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Introduction 

When a lid of a cavity moves in a direction parallel to the lid, flows are driven in the cavity. Since the 
internal flows display a lot of interesting physical phenomena, they have been one of the important subjects 
of studies in fluid mechanics. The internal flