(2+3C)

(b) The Matrix Element <a2m;s'00|ﬁ-§f|a2m';s'00>

The factors B and C are defined by Egs.(3.13).

E‘E+ m'
2 | 1 | o | -1 | -2
2 6(2-C) -6B e 0 0
1 -6B 3(24C) -/6B kle 0
m 0 V6C -/6B 2(2+3C) /6B - vYBC
-1 0 k{e V6B 3(24C) 6B
-2 0 0 Y6C 6B 6(2-C)
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where the density matrix just before the collision is given by
p{-»,h) which depends generally on the past collision history h

experienced by the emitter. We can rewrite Eq. (3.35) as

' .
80pmt (PsVRsR0,sh) = ng'mgg.(b,vR,Qo)pnn,(-m,h), (3.36)
where
v %*
Mome (B VEsR0) = M (=2)M (=) = 6 5, , , (3.37)

and m,m',n, and n' are the magnetic quantum numbers of the excited

state a.

Ir.3.2 Average Collisional Effects on Emitters Moving with a
Definite Velocity

In this subsection, we intend to derive the macroscopic
rate equation for emitters moving with a definite velocity.fixed
in the velocity space, under the influence of collisions with
gaseous perturbers. For this purpose, we must average Eq. (3.36)
over all possible impact parameters, perturber velocities, and
collision histories.

In the proceeding of these calculations, the use of our
reference frame makes the calculations rather complicated, so
that we will introduce a new reference frame Q,' , in which the
perturber moves in the z, direction with the impact parameter

directed in the X direction (see Fig. 3.3). This frame is the
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PERTURBER

7. EMITTER
b

Fig. 3.3 Reference frame §,' in which the perturber moves
along the z, direction with the impact parameter directed

in the X direction.
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PERTURBER

EMITTER , .y
x /
4
-Ye
Fig. 3.4 Relationship between the reference frame Q'

(xc,yc,zc) and the frame (X,Y,2) in which the emitter

velocity 3e is fixed in the 2 direction.
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same as Cooper's (x',v',z') frame52). The transfer from the

referenca'frame 20 to the new reference frame Q' can be made
by a rotation given by the Euler angles Qi=(m,n/2,7m). The
density matrix is transformed by this rotation as

p(20') = D e(20) D~ (3.38)

Then we obtain the change in the density matrix by a single colli-

sion in the new frame Q' :

1 .
§p e (PrVe 20 ,h) =nn'M;;,(b,vR,Qo')phn,(—m,h), (3.39)

where

: . - . .
MO (D, vy, R0 )=m§- Ol Ol @ D2 @) Ol @)
vv!

1
x_Mz:,(b,vR,Qo). (3.40)

Now, we will start from Eq. (3.39), which must be averaged
over the perturber velocity distribution. Here, we assume that
emitters have a definite velocity 38 in a particular direction
while perturbers have an isotropic Maxwellian velocity distri-
bution. We introduce a new frame (X,Y¥,%Z) which moves with the
velocity 3e along the Z direction such that the emitter is fixed
at the origin. The relationship between this frame and the
frame Qo' is shown in Fig.3.4 for a certain direction of the

relative velocity v It may be found that we can transform

R
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(xc,yc,zc) to (X,Y,%) by a rotation given by the Euler angles
Qz=(-g-¢, 9,-%—w), where 8 is the angle between the directions
of ¢e and $R' The distribution of perturber velocity GP is
assumed to be isotropic Maxwellian given by

> 3/2 _ 2
fp(vp) .(ap/ﬂ) exp(-a v_°) (3.41)

pp’ '
where ap=mp/2kT, mp is the mass of the perturber, k is the
Boltzmann constant, and T is the absolute gas temperature.
Since the perturber velocity is given by 3p=3e+3R, the distribution
of the relative velocity $R becomes a shifted Maxwellian, which
can be expressed as

T vy = 3/2_  ._ 2,2
fp(ve+vR) = (ap/n) exp{ cxp(ve +vo +2vechose)}. (3.42)

We consider the average change Gpmm. for all possible ,colli-
sions occurring in a time interval &t which is chosen to be small
enough to contain at most one collision but much larger than~'rc :
®,h) >

h 14
(3.43)

— o 3 nn'
6pm,—<ngliodbfd VRP (b'VR’QZ)_Mmm' (blvRIQZ) Dnn- (-

where

v s % - . .
M;lur;, (bIVRIQZ)=ug' ng(nz) D%lul (22) D%U(QZ)D IJI'\)' (22)
wy!

1)
x M (B v, ), (3.44)

and < *h indicates an average over all possible cillision histories.
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The probability density P(b,vR,Qz) of occurrence of a collision

specified by b, v and Q2 in 8t is given by

RI

P(b,vp,Qz) = npvaf($e+3R)5t, (3.45)
1
where np is the density of perturber. Since P and M;;. are
independent of h, < >h acts only on pnn,(—W,h). If we rewrite

<ppne (-@/h)>, as p .., we can transform Eqg. (3.43) to a differen-

tial form :

2! J FRR, (3.46)
= - i v )p ' .46
dt an’ mm
where the relaxation matrix F ,(v } is given by
P (v )= -n_ ] [Tabfadvbvy £, (Vo) M) .(b vesf')
mm' P, 5’0 R
Hu
vy'

3 % 1 %
x 35920 D37 02 OF, (@200,2,. (@2) .
(3.47)
The product of four rotation matrices can be reduced to a sum
of rotation matrices by using the Clebsch-Gordan series [see,

e.g., Eg.(4.25) in Ref. 86]. Thus we obtain
fﬁ;:(ve)=-2(—l)n'v+m'_“'<jjn-n'|JM><jjv-V'lJN><jjm‘m"J'M'>
x <jju-p'|I'N'><IT*-MM' |KQ><JIT'-NN'|KQ'>
XI dbjd VEigVR f (V +7 KDQQ.(QZ)M .(b Ver®1'),

(3.48)
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where the summation is taken over u, u', v, v', M, M', N, N',
J, J', X, Q, and Q'.

Since our system has an axial symmetry with respect to the
Z axis, it is convenient to represent the density matrix on the
irreducible basis as has been discussed in Chap. I . From the
axial symmetry discussed in Sec. T .4.2, the average collisional

relaxation of the density matrix can be written as

dpk .
B G ~kk k!
IE E'qu(ve)pq . (3.49)

~ v
The relaxation matrix elements Fgg,(ve) with g#q' always vanish.
Substituting Eq. (3.48) into Eq.(2.31l), we obtain

~kk

] - g
qu (ve)=—2(—1)K a+v “<jju—u'lkN><jjv—v'|k'N'>

x <kk'q-q|K0><kk'N-N'|KQ'>

© 3 > .2 K vV
xjodbfd anpvafp(ve+vR)DOQ,(Qz)Moub,vR,Q1').
(3.50)

The averaging over ¥, in Eq.(3.50) is performed by using

R
the transformation

fato, — JTvgavy Tsinodo 2 "a [ ay.

Since the perturber velocity distribution fp(3e+3R) is symmetric
with respect to thr Z axis, fp(¢e+$R) is independent of ¢ and V.
The angular integration over ¢ and ¢y is readily performed by

using the relation
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27 27 _ 2
JiTas dw§)gQ,(nz) = 418481 oPx (cOS®) (3.51)

where Py is the Legendre's polynomial. From now on, we will
- ' ~ ]
I,kk pkk
a4 q

grating over ¢ and Yy, we obtain

denote as for the saké of simplicity. After inte-

~ 1 - - T
K (v ) =- ) (-1)K q+v-i <jjp-p' |k N><Fjv-v'|k'N>
q e
KN
up'
wv' ~ '
X <kk'N—N|K0><kk'q—q|K0>ﬂ1uu,K(ve), (3.52a)
where
~yv' 2 [ © © 5> >
= +
7nuu'K(Ve) 4m np[odbfodevR j051nedebVpr(ve Vg) Py (cos6)

v 1
x Mu:.(b,vR,Qf). (3.52b)

Substituting Eq. (3.42) into Eq.(3.52b), we obtain

~vv' _ 3/2 _ 2
jnuu,K(ve)— 4n(ap/n) exp ( apve )
Xfﬂv 24v_ex (-a_v 2)F (2. v Vv )ﬁvvl(v ), (3.53)
o VR QVRSXP (-0 Ve JEg 1 COVeVR Py VIR T
where
F (x) =-£-fnsin6d6e_xcoseP (cosp)
K 2 0 K
K ¢ (m+K)! 2m+K
m .
= (=2) m_2_0(2m+2K+l)!m! X ’ (3.54)

and
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vv' _ o vy
Mo (vg) = 2wnp]obdvaMuu.(b,vR,Qf) . (3.55)

For nonresonant collisions, from Egs.(3.25)—(3.37), we find
1
that the dependence of M .(E ") :M::.(b,VR,QU) on b and Ve
can be expressed in terms of a parameter E[EB/(bsz)] as

wy' EBRATAVA
M u.(E,QIU =Muu.(b,vR,Qﬂ) . If we replace the integral over b

with that over &, Eq. (3.55) becomes

~vv' _ VT 3/10 vv
with
vv' 27 2/5 3/5_ @ vv! ' -7/5
Moyt FRgBY vy >f°Muu,(€,91) g atg , (3.57)

3/5

where T (x) is the gamma function, and <vp > is the average

value of the 3/5-th power of the perturber velocity defined as
3/10

< 3/5, - [?4ﬂvp2dv f (v)v 3/5 _ jL(ZkT/mp)

r .
< PP P P /T (9{5)

(3.58)
Substituting Eq. (3.56) into Eq. (3.53), we can reduce Eqg. (3.53)

to a simple infinite series :

PURVIVE ® (m+K)'I‘(m+2 5) 2 m+K

' K, vv' 2
971uu'K(Ve)=(-2) Muu'eXP(apVe ) z (2m+2K+le'P(9/5#4ap

(3.59)

have shown that

22)

For resonant collisions, Berman and Lamb
.(n,Ql) _Mvv (b,v,,9:') where nEA/(bzv ) and Azj;]<ajﬂd"sj'>|2
IJU uu' R
From Eq. (3.55), we find that Mu ,(v ) is independent of the

relative velocity Vg ¢
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T, Vv!

AV = -2
Mo (Vp) = npﬂAIOMuu.(n,ni)n dn
= V!
=, . | (3.60)

Then, for resonant collisions, we obtain

K, 3
® (m+KNP(m+§+7)

~Vv! K vv'! ) z
e ) L TZm 2K+ DNmIT (3/2)°

Muprx (Vo) =(-2) M, rexpla Vv

(3.61)

) ~ L}
It is readily verified that Fkk

(ve) satisfies some of the
symmetry properties discussed in Sec. I .4 : Hermiticity of p,
the axial symmetry, and the symmetries under reflections.
Furthermore, as we have used the approximations of the electro-
static interaction and classical-linear-path, and the non-
digenerate ground state of the perturber (one-level perturber),
the system is invariant with time reversal, which yields another

relation between the components of the relaxation matrix. Here,

we summarize these properties as follows :

=Kk _ wkk',_ % o : -
r q (Ve) = I‘_q (ve) (Hermiticity of p), (3.62a)
:-= (—l)k+k|f§gl(ve) (reflection), (3.62Db)
» *
= (-1) k+k I‘k‘;k (ve) (one-level perturber), (3.62c)
~k'k .
=T q (Ve) (from above three relations). (3.624)
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m.3.3 Isotropic Collisions

In this subsection, we consider the special case that emit-
ters are at rest ($e=0). In this case, all collision directioné
of perturbers with respect to the emitters are equally possible.

Thus, the situation is isotropic, so that the relaxation matrix
~kkl
T

q
the diagonal elements with the same k are independent of q, as

(0) is diagonal with respect not only to g but also to k, and

described in Sec. I .4.3.
Substituting ve=0 into Eq. (3.52), we obtain the relaxation

matrix for emitters at rest :

~ ' L) - ]
Fkk (0) = =6,., Z (-l)v u<jju--u'IkN><jjv-\)'|kN>MV\’. '
q kk upt Hu
L
VV'N (3.63)

X
where Mﬁﬁ, is defined by Eq.(3.57) for nonresonant collisions

or by Eq.(3.60) for resonant collisions. For resonant colli-
sions, as one can see in Eq. (3.60), fﬁr(O) is independent of the
mass of perturber. On the other hand, for nonresonant colli-

sions, Tﬁ;(O) depends on the mass of perturber through the factor

<vp3/5> in Eq. (3.57).

It is worthwhile noting that this result can be extended to
the case of general isotropic collisions in which the emitter

velocity distribution is an isotropic Maxwellian. Then, we must

3/5 3/5
R

to replacing mp in Eq.(3.57) with the reduced mass memp/(me+mp)

- ]
where m, is the mass of emitter. In fact, Fﬁr (0) is formally

17)

replace only <vp > in Eq. (3.57) by <v >, This corresponds

the same as those obtained by D'yakonov and Perel' and Berman
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and Lamb22) for general isotropic collisions.

Ir.3.4 Numerical Calculations of the Relaxation Matrix for
Emitters Moving with a Definite Velocity

In the preceding subsections, we have derived the relaxation

~ '
matrix Fi; (ve) for emitters moving with a definite velocity by
averaging the time evolution of the density matrix caused by a

. -~ )
single collision. In order to calculate the dependence of Fﬁ;

(v))

e

on the emitter velocity, we must calculate the behavior of the

1 ]
matrix MKX.(E,Q1')[EM:z,(b,vR,Ql')] which is related to the time

evolution matrix Mmm.(t) after a single collision. The problem
is now reduced to finding the solution of the differential equa-

tion (3.25) at t=w, This cannot be done analytically. Many

16),21) or the asymp-

19),34)

authers used either the scalar approximation
totic approximation accompanied with a cutoff procedure
On the other hand, we make fully numerical calculations for non-
resonant collisions of emitters in the excited state with j=1.
Although Berman and Lambzz) have made the same calculations,
their results are insufficient for the case of anisotropic colli-
sions.

In the first place, we integrate the Eq. (3.27) and obtain
' M:;:(Elﬂo)[EM;;:(b,VR,Qo)] in the reference frame Q¢ by using
Eq. (3.37). We integrate Eqg.(3.27) in three different ways
according to the magnitude of £[=B/b5vR] in order to avoid un-

necessarily long time for machine calculations.
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I) Region I: 0 < £x£0.01

This region corresponds to collisions with very large impact
parameters or with very large velocity. During such collisions,
the collisional change in the wave function is thought to be small
because of the small interaction V and short interaction time.
Using the perturbation method , we have obtained the elements

of the time evolution matrix an(6=n/2) up to the second order

of £ :

117 2 2 315 2~2 _-3 g 2,2 3

(1+i 7rﬂ£ T4E 128/2 3 18n£+64n £

_ _ ! 315 2,2 441 n2E2 315 2

an(e—'ﬂ'/z)— 128/— g l+1T1r£ (i 128/7" €

272 315 2 117
(-ignergnie 1287278 e, 2g2)

(3.64)

II ) Region I : 0.01 < £ < 5.0

In this region, we have carried out the numerical intrgration
of Eg.(3.27) with the Runge-Kutta-Gill's method. As the para-
meter & becomes larger, i.e. the impact parameter b becomes
smaller, the collisional interaction becomes stronger. Con-
sequently, the solutions of Eg. (3.27) becomes rapidly oscillating
as 0 is varied. Then the step size of the numerical integration
must be taken smaller for larger E£. Therefore, we divided this
region into three regions 0.01<£<0.1, 0.1<£<2.0, and 2.0<£<5.0
where the step size of integration over 6 are 0.0l rad, 0.005

rad, and 0.0025 rad, respectively. Substituting an(e=n/2) into
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Mi(E Q)

-05

-1.0 | |
0 1.0 20

Fig. 3.5 - Typical result of numerical calculations of
2
the relaxation matrix element M;;.(E,Qo) for a single

collision in the reference frame Qo.
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Eq.(3.37), we obtain M;;:(E,Qo). A typical example of Mg;:(&,ﬂo)
is shown in Fig.3.5. We can see in Fig.3.5 that the element
M;;:(E,Qof oscillates sinusoidally with an approximately constant
period in the region &>1
II) Region IO : £ 2>25.0
This region corresponds to very close collisions or very

slow collisions. In fact, the parameter £=5.0 corresponds to
the impact parameter of about 0.6 of the Weisskopf radiuszz).
In this region, as the time evolution matrix an(e) oscillates
drastically with 8, we must diminish the step size of the numerical
integration in proportional to E—l. For larger value of &,
-the smallness of the step size desperately lengthens the machine
calculatiqn time. Setting this difficulty aside, as the electro-
static dipole-dipole approximation becomes less valid for such
close collisions, it is meaningiess to proceed with exact numeri-
cal calculations in this region. Then, we adopted the same
procedure as that used by Berman and Lambzz).

As seen in Fig.3.5, the element Mii(&,ﬂo) oscillates sinusoidal-
ly with an approximately constant period of about 0.45 in £,
and so do the other elements M;;:(E,Qo) with the same period.
The average value of the elements Mgg:(g,ﬂo)over a period was
estimated bylmeans of machine calculations for two regions £=
(4.00,4.45] and £=[9.00,9.45]. The average values obtained are
tabulated in the first two columns in Table 3.3. We used the step
size of integrétion 0.0025 rad for the region [4.00,4.45] énd

0.001 for [9.00,9.45]. Other elements required for our problem
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1]
Table 3.3 Average Values of M;;.(E,Qo) for Periods £=[4.00,4.45]

and £=[9.00,9.45] in the Reference Frame Qo and Its Asymptotic

Form for the Region IO

£=[4.00,4.45] £=[9.00,9.45] ASYMPTOTIC FORM
Mi;(i,ﬂo) -0.480 -0.491 -0.500
Re[Mi}}(E,QO)] 0.106 0.0879 0.123exp (-0.0377£)
Im[Mi]}(E,Qo)] 0.0759 0.0563 0.0978exp (-0.0600&)
Re[Mig(«E,Qo)] -1.46 -1.50 -1.50
Im[Mig(E,Qo)] 0.270 -0.207 -0.338exp (-0.05308)
Mig(E,QO) 0.212 0.176 0.245exp (-0.0357£)
M}}}}(E,Qo) 0.268 . 0.315 0.5[1~0.560exp (-0.0462E) ]
Re[Ma}g(E,Qo)] -0.194 -0.251 -0.5[{1-0.728exp (-0.0414£) ]
Im[M}}g(E.Qo)] 0.0471 0.0350 0.0605exp (-0.0592E)
Mgg(E,Qo) -0.425 -0.352 -0.490exp (-0.0357E)
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can be obtained from the elements in Table 3.3 by using following
relations, which can be derived from the unhitarity of an(9=ﬂ/2)

and from the properties of Eq.(3.27) :

MER (g, Q0) = MED(E,R0)" (3.65a)
= (- (2 q,) (3.65b)

O D Vi (1 19 (3.65¢)

= (-1)™"™ (£,9,) (3.654d)

= (1™ (g, 0,). (3.65e)

Taking account of the adiabatic nature of collisions within Zeeman
multiplet for very close collisions due to the large separation

of the energy levels of the instantaneous eigenfunctions, Berman
and Lamb showed that, .when the parameter £ becomes large, the
average values of ME;:(E,QO) asymptotically approach some final

values given by

o]
=)
St

|
=
1
-

2
=)
N

|

10
= 0.5, MlO(m’Q°) = -1.5

1-1 1-1 0
e 20)= 0.5, M (=,20)= M09 (=, 20)= MO0 (=, 00)= 0.

(3.66)

From these final values and the average values in the two regions
tabulated in Table 3.3, we can obtain the asymptotic behaviors

of the average values in exponential forms by using the least-
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)
Table 3.4 Averaged Relaxation Matrix Elements Mg;. for Three
L
Regions of Integrations and the Total Values of M;;. Defined

by Egq.(3.57) in the Reference Frame Iy in Units of

(21/5)n_B2/ 3¢y 375,
p p
£=10,0.01] £E=[0.01,0.50] £=[0.50,%) £=10,=)
UNCORRECTED CORRECTED
Mii -0.001 -1.603 -0.657 -2.261 -2.261
Re(Mijf) 0.000 0.496 0.107 0.603 0.555
Im(Mi?ﬁ) 0.124  1.045 0.125 1.204 1.294
Re(Mig) -0.022 -6.506 -1.970 -8.499 -8.499
Im(Mig) -1.115 -5.551 -0.379 -7.046 -7.046
Mgg 0.000 0.992 0.118 1.110 1.109
M}}}} 0.001 0.612 0.539 1.152 1.152
Re(Ma}g) -0.005 -0.822 -0.324 -1.152 -1.152
Im(M}}g) -0.124 -0.160 0.076 -0.218 -0.218
Mgg 0.000 -1.984 -0.237 -2.221 -2.221




squares method. This asymptotic forms are tabulated in the last

column of Table 3.3.

'
uu'
in Eq.(3.59), we must carry out the integration over £ in Eqg.

In the next step, in order to estimate the values of M

(3.57). In the region I, the integration over £ was analitically
performed by using the perturbation sélution Eq. (3.64). In the

region I , we numerically integrated the obtained values of

' -
M;;.(E,Qo) multiplied by & 7/5. In this process, we used the
Simpson's one-third rule. In the region II, we adopted the

exponential asymptotic forms given in Table 3.3 in place of

]
M;;.(E,Qo). One may easily find that the integrations.of the

asymptotic forms multiplied by 5-7/5

incomplete gamma functionsgs). The estimations of the incomplete

can be expressed by the

gamma functions were done by machine calculations. The results
obtained for these three regions are shown in the first three

L
columns of Table 3.4 with Mg;. defined by Eq.(3.57) in the

1
fourth column. The matrix elements M;;, should satisfy the
0

conditions for the conservation of the total population (« Po )
within the Zeeman multiplet :
00 _ 1,00 _ 1-1, _ .11 -1-1
M11 = —5Myy = 2Re(M1].) = (Mll + Mll ). (3.67)

The obtained results satisfy approximately this condition, but
there exists a small amount of error although it is less than
10s%. This error seems to come from the procedure used in the

region IO. Then we corrected some of the elements in order that
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Table 3.5(a) Averaged Relaxation Matrix Elements in the Q'

Frame for Nonresonant Collisions in Units of (2ﬂ/5)an2/5x

<v 3/5> Together with the Values Calculated by Chamoun et al.
00 11 11 10 10 11
Moo Moo M1 Re(Myg) Im(Myg) M35
Present
-2.21 1.11 -5.38 -5.38 2.21 4.27
work
Chamoun . -2.11 1.05  -4.93 -4.51 1.58 3.36
et al.?

a) Ref. 50.

Table 3.5(b) Averaged Relaxation Matrix Elements in the Q'

Frame for Nonresonant Collisions in Units of (2n/5)an2/5x

<v 3/5> Together with the Values Calculated Previously
%11 511 512 ~22 %22 %22
To ] ™ R ) I’y
Present .4 g5 4.27 -i2.12 3.33 6.49 5.38
work
Chamoun .
2y 880 3.61 -i1.58 3.16 5.42 5.42
et al.
LombardiP’ -i3.05  2.66 . 5.33 4.36

a) Ref. 50.

b) Ref. 97.
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they satisfy the condition by using Egs. (3.67). These corrected
values are tabulated in the last column of Table 3.4.

So far, the calculations have been carried out in the refer-
ence frame Qg. As described before, this reference frame is not
convenient to our problem, so that we have to transfer from the
refere?ce frame Qy to Qo' . The matrix elements Msg: in the

frame can be obtained by using the relation given by Eg.(3.40),

50)

and are tabulated in Table 3.5(a). Chamoun et al calculated

the relaxation matrix in irreducible basis for the case that
emitters at rest are undergoing collisions with perturbers moving

with adefinite velocity. Consequently, their relaxation matrix

]
Pﬁ? (given in Table I of Ref. 50) should essentially gives the

] 1)
values of M;;. by changing the basis. The values Pﬁf defined

1 .
by Chamoun et al. are related with our M;;, according to following

relation :

?kk' _ Pkk'

3.
q fpVpt g’ (3-68)

skk!
here T
wher q

1 |
M;;-- The_tabqlated Pﬁ?

is the irreducible relaxation matrix derived from our

in Ref. 50 is given in units of 21Tb02

where bo is the impact parameter defined by99)

b - | 778 |12 (3.69
0~ 4v§5AE ' : -69)
and B8' is given by Carrington and Corney34):
(-1)%3p %o,
B' = ’ (3.69)

Y3 (23-1) (23+1) (3+1) (23+3)
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and op is the polarizability of the perturber and pg is the dipole

moment of the emitter. The relation between the parameter B and
the impact parameter,bois easily obtainedzz)’34). Especially
for the case of j=1, we obtain
1/5 _
b2 = 6.80f 56 v 2/5B2/5. (3.70)
0 2.48 1572 P

1] ]
Thus we can compare their Pﬁ? with our Mnn' by changing the

basis. The values calculated from their Pﬁr'

are also tabulated
in Table 3.5(a).
Lombardi also made similar calculations. We éan compare their
results with ours by integrating the curves in the figure of
Ref. 99. Since they have not shown the decay rates of orien-
tation, we cannot compare in magnetic quantumnumber representation.
Then, we compare their results with ours and those of Chamoun
et al. in the irreducible representation [see Table 3.5(b)].
Substituting these values of M;;: in the Q¢ frame, which are
shown in Table 3.5(a), into Eqs.(3.52) and (3.59), we obtain the

1
kk as functions of emitter velocity

relaxation matrix elements T
whose direction is fixed in the Z direction. The results of
these calculations are shown in Fig. 3.6. - All other nonvanishing
elements are related to tabulated elements by Eg.(3.62). As

mentioned in Sec. I .4.4, all diagonal elements fkk

are real,
while nondiagonal elements which cause the coupling between ori-
entation and alignment are pure imaginary. It should be noted

that, when emitters are at rest (ve=0), the situation is isotropic,
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Fig. 3.6 Relaxation matrix elements for emitters moving
with a definite velocity along the 2 axis as functions

of the emitter velocity normalized by (2kT/mp)l/2.
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so that the nondiagonal element f%}(O) becomes zero, the values
of all diagonal elements with the same k become. equal, which
give the collisional decay rates of alignment or orientation for
isotropic collisions. From Fig. 3.6, we can obtain the ratio
of the decay rate of orientation to that of alignment for iso-

tropic collisions as

110y /F22(0) = 1.12, (3.71)
q q '
which agrees with the theory of Berman and Lambzz).

When we increase the emitter velocity from zero, the situa-
tion becomes anisotropic. Then, the coupling between alignment
and orientation becomes nonzero and increases with the increase
of emitter velocity. The emitter velocity in the abscissa of
Fig. 3.6 is expressed in units of the most probable velocity
(2kT/mp)l/2 of "perturber". Then we find that the effects of
anisotropy are more significant for collisions with heavier per-
turbers as one might expect.

The second feature of anisotropic collisions is the splittings

of the diagonal elements fkk

(ve) (the collisional decay rates of
multipole components) with different |q]. The splittings become
larger when the emitter velocity is increased, but they are not

' so serious for the relaxations of alignment than for those of
orientation. On the other hand, we can also find in Fig. 3.6

that each diagonal element becomes larger with the increase of

the emitter velocity. This feature must be mainly due rather
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to the increase of the mean relative velocity than to the aniso-

tropy of collisions.

Ir.4 Collisional Depolarizations of Emitters Excited by a
Single-Mode Laser

In the preceding section, we have considered the simple
case that the emitters with a definite velocity undergo colli-
sions with perturbers with an isotropic velocity distribution.
However, in general situations, emitters have some velocity distri-
bution. Then, the relaxation matrix given by Eq. (3.52a) must
be averaged over the velocity distribution of the excited emitters
with respect not only to the velocity Ve but also to its direction.
In this section, we consider the case that the emitters excited
by a single-mode laser collide with perturbers which have an iso-
tropic velocity distribution. In this case, the emitter velo-
city distribution has an axial symmetry and symmetries under

plane reflections.

m.4.1 Averaging over the Velocity Distribution of Emitters
We consider a single-mode laser beam with angular frequency
wp propagated along the z direction in the laboratory frame
(x,v,2). We will assume that the emitter atoms , which are in
the ground state before excitation, have an isotropic velocity
distribution given by a Maxwellian function. If the frequency

Wy, is close to the resonant frequency of the transition of the
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excitation, this laser beam excites only the emitters with
velocities whose projections Veg OP the z axis are nearly equal
to v0[=c{(wL/w0)-l}]. Therefore, we shall consider only the
case that the distribution function of Vey is much narrower than
that of the transverse component which is given by a Maxwellian,
and hence it can be regarded approximately as a delta function.
In this case, the velocity distribution function of the excited

emitters can be expressed as
£(V.) = —Egex {-a_(v_2-v 2)38(v__~vp) (3.72)
e'e m p e'’e 0 ez 0" :

where ae=me/2kT, m, is the mass of the emitter, and the factor
(ae/ﬂ)exp(aevoz) is the normalization constant.

The relaxation matrix for emitters whose velocity is in the
direction with polar angles (0,%) can be obtained by using the
rotational transformation given by Eq. (2.28) from the relaxation
matrix for emitters moving in the Z direction with the same
velocity. The transformation from the (X,Y,%Z) frame to the
(x,y,2z) frame is performed through a rotation with the Euler
angles Q3=(0,9%,0) as shown in Fig. 3.7. After performing this
transformation and averaging it over the emitter velocity distri-
bution given by Eq.(3.72), we obtain the averaged relaxation
matrix ng:(vo) for emitters whose velocity projected on the 2z

axis is vg:
kk* 3 > k =kk' k'*
T = d v _f£ §13)T Q3). (3.73
aq’ Vo) (lej Vofe (Vo) Daq, (91T g (Vo) D grg,(Bs) - (3.73)
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Fig. 3.7 Considered velocity distribution of emitters
excited by a single-mode laser beam propagated along the
z axis (shaded portion). The velocity distribution

perpendicular to the z axis is given by a Maxwellian.



]
From axial symmetry of the system, we find that Fgg,(vo) vanishes

when g#q' as described before. Then, by expanding the product
of two elements of the rotation matrix by the Clebsch-Gordan

series, we obtain

] q-gq
Fkk (v,) = Z (-1) - l<kk'q-q]L0><kk'q -4, |LO>
q 0 179
Lay
3 - ~kk'
x fa vefe(ve)PL(cosO)F(Il(ve), (3.74)
kk' _kk’ -AL .
where T'_ (vo)_rqq (vy) and pL(coso)[_ﬁ)oo(o,e,O)] is the

Legendre's polynomial. Substituting T(ve) given by Eqg. (3.52a)
into Eq. (3.74), and using the orthogonality relation of the

Clebsch-Gordan coefficients, we obtain

1 - -1
P vy = —LED I e g ks <3 3v-vt KON
!
x <kk'q—q|K0><kk'N—N|K0>xnuu,K(v0), (3.75a)
where
\)\). _ 3 > N'vvl
My rk Vo) = fa Vefe (Vo) Py (COsOI I iy (V) (3.75b)

—~— 1
and ZHXEWJVe) is given by Eq. (3.59) for nonresonant collisions

and by Eq.(3.61) for resonant collisions.

In order to perform the averaging over $e in Eq.(3.75b),

we introduce a function GmK(VO) defined as

2 K
-0V m+=
- Ke.3 > pe 2 2
G x (Vo) E(-2) fa vefe(ve)PK(cosG)e (4apve ) .
(3.76)
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Using this function, we can obtain an infinite series expression
of Eq.(3.75b).

For nonresonant collisions,

, ©  (m+K)! F(mF5+ )

AV VUV
77I’uu'K(VO)_Muu'mZO(2m+2K+1)|m_qu/s) mK(VO)' (3.77)

]
where Mz:, is given by Eq.(3.57).

For resonant collisions,

K,3
v (m+K)!F(m+§+§)

7nuu K(VO)-Muu Zo(zm+2x+1)1m1r(3/2) Cmx

(VO), (3.78)

L}
where Mﬁﬁ. is given by Eq. (3.60).
In order to obtain the explicit form of GmK(vo), we sub-
stitute the emitter velocity distribution given by Eq.(3.72) into

Eq. (3.76). After integrating Eqg. (3.76) over the angle ¢, we

obtain
K+ 2 m*%
Gk (Vo) == (-2) 1 cexp (o vy )f Vg 2av f“51nOdO(4a v.©)
- (o ta )Ve2
x e P P, (c0s0) § (v cos0-v) . (3.79)

Performing the integration over the angle & in Eq.(3.79), we have

K
mt>
(V )==(~- 2) a (4a )

2

-(a_+a_)v
e p'e
PK(vo/ve). (3.80)

% f:dVeVe2m+K+le
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It is convenient to expand the Legendre's polynomial on the right-
hand side of Eq.(3.80) as

[K/2] Y -
PK(VO/Ve) - (2K=2r-1)!! (VO/Ve)K 2r. (3.81)

r=0 (-2)Fr! (K-2r)

where [K/2] is the largest integer that does not exceed K/2.
Using Eq. (3.81) and the incomplete gamma functionga) defined

as P(n,x)E‘f:tn_le-tdt, we obtain

K/2 )
G (Vo) = (—4)K(1—x)[T§§] z2e% (ax)™

[R/2] (pg-2r-1)11 [ 1-x

x 1 7T (R=2T) ~2¢?

r r?
] F(m+r+l,i:§), (3.82)
r=0

where xEmp/(me+mp), and ¢z is given by C=/E;V0 which is the pro-
jection of the velocity of the excited emitters onto the direction
of the incident laser beam, hence { is proportional to the de-
tuning of the laser frequency from the center Qf the absorption
line.

Because the whole system has the same symmetry as iﬁ the
case described in the previous section, the relations (3.62)
kk' .

(v,).

are still valid for Fq 0

Ir.4.2 Numerical Calculations of the Relaxation Matrix for
Emitters Excited by a Single-Mode Laser

Numerical calculations were carried out for nonresonant col-
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lisions of the emitters (j=1) excited by a single-mode laser
with perturbers in the ground state. We can calculate the re-

] ]
laxation matrix Fﬁf by substituting the matrix elements M:E'
' .
into Eq. (3.78) [M::. in the Qo' frame are shown in Table 3.5(a)].
The dependence of Fﬁ?

emitter velocity and on the normalized perturber mass x appears

(vo) on the axial component Vo of the

mK(VO)' Therefore, ﬁe must calculate the

infinite series on the right-hand side of Eq. (3.77) for given

through the function G

values of 7 and x. This infinite series is convergent if

0 £ x<1. As a matter of course, this condition is always
satisfied for ahy combination of emitter and perturber. This
conQergence is good except for the case that the mass of per-
turber is much larger than that of emitter (x ~ 1).

