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Large ensembles of coupled nonlinear oscillators appear in a variety of contexts of science and technology 
to play a crucial role. For example, many organs of animals such as brains, hearts, and gastrointestinal tracts 
can be considered as a large ensemble of coupled oscillators, each functioning to support life through properly 
coordinated synchronization of constituent oscillators[!]. Besides synchronization, coupled oscillators exhibit 
many other interesting behaviors including clustering, spatiotemporal chaos and so on, as revealed by quite a 
few theoretical and experimental studies done so far (see e.g. [2]). 

In reality, however, any system cannot escape from more or less damages caused by aging, accidents, diseases 
and so forth. Investigating effects of such damages should be indispensable to establish a full-fledged theory of 
coupled-oscillator dynamics. As an important case of damaged systems, one may suppose that some elements 
of the system lose their self-oscillatory nature, becoming damped oscillators. In this case, one encounters an 
ensemble comprising both normal and damped oscillators. The study of such dynamical systems may also 
be significant in its own right, because there is an important example (and probably many other) of coupled 
oscillators having this type of architecture, which is circadian clocks governing daily activities of mammals; recent 
findings indicate that these physiological clocks include fairly many neurons which do not fire spontaneously[3]. 

Some years ago, we started to tackle the dynamics of such heterogeneous ensembles of coupled oscillators 
for the first time, to our knowledge[4]. The purpose of this presentation is to give a brief review on our 
earlier results, which are mostly about globally coupled systems, and then report on recent results concerning 
a locally coupled system. Hereafter, normal oscillators, i.e. self-sustained oscillators which may be periodic or 
chaotic, will be refered to as active oscillators, while non-self-oscillatory units, namely damped oscillators in a 
generalized sense, will be called inactive oscillators. 

Globally coupled systems 

The general form of equations treated here[4, 5, 6] is given by 

(1) 

for j = 1, ... , N(>> 1), where K is the coupling strength and D is a constant matrix. For simplicity, the 
uncoupled dynamics represented by Fj are set to be the same for all active oscillators, j = 1, ... , N(l- p), and 
also for all inactive oscillators, j = N(l- p) + 1, ... , N, where pis the ratio of inactive elements. We examined 
effects of increasing p, which we call "aging", in terms of the ( K, p) phase diagram for building blocks Such 
as the Stuart-Landau oscillator, the Rossler oscillator, and the Brusselator. For the case of coupled Rossler 
oscillators, active oscillators were set to be not only periodic, but also chaotic. Main results are as follow[4, 5, 6]: 
(1) ForK greater than a threshold value, Kc, a transition takes place from a dynamic state to a steady state as 
the parameter p exceeds a critical value, Pc, which depends on K; we call such a transition an aging transition 
(AT). The critical ratio Pc is an important quantity because it measures the robustness of the system's dynamic 
activity against the increase of defects or aging. ForK::; Kc, the system remains to be dynamic until preaches 
unity. (2) An order parameter can be introduced as M = ((X- (X) )2), where X is the system's centroid and 
the brackets stand for long time average. This order parameter obeys universal scaling laws near an AT and also 
near the critical point (K,p) = (Kc, 1). (3) If the nonisochronicity of active oscillators is strong enough, then 
there appears a horn-like region in the phase diagram where active oscillators split into a number of clusters. 
The mechanism of this phenomenon was elucidated[6, 7]. 

Locally coupled systems 

Globally coupled systems are an idealistic limit of systems with long-range coupling. For describing the behavior 
of real systems, one needs to study systems with other modes of coupling architecture as well. A large ring 
of Stuart-Landau oscillators with nearest neighbor interactions as expressed below has been studied as a first 
step[8]: 

(2) 
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Figure 1: Aging transition boundaries in Eq.(2) for N = 100,200,400,800, 1600 from the lowest to the highest. 
The vertical line shows Kc (theory). From Ref.[8]. 

for j as in Eq.(1), where Zj is the complex amplitude of the jth oscillator with z0 = ZN, ZN+l = z1 and n, ck are 
real parameters. The attribute of each oscillator is determined by aj, which is positive (a> 0) for active sites, 
while negative ( -b < 0) for inactive sites. For K = 0, each active element is an identical limit-cycle oscillator 
with amplitude yla. The progress of" aging" was made to occur in a random way in the sense that at each step 
of increasing p, a new inactive site was randomly selected from among active ones. Therefore, simulation results 
were averaged over many realizations of the aging process. Main results are the following two[8]: (1) The AT 
boundary disappears for N ---+ oo in such a way as 1 - Pc <X N-'Y, where the exponent 'Y depends on parameters 
(see Fig. 1). (2) Under a certain condition, the quenched disorder of the system created by the random aging 
process can counterintuitively enhance the system's phase coherence. These results will be given theoretical 
explanations. 

A concluding remark 

The dynamics of large ensembles of coupled active and inactive oscillators is not only important to check the 
robustness of the behaviors of ordinary ensembles of coupled oscillators, but also provides a rich variety of novel 
phenomena worth extensive studies. 
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