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Abstract 

A parametrically excited pendulum is a simple nonlinear dynamical system. The rotation of parametric pen­
dulum [1] exhibits a conversion from the external vibration into its rotational motion. The converted motion is 
applicable to energy scavenging from vibration of external source. Since the periodic rotation coexists with low 
energy states and motions, the control is required to maintain the periodic rotation against irregularity, noise, 
and frequency variation of the vibration. We propose a control method [2] for establishing the periodic rotation 
of the parametric pendulum based on the delayed feedback control [3]. In the implementation of the control, 
the delay is fixed at the period of the target motion. For the setting of the delay the frequency variation of 
vibration causes the mistuned delay in the control scheme. In this paper, the tolerance of the proposed control 
with mistuned delay is confirmed experimentally. 

The experimental setup for parametric pendulum is shown in Fig. 1. The mechanical pendulum consists of 
the mass m = 189.1 g and the length l = 138.3 mm. The pendulum is supported by a mechanical rig mounted 
on an electromagnetic shaker. The electromagnetic shaker generates a sinusoidal excitation in the vertical 
direction which corresponds to the parametric excitation. Fig. 2 shows the block diagram of the control method 
for establishing the periodic rotation of the mechanical pendulum. The dynamics of the experimental setup is 
described by 
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u(t) = K(8(t- r) + 8- 8(t)), 

where t denotes the time, () the angular displacement of pendulum from the downward position, v the angular 
velocity, and g the gravity acceleration. The vertical excitation is regulated with the amplitude a and the 
frequency f. The constant ¢ denotes the initial phase of excitation. Since we have no exact model of the 
damping effect, the damping is described as the function D(8, v). The linear viscous coefficient is estimated 
around 1 x 10-4 N ·mls. The function u(t) denotes the control input with the control gain K, the delay timer, 
and the periodicity on 8. The control input is applied as a torque to the mechanical pendulum by a DC motor 
through gears with F = 0.18 N · m I A. The required angular displacement () is measured by an angle sensor. The 
delayed feedback loop can be implemented as a program in a computer with AID and D I A converters. Now 
we target the periodic rotation at which the pendulum rotates once during the excitation period T := 11 f. For 
the target rotation the angular displacement () exhibits the periodicity 8(t) = 8(t- T) + 21r. Thus we set the 
delay time T = T and the periodicity on e = 27r so that the periodic rotation is established. 

Figure 1: Experimental setup for parametric pen­
dulum. 
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Figure 2: Block diagram of the start-up control with time 
delay for the periodic rotation inherent in the parametric 
pendulum. 
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Figure 3: Establishment of the periodic rotation 
inherent in the vertically excited mechanical pen­
dulum from its periodic oscillation. 
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Figure 4: Bifurcation diagram of rotation with respect to 
the delay timeT in the experimental setup. 

Figure 3 shows an example of the control for starting up the periodic rotation inherent in the experimental 
setup. The vertical excitation is fixed at a= 1.1 m/s2 and f =2Hz so that the periodic rotation coexists with 
a periodic oscillation. The control parameters are adjusted as K = 0.072 A/rad, T = T = 1/ f = 0.5 s, and 
8 = 21r. The points in the bottom figure denote the stroboscopic points taken at every excitation period T. The 
vertical dash line represents the moment of onset of the control. The result shows that the periodic rotation is 
established from the periodic oscillation. After the establishment of rotation, the control input u(t) disappears. 
This suggests that the periodic rotation is inherent in the experimental setup at the excitation. 

An experimental bifurcation diagram of rotation with respect to the delay time T is shown in Fig. 4 at 
a = 1.2 m/s2 , f = 2.3 Hz, K = 0.072 A/rad, and 8 = 21r. The diagram is plotted through the stroboscopic 
observation at every excitation period T = 1/ f = 1/2.3 s. The points represent steady rotations measured 
by decreasing and increasing the delay time T from the excitation period T. According to the experimental 
procedure, we display the bifurcation parameter at the reciprocal of the delay time in Fig. 4. The inherent 
periodic rotation is maintained with null control input u at the delay time T = T. The periodic rotation is 
denoted by the single stroboscopic point in Fig. 4, which implies that the period of the rotation is coincident with 
the excitation period T. Decreasing the delay timeT shifts the stroboscopic point of angular displacement 8(t) 
in the positive direction. The shifted single stroboscopic point corresponds to a periodic rotation that does not 
exist without the control. The control input u( t) remains and vibrates periodically. Further decrease of the 
delay time T induces a bifurcation. At around T = 1/3.3 s the periodic rotation disappears and a quasiperiodic 
rotation appears. The quasiperiodic rotation is depicted by a number of the stroboscopic points. Increase of 
the delay time T shifts the the stroboscopic point of 8( t) in the negative direction in a symmetric fashion. By 
increasing the delay time T to 1/2.18 s, another bifurcation occurs. We observe quasiperiodic rotations for the 
longer delay time T. The bifurcation diagram shows the existence range of periodic rotation in the domain of 
the delay. That is, the proposed control can track a periodic rotation in a certain range of the delay time T. 

The existence of periodic rotation in the domain of delay represents the tolerance of proposed control with 
mistuned delay. The width corresponds to the tolerable range of incorrect delay. For the periodic rotation the 
maximum of input torque is much smaller than the maximum torque induced by the gravity. Therefore the 
periodic rotation can be maintained by sufficiently low energy consumption of the control. 

In this abstract, we clarified the tolerance of control method to maintain the periodic rotation of parametric 
pendulum with mistuned delay. The tolerable range of delay indicates the performance of the proposed control. 
However, the analysis of the system with delay is complicated because of the infinite dimension of state space. 
The presentation will report a theoretical estimation of the tolerable range of delay by considering a system 
without delay. 
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