At first, in order to clarify the dependence of the relax-
ation matrix on the mass ratio x, we show in Fig.3.8 the typical
result calculated fdf the case that the emitters are excited by
a single-mode laser tuned to the line center, and hence only
the emitters whose axial components of velocities are equal to
zero are excited (v0=0). In Fig.3.8, so0lid curves represent the

k

1]
elements Fi{ (0), while two dotted curves represent the relaxation

rates of orientation and alignment for emitters having an iso-
tropic Maxwellian distribution. It should be noted that the

relaxation rates in Fig.3.8 are not shown in units of (2n/5)npx

2/5<V 3/5 2/5<V 3/5
R P

of isotropic collisions. As seen in Fig.3.8, the relaxation

rates Fﬁ;(O) are always smaller than those for the isotropic case.

B

> but' in units of (2ﬂ/5)an > even for the case
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Fig. 3.8 Relaxation matrix elements for emitters excited
by a single-mode laser tuned to the center of the absorp-

tion line, as functions of x = mp/(m +m

b e). Two dotted

curves show the case that emitters have an isotropic

Maxwellian distribution.
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This is not surprising because the average relative velocity
of emitters excited by a zero-detuning laser is always smaller
than that of isotropically excited emitters. If the mass of the
emitter is much larger than that of perturber, the system is
nearly isotropic.

In the next place, we shall consider the case that the laser
frequency is detuned from the line center. Figures 3.9 show
the elements of the relaxation matrix as functions of the axial
velocity component of the emitters which is proportional to the
detuning of the single-mode laser frequency from the line center.
The relaxation rates of‘orientation and alignment for isotropic
collisions are also shown by two dotted lines. Figure 3.9(a)
shows the case that me:mp=4:l, which corresponds to collisions
between neon ‘and helium atoms. In this case, the isotropic
velocity distribution of perturbers (helium atoms) is consider-
ably wider than that of emitters (neon atoms), so that the effect
of the detuning on the relaxation matrix is not so remarkable.
Figure 3.9(b) shows the case of nonresonant collisions between
atoms of the same Specieé (me=mp). Figure 3.9(c) shows the
case that me:mp=3:l7, which corresponds to the case of sodium
atoms (emitters) perturbed by xenon atoms (perturbers). In
this case, the velocity distribution of emitters spreads much
wider than the isotropic velocity distribution of perturbers,
so that the effect of the detuning is remarkable.

It is worthwhile noting that the transfer rates between

alignment and orientation, which are pure imaginary, change
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Fig. 3.9(a) Relaxation matrix elements for emitters
excited by a single-mode laser as functions of the nor-
malized axial emitter velocity, for x = 0.167, which

corresponds to the case of neon atoms perturbed by

helium atoms.
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Fig. 3.9(b) As for Fig. 3.9(a), but for x = 0.5, which

corresponds to the case of nonresonant collisions between

the same species.
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Fig. 3.9(c) As for Fig. 3.9(a), but for x = 0.85, which

corresponds to the case of sodium atoms perturbed by

Xenon atoms.

- 96 -



their signs when the detuning is increased through the frequency
at which the corresponding axial emitter velocity is equal to
60~70% of (2kT/me)l/2 (the most probable velocity of emitters
with an isotropic velocity distribution). Furthermore, at about

ﬁ?(vo) are equal to those

this detuning, the diagonal elements T
for isotropic collisions which are shown by two dotted lines
(the‘upper~is for orientation, the lower is for alignment).
When the matrix elements shown in Figs.3.9 are averaged with
respect to Vo over the one-dimensional Maxwellian function given
by (me/2nkT)l/zexp(—mevoz/ZkT), the diagonal elements Fﬁr(vo) are
reduced to the relaxation rates of the 2k-pole momemt for iso-
tropic collisions and the off-diagonal elements are reduced to
zero, as one might expect.

Although our calculations have been carried out for the case
that the emitters are excited by a single-mode laser beam, our
results are applicable for the emitters excited by a light beam

with an arbitrary spectral profile. In this case, the distri-

bution of Veay is no longer given by a delta function. Therefore,

kk
q
obtained in this section over the velocity distribution of v

1]
the relaxation matrix should be obtained by averaging T (vo)

ez
as follows :
kk' _ (w kk'
Iy = f_cof(vez)I‘q (v lav,, . (3.83)

where f(vez) is the distribution function of Vez® Especially

when the emitters are excited by a multi-mode laser, the integral
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L
in Eqg.(3.83) is reduced to a simple summation of Fﬁ; (vez)

weighted by the intensity of each mode.

ITr.5 Discussion and Conclusions

In this chapter, we havé investigated the collisional re-
laxation among Zeeman substates by nonresonant collisions where
the velocity distribution of emitters is anisotropic, especially
in the case that the emitters are excited by a single-mode laser
beam. The relaxation matrix elements for emitters excited by
a single-mode laser have been obtained by averaging the relaxation
matrix for emitters moving with a definite velocity over the
emitter velocity distribution whose projection onto the direction
of the laser propagation has been assumed to be a delta function.

The most remarkable feature of anisotropic collisions is the
appearance of the transfer between multipole components with
different k. The transfer rates becomes larger with an increase
in the ratio of the mass of perturber to that of emitter. Even
when the single-mode laser is tuned to the line center, the trans-
fer between alignment and orientation is sufficiently large to
be observed experimentally. For example, the ratio of the trans-
fer rate to the collisional broadening is about 6% when the mass

of emitter is equal to that of perturber [i.e. xEmp/(m +me)=0.5].

P
When the emitters are sodium atoms and the perturbers are xenon
atoms (x ~ 0.85), this ratio amounts to about 12%, as seen in

Fig.3.8.
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Another feature of anisotropic collisions is the fact that
the decay rate of a multipole moment is also dependent on |q.
Furthermore, in the case of single-mode laser excitation, the
decay rates increase as the detuning is increased. Therefore,
the decay rates obtained in the experiments with a single-mode
laser are not the same as those for isotropic collisions. Even
when the laser is tuned to the line center, the observed deﬁay
rates should be smaller than those for isotropic collisions.

As one dutunes the laser frequency from the absorption line center,
the decay rates ‘increase and finally become greater than the

values for isotropic collisions. Consequently it must be empha-
sized that one cannot in principle calculate the cross sections

for destructions of multipole moments by comparing the experimental
results with the isotropic collision theory. The error in the
calculation of cross sections is, however, small when the per-
turber is not heavier than the emitter, and when the laser is

tuned around the absorption line center.

In the optical-rf double-resonance experiments, the shift
of the magnetic resonance line becomes important as well as its

broadening. It has been shown by Happer 100)

that a weak iso-
tropic fluctuating perturbation in a strong magnetic field such

that the Larmor precession cannot be neglected compared with the
correlation time of the perturbation induces anisotropic relaxations
of multipole moments and causes energy shifts of Zeeman substates

as if a fictitious magnetic field is present. Namely, the energy

level with the magnetic quantum number m and that with -m are
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shifted by the samé amount but to opposite directions, so that
the magnetic resonance line is shifted as a whole. Recently,
Gay58),59) has shown that, even if the velocity distribution is
isotropic, similar shifts are caused by collisional perturbations
in such a strong magnetic field. In their cases, due to the
‘presence of a strong magnetic field, the system is not symmetric
under plane reflections. On the contrary, ‘our system has sym-
metries with respect to planes in addition to the axial symmetry.
Using the relations (3.62), we find that the imaginary eigen-
values of the relaxation matrix are always accompanied by their
complex conjugates, It follows that the energy levels with the
magnetic quantum number m and -m are shifted to the same direction
by the same amount as if a fictitious electric field inducing
the Stark shift is present. Consequently, it is expected that,
when one considers the emitter atoms with j=1, the magnetic re-
sonance line is decomposed into two components which are shifted
to opposite directions by the same amount. However, as the
shifts are expected to be smaller than the broadening of each
component, the overall resonance line to be observed might never
split and have only‘unshifted peak at the center. So far we
neglected the power broadening due to the rf magnetic field.

If it is taken into account, the magnetic resonance signal of
alignment is given by the well-known Majorana formula which has
two peaks symmetric with respect to the resonance frequency wo

even when collisions are isotropic :
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wr2{4(w-wo)2¥yzz+w12}

{(w—wo)2+Y224w12}{4(w—wo)2+yzz+4m12}

S «

= - ’ m12 + 3&12
(w—mo)2+y22+m12 4(w—wo)2+y22+4w12

' (3.84)

where w is the angular frequency of the rf field, w1=guBHrf,
and Y, is the decay rate of alignment for isotropic collisions.
Nedelec et al. have theoretically shown the probability that the

two peaks become more prominent for the case of anisotropic col-

22 22
1 +2°

experimentally this anomalous behavior, and attributed it to

lisions due to the difference between T and T

They observed

anisotropic collisions due to the convection of emitters caused

by the temperature gradient in the ce1145).

However, this
anisotropic effect of the convection is thought to be too small
to be observable. Lombardi46) has shown that the anomalous
signal observed by Nedelec et al. is the effect of anisotropic
relaxation due to the presence of strong external electric field
rather than to anisotropic collisions. Hence, the overall
magnetic’ resonance line to be observed might never shifted by
anisotropic collisions. Therefore, it is impossible to explain
the pressure-induced gJ—shift observed by Yabuzaki et al.36)

by the anisotropy, since the magnetic field is not too strong

to break the plane-reflection symmetry.
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CHAPTER 1V

OBSERVATIONS OF THE EFFECTS OF ANISOTROPIC

COLLISIONS ON MAGNETIC DEPOLARIZATION SIGNALS

w.l Introduction

The above-mentioned effects of anisotropic collisions on
emitters excited by a single-mode laser may .be possible
to be investigated by observing the collisional broadening in
some optical-pumping experiments (e.g., Hanle effect, magnetic
resonance, etc.). In optical-pumping experiments with a single-
mode laser, the anisotropy of the emitter velocity distribution
is not, however, so large that the effect of anisotropic colli-
sions on the broadening of the Hanle curve or magnetic resonance
signal may not be so remarkable.

Oon the other hand, the transfer between alignment and ori-
entation, which is absent for the case of isotropic collisions,
increases with increasing degree of anisotropy. The averged
collisional interaction for emitters excited by a single-mode
laser, which has been discussed in Chapter I, has alignment-
like symmetry; i.e., axial symmetry and symmetries under reflection
with respect to any planes containing the axis of symmetry,
which is the same as the symmetry of a system in an electric

field. Lombardi has shown that, when the excited atoms are
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aligned in a direction neither parallel nor perpendicular to
the axis of anisotropy, orientation is created in the direction
perpendicular to the plane which contains the principal axis of

alignment and the axis of anisotropy46).

Conversely, when the
excited atoms are oriented in a direction which is not parallel
to the axis of anisotropy, alignment is created in the plane
containing the axis of anisotropy, which is perpendicular to the
plane containing both of the axes of orientation and anisotropy.
In this plane, the principal axis of the created alignment is
neither parallel nor perpendicular to the axis of anisotropy.

Recently, 'Chamoun et a1.50) have investigated the transfer
from alignment to orientation by observing partially circularly
polarized fluorescences emitted by excited helium atoms initially
aligned by collisions with an accelerated heavy-ion beam. In
their experiment, the velocities of excited helium atoms are
restrained on 'a conical surface in the velocity space48), so that
the collisions with helium atoms in the ground state are aniso-
tropic. Furthermore, this anisotropic excitation also creates
alignment in the excited state, but orientation is by no means
created in the excited state. Therefore, it is impossible to
observe directly the transfer from orientation to alignment by
the collisional excitation.

On the other hand, in optical-pumping experiments using a
single-mode laser, it is possible to create not only alignment

but also orientation in the excited state by linearly and cir-

cularly polarized light beams respectively, and the degree of
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anisotropy  in the.velocity distribution can easily be varied by
varying the detuning of the single-mode laser frequency. Thus
it is possible to observe both transfers from alignment to ori-
entation and from orientation to alignment.

In this chapter, it shall be considered how the effects of
anisotropic collisions are expected to appear in the magnetic
depolarization signals in such experiments as the Hanle experi-
ment using a. single-mode laser. By the term " magnetic depolari-
zation", we mean the phenomenon that the macroscopic polarization
such as alignment or orientation which is. stationarily excited
by external light is depolarized under the influence of external
static magnetic field (i.e., Larmor precession of the multipole
moments) . In the course of the magnetic depolarization, no
transfer between multipole moments with different k occurs, as
in the case of isotropic collisions. - Consequently, if the colli-
"sions are isotropic, the fluorescence emitted by initially aligned
atoms has no circularly polarized - component. On the other hand,
if the collisions are anisotropic, the fluorescence should be
partially polarized circularly due to the transfer from alignment
to orientation. Conversely, the transfer from orientation. to
alignment can be observed in linearly polarized fluorescence
emitted by initially oriented atoms.

The first half of this chapter is devoted to derive analyti-
cally the signal profile of magnetic depolarization experiments
under the influence of anisotropic collisions for the atoms

excited by a linearly or circularly polarized light beam.
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Stationary solutions of the master equation for the density matrix
is solved by taking account of the anisotropic relaxatién dis-
cussed in Chap. II. In this calculation, couplings with higher
order multipole moments (k > 3) are neglected, since only the
orientation and alignment can be directly excited or observed
optically. In fact, the lowest order contribution of these
couplings to orientation or alignment appears in the second order,
which is good contrast with the coupling between orientation and
algnment appearing in the first order. Under this approximation,
the analyzed signal profiles are applicable to the excited state
with an arbitrary total angular momentum j.

Experimentally the effects of anisotropic collisions are
studied for the 2p, state (j=2) of neon atoms excited by a single-
mode laser from the metasfable ls5 state. The latter half of
this chapter is devoted to discuss about the experiments which

~we have made.

v.2 Priciples of Experiments

In the optical-pumping experimeﬁts, the multipole moments
are created in a given atomic state by a polarized light beam.
On the other hand, the information about the multipole moment in
the excited Zeeman multiplet can be obtained by detecting the
light emitted in a given direction with some polarization.
The purpose of this section is to derive the formulae for the

intensity and polarization of the light emitted by atoms in a
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magnetic field under the influence of anisotropic collisions.

In this process, we neglect the higher order effects of the

laser excitation.

v.2.1 Polarizations of the Excitation and Emission

As described in Sec.If .3, the time evolution of the density
matrix for the g-component of the 2k—pole moment is governed by
Eg.(2.16). In this equation, the effect of optical pumping

(dpg/dt) is represented by the term Fg given by Eg.(2.23b).

pump
Especially, its dependence on the polarization is contained in

the factor @2(3). On the other hand, the intensity of the fluo-
rescence with polarization e is related to the density matrix of

the excited state by the relation

. >k . > .
e T IO|mIz(:1|<30m0|e °d|3m>pmm.<jm' |e~a|jom0>, (4.1)
Mo
where IO' is a proportionality constant, jo and m, are the gquantum
numbers specifying the state to which the transition terminates.

