TITLE:
<Contributed Talk 34> β-expansion's Attractors Observed in A/D converters

AUTHOR(S):
Kohda, Tohru; Horio, Yoshihiko; Aihara, Kazuyuki

CITATION:

ISSUE DATE:
2011-12

URL:
http://hdl.handle.net/2433/163115

RIGHT:
\(\beta \)-expansion's Attractors Observed in A/D converters

Tohru Kohda\(^1\), Yoshihiko Horio\(^2\), and Kazuyuki Aihara\(^3\)

\(^1\)Department of Informatics, Kyushu University, Motooka 744, Nishi-ku, Fukuoka, 819-0395, Japan, kohda@inf.kyushu-u.ac.jp

\(^2\)Department of Electrical and Electronic Eng., Tokyo Denki University, Tokyo, 101-8457, Japan, horio@eee.dendai.ac.jp

\(^3\)Institute of Industrial Science, The University of Tokyo, 4-6-1, Komaba Meguro-ku, Tokyo, 153-8505, Japan, aihara@sat.t.u-tokyo.ac.jp

A new class of analog-to-digital (A/D) and digital-to-analog (D/A) converters using a flaky quantiser, called the \(\beta \)-encoder, as shown in Fig. 1 [1, 2, 3] has been shown to have exponential bit rate accuracy while possessing a self-correction property for fluctuations of the amplifier factor \(\beta \) and the quantiser threshold \(\nu \). Motivated by the close relationships [4, 5, 6] between \(\beta \)-transformations and \(\beta \)-expansion, we have recently observed [9, 10] that (1) such a flaky quantiser is exactly realized by the "multi-valued Rényi-Parry map", defined here so that probabilistic behavior in the "flaky region" is completely explained using dynamical systems theory; (2) a sample \(x \) is always confined to a subinterval of the contracted interval while the successive approximation of \(x \) is stably performed using \(\beta \)-expansion even if \(\nu \) may vary at each iteration (i.e. a small real-valued quantity, approximately proportional to the quantisation error, does not necessarily converge to any fixed value, e.g., 0 but may oscillate without diverging. Such a phenomenon is precisely the kind of "chaos"; (3) such a subinterval enables us to obtain the decoded sample easily, as it is equal to the midpoint of the subinterval and to prove two classic \(\beta \)-expansions, known as the greedy and lazy expansions [7, 8] are perfectly symmetrical in terms of their quantisation errors. The subinterval further suggests that \(\nu \) should be set to around the midpoint of its associated greedy and lazy values. A switched-capacitor (SC) circuit technique [11, 12] has been proposed for implementing A/D convereter circuit based on several types of \(\beta \)-encoders and SPICE simulations have been given to verify the validity of these circuits against deviations and mismatches of circuit parameters. Our review

is twofold. First, the \(\beta \)-encoder leads us to naturally define the "multi-valued Rényi-Parry map" [4, 5] with its eventually onto map, as it is identical to the Parry's \((\beta, \alpha)\)-map [6]. Second, chaos, called "\(\beta \)-expansion's attractors" can be observed on the onto-map. Two types of \(\beta \)-expansion's attractors are as follows:

1. Scale-Adjusted \(\beta \)-Map [9, 11]: Daubechies et al. [1, 2] introduced a "flaky" version of an imperfect quantiser, defined as

\[
Q^\nu_{\Delta \beta}(z) = \begin{cases}
0, & \text{if } z \leq \nu_0, \\
1, & \text{if } z \geq \nu_1, \\
0 \text{ or } 1, & \text{if } z \in \Delta \beta = [\nu_0, \nu_1], \nu_0 < \nu_1,
\end{cases}
\]

(1)

which is a \(\nu \)-varying model of a quantiser \(Q_\nu(z) = \begin{cases}
0, & \text{if } z \leq \nu, \\
1, & \text{if } z \geq \nu,
\end{cases} \nu \in [\nu_0, \nu_1], \nu_0 < \nu_1 \). We obtain:

