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In few-degrees-of-freedom chaotic dynamical systems, local expansion rates which evaluate 
an orbital instability fluctuate largely in time, reflecting a complex structure in the phase space. 
Its average is called the Lyapunov exponent, whose positive sign is a practical criterion of chaos. 
There exist numerous investigations based on large deviation statistics in which one consid­
ers distributions of coarse-grained expansion rates (finite-time Lyapunov exponent) in order to 
extract large deviations caused by non-hyperbolicities or long correlations in the vicinity of bi­
furcation points [1]. It is recently shown[2] that the Lorenz system[3] has both hyperbolic and 
non-hyperbolic parameter regions by use of covariant Lyapunov vectors[4]. The Lorenz plot also 
reflect a difference between hyperbolicity and non-hyperbolicity as shown in Figs. 1(a) and 1(b). 
The chaotic attractors on the Poincare section z = r- 1, on which two unstable equilibrium 
points satisfying (±, y, i) = (0, 0, 0) and (x, y, z) =/= (0, 0, 0), are shown in Figs. 1(c) and 1(d). In 
these figures, the nullclines are also shown as straight lines satisfying x = iJ = 0 on the plane 
z = r- 1 and as hyperbolic lines satisfying i = 0. The two equilibrium points are given by 
a pair of intersections of the nullclines. We see hook-shaped parts of the attractor in Fig. 1 (e) 
are considered to be tangent points of stable and unstable manifolds in the vicinity of the un­
stable equilibrium points causing nonhyperbolicity. We will show that the fluctuation spectra 
(rate functions) of the local expansion rate distinguish the both. We also characterize spatia­
temporal intermittency in a coupled systems of chaotic elements[5] and turbulence modeled by 
a shell model[6] using statistical properties of not only the largest but also all other Lyapunov 
exponents such as variances and rate functions as well as Lyapunov dimensions. Figure 1(f) 
depicts a spatio-temporal pattern showing fully developed spatio-temporal chaos obtained from 
a coupled system consisting of hundred identical chaotic logistic maps. The fluctuation spectra 
of the 5th,. 25th, 35th, 55th and 85th Lyapunov exponents are shown in Fig. 1 (g). The variances 
of the local expansion rate, which is proportional to the curvature around the average (the Lya­
punov exponent) of the fluctuation spectrum, as a function of the Lyapunov exponent are plotted 
in Fig. l(e). Although a parabolic dependence is observed in this case, a completely different 
average-dependence of variance is obtained in a shell model of turbulence. 
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(a) r = 28 (hyperbolic) 
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(c) r = 28 (hyperbolic) 
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(b) r = 40 (non-hyperbolic) 
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Figure 1: (a, b) Lorenz plots and ( c,d,e) attractors on the Poincare section z = r - 1 of the 
Lorenz equation (±, iJ, z) = (-lOx+ lOy, -xz + rx- y, xy- 8z/3). (f) Spatio-tempral pattern, 
(g) rate functions of the local expansion rates, and (h) variances of the local expansion rates as a 
function of the average (the Lyapunov exponent) of the coupled map lattice in a fully developed 
spatio-temporal chaos. 
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