Using the irreducible representation of the density matrix and

@;(g) given by Eq.(2.24), we can transform Eq.(4.1) to

_ 3-Jp 11k q k. .k
Iz = (-1) IOE /'2"k_+1{j 3 jo}é( 1) pq@q(‘e‘), (4.2)
where
Io= 1.0 |<5ld] .| (4.3)
1o 0 07! -
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Both of excitation and emission are dependent on the polarization
of the light through the factor ¢g(é).
In our experiments, the linear polarization is selected by
a linear polarizer, while the circular polarization is selected
by the combination of a linear polarizer and a quarter—wave’plate.
Here, we shall derive the expressions of @;(3), for the
light beam propagated in the Z direction in the (X,Y,Z) frame,
which passes through a linear polarizer and an anisotropic retarder.
When the principal axis of the linear polarizer is directed to
the (0,y) direction and the retardation axis of the retarder is
directed to the (0,y) direction with phase retardation n, the

polarization vector e is given by
. in .
cosy siny e 0 cosy =-siny cosy
[-siny cosy ][ 0] 1 ][ siny cosy ][ siny }

., cos(n/2)cosy + isin(n/2)cos(2y-y)
el”/z{ }. (4.4)

r—————

0 0
o

| e
i

Y

cos(n/2)siny + isin(n/2)sin(2y=y)

When the light is propagated in the (8,¢)direction in the labora-
tory frame (x,y,z), we can obtain the polarization vector in this
frame by rotating Eq. (4.4) by the Euler angles (¢,6,0). Thus we

obtain the standard components of € in the laboratory frame :

n
1 1(51¢) n - n
e =—=e [sinzsin(2y-y)+cosfcoszcosy
+1 ﬁ 2 2

-i{cos%sinwicosesin%cos(2y-¢)}],
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. 1
l—-
e, = —e 2sin6{cosgcosw + isingcos(ZY-w)}. (4.5)

Substituting these standard components into Eq. (2.24), we obtain

the general form of @g(g) :

¢8 =L ' Qé = —chosesinnsin(zY_zw)'
V3 /6
¢}1= if;:eil¢sinesinnsin(2y-2¢),
- 2vY3
% - —/—l (1-3psin®e), 0% = FLe™®sing (Pcoso+i),
30 t1 o
R i’ *12¢12-p (14cos®0) ¥ 120c0s0}, (4.6)
- 4v5 :

where

P=1+ cosz(n/2)cos2w + sinz(n/z)cos(4y—2w),

cos?(n/2)sin2p + sin?(n/2)sin(4y-2¢). (4.7)

j@}
il

To get a light beam with linear polarization, the retarder
is not required (n=0). In this case, only the alignment is
created or observed. On the other hand, to get a circularly
polarized light beam, the retardation n=#1/4 is necessary. In
this case, the orientation is also created or observed , in

addition to the alignment.
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Iv.2.2 Excitation with Linearly Polarized Light Beam
When the single-mode laser beam is propagated in the z

direction (6=¢=0), and is linearly polarized (n=0), only the

. . 0 2 2
ex01tat19ns FO' FO, and Ft

Eq. (4.6) and (2.23b). We consider the case that a static magnetic

, are different from zero, as seen in

field H is applied in the x direction. According to Eq.(2.17),
the term representing the interaction with the magnetic field "

becomes

(-i/n) [ RF,plg = -i%}{/k(k+1)—q(q+1)p§+l

: k
+ /KFD=q(q-10pg 41, (4.8)

where w=guBH.
Next, we shall consider the relaxation which is caused by
anisotropic collisions and spontaneous emission. The relaxation

term in Eq.(2.16) is given by

do X kk' k'
—9 -Jr (4.9)

dt lrel B —Ynatpq k' e pq '

. .
kk is the colli-

where Ynat is the spontaneous decay rate and T

sional relaxation matrix obtained in Chap. II.
After substituting these termes into the right-hand side of

Eq.(2.16), the stationary solutions are obtained :

V2

Re(pi) = FETPwA r Py = F—K;FQZIm(Fg) '



1
2 _ 12 _ 51,
Po = 2F0 T B, 2¥A
Yo Yo
2, _ 1.1
Im(pl) = A;YlwA R
2 1 2 1
R = = - —
e(pz) 2Re(F2) A
Y2
2 1
Im(py) = {Yl(YOYi+w
where
a 2 2.1,
Ay = By, + yglyjw® +
by = (w2 + Y%Yi)(wz

A= YORe(F ) + 1572 g
k _ kk :
Yq - Ynat + T q [ il

1, _ 1.1 2
Im(pl)‘— 'AzYoF“Lm(Fz)'
2, _ 1 11, , 2
Re(pj) = K;w(Yoyl+w )Im(Fz).
1
o
2
)+ YOP }Im(F ) (4.10)
22,12
2.1.2
Yle) + T7yqYy
I
_on21 _ J1l2 21 (12
=Ty =Ty ==T_j = r-y - (4.11)

In the case of isotropic collisions (I'=0), each alignment compo-

nent shows the ordinary Hanle effect, which appears as dispersion

type functions for pfl and as Lorentzian functions for pg and

2
Pio

.when the magnetic field is swept through zero.

Since all

orientation components disappear in the isotropic case, the ori-

entation components in Eqg. (4.

10) are attributed to the transfer

from alignment to orientation caused by anisotropic collisions.

It is easily found from Egs. (4.2)and (4.6) that, when we
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observe the difference in the intensity between right-handed and
left-handed circularly polarized fluorescences emitted in the x

direction, the transverse orientation pi can be observed :

3. ;111 1
I .-I_= (-1 Int . = I2R . 4.12
ot o (-1) O{J 3 JO} e(pl) ( )
Substituting the stationary solution for Re(pi) given by Eg. (4.10)

into Eq. (4.12), we obtain

2wl'A

I, 22,12, .2°"°
1w +y0y2(ylyl+r )

J+ig
I, -1 _ = (-1 010{;'; ; s
o 0 (3yy+yy)y

(4.13)
This intensity difference for circularly polarized emissions

can be explained as follows. The alignment, which is transverse
with respect to ﬁ, created by laser light, precesses in the y-z
plane under the influence of H. Then the alignment pi is created
along the direction (n/4,7/2), which is neither parallel nor
perpendicular to the axis of anisotropy (i.e. the z axis).
The anisotropic collisions transfer the alignment pi to the trans-
verse orientation pi directed along the x axis. The transfer
process is very similar to the creation of orientation by the
combination of alignment and oscillating electric field which
are neither parallel nor perpéndicular discussed in Ref. 83.
As seen in Eqg.(4.13), this orientation signal is in dispersion
shape when the magnetic field is swept through zero.

On the other hand, the difference in the intensities of
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linearly polarized fluorescences emitted in the x direction
and polarized along the z and y directions shows the ordinary
Hanle signal in a Lorentzian shape as w is varied in the vicinity

of zero magnetic field :

112

I+3g e 2 2
I, - I. = (-1) {:]:] JO}{ 3/290 + Re(pAz)}Io
c ) 1-2 2
J+] (Y7Y7+T)A
= (-1) OI 11 2 1'1

0133 3 277 1 2. 2.2, 1.2, 2"
7770 Grgrrgd vy gy (v )
(4.14)

Especialiy when collisions are isotropic, the values of all decay
rates of alignment components become. the same and the transfer
rate T vanishes, so that Eqg.(4.14) shows the ordinary Hanle signal

given by

j+3 A

j
T = L= (1) 35 S
0 4w® + (vj )

0
Io1

5 (4.15)
where Yiso is the decay rate of alignment for isotropic colli-
sions. Then, the half width of the Hanle signal for anisotropic
collisions is larger or smaller than that for isotropic colli-

sions by a factor

Aw (aniso)

2
Aw (1s80) i

1,..2,. 2.,1/2°
1soY1 (3Y5HY )} 5. (4.16)

22,12 2
= {4yyv, (Y] +T ) /Y 0

From Egs.(4.13) and (4.14), the ratio of the orientation

signal to the alignment signal is given by
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111
e 1.2 2 1/2
A -{J i } IT] . 4y7ygqy /
or 0 . 17072 } (4.17)
A 11 2 I\, 1.2, .2 2 2 ' .

where Aor and A, are the amplitudes as depicted in Fig.4.1.

For instance, for j=1 and j0=0, Eg.(4.17) becomes

12 2 1/2
Bor _ ITIy Y1Y0"2 } / (4.18)
-1 2 2 . .
far vilody2r?) oy

Furthermore, when the anisotropy is small (Ygzyi:yg, F<<yg),

we obtain for j=1 and j0=0
- 1
Aop/Byy = ITI/YTs (4.19)

and for j=2 and j0=1

. 1
Aop/B = YI5/7|T | /v]- (4.20)

v.2.3 Excitation with Circularly Polarized Light Beam

When the laser beam propagated along the z axis is circularly
polarized and H is directed along the x axis, only the longitudi-
nal orientation Fé
tions of Eq.(2.16) can be obtained as follows :

and alignment Fg are excited. Then the solu-

1 Y6 1 2. 2 1_ 1.1 2,12 .2,,.1
Relp))= ~Z a7 Y2lWFg + Pp= my vy (yav+T 9 3Fg
1Y
2_ 1.2 3 "172 ,.2 L,_ /21 2.2, 2.1
o0 gF0 AI—:%—m Fo « Im(py)= -E—K;w(YlY2+“ YFy
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Fig. 4.1 Ordinary Hanle signal ( I, - I, ) and orien-

tation éignal ( I0 - Ic—) as functions of w(EguBH) for

+

excitation with a linearly polarized laser beam.
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2 Y6 1 1.2 2
Im({py)= =5 &, Y1Y2uFg Re(p?)= Y21 2p,pl
1 ’ e( 1 ZAZ Y2 w 0 ?
_ Y6l 1 , 2 2 _Vé 1 2.1
Re(pz)-— ——z—'KI—‘Ylw FO , Im(pz)—TA—z—I‘m Fo ’ (4.21)

where the relations given by Eqgs. (4.11l) are used.

In these results, Re(pi), pg, Im(pi), and Re(pg) show
essentially the same results as in the case of the excitation
by a linearly polarized light beam (Sec.IV.2.2), because these
results can be obtained as well by substituting F§=0 into Egs.
(4.10) and (4.11). Here, it should be noted that circularly
polarized light also creates alignment in addition to orientation
as mentioned in Sec.IV.2.1l. Therefore, pg, Im(pi), and Re(pg)
show the ordinary Hanle effect of alignment, and Re(pi) shows the
transfer from alignment to orientation. On the other hand, the
solutions for pé and Im(pi) give the ordinary Hanle signal of
orientation. It is Re(pi) and Im(pg) that should be attributed
to the effect of transfer from orientation to alignment.

When we observe the fluorescence which is polarized linearly
in the direction with the polar angles (m/4,0), the observed
intensity is derived from Eq. (4.2) by substituting 6=¢=n/2, y=n/4,

and n=0 into Eq. (4.6). We then obtain

J*lg. 171100 112}12 2.1, 2
(4.22)

In order to extract the pure effect of the transfer, we must
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change the sense of the circular polarization of the exitation,
which may result in the change in the sign of.Fé but no -change
of Fg. Accordingly, we cén see the effect of transfer by
observing the difference in the intensity'of the fluorescence

for the right- and left-handed circularly polarized excitations

/iéygf

$+30. (11 21 |
AT = (-1) .,010{-11 2.1 . 21?(1)._(4.23)

33 30/ (wray iy w2+ ¥EY) +1%ypyS

. If we neglect the small term széyi in the denominator of -

Eqg.(4.23), we can make clear the physical processes involved in
Eq.(4.23) as follows. The excitation with circularly polarized
light creates continuously the longitudinal orientation Fé in
thé z direction, whichvbegins to precess in the y-z plane under
_theminfluence,éf.ﬁ.directed along the x axis.  Consequently,
the statiohary transverse orientation pil.is created in the.y
direction (the ordinary Hanle effect of orientation),.the w depend-
.ence of pil being expressed as w/(m?+y%yi). This transverse
orientation is transferred to the transverse alignment pil under
“the influence of anisotropic collisions with the transfer rate
r. This transverse alignment is created in the perpendicular
:-direction to the orientation pil and in the direction neither .
parallel nor perpendicular to the axis of anisotropy. It shold
be noted that this configuration is much the same as that in

the preceding section. " Finally, since the transferred algnment
i , . ; . ) 2)

172

( the Hanle effect of alignment). Thus the dependence of pfl

pfl precesses about ﬁ, pfl is decréased by a factor Y%/(m2+y
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on w becomes wy%/(m2+yéyi)(m2+yiyg). The remaining term széyg

in the denominator of Eq. (4.23) is caused by the secondary trans-
fer to orientation from the alignment created by anisotropic

collisions, i.e., orientation+alignment-+orientation.

.3 Broadening of the Hanle Signal

As mentioned in Sec. IV.2.2, the most important collisional
effect on atoms excited by a single-mode laser should be manifested
in the broadening of the Hanle signal. In order to investigate
this‘effect, we made a Hanle experiment of alignment in the 2p4
state (j=2) of neon atoms. The associated energy level diagram
of neon is shown in Fig.4.2. In the positive column of a glow
discharge, the metastable 155 state (j=2) is well populated

-1l cm_3) by collisions with electronleI)’loz), so that

(~10
we can align the 2p4 state by exciting with a linearly pélarized
single-mode dye laser beam tuned around the 155—2p4 absorption
line. The linearly polarized component of the fluorescence
frém this state to the ls4 state (j=1) (609.6 nm) is observed.
In order to eliminate the fluorescence originating in the popu-

lation pg, the differential technique described in Sec. IV.2.2

is used.

v.3.1 Experimental Setup

The schematic diagram of the experimental setup is shown in
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Fig. 4.2 Energy level diagram of neon and transitions

of excitation (594.5 nm) and observation (609.6 nm).
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Fig. 4.3 Schematic diagram of the arrangement for

Hanle experiment.
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Fig.4.3. The single-mode operation of the dye laser pumped by
an argon ion laser is attained by inserting a Faraday filter into
the dye laser cavity. The Faraday filter used consists of a

discharge tube filled with neon of natural abundance and a sole-

103),104) The

noid coil which produce an axial magnetic field
single-mode operation in the center region of the absorption line
at 594.5 nm was used and the frequency can easily be varied

around the line center by changing the axial magnetic field
strength. The single-mode frequency was monitored by a scanning
Fabry-Perot interferometer. This single-mode output was fed info
the positive column of a glow discharge tube with a bore of 8 mm
filled with neon of natural abundance [i.e, the relative abundances

22 ]105).

The pressure of neon was 1.3 Torr, and the discharge current was

are 90.92% for Nezo, 0.257% for Ne21, and 8.82% for Ne

kept constant at 8 mA by a regulated current supply. This dis-
charge tube was placed in a set of Helmholtz coils.

The spatial arrangement of the exciting light beam and the
signal detection is schematically in Fig. 4.4 together with the
direction of an applied magnetic field H. The magnetic field H
along the x direction was provided by a Helmholtz pair of diameter
100 cm. The magnetic field H was varied continuously from -3.2
to +16.1 G by a regulated current supply controlled by a micro-
computer. Stray magnetic fields perpegdicular to H were compen-
sated by two pairs of Helmholtz coils of diameters of 80 and 90
cm at right angles. The incident laser beam was propagated

along the z direction, and its polarization plane was chosen to
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Fig. 4.4 Schematic diagram of the arrangements of

magnetic field H and polarizations of excitation and

detection, for the Hanle experiment.
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be in the direction of the y axis. The position of the discharge
tube was so arranged that the portion just behind the entrance

of the laser light was placed at the center of the Helmholtz
coils. Fluorescences emitted from this portion to the x and -x
directions were focussed onto silicon solar cells after passing
through linear polarizers and interference filters of transmission
wavelength 609.6 nm. The linear polarizers were arranged so that
we could observe the two fluorescences Iy, and I, linearly pola-
rized along the y and z directions respectively.

The intensity difference I,-I, was obtained by épplying the
outputs of two solar cells to a differential amplifier. We are
only interested in the laser-induced component in the intensity
difference I,-I.. Therefore, in order to improve the signal-
to-noise ratio, the incident laser beam was periodically chopped
by an mechanical chopper, and the modulated component at the
chopping frequency in the output of the differential amplifier
was synchronously detected by a lock-in amplifier. The time
constant of the lock-in amplifier was chosen to be 1 sec, while
it took about 88 sec for a single sweep of the static magnetic
field. The chopping frequency of the incident laser light was

30 Hz.

v.3.2 Experimental Results and Discussions
A typical recorder trace for the case that the single-mode

laser was tuned to the absorption line center is shown in Fig.4.5.
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Fig. 4.5 Typical recorder trace of the Hanle signal.
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We could obtain similar recorder traces for the cases that the
detunings Av from the line center were 180, 360, and 540 MHz.

For the detuning larger than 540 MHz, we could not obtain the
Hanle signal with high signal-to-noise ratio. - One of the reasons
is that the intensity of the single-mode laser becomes rather
weak in such a large detuning region due to the transmission
characteristics of the Faraday filter. Furthermore, the exci-
tation rate to the 2p4 state is relativeiy small for such a large
detuning, since the velocities of neén atoms in the 155 state
interacting with the single-mode laser light are given by a Max-
wellian distribution with the half width of 800 MHz, and as the
result the excitation of alignment in the 294 state becomes
ineffective.

The Hanle curves obtained experimentally had the Lorentzian
shape as the magnetic field was swept through zero even for the
case of the single-mode excitation as expected from the discussion
in Sec. IV.2.2. In order to obtain the accurate values of the
full-width at half-maximum (FWHM), we made the best fit of the
experimental Hanle signal to the Lorentzian function superposed
upon a constant offset by using the Levenberg's damped least-

squares methodlos)’1072

Figure 4.6 shows the dependence of the
measured FWHM on the detuning of the single-mode laser frequency.
The detuning Av is related to the axial emitter velocity Vo by
the relation Av=(v/c)v0. It can be seen in Fig.4.6 that the
width of the Hanle signal is slightly broadened when the detuning

is increased. Although our theoretical calculations in Chap. I
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Fig. 4.6 Half-width at half-maximum of the Hanle signal
as a function of the detuning of the single-mode laser

frequency from the line center.
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are made for the excited state with j=1, we shall compare the
experimental results for the 2p4 state with the theoretical
results. The theoretical estimation of FWHM AH is made as follows.

From Eq.(4.14), the FWHM is given by

Y2Y2(Yly2+rz) 1/2
_ 2 [To'2'1M1
AR = i\ T 2,02 ' (4.24)
B Y1(3Y2+Y0)
where k = + Fkk W dopt th 1 £ th t l dec
Yq Ynat q° € adop e value o e natura ecay

rate Ynat=5.9><107 rad/sec for the 2p4 state measured by Decomps and

89),91)

Dumont , and the g-value g = 1.298 measured by Giacobino-

108) kk

and T is derived from Fig.3.9(b),
2/5<v 3/5
p
the calculated value of AH for v0=0 coinsides with the experimen-
2/5 3/5
<
6 Vp
is 6.8x10 rad/sec. This theoretical width AH is also shown in

Fournier The values of T

and the constant factor (2n/5)an > is so determined that

tal FWHM for Av=0. The obtained value of (2n/5)an >
Fig. 4.6 by.a dotted curve. As seen in this figure, when the
detuning is varied from zero to 500 MHz, the theoretical width
increases about 1.5 percent, while the experimental increase of

AH seems to be a little larger than the theoretical one, though
experimental errors are not negligible. The discrepancy between
the theoretical and experimental results may be partly due to the
fact that the theoretical calculations have been made for the case
of j=1 while the experiment has been made for the state with j=2.

L]
However, the difference in the dependence of Fﬁf

on detuning
between the cases of j=1 and j=2 is thought to be rather small

as long as only alignment and orientation are considered.
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Another reason for the discrepancy may be due to the ambiguity
in the detuning of the laser frequency. We shall make detailed

discussions on this point in the next section.

V.4 Transfer from Alignment to Orientation

The most remarkable feature of the effect on multipole
moments caused by anisotropic collisions is the appearance of
transfer between different multipole moments. In this section,
we deal with the experiment which was made in order to observe the
transfer from alignment to orientation by using the same transi-
tions of neon as described in the previous section. As described
in Sec. IVv.2.2, the transfer from alignment to orientation can be
observed as the difference in the intensity of left-handed and
right-handed circularly polarized fluorescences emitted by atoms

excited by a linearly polarized light beam.

w.4.1 Experimental Setup

The essential part of the experimental setup is schematically
shown in Fig.4.7. The'single—mode laser used in this experiment
was the same as used in the Hanle experiment described in the pre-
vious section. The single-mode output at 594.5 nm with linear
polarization along the y direction was applied to the positive
column of the glow discharge tube filled with natural neon. In

contrast to the experiment described in the previous section,
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Fig. 4.7 Schematic diagram of the_experimental arrange-
ment for simultaneous observations of the transfer from

alignment to orientation and the ordinary Hanle effect.
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the incident laser beam was not chopped. The pressure of neon
was 1.3 Torr, and the discharge current was kept constant at
8 mA.

The static magnetic field A was applied in the x direction
and swept from -19.3 to +19.3 G through zero in 68 sec. Stray
magnetic fields were cancelled out.

We observed the fluorescence emitted to the x direction.

In order to analyze the circularly polarized component of the
fluorescence which was expected to be much smaller than the linear-
ly polarized component, we used the technique devised by Pavlovic
and Laloélog). That is, the fluorescence emitted to the x di-
rection was passed through a rotating quarter-wave plate and then
through a linear polarizer. When the angular frequency of the
rotation of the quarter-wave plate is 2 and the polarization axis
of the linear polarizer makes an angle P from the z axis, we

can obtain @k by substituting 6=1/2, ¢=0 and y=Qt into Eq. (4.6)

q
0 1 1 1 N .
o = -— , - =0 , .. = % sinnsin(2Qt-2y),
0 e 0 S
¢§ = 1 [1+3{c652(n/2)cos2w+sin2(n/2)cos(4Qt—2w)}]r
2/30"
02, = -i%_{cosz(n/2)sin21p+sin2(n/2)sin(4§2t-2w)},
- 2v5
2 1 2 . 2
®yo = -——[1-{cos“(n/2) cos2y+sin“ (n/2) cos (4Qt-2y) }1, (4.25)

4v/5

where n is the retardation of the quarter-wave plate (n=n/2 for
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a perfect quarter-wave plate). It should be noted that the
circularly polarized component of the fluorescence from orien-
tation pil is modulated at 20 after passing through this analyzing
system, while the linearly polarized component from alignment

is modulated at 49, whether the quarter-wave plate is perfect or
not. Therefore, the amplitude of the fluorescence 129 modulated
at 2Q is proportional to the difference I -1 _:

g (¢

I,5 = ( I0+ - IG_)sinnsin(ZQt-2w), (4.26)

where I +—I _ is given by Eq.(4.13). In particular, when the
o o}
quarter-wave plate is perfect (n=m/2), the amplitude I29 is

exactly equal to the difference IG+—IO_. In our experiment,
we obtained the orientation signal Io+-Io_ by using a lock-in
amplifier tuned ﬁo the frequency 2Q. On the other hand, the
fluorescence modulated at 4Q is related to the alignment signal:

I = I4Q(C)cos(4ﬂ-2w) + I4Q(S)sin(49-2w), (4.27)

49

where the quadrature amplitudes are given by

. 1.2, .2
3+3 NYTYSHT
I,0(0) = (-1) 010{%% : }—1—1—Asin2(n/z)
o) 24,
= %( Iy - Io )Sinz(n/2), (4.28)
I*3e 11 2 'Yi“’ 2
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In partcular, when the quarter-wave plate is perfect, the quad-
rature amplitude I4Q(C) is 1/4 of 1,-I.. In order to compare
the orientation signal with the alignment signal (see Sec. IV.2.2),
we obtained the alignment signal I4Q(C) by using another lock-in
amplifier tuned to the frequency 4Q.

The quarter-wave plate was rotated by a dc moter at about
1200 rpm. The reference signal which should be applied to the
lock-in amplifier tuned at 40 was obtained by chopping the light
beam from an LED which passed through the rotating quarter-wave
plate with four shaded portions as seen in Fig.4.7. On the other
hand, the reference signal at 2Q was'obtained from the 4Q signal
by passing through a frequency divider. The time constant of

both of the lock-in amplifiers were chosen to be 3 sec.

v.4.2 Experimental Results and Discussions

Using the setup described in Sec.IV.4.1, we observed simul-
taneouély the orientation signal which is due to the transfer
from alignment caused by anisotropic collisions and the alignment
signal (the ordinary Hanle effect). We show typical recorder
traces in Fig. 4.8 obtained for the case that the detuning of the
single-mode laser from the line center was 900 MHz. The upper
and lower traces show the signals of orientation Ic+fIU_ and
alignment I,-I,, respectively. Since the gain of the detection

system for orientation was ten times as large as that for align-

ment, the upper trace is magnified by 40 tines compared with the
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Fig. 4.8 Typical recorder traces for orientation signal
I‘+— Ia- (the upper trace) and alignment signal I, - I_

(the lower trace). The upper trace is magnified by

40 times as compared with the lower trace.
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lower trace as described in Sec. IV.4.1. We could obtain the
similar recorder traces for the cases that the detunings from
the line center were 360, 540, 720, 900, and 1080 MHz. These
detunings correspond to the normalized axial velocities
(m./2kT) /%y of 0.37, 0.56, 0.75, 0.93, and 1.12, respectively.
In order to ascertain that the dispersion-shaped signal in
Fig. 4.8 is not the signal from alignment but that from orien-
tation, we observed the signal by changing the phaselof the lock-
in amplifier. If the fluorescence I4Q is perfectly suppressed
by the lock-in amplifier tuned at 29, the output signal of this
lock-in amplifier always should have a dispersion shape and
only the amplitude should be changed by the change in the phase
of the lock-in amplifier [see Eq.(4.26)]. On the other hand,
if the alignment signal is not perfectly suppressed, it is possi-
ble that the output of the lock-in amplifier tuned at 29 shows
a dispersion type dependence on the magnetic field H even when
anisotropic collisions are not present. If we assume so, the
change of the phase by 90° must give rise to the change in the
shape of the output signal; from a dispersion shape to a Loren-
tzian shape [see Eq.(4.27)]. In Fig. 4.9, we show the experi-
mental results for different phases of the lock-in amplifier tuned
at 2Q, in the case that the detuning of the single-mode laser
is 360 MHz. We can confirm that the signal from alignment were
sufficiently subpressed since no Lorentzian signal is superposed
on any traces in Fig. 4.9. From Egs.(4.26) and (4.27), we see

that changing the phase of the lock-in amplifier by 2y is equi-
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Fig. 4.9 Orientation signals for different values of

the phase of the lock-in amplifier.

- 134 -



°lo
~
T
F—o—
—0—
—o—
1

Aor/ Acl
|
—o—

1 1 | 1

|

Fig. 4.10 Experimental plots of the ratio Aor/Aal as
a function of the detuning of the frequency of the
single-mode laser from the frequency at which the

laser began to oscillate.
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valent to changing the polarization direction of the linear
polarizer placed in front of the photodetectot by the angle y.
By changing the polarization direction, we could obtain similar
recorder traces as in Fig. 4.9. The inhomogeneity of the rota-
ting quarter-wave plate may produce the 2Q modulation of the
alignment signal. However, we can also find in Fig.4.9 that
it excerted no serious influence on our experimental results.

From thelexperimental results shown in Fig. 4.8, we can
obtain the ratio Aor/Aal defined by Eq. (4.17), and this result
are shown in Fig. 4.10. In this experiment, the oscillation
of the single-mode laser was very unstable, we could not obtain
the orientation signals with high signal-to-noise ratio in the
range of detuning 0 ~ 300 MHz.

L}
kk for the excited state with j=2

Since the dependeﬁce of T
on (ﬁe/ZkT)l/zv0 is considered not to differ largely from that
for the excited state with j=1, we will compare the experimental
results for the 2p4 state of neon (j=2) with the theoretically
estimated values of Aor’/Aal for the state Withrj=l. We have made

theoretical estimations of Aor/Aa by sﬁbstituting the values

1
of Yg and I' into Eq. (4.17). In this calcuiation, we have used
] . .
the values of Pﬁ; given in Fig. 3.9(b), Ynat™ S.SXlO7 rad/sec 912
and (2ﬂ/5)an2/5<vp3/5> = 6.8><106 rad/sec estimated from the

Hanle experiment described in the previous section. The factor

{% % % }/{;‘% g } in Eq.(4.17) has been considered for the actual
0 0

case that j=2 and j0=l, and calculated as (15/7)1/2. The results

of this calculation is shown in Fig. 4.11. This theoretical
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Fig. 4.11 Theoretically calculated ratio Aor/Aal for
the case of pure isotope of neon, as a function of the
normalized emitter velocity which is proportional to

the detuning of the single-mode laser.
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calculations show that the ratio Aor/Aal increases monotonically
with the increase of Av, while we can see a gentle peak in the

experimental results (Fig. 4.10). This discrepancy between the
theoretical and experimental results was found to come frome the
fact that we did not take the isotope effect into account in our

theoretical calculations, althoﬁgh we used natural neon in the

experiment.
Natural neon have three stable isotopes (Nezo, NeZl, and
Ne22). Since the relative abundance of Ne21 (0.257%) is small

20 22

compared with those of Ne (90.92%) and Ne (8.82%), we will

neglect the presence of Ne21 in the present discussions. The
isotope shift between Ne20 and Ne22 for the transition 155—2p4
(594.5 nm) is 1.72 GHz 110). Due to this isotope shift, velo-

22

cities of Ne atoms excited by a single-mode laser are different

20

from those of excited Ne atoms. The isotope shift of 1.72 GHz

corresponds to the difference in the normalized axial velocity

x[=(me/2kT)1/2v0] of 1.78 for T = 400 K. Therefore, the effect

22 20

of anisotropic collisions on Ne is not the same as that on Ne ,

which are excited by the light with the same frequency, so that

[ ]
the relaxation matrix elements F‘l have different values for

Ne20 and Nezz.

We can estimate the ratio of the orientation signal to the
alignment signal using the relation

2 2
A, 10Aé§°)e'y + Aéiz)e'(y'l‘7.8_)
- (4.30a)

A - 2 2
al 10A(20)e-y + A(22)e—(y—1.78)
al al
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(20) and A(22)
or,al or,al

Fig. 4.1 for Ne20 and Ne22, respectively. The parameter y in

where A are the signal amplitudes defined in

Eq.(4.30a) is the quantity, which is proportional to the detuning

szo from the center of the absorption line of Ne20 :

Av20

v

y =¢

(m_/2KT) 172 (4.30b)

Using the approximate value of the relative abundance of Ne20

and Ne22 ( Nezo: Ne22 =10 : 1 ), we can calculate the ratio
Aor/Aal from Eq.(4.30a). The calculated ratio Aor/Aal is shown
in Fig. 4.12 as a function of the detuning from the absorption
line center of Ne20 (solid curve) together with Aéio)/Aéio) and
Aéiz)/A;iz) for pure isotopes (two dotted curves). As seen in

Fig. 4.12, the presence of Ne22 gives a significant influence

upon the ratio Aor/Aal in spite of its small relative abundance,

22

when the laser is tuned around the absorption line center of Ne
This is due to the large change in the collisional transfer rate
I' as the detuning is increased. On the other hand, since the
width of the Hanle signal for pure isotope increases by only a
few percent when one detune the laser from the line center of
this isotope to that of the other isotope, the width of the Hanle
signal is not so drastically affected by the presence of two
isotopes as long as the g-factors of these isotopes are the same.

It should be noted that the position of the zero detuning
Av=0 in Fig. 4.10 has been determined to be the frequency at

which the shingle-mode dye laser with a Faraday filter began
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Fig.b4.12 hTheoretically calculated ratio Aor/Aal for the
case of natural abundance neén (solid curve), and the
ratios for fhe cases of pure isotopes Ne20 and Ne22 (two
dotted curves), as functions of detuning‘from the center
of the absorption line‘of Nezo. Experimental plots

fitted to the theoretical curve are also shown.
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to oscillate when the magnetic field applied to the Faraday
filter was increased. Since we used the Faraday filter of
natural neon, the single-mode dye laser began to oscillate at the
frequency shifted from the center of the Ne20 absorption line

toward the Ne22 absorption line center104), so that we could not

know the absolute detuning from the line center of Nezo.

Comparing our experimental result (Fig. 4.10) with the theoretical
calculations taking the isotope effect into account (Fig. 4.12),
the experimental plots are well fitted to the theoretical curve

if we assume that the detunig Av=0 in Fig. 4.10 corresponds to

20

the detuning Av,,= 600 MHz from the line center of Ne“". Thus

20
corrected plots are also shown in Fig. 4.12. In this figure,

we can éee a fairly good agreement between theory and experiment
which have been made for emitters with j=1 and j=2, respectively,
in spite of the difference in the value of j. This might indi-
cate the fact that the dependence of the collisional relaxation
matrix Pﬁf' on v, is not so dependent on the values of the total
angular momentum j of the emitter.

So far, we have assumed that the velocity distribution of
the emitters along the direction of the laser beam is a delta
function. However, as a matter of fact, the velocity distri-
bution must be given by a Lorentzian function, whose width is
determined by the decay rate of the optical coherence and the
saturation of the exciting transition. In the case of the weak

laser intensity, the full width of the velocity distribution of

emitters is given by cy_,/(wv) where y is the decay rate of
g Y ab ab
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the optical coherence between the 2p4state and the 155 state.
At the low pressure limit, Yap 1S (Ya+yb)/2 where Y, and Yp

are the decay rates of the 2p4 and the ls. states (Ya~106 Hz,

yb~104 Hz 111)).

5

But, at the gas pressure in the present experi-
ment, the optical coherence is more strongly destroyed by the
dephasing collisions compared with the population. The pressure
dependence of Yab for the 155—2p4 transition has not been reported
as yet. However, there have been many experimental results on

112)’113)’114). If we assume

laser transitions of He-Ne laser
that the collisional decay of optical coherence is not so different
for these transitions, Yab is roughly estimated to be ~100 MHz.
Moreover, the optical saturation further broadens the velocity
distribution of emitters. Then, the observed Aor and Aa1 are
considered to be the average values over the broadened velocity
distribution. In fact, as seen in Fig. 4.12, the experimentally

obtained dependence of Aor/Aal upon the detuning is somewhat

gentle compared with the theoretical results.

.5 Transfer from Orientation to Alignment

In this section, we report on the experimental evidence of
the transfer from orientation to alignment, which is the inverse
of the process discussed in the previous section. The experi-
ment proposed in Sec. IV.2.3 was carried out for the same tran-

sitions of neon as in the previous section. Namely, a circularly
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polarized single-mode laser beam was used to excite neon atoms

from the 155 state to the 2p4 state, and the fluorescence origi-
nating from the 2p4 state at 609.6 nm was observed. The existence
of this transfer in the 2p4 state can be monitored by detecting

the change in the intensity of linearly polarized fluorescence
when one éhange the sense of circular polarization of the exciting

laser beam.

w.5.1 Experimental Setup

The essential/part of the experimental setup is schematically
shown in Fig. 4.13. We used the same single-mode dye laser
operating at 594.5 nm, discharge tube , and Helmholtz coils as
those used in the previous experiment. The discharge tube was
filled with natural neon at 1.3 Torr, and the discharge current
was kept constant at 8 mA. As shown in Fig. 4.13, the laser
beam was applied into the discharge tube along the z direction,
the static magnetic field was applied in the x direction, and
the fluorescence emitted in the y direction was observed.

In order to create the orientation along the z direction,
the incident laser beam, which was linearly polarized along the
y direction, was passed through a rotating quarter-wave plate.
This rotating quarter-wave plate changes periodically the sense
of circular polarization of the exciting light. In the present
case, we can obtain @g for the excitation by substituting

8 =¢ =0, v =7/2, and vy = Qt into Eqgs.(4.6) and (4.7) :
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Fig. 4.13 Schematic diagram . of the experimental arrange-
ment for the observation of the transfer from alignment

to orientation
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¢g = —;L-, Qé = LLsinnsinZQt R ¢%l =0 , ¢g S ’
Y3 3 - Y30
®31 =0, @32 = -?l;{cosz(n/z) + sinz(n/z)eil4nt} '
- = 2v/5
(4.31)

where Q is the angular frequency of the rotating quarter-wave
plate and n is its phase retardation (n=m/2 for the perfect
quarter-wave plate). From Eq. (4.31l) and Eq.(2.23b), we see
that only the excitation of the longitudinal orientation Fé are
modulated at 22, while that of the alignment Fiz is modulated
at 4Q.