Lemma 1 [9]: Let \(S_{\beta, \nu, s}(x) \) be the scale-adjusted map with a scale \(s \), defined by

\[
S_{\beta, \nu, s}(x) = \beta x - s(\beta - 1)Q^\nu(x) = \begin{cases}
\beta x, & x \in [0, \nu], \\
\beta x - s(\beta - 1), & x \in [\nu, s], \nu \in [s(\beta - 1), s], s > 0
\end{cases}
\]

(2)
which is referred to as the “multi-valued Rényi-Parry map” on the flaky region $\Delta_\beta = [s(\beta - 1), s]$ and has its eventually onto Parry’s (β, α)–map [6] with the subinterval $[\nu - s(\beta - 1), \nu]$ as shown in Fig. 2. This map realises the flaky quantiser $Q^f_{s(1-\gamma), \gamma}(\cdot)$. Let $b_{i,S_{\beta,\gamma_1}, \gamma_1}$ be its associated bit sequence for the threshold sequence $\nu^f_1 = \nu_1 \nu_2 \cdots \nu_L$, defined by

$$b_{i,S_{\beta,\gamma_1}, \gamma_1} = Q_{\gamma_\nu}(S_{\beta,\gamma_1}^{-1}, s)(x)$$

(3)

Then we get $x = s(\beta - 1) \sum_{i=1}^{L} b_{i,S_{\beta,\gamma_1}, \gamma_1} \gamma_1 + \gamma_1 S_{\beta,\gamma_1}^{L} s(x)$ and its decoded value

$$\hat{x}_{L,S_{\beta,\gamma_1}, \gamma_1} = s(\beta - 1) \sum_{i=1}^{L} b_{i,S_{\beta,\gamma_1}, \gamma_1} \gamma_1 + \gamma_1 S_{\beta,\gamma_1}^{L}.$$

2. Negative β-Map[10, 12]; We get

Lemma 2[10]: Let $R_{\beta,\nu,s}(x): [0, s) \to [0, s)$, $s > 0$ be the (scale-adjusted) negative β-map, defined by

$$R_{\beta,\nu,s}(x) = -s x + s[1 + (\beta - 1)Q_{\gamma_\nu}(x)] \begin{cases} s - \beta x, & x \in [0, \gamma_\nu), \\ \beta s - \beta x, & x \in [\gamma_\nu, s), \end{cases}$$

which is another “multi-valued Rényi-Parry map” on the flaky region $\Delta_\beta = [s(\beta - 1), s]$ realising $Q^f_{s(1-\gamma), \gamma}(\cdot)$ and has its eventually onto Parry’s (β, α)–map [6] with the subinterval $[\nu - s, \beta s - \nu]$ as shown in Fig. 3. Let $b_{i,R_{\beta,\nu,s}, \nu}$ be the associated bit sequence for the threshold sequence ν^f_1, defined by

$$b_{i,R_{\beta,\nu,s}, \nu} = Q_{\gamma_\nu}(R_{\beta,\nu,s}^{-1}, \nu)(x)$$

(5)

Then we get $x = (-\gamma)^L R_{\beta,\nu,s}^{-1}(\nu)(x) - s \sum_{i=1}^{L} f_i R_{\beta,\nu,s}^{-1}(-\gamma)^i$ and its decoded value

$$\hat{x}_{L,R_{\beta,\nu,s}, \nu} = s(-\gamma)^L/2 - \sum_{i=1}^{L} f_i R_{\beta,\nu,s}^{-1}(-\gamma)^i,$$

where $f_i R_{\beta,\nu,s}^{-1} = 1 + b_{i,R_{\beta,\nu,s}, \nu} (\beta - 1)$. Such a negative β-expansion defines a new A/D converter called a negative β-encoder which facilitates the implementation of stable analog circuits. Figures 2 [11] and 3 [12] show a typical β-expansion’s attractor of Eqs.(2) and (4), respectively.

Acknowledgments

This research is supported by the Japan Society for the Promotion of Science (JSPS) through its “Funding Program for World-Leading Innovative R&D on Science and Technology (FIRST Program)”.

References