We observed the fluorescence linearly polarized in the
direction with the polar angles (n/4,0) or (-n/4,0) by a silicon
solar cell, This linearly polarized fluorescence consists
of the signal from the alignmént directly excited by the laser
light and that from the alignment transferred from the orientation
by anisotropic collisions, the former and the latter being modu-
lated at 4f and 2Q, respectively. Therefore, we obtained the
signal of alignment transferréd from orientation, by applying
the output of the solar cell to a lock-in amplifier tuned at
2Q. In contrast to the experiment described in Sec. Iv.4,
to modulate the incident laser beam has the advantages in re-
duction of the noise originating from the discharge.

The static magnetic field H was swept from -19.3 to +19.3 G
in 68 sec, and the time constant of the lock-in amplifier was

chosen to be 3 sec. The quarter-wave plate was rotated at about
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1200 rpm.

w.5.2 Experimental Results and Discussions

Using the setup described in Iv.5.1, we observed the signal
of alignment transferred from initially excited orientation.
Typical recorder traces are shown in Fig. 4.14. The upper and
the lower traces were obtained for fluorescence linearly polarized
along the directions with the polar angles (w/4,0) and (-7/4,0),
respectively. The signal-to-noise ratiios of the obtained traces
were not high due to the fluctuation in the intensity of the
incident laser light, so that we could not make a guantitative
comparison with theoretical results. However, can see in
Fig. 4.14 that the experimental signals have the magnetic field
dependence as expected from the theory [see Eq.(4.23)]. The
polarity of the upper trace is the reverse of that of the lower
trace because the directions of linear polarizations of the
observed fluorescence for the upper and lower traces are per-
pendicular with each other.

As descrived in Iv.5.1, only the signal of alignment, which
is transferred from the initially excited orientation, is modu-
lated at 22, while the ordinary alignment signal (the Hanle
signal of alignment) is modulated at 4Q. Since the lock-in
amplifier tuned at 2Q eliminates highly the modulation at 4%,
we can conclude that the signals 6btéined in the present experi-

ment show the existence of the alignment transferred from the
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Fig. 4.14 Typical recorder traces of alignment signals
for excitation with the linearly polarized single-mode

laser bean.
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initially excited orientation under the influence of anisotrbpic

collisions.

V.6 Discussion and Conclusions

In this chapter, we have investigated the effects of aniso-
tropic collisions on emitter atoms excited by a single-mode
laser light. We have analyzed the magnetic depolarization in
the excited state with j=1 taking account of the splittings in
different diagonal elements of the collisional relaxation matrix
and the collisional transfer between alignment and orientation.
It should be noted that anisotropic collisions give rise to
some peculiar features in the magnetic depolarization signals :
(i) the modification of the width of the Hanle signal; (ii) the
difference in the intensity between the right- and left-handed
circularly polarized fluorescences emitted by the atoms excited
by linearly polarized light; (iii) the variation of the intensity
of linearly polarized fluofescence by the change of the sense
of circularly polarized excitation.

In order to verify our theory of anisotropic collisions,
we have made defferent experiments of magnetic depolarizations
of the 2p4 state of neon excited by a single-mode laser.
Although the theoretical calculations in Chap. II have been made
for the excited state with j=1, we compared the experimental

results for the 2p4 state (j=2) with the theory, with respect
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to (i) and (ii). We have found that the width of the Hanle
signal‘is slightly broadened when the detuning of the single-
mode laser is increased. The existence of the transfer from
alignment to orientation has been experimentally verified from
the observed magnetic field dependence of the orientation signal.
The anomalous dependence of Aor/Aal on the detuning has been
successfully explained by taking the isotope effect into account.
It should be noted that the presence of different isotope gives
rise to an important effect on the transfer between alignment and
orientation, while it’gives rise to only a little effect on the
width of the Hanle signal. Despite of the difference in the
total angular momentum j, we have found a fairly good agreement
with the theoretical Aor/Aal' This ratio amounts to about 4%
in our experimental region of the detuning.

We have also observed the 'signal AI of the alignment trans-
ferred from orientation [case (iii )], and the existence of the
transfer has been qualitatively verified. Since the signal-to-
noise ratio was not so high in this éxperiment, we could not
compare the experimental results with theory.

As seen in Fig. 3.9(b) or Fig. 4.12, when the laser frequency

is detuned from the line center of Nezg the collisional transfer

rates F}i and Tfi begin to decrease, and at a detuning where the
Zz component of normalized emitter velocity (me/2kT)v0 is 0.6~0.7,
the transfers disappear. When the detuning is increased further,

the transfer rates increase, with the sign opposite to those for

the small detuning case. This change of the sign should appear
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as the change of the sign of the orientation sigﬁal in the case
(ii), and as that of AI in the case (iii). However, we could
not observe this change of sign, because we could not get the
stable operation of the Faraday filter when the detuning of the
laser frequency from the line center of Ne20 is less than 780 MHz

[(me/2kT)1/2v ~0.8].

0
All experiments described in this chapter have been made
using a neon discharge tube without any foreign gas, so that
all collisions occur between atoms of same species, i.e.,
mp/(mp+me)=0.5. Therefore, the effects of anisotropic collisions
are not so large. As mentioned in Sec. IM.4.2, the effects of
anisotropic collisions become more remarkable when perturbers
are heavier than emitters. In order to make the anisotropy
larger, we have intended to carry out experiments using the dis-
charge tube filled mixture of neon (emitter) and krypton (pertuf-
ber) [mp/(mp+me);0.8]. However, we could not observe the fluo-
rescence emitted from the 2p4 state of neon with high signal-to-
noise ratio; so that we could not investigate the effects of
anisotropic collisions. As the reason, we think that the 2p4
state cannot be sufficiently populated by the'laser light, because
the metastable 155 state is quenched by collisions with krypton
atoms in their ground state. [ The ionization potential of krypton
is 14.0 eV, which is less than the energy of the 155 state
(16.6 ev).]
In order to avoid this difficulty in observing the large

effects of anisotropic collisions of laser excited atoms, we
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should make an experiment for the first excited P state of

alkali-metal atoms perturbed by heavier rare-gas atoms.
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CHAPTER V

ALIGNMENT DESTROYING CROSS SECTIONS OF NEON

FOR COLLISIONS WITH RARE-GAS ATOMS

V.1l Introduction

Many experimental works have been made for these fifteen
years on the mixing of Zeeman substates in the excited states
of gaseos atoms by collisions with rare-gas atoms. In the

experiments on alkali atoms in the first excited P stateszs)—zg)

and neon atoms in the 2p statesz3)’34)’35), it has been shown
that the measured cross sections for destruction of alignment
are anomalously large for collisions with helium atoms and dis-

agree with theoriesl9)'22)

which explain well the cross sections
for collisions with other rare gases. Ih these theories, the
same assumptions and approximations as descibed in Chap. IO are
used for the case of isotropic collisions. As the cause of this
discrepancy for collisions with helium, it has been considered
that the short-range interactions are important rater than the
van der Waals interaction, because of the small polarizability
of helium atom (~0.2 &). This explanation is now widely accepted
for alkali-helium collisions.

In this chapter, we investigate the alignment destroying

cross sections for neon atoms in the 2p4 state colliding with

helium, neon, argon, and krypton atoms in their ground states.
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It might be expected that He3 is better than He4 to make clear
the imbortance of the short-range interaction in the Ne-He colli-
sions. Furthermore, the comparison of cross sections for He3
and He4 may give us more informations, because the collisional
interaction is approximately the same for these two isotopes
except for their masses. However, there have been few measure-

ments of the cross section for Ne-He3

collisions, although the
discrepancy has been found between the measured cross section
for Ne-He4 collisions and the theoretical one calculated with
the van der Waals interaction.

Measurements of these cross sections were performed by
means of the optical-rf double resonance of a He-Ne laser. The
use of double-resonance phenomena in optical-pumping experiments

8)

was first proposed by Brossel and Kastler ', and the first experi-

ment was made by Brossel and Bitterg) for mercury vapor. In

their experiment, the mercury atoms were optically pumped to the

3Pl state, and the magnetic resonance in this state was monitored

by detecting the intensity change of the spontaneous emission.

On the other hand, Bell and Bloom observed the magnetic reso-

nance in the ground state through the absorption of lightlls).

An extensive theoretical treatment of double-resonance phenomena

was made by Dodd and SeriesllG)

, who showed how the magnetic
resonance in the excited state with j=1 appears in the intensity
change and the modulation of the spontaneous emission. Culshaw
extended their theory of double resonance to the atoms in a

117) ,118),119)

gaseous laser The double resonance in a gaseous
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enables us to observe the magnetic resonance in the excited states
which cannot be optically pumped directly from the ground state.
Observations of the double resonance in the He-Ne laser have been
performed by detecting the intensity change of the laser output

120),121) 122) 36),123)
14

at 1.15 um ;» 1.52 um , and 632.8 nm and

of the spontaneous emissions from the laser levelslz4).

In this chapter, we deal with the double-resonance phenomena
appéaring as an intensity change of the output of a He-Ne laser
operating at the transitions from the 352 state (J=1) to the
2p4 state (J=2), occurring at 632.8 nm. The alignment destroying

cross sections of neon in the 2p4 state can be measured from the

pressure broadening of the magnetic resonance line.

V.2 Theory of Double Resonance in He-Ne Laser
v.2.1 Principles of Double-Resonance Experiment of He-Ne Laser
In a double-resonance experiment, atoms are subjected simul-
taneously to optical and rf radiations, both of which are nearly
resonant with optical and Zeeman transitions of atoms. The
magnetic resonance signals are generally more complicated than
the typical Hanle signals, because the interaction between atoms
and magnetic field is no longer time independent. Furthermore,
in the double resonance for atoms in a gaseous laser, the reso-
nance signals become much complicated due to the saturation
phenomena occurring in laser transitions.

The double resonance in a He-Ne laser can be phenomeno-
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Fig. 5.1 Schematic energy level diagram of neon, associated
with the rf transitions and the m-transitions of the He-Ne

laser operating at 632.8 nm.
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logically explained as follows. In the case of a He-Ne laser
operating at 632.8 nm, the transition occurs between the 352

state (J=1) and the 2p4 state (J=2) of neon. The energy diagram
is schematically shown in Fig. 5.1, taking account of the Zeeman
splittings of laser levels due to a static magnetic field.

When the laser light is linearly polarized in the direction paral-
lel to the applied magnetic field (this direction is chosen to

be the quantization axis), only the three m-transitions (Am=0)
occur as seen in Fig. 5.1. The transition probability for a
m-transition (J=1 — J=2) connecting the Zeeman substates with

magnetic guantum number m is given byl25)

P(mm) « [<1lm 0]2m>|? =3 (4-n), C(5.1)

Where <jj' m m'| j" m"> is the Clebsch-Gordan coefficient.
Accordingly, the relative transition probabilities for these

three w-transitions can be written as

P(1,1): P(0,0): P(-1,-1) = 3 : 4 : 3. ( 5.2)
Due to these difference in the transition probability, the
Zeeman substates of each laser level which is isotropically exci-
ted by discharge (i.e., the all Zeeman substates are equally
populated), are populated differently by the laser m-transitions.
This results in the population difference within each Zeeman multi-
multiplet. However, the substates |m> and |[-m> are equally

populated, so that the longitudinal alignment pg is created in
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each laser level, while no orientation is created. Oon the other
hand, é resonant magnetic field, which is oscillating in the
plane.perpendicular to the direction of the static magnetic field,
induces transition between adjacent Zeeman substates so as to make
smooth the population difference. As the result, thé alignment
created by laser transitions is destroyed by this magnetic reso-
nance. This change of the aiignment of each laser levels should
be reflected in the change of the output intensity of the laser,
because the intensity of the linearly polarized laser light
depends not only on the population pg but also on the alignment

pg of each laser level. It is the alignment pg that shows the
resonant behavior when one varies the frequency of the rf field,
or the Zeeman frequency by varying the strength of the static
magnetic field. Therefore, informations about the relaxation

of alignment can be obfained from the magnetic resonance signal
manifested in the intensity change of the laser output. It is
possible to extract the collisional contribution from the magnetic
resonance signal by changing the partial gas pressure of perturber
atoms in the laser tube.

In the next section, we shall analyze the magnetic resonance
of alignment in a excited multiplet on the basis of irreducible
representation. The result might be applicable to the double-
resonance experiment in a gaseous laser. However, in the case
‘of a He-Ne laser operating at 632.8 nm, the magnetic resonance
in bofh laser levels are expected to occur simultaneously, because

the g-factors of the 352 and 2p4 states are known to be close
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to each other. Recently, Giacobino-Fournier has made quite
accurate measurement of the g—factoré of these states by observing
the fluorescences emitted from these laser levels in double reso-
nance experiments, and has obtained 1.2925 fdr the 352 state

and 1.298 for the 2p4 statelos).

In Sec. V.2.3, we shall solve
the rate equations for the n-transitions at 632.8 nm taking
account of the interactions with magnetic fiels, and we show

which magnetic resonance has dominant effect on the output of

‘the laser.

v.2.2 Magnetic Resonance in a Laser Level

As mentioned in Chap. I , behaviors of multipole moments
under the influence of external magnetic field can be well des-
cribed by the master equation of the density matrix given by
Egq.(2.16). Here we apply this equation to the upper or lower
levels of a laser transition which are perturbed by an rf magnetic
field. Linearly polarized laser light plays a role of pumping
light as in the usual optical-pumping experiments. However,
when the laser light is intense enough to change the populations
of the upper and lower levels appreciably, the nonlinear effects
with respect to the light intensity become important, so that
the effects of the laser light might not be represented by a
simple pumping term Fg as in Eq.(2.16). Then the coupled
equations for density matrices of the upper and lower states

and the optical coherence between these states should be solved

- 158 -



simultaneously. Nevertheless, as long as the magnetic field
dependénce of the laser intensity is considered , the resonant
behavior appearing in the laser output is expected to be deter-
mined mainly by the resonant behaviors of alignments created
by laser light in the upper and lower multiplets. In order to
elucidate the magnetic resonance in each laser level, we will
solve the master equation for each multiplet separately.
Consider the case that the static magnetic field i parallel
to the electric field of the laser light is directed along the
z axis (i.e. the gqguantization axis) and the rf magnetic field
ﬁrf is rotating in the x-y plane at the angular frequency w as
seen in Fig. 5.2. Then the three standard components of the

static and rf magnetic fields defined by Eq.(2.18) are given by

H) = -—l—-Hrfel‘”t, Hy=H, H_ = 1—Hrfe_wt. (5.3)
V2 V2

By substituting these three standard components into Eq. (2.17),
the master equation for the density matrix can be written in

the irreducible representation as follows

k
dp — i
) k . ivt k
—qu = ~iquwe pq -1-22)—1{ Vk (k+1) -q (q+1) e Pg+1

k
: dp ‘
-int k -9 k
+/k(k+1)-q(g-1)e Pg-13+ [dt]rel+ fa

(5.4)
where the first term in the right-hand side represents the inter-

action with the static magnetic field (wo=guBH) and the second
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term describes the interaction with the rf magnetic field
(w1=guBHrf).

In contrast to the discussions in the preceding chapters,
we here consider the case of the gaseous laser operating with
multi-axial modes of the cavity. In the present experiments,
since the separation between the output and end mirrors was about
100 cm, there are about ten axial modes within the Doppler width.
Accordingly, the average collisional effects on the atoms inter-
acting with the laser light can be approximately assumed to be

isotropic. As a result, the collisional relaxation matrix ng,

is diagonal withrespect to k and g, and is dependent only on the
value of k, so that the third term in the right-hand side of Eq.

(5.4) can be written as

k
[poq] k (5.5)
—3 -— 'Y p -
t rel k¥q

where the relaxation rate Yi is given by
Y =Y + T . (5.6)

As mentioned in the previous section, the laser light
linearly polarized in the 2z direction creates no other than the
population pg and the longitudinal alignment p%, so that the non-
vanishing pumping terms in the right-hand side of Eq.(5.4) are
‘Fg and Fg.

As seen in Eq. (5.4), the master equation is time-dependent
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in the laboratory frame, but it becomes time-independent in a
rotating frame in which the magnetic field ﬁrf is fixed in the
x direction. In this rotating frame , the density matrix pg
is transformed into ﬁg according to the relation given by

Eq. (2.10) :

ko gk omiaut (5.7)

while the relaxation term and the pumping term Fg remain invariant.
It should be noted that, in this rotating frame, the total
magnetic field becomes an effective magnetic field given by
{(wo-w)/wo}ﬁ+ﬁrf , around which the alignment Bé precesses, as

in the conventional theory of magnetic resonance (see, for
instance, Ref. 126). Hence we can obtain the secular solutions

pg in the laboratory frame :

F2 30,2 (46247, 24w, %)
0 _ 0, 1_, 2 _Fof, . 2
po 0 YO ’ Dl ’ po .Yz b ’
F2 (26+iy.) { (6Fiy,) (26Fiy,) - w12} =
2 0 Iy, Y2 Yo 1 Fiwt
p+l = - 3/2 Y 1 € ’
* 2 D
2 Fg (8Fiy,) (28F1y,) - w1 2 Fiwt
pL, = V3/2 wi e , (5.8)
+2 Y2 D

where

D = (6§ +Y2 +w12)(462+Y22+4w12) '

and S=w-wgp.
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The magnetic field dependence of the longitudinal alignment
pg, which is time-independent, is reflected in the intensity
change of the laser light. If the rf magnetic field Hrf is

2

weak enough such that m12<<yz , the magnetic field dependence

becomes a Lorentzian function :

2 Fg! . 3&)12
= 1- 5.9
2 (w=-w)™ + v,

For a moderate value of w), the resonance signal is no longer
given by the Lorentzian function, but the half-width at half-
maximum Aw can be approximately calculated by using Eg. (5.8)

as
Aw™ = Yoo t - w1t (5.10)

The first term in the right-hand side of Eq.(5.10) is the broad-
ening due to the spontaneous and collisional relaxations, i.e,
(2)

Yo = Ypat t np<v>c ’ (5.11)

where np is the perturber density, <v> is the average relative
(2)

velocity of colliding pair, and ¢ is the cross section for
isotropic alignment-destroying collisions. The second term in
“the right-hand side of Eq. (5.10) represents the power broadeﬂing
due to the rf magnetic field. When Aw is extrapolated to

vanishing rf magnetic field strength, the half-width at half-
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maximum becomes

(2)

Aw = ¥ + np<v>o . (5.12)

nat
Since the solutions given by Eq.(5.8) or (5.9) hold good

for the Zeeman multiplet with an arbitrary total angular momentum

J, both of the 3s, state (J=1) and the 2p, state (J=2) show

the similar resonances with different widths and amplitudes.

In the case of the double resonance of the He-Ne laser operating

at 632.8 nm, these two resonances appear simultaneously in the

change of the laser intensity at nearly the same resonance fre-

quencies.

vV.2.3 Double Resonance in a He-Ne Laser Operating at 632.8 nm
As mentioned in the previous section, the double-resonance
signal in the He-Ne laser operating at 632.8 nm consists of the
contributions from the upper laser level 352 (J=1) and the lower
laser level 2p4, with approximately the same resonance frequency.
In this section, we investigate which resonance of these two has
a predominant contribution to the laser output. These contri-
butions of the magnetic resonances to the laser intensity are
estimated by solving the rate equation for the laser transitions

combined with the results of Lamb's semiclassical laser theory127)’

128)

Consider the same arrangement of the laser light and magnetic
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fields as seen in Fig 5.2. We assume that both laser levels
have approximately equal g-factors. For the sake of simplicity,
the relaxation of each Zeeman substate is assumed to be character-
ized by a decay rate Ya OF Yy for the 332 or 2p4 state, respective-
ly. Furthermore, we assume that the discharge is isotropic,
so that the excitation rate to each Zeeman substate is character—
ized by Aa and Ab for the 332 or 2p4 state, respectively. All
transition rates for optical and Zeeman transitions necessary
for the present calculations are shown in the energy diagram
Fig. 5.3.

The rate equations for the populations of Zeeman substates

can be written as

ﬁg = —Yang + Wa(ni+nfl—2ng) - A(ng-ng) + Aa R

i1 = -vandy - W, (nyong) - JAMInly) 4 A

ﬁg = ;ybng + Wy (nb bl—2n0) + A(n -n ) + A

B3) = “Ypiay * Wy, (np+dal,- ) F el g
ity = ~Yyhhy - %Wb(ngz_ngl) oy (5-13)

where n; and nz are the populations of the Zeeman substates m

=l.( )
a2 guB rf
and W == (guB rf) » A is the transition rate by the laser light

of the upper and lower states, respectively, W

and is proportional to its intensity.

In spite of the fact that our experiments were made by
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Fig. 5.3 Optical m-transitions and rf transitions which
yield the double resonance in the He-Ne laser operating
at 632.8 nm. Their transition probabilities are also

shown.
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using a multi-mode laser, we here consider the case of the single-
mode operation with zero cavity detuning, for the sake of
simplicity. The rate constant, which is defined by Eqg. (35) in

Ref. 128, can be expressed as
a = 3-@/m 3y Hum |2, (5.14)

where d=e<a,m=0|z|b,m=0>, E is the electric field of the laser
light, and y is the decay rate of the optical coherence, and

U(x) is the basis function of the cavity mode, i.e.the normalized
amplitude distribution along the laser axis. On the basis of
Lamb's semiclassical theory, we obtain a complex polarization

of the medium :

2

_ _@°e2 (L 2
P =%y axcmu e |, (5.15)

where L is the length of the cavity, and

_ 3 ,.a b a _. b 3,a _ Db
G(A,Hrf) = 7r(nl - nl) + (n0 - no) + 7T(n—l n_l). (5.18)

Substituting the stationary solutions of Eg.(5.13) into Eq.(5.16),

we obtain G(A,Hrf) upto the second order with respect to Hrf :

W
- 2 -— -
. NIX L+dy l+—%—A0(xsz) 2{ a

G(aA,H 2
2 Ya

rf)

7+12—°+5—)}1, (5.17)
b



where N= Aa/ya - Ab/yb, A0 is the rate constant defined by
Eg.(5.14) in the absence of rf magnetic field, and
Ay 38, -1 -1 -1

- X=1+ , ¥Y=l+—— Y =y +
Yab 4y b ab

(5.18)

On the other hand, substituting the complex polarization
28)

P into the self-consistency equationl ; we obtain the relation

for stationary state ( E=0 ):

£ /axc (a8 ) [u(x) |2 = S8 (5.19)
¢ 204
Assuming that the rf field perturbation is small, we can expand

Eq. (5.19) as

L 3G da 2
fode(A0,0)|U(x)| + [ dx[aA] R |U(x)|
d(H_¢)
rf
+ Jlax|38a, + 2y b]lu( R g (5.20)
a b 404a
where all partial differentials must be estimated for A=A0 and
Hrf=0' The increase in the intensity of the laser light caused
by the rf perturbation is proportional to
fd —w + 3y lul?
da 2 oW, b
. (5.21)

d(Hrf)zHrf = dxl J[U]

From Eqgq. (5.21), we can estimate the ratio R of the contribution

from the 2p4 state to that from the 352 state :
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L. 3G 2

R = -
. [de%% w_|u
Q ac‘

|2 : (5.22)
When we assume that the intensity of the laser light is small
enough to approximate Eq. (5.22) upto the second order with

respect to EO which is the electric field of the laser light

in the absence of the rf perturbation, we find

vy .2 6Y_, (dEqY 2 fLN|UL6dx

R = 21_% {1+ 7—ab'['/h_0] N3 e } (5.23)
Y Y fLN|U| dx
b 0

Since N varies little in a optical wavelength, so that, in the

case of the standing wave with the basis U(x)=sin{ (nm/L)x},

we find
2
Y 5y dE
a ab 0
R ~ 21777 {].+ 5 [—E—J}. (5.24)
b

In the case of the present experiment, the decay rates of
the 352 and the 2p4 states are approximately equal (Ya~ Yb).
If we assume that Ya= Yy the contribution from the 2p4 state
is 21 times as large as that from the 352 state at the threshold
of the laser (E0=0). As the laser intensity is increased, this
ratio R becomes larger. Therefore, the double-resonance signal
appearing in the laser intensity is determined substantially by
the magnetic resonance in the 2p4 state (J=2).

Carroll and Wolga have shown in a phenomenological way

that the contribution from the state with J=2 to the double-
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resonance signal in a He-Ne laser operating at 1l.15 um is more
important than that from the state with J=1 120). Fufthermore,
Decomps and Dumont have shown experimentally for the case of
saturation resonance of the 632.8 nm transition in a He-Ne laser,
in which the fluorescence from each laser level was observed,
that the resonance in the 2p4 state appears much stronger than
that in the 352 state, even when the fluorescence emitted from

the 352 state is observedlzg).

V.3 Pressure Broadening of Magnetic Resonance Line of Neon

In this section, we investigate pressure effects on magnetic
resonance line of neon ky means of the double-resonance experi-
ment in a He-Ne laser. The alignment destroying cross sections
of the 2p4 state of neon for collisions with helium.and necn
were measured by observing the widths of magnetic resonance
signals by changing the partial pressures of herium and neon,
respectively. Besides, the cross sections for neon-argon and
neon-krypton collisions were measured by adding small amounts

of argon or krypton in the He-Ne laser tube.

v.3.1 Experimental Setup
The schematic diagram of the arrangement for the present

experiments is shown in Fig. 5.4. Between two mirrors, which
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Fig. 5.4 Schmatic diagram of the experimental setup for

double-~resonance experiments.

- 171 -



insure laser oscillation on a single line at 632.8 nm, a dc-
excited laser tube with Brewster-angle windows was inserted.

The laser tube with a bore of 3 mm and an effective discharge
length of 73 cm, can be connected to a vacuum system through a
joint and can be filled with mixture of gases repeatedly. The
discharge current was kept constant at 15 mA by a regulated
current supply. The spacing between two mirrors was about

105 cm, which corresponds to the axial mode separation of about
140 MHz. The laser tube was submitted to a transverse magnetic
field H. The Brewster-angle windows were oriented so that the
electric field of the laser light was pallalel to ﬁ, and then

A only the m-transitions were allowed. The static field, applied

by a set of double Helmholtz coilsl30)

, was swept by a regulated
current supply controlled by a saw-tooth generator. The spatial
uniformity of the magnetic field i was better than 10_3 over the
effective discharge length- of the laser tube, so that the broaden-
ing of the resonance signal due to a inhomogeneous magnetic field
might be neglected in the calculations of decay rates from the
resonance widths. The oscillating rf magnetic field perpen-
dicular to both the laser axis and the static magnetic field i
was applied by Lecher wires between which the laser tube was
placed. The frequency of the rf field was kept constant at -
158.4 MHz by multiplying the original frequency of a crystal
oscillator six times. The amplitude of the oscillating rf field

was estimated as about 1.5 G at most. In spite of the use of

oscillating field in place of rdtating field utilized in the
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theory described in Sec. V.2.2, we could neglect the Bloch-Siegert
shiftl3l) due to the counter-rotating field because the amplitude
of the rf field was small enough. Most of all apparatus, i.e.
the optical bench, mirror holders, and the tube holders, which
were placed in the double Helmholtz coils , were made of non-
magnetic aluminum alloy in order to avoid perturbations due to
residual magnetic fields.

The output of the laser was focussed on a silicon solar cell
after passing through a interference filter of 632.8 nm trans-
mission. In the present experiments, we used the field-modu-

lation techniquesl32)

which are commonly used in NMR or ESR
experiments. Hence, the modulation magnetic field of 400 Hz

was superposed on the static fiéld H. This modulation field
whose amplitude was kept constant at 0.8 G was applied by an
audio-frequency power amplifier and additional windings on the
double Helmholtz coils. The modulation in the output of the
solar cell at the frequency 400 Hz was phase-sensitively detected
by a lock-in amplifier, so that the output of the lock-in ampli-
fier, which was traced by an X-Y recorder sweeping the static
magnetic field H, showed the derivative of the Lorentzian reso-
nance signal as a function of H. The horizontal axis of the

X-Y recorder was driven by the current of the double Helmholtz
coils, and the conversion factor of the value of H to the current
was measured with accuracy of 0.1 %2 by an bptically pumped cesium

magnetometerl33).
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Vv.3.2 Experimental Results

A typical recorder trace is shown in Fig, 5.5, where the
horizontal axis is calibrated with the current of the double
Helmholtz coils, and the conversion factor is 20 G/A. As
expected in the previous section, we can see the double-resonance
signal as the derivative of the Lorentzian resonance as a function
of the strength of the static magnetic field H. We can estimate
the half-width at half-maximum of the magnetc resonance from the

separation AH between two peaks in Fig. 5.5 :
Aw = —i—guBAH. ' (5.25)

Since the double-resonance signal is thought to be determined
by the magnetic resonance in the 2p4 state as discussed in Sec.

V.2.3, we use the g-value of 1.298108)

in estimating Aw by using
Eg. (5.25).

We first investigate the effect of the rf magnetic field-
on the width of the magnetic resonaﬁce. The half-width at half-
maximum was measured by changing the amplitude of the rf field
which is thought to be proportional to the plate current Irf of
the final tube of the rf amplifier. We show in Fig. 5.6 the
experimental results for the square of the half-width at half-
maximum as a function of the square of the plate current. We
can see apparently in this figure a linear dependence of sz
on Irf2' which is consistent with the theoretical result given
by Eq.(5.10). When szlis extrapolated to the limit of vanishing
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Fig. 5.6 The équare of the half-width at half-maximum
of the magnetic resonance signal as a function of the

plate current Irf of the rf amplifier.
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Irfz, we can obtain the decay rate of alignment which consists
of the spontaneous and collisional relaxations. However,
throughout the following experiments measuring the pressue
broadening, the amplitude of the rf magnetic field was kept
constant at 1.5 G which was estimated from the power broadehing
seen in Fig. 5.6 for particular value of the plate current, so
that the effect of power broadening due to the rf field can be
subtracted through Eq. (5.10). Henceforth, we will denote the
width as Aw after subtracting the power broadening.

Now, we investigate the pressure broadening of the magnetic
resonance line. In order to measure the broadening caused by
collisions withvhelium, we made the double-resonance experiments
by varying the partial pressure of helium in the laser tube while
the partial pressure of neon was kept constant at 0.18 Torr.

We carried out the present experiment by using different isotopes
of helium, i.e. He3 and He4. In Fig. 5.7, the half-widths at
half-maximum Aw are shown as functions of.partial pressures of

He3 and He4. The least-squares fits of these plots in Fig. 5.7

to linear functions with respect to the partial pressures of He3

and He4 can be expressed as follows :

Aw = (5.40%0.22)x10'P  , + (8.23:0.20)x10" rad/sec
e (5.26a)
and
Mw = (3.71 0.20)x10'P_ , + (5.59 0.20)x 10" rad/sec

He
(5.26Db)
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Fig. 5.7 Half-width at half-maximum of the magnetic

resonance signal of the 2p4 state of neon as functions

of partial pressures of He3 and He4, at the fixed partial

pressure of 0.18 Torr of neon.
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where P 3 and P 4 are partial pressures of He3 and He4,
He

He
respectively, in units of Torr. The first terms in the right-
hand sides of Egs.(5.26) are the broadenings caused by collisions

(2)

with helium, and correspond to np<v>o in Eq.(5.12) where the

relative velocity is defined as
<v> = YBKT/TM , (5.27)

and M is the reduced mass of the colliding atoms. Hence, we
can obtain the alignment destroying cross sections for the 2p4
state of neon colliding with He3 and He4. When we assume that

the gas temperature T was 400 K, we obtain

-1 R
of2k 2= (8.88 £ 0.33) x 10715 cn?, (5.28a)
of2k = (6.29 % 0.37) x 1071 cn. (5.28b)

Here, it should be emphasized that the cross section for He3 is
about 30 percent larger than that for He4. This seems to
contradict the results of the theory using the van der Waals
interéction. We will discuss on this anomalous difference be-

tween the cross sections for He3 and He4

in the next section.
Similar experiments were made by varying the partial pressure

of neon while the partial pressure of He4 was kept constant at

0.9 Torr. In Fig. 5.8, we show the experimental plots of the

width Aw as a function of the partial pressure of neon. The
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Fig. 5.8 Half-width at half-maximum of the magnetic
resonance signal of the 2p, state of neon as a function
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of the partial pressure of neon, at the fixed He~ partial

pressure of 0.83 Torr.
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least-squares fit for these plots yields

Mw = (2.04:1.42)x10"p_ + (11.69:0.73)x10’ rad/sec.
(5.29)
We then obtain the alignment destroying cross section of neon

in the 2p4 state colliding with neon in its ground state :

(2

_ 15 2
ONe*-Ne =

(6.64 = 1.35) x 10 > cm®. (5.30)

Furthermore, we investigated the alignment destructions of
neon caused by collisions with heavier rare-gas atoms. In the
present experiments, we used the He-Ne laser tube which was
adulterated with a small amount of either argon or krypton.

In Figs. 5.9 and 5.10, the resonance widths measured are shown

as functions of the partial pressures of argon and krypton,
respectively, while the partial pressures of helium and neon

are kept constént at 0.83 and 0.18 Torr, respectively. In the
case of the mixturé of He-Ne-Ar, the discharge of argon prevented
the He-Ne laser from oscillating when the partial pressure of

argon P was increased, so that we could observe the double-

Ar

resonance signal only when the partial pressure P r Was less than

A
0.04 Torr. Similarly, in the case of the mixture of He-Ne-Kr,

we could observe the signal only for the partial pressure of
krypton PKr less than 0.02 Torr. The least-squares fits for these

experimental plots yield the following results :
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Fig. 5.10 As for Fig. 5.9, but as a function of the

partial pressure of Kr.
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Bw = (14.7224.22)x107P, _ + (12.60£0.08)x10’ rad/sec,
(5.31)
Aw = (22.6115.97)Xl07PKr + (12.60%0.07)x10’ rad/sec,

(5.32)
where PAr and PKr are the partial pressures of argon and krypton,
respectively, in units of Torr. We can calculate the cross
secﬁions from Egs.(5.31) and (5.32). However, these least~
squares fits are not so reliable compared with those for helium
or neon because we could not vary the partial pressures so wide-
ly as in the case of helium or neon, Therefore, we can only

estimate the possible ranges of the values of the cross sections

from Figs. 5.9 and 5.10 :

(2) 15 2

One*-ay = (15 ~ 55) x 107> cm®, (5.33)
(2 _ . -15 2
o2k . = (15 ~ 90) x 10717 cn®. (5.34)

The summary of the alignment destroying cross sections
measured in the present experiments are presented in Table 5.1
together with the values measured previously and calculated

theoretically by different author523)’88)’97).

v.3.3 Discussions and Comparisons with Theory

In this section, we compare the experimental results described
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Table 5.1 Alignment Destroying Cross Sections for Collisions

of Neon in the 2p4 State with Rare Gases in Units of lo_lscm2

PREVIOUS THEORETICAL PRESENT
PERTURBER |  Lopks WORKS WORK
3
He 8.88+0.33
5.40.42) 3.02)
net 6.30) 4.84P) 6.89+0.37
8.54%0.29C)
8.2:0.42) 7.7%)
b) b)
Ne 15.7+1.2 9.93 6.64+1.35
9.29+0.35%)
Ar ' 15 ~ 55
Kr 15 ~ 90

a) Ref. 97.
b) Ref. 88.

c) Ref. 23.
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in the previous section with the theory of isotropic collisions.
We use the theory of isotropic collisions applied to the

case of emitters in the state with J=2 perturbed by the ground

state atoms with J=0, on refering to the formalism given in

Sec. Im.3.1.

As mentioned in Chap. IO, the relaxation rate of alignment,

(2)

which is proportional to ¢ when collisions are isotropic, is

proportional to B2/5

which is the only factor dependent on the
characteristics of the virtual transitions, i.e., transition
probabilities, energies of intermediate states, etc. In Chap.
II, we have assumed that only one type of virtual transition
occurs during a collision. However, as a matter of fact, virtual
transitions to various intermadiate states with different angular
momenta are possible. Therefore, we must generalize the theory
to the actual case.

In the case of the 2p4 state, we consider three virtual
transitions, that is, 2p4—lss, 2p4—1s4, and 2p4—lsz, while we
neglect all other transitions, from the argument of energy con-
servation. These three transitions can be classified into two
types: (b) 2p,—ls, and 2p,—ls (=2 — j'=1); (c) 2p, —lsg (j=2 -
j'=2). Taking account of these two types of virtual transitions,
we can rewrite Eq. (3.27) as

dM

3o - 1(YD + YE)M, (5.35)

where §D and §E are defined by Egs.(3.31) and (3.33), respectively.
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From Table 3.2 and Eqgs.(3.31) and (3.33), we can readily obtain

the relation between the matrices §D and Y_ :

E
~ BE~
Ty = ==Y + q(@)1, (5.36)
D
where
ale) = 132 cos’o, (5.37)
b~v

R

and I is the 5x5 unit matrix. Substituting Eq. (5.36) into Eq.

(5.35), we obtain

BE -
= i[].--——]YDb4+-iq(9)M. (5.38)

o

~ B
aMm _ . _ _Els &
35 = 1[1 5 ]me, (5.39)
D
where
M = Mexp{if® q(ev)ae'}. (5.40)

Because Eq.(5.40) is a scalar transformation, this transformation
is trivial, so long as the relaxation among Zeeman substates is
considered. Then, Eq.(3.27) is still valid for the present case

if the factor BD in Eqg.(3.31) is replaced by

B=J(By - Bg), (5.41)
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Table 5.2 Transitions of Rare Gases and Their Wavelengths A
Together with the Oscillator Strengths fik and the Transition

Probabilities Yii

. A Yy
k i Jk Ji [nm] fik 7k1 1
[10 " sec ]
2p, 1s, 2 2 594.5 0.0556 1.05 a
Ne
2p, 1s, 2 1 609.6 0.157 1.69 a
(EMITTER) 2p, 1s, 2 1  667.8 0.265 2.38
He 'PS 'sy 1 0 58.43  0.276 179.9 a
Ne 1s, 1s0 1 0 74.37 0.0118 4,76
(PERTURBER)’ 1s, 1s0 1 0 73.59 0.162 66.4 a
ls, s; 1 0 106.7 0.059 11.6 b
Ar 1s, 1 0 104.8  0.228 46.5 b
ls, S 1 o0 123.6  0.187 27.2
Kr 4 >0
s, §, 1 0 116.5 0.194 31.7 c

a) Ref. 134.
b) Ref. 135.

c) Ref. 136.
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where the summation is taken over all possible virtual tran-

(2)

sitions. It should be noted that the cross section ¢ is

proportional to B2/5 :

(2) 2/5_ .3/

o'?) « B%5<y3/35 seys, (5.42)

(2) (2)
Ne*-x/ INe*-Ne

the experimental results with that estimated from this theory.

We then compare the ratio o calculated from
Present theoretical estimations were made by assuming that per-
turbers undergo only the virtual transitions from the ground stat
state lS0 to the first excited state lPi for helium, and to 1s
states for neon, argon, and krypton, while the emitter atoms of
neon undergo the virtual transitions between the 2p4 state and
the 1ls states. The values of the transition probabilities
necessary for the present calculations are tabulated in Table 5.2.
The transition probability Yki for a transition from the state k
to the state i is related to the reduced matrix element <i||d|k>"
of the electric dipole moment as follows :

<illdx>]? = 25mdy, ., (5.43)

327

where A is the wavelength for the transition. Then, we can
calculate the factor B for each pair of colliding atoms using
Egs.(3.32), (3.34), (5.41), and (5.43). The ratio of the align-
ment destroying cross section for collisions with rare gas X

to that for the collisions with neon can be derived easily from
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Eqg. (5.42) as

(2) 3| (5.44)

Ne*-Ne

(2) 2 y1/5
‘Ne*-x  _ [MNe-x Bre*-x }
g

Mye-NePne*-Ne

where Mg _o is the reduced mass for binary system of Ne and X.

In Table 5.3, the ratios calculated from Eq. (5.44) are shown
together with the experimental results. Our theoretical calcu-
lations show that the cross section increases monotonically with
the increése of the mass of perturber. Oon the other hand, the
cross section obtained experimentally for He3 is about 30% larger
than that for He4, and both of them are larger than that for neon,
which cannot be explained by the above theory using the electro-
static dipole-dipole interaction of the van der Waals type.

This anomaly in the cross sections for helium has not been
reported for the case of the 2p4 state of neon, until now. So
far as we know, there has been only one series of measurements

of the alignment destroying cross sections for Ne—He3 collisions

and Ne—He4 collisions, which has been made for the Zsttate>(J=l)
of neon by Wang et al.73). The reported cross section for He3
is larger than that for He4, namely
(2) o -15 2
cNeﬁs —Hed = (2.99 * 0.32) x 10 cm, (5.45)
2
af2) W = (2.78 + 0.37) x 10”1 cm?. (5.46)
Nezsz—He

although they have taken no notice of this anomaly.
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Table 5.3 Measured Cross Sections and Their Ratios to the
Cross section for Collisions with Neon Together with

Theoretically Calculated Ratios

PERTURBER PRESENT EXPERIMENT THEORETICAL RATIO
i By olFne
[10 cm ]

He> 8.880.33 1.34 0.854
et 6.89+0.37 1.04 0.897
Ne 6.6441.35 1 1

Ar 15 ~ 55 2.2 ~ 8.3 1.77
Kr 15 ~ 90 2.2~ 15 2.30
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It might be interesting to note that one may find a dip
around neon if one plotts the measured cross sections against
the atomic numbers of perturbers as was done in Ref. 25, Similar
dip has been found in the elastic scattering cross sections for

137) . More

collisions between electrons and rare-gas atoms
recently, similar properties have been reported in cases of alkali
atoms in the first excited P states perturbed by rare gas atoms,

for instance, the depolarization cross sections of sodium32),

5) 26),27) ,28) 26),27) ,29)

.2 o .
potassium , rubidium and cesium and

0) 31) 31)

the fine-structure mixings of sodium3 , potassium , rubidium ’

31). For the case of fine-structure mixing of sodium,

and cesium
Masnou-Seeuws has explained these anomalies for collisions with
light perturbers by taking account of the repulsive exchange
interaction whose effective range is much shorter than that of

the van der Waals interactionl38). The above-mentioned anomalous
properties may be explained as follows. In the case of heavy
perturbers such as argon or krypton, since the relative velocity
is rather small, the short-range repulsive interaction is negligi-
ble compared with the van der Waals interaction, so that, as the
mass of perturber is increased, the cross section becomes larger
due to the increase in the polarizabilities of rare-gas atoms.

On the other hand, for iight perturbers such as helium, the
polarizabilities are generally smaller and the relative velocities
are relatively large, so that the short-range repulsive inter-

action originating in the overlap of electronic orbitals of emitter

and perturber becomes important, and which results in the cross
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sections larger than those expected from the van der Waals inter-
action. Especially, the difference between the cross sections
for He3 and He4 should be attributed only to the difference in
the relative velocity. Here, it maf be noted that the nuclear
spin of He3, to which we have not given attention, gives no
significant effect on the alignment destroying cross sections so

long as the magnetic interaction, which is expected to be much

smaller than the electric interaction, is neglected.

V.4 Conclusions

In this chapter, we have investigated the alignment destruc-
tion of neon in the 2p4 state colliding with helium, neon, argon,
and krypton in their ground states, by means of the double-
resonance techniques of the He-Ne laser. The alignment destroy
ing cross sections have been measured from the pressure broadening
of the double-resonance signal. We have compared these experi-
mental results with the cross sections calculated by using the
theory of isotropic collisions in_which the van der Waals inter-
action is assumed.

Although there have been large errors in measurement of
cross sections for argon and krypton, we have found the increase
in the cross section with the increase of the atomic numbers of
perturbing rare-gas atoms from neon to krypton, which is con-

sistent qualitatively with the theory using the van der Waals
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interaction. On the other hand, the cross section for He3 was
about 30% larger than that for He4, and both were larger than that
for neon, which cannot be explained by the above theory.

It must be concluded that, as is in the case of alkali atoms
in the first excited P states colliding with helium, the short-
range repulsive interaction is predominant in the Ne-He colli-
sions rather than the 1ong—range van der Waals interaction,‘which
has been expected but has not been made clear. The relatively
large difference of the measured cross sections for He3 and He4
-may also indicate the possibility that the relative trajectory
of colliding pair of atoms deviates from a straight-line.  path
by the short-range repulsive interaction, as has been pointed

4)

out by Carrington and Corney3 .
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CHAPTER VI

SUMMARY AND CONCLUDING REMARKS

In the present work, we have made the theoretical and ex-
perimental investigations on the effects of collisional relax-
ation and transfer on laser-induced multipole moments in the
excited state of neon atoms. The first half of this thesis
has been devoted to the study of anisotropic collisions (Chapter
I—1Iv). In the latter half, we have investigated isotropic
collisions with various rare-gas atoms (Chapter V).

In chapter I, we have presented a historical review of the
theoretical and experimental studies on atomic collisions of
our present interest, giving a special attention to collisional
depolarizations of atoms in the excited states. The importance
of anisotropic colliéions for atoms excited by a laser has been
emphasized. In this connection, we have briefly reviewed
different types of anisotropic relaxations investigated hereto-
fore. Furthermore, we have pointed out the importance of dé—
polarizing collisions in understanding the polarization charac-
teristics of the Zeeman laser and the anomalous circular polari-
zation of interstellar masers.

In chapter II , we have introduced the density-matrix
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formalism and its representation on the basis of irreducible
tensorial sets as convenient mathematical foundations in dealing
with phenomena of optical pumping and relaxation. We have
shown that the irreducible representation provides a simple
expression for a polarized state of a Zeeman multiplet in terms
of multipole moments, for example, the orientation ( the magne-
tic dipole moment), the alignment (the electric quadrupole
moment), and so on. The behavior of these multipole moments
under the influence of an external magnetic field and relaxation
is well described by the master equation for the internal state
of atoms with an arbitrary total angular momentum.

We have also studied some properties of multipole relax-
ations within a Zeemen multiplet from the point of view of the
symmetry of the system regardless of particular origin of the
relaxation. When the situation is isotropic (i.e. spherically
symmetric), each multipole component relaxes independently with-
out coupling with each other. On the other hand, when the system
has lower symmetry, couplings between different multipole
components become allowed. We have studied especially on the
system with axial and plane-reflection symmetries, and derived
a number of useful relations for relaxation matrix elements with
respect to the multipole components.

In chapter I, we have theoretically investigated the de-
polarization of atoms in their excited state under the influence
of collisions with atoms in their ground state. We have ex-

tended the conventional theory of depolarizing collisions to
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the case of atoms excited by a single-mode laser.

Theoretical calculations have been made for emitters in
the excited state with an arbitrary total angular momentum.
At first, we have investigated the effect of anisotropic col-
lisions on emitters moving with a definite velocity whose
direction is fixed in the laboratory frame. - in these calcu-
lations, perturbef atoms considered are in the ground state
and have a velocity distribution given by an isotropic Maxwellian
function. The dependences of the relaxation matrix elements
on the velocity of the emitter have been calculated. Such
collisions can be considered to be important in the atomic beam
experiments. Then the theory has been extended to collisions
of emitters excited by a single-mode laser, which have a definite
velocity along the laser beam but have a velocity distribution
given by a two-dimentional Maxwellian perpendicular to the laser
beam. Numerical calculations have been made for emitters in the
excited state with J=1. The decay rates for each multipole
componeﬁt and the transfer rate between alignment and orientation
have been calculated as functions of detuning of the laser fre-
quency from the center of the absorption line and mass of the
perturber. We have found that, even when the laser is tuned at
the line center, the transfer rate is sufficiently large to be
observed experimentally. Another important feature of such
anisotropic collisions is the fact that the decay rate of each
multipole component pg increases as the detuning is increased,

. the amount being dependent not only on the order k but also on
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the value of |q].

We have also found that, as long as the system has both
of axial and plane-reflection symmetries such that the axis of
symmetry is contained in the planes of symmetries as in the
present case, no shift of a magnetic resonance line is caused
by anisotropy. On the other hand, the shift is induced in the
system which has only an axial symmetry as shown by Happerloo).
In this connection, we have pointed out that the pressure-induced

gJ—shifts observed by Yabuzaki et al.36)

are not caused by the
" anisotropic collisions studied in the present work.

In chapter IV, we have experimentally investigated the
effects of anisotropic collisions on atoms excited by a single-
mode laser. Magnetic depolarization signals have been observed
in the fluorescence emitted from the 2p4 state (J=2) of natural
neon which is excited by a single-mode dye laser tuned around
the line center of the lss—2p4 transition. We have made ex-
periments to study mainly on three typical features of aniso-
tropic collisions: (i) the dependenée of the decay rate of
alignment on the degree of anisotropy; (ii) the transfer from
alignment to orientation; (iii ) the transfer from orientation
to alignment. .The results of these experiments are summarized
as follows :

i) We have measured the variation of the width of the Hanle
signal by changing the detuning of the laser, and have found
the fact that the width slightly increases with the increase

of the detuning. This experimental result is in qualitativé
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agreement with the theoretical prediction.

ii) The transfer from alignment to orientation has been
observed by detecting the circularly polarized fluorescence
emitted by atoms excited by a linearly polarized laser light
beam. The ratio of the amplitude of the orientation signal
to that of the alignment signal has been measured by changing
the laser frequency around the absorption line. By comparing
the experimental results with the theory given in Chap. II, we
have found that the ratio is strongly affected by the presence

22

of Ne in spite of its small abundance. By taking the pre-

sence of Ne22

into account, we have found a fairly good agree-
ment with the theoretical prediction. We have also found in
these studies that the transfer rate does not largely depend

on the value of total angular momentum J of emitters.

iii) The transfer from orientation to alignment has been ob-
served by detecting the 1inéarly polarized fluorescence emitted
by atoms excited by a circularly polarized laser beam. We
could obtain the signal of alignment having the shape just as
predicted by our theory, but we could not make further
quantitative discussions because of the low signal-to-noise

ratio.

In these experiments, we could not vary the degree of aniso-
tropy so widely, because the mass of the emitter was equal to
that of the perturber. In order to make the anisotropy larger,

it seems to be preferable to investigate the collisional effects
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of heavy rare gas atoms on the first excited P state of alkali
atoms pumped by a single-mode laser.

In chapter V, we have experimentally investigated the
alignment destroying cross sections of neon atoms in the 2p, state
colliding with various rare-gas atoms, by means of the double-
resonance techniques in the gaseous laser. In this experiment,
we have used a multi-mode He-Ne laser operating at 632.8 nm, SO
that collisions can be considered to be approximately isotropic.
By solving the rate equations for the laser transitions (J=1-2},
we have shown that the resonant behavior appearing as the
intensity change of the laser output is attributed to the
magnetic resonance in the 2p4 state (J=2). We have measured
the pressure broadenings of the magnetic—resoﬁance signals by
changing the partial pressures of various rare gases, and we
have determined the alignment destroying cross sections of the
2p4 state of neon for collisions with He3, He4, Ne, Ar, and Kr.
The experimental results have been compared with the theory in
which the van der Waals interaction is assumed. We have found
that the cross sections measured experimentally for He3 is about
30% larger than that for He4, and both are larger than that for
Ne, which is contradictory with the theoretical prediction.

For collisions with light perturbers such as helium, we have
emphasized the importance of the short-range repulsive inter-

action rather than the van der Waals interaction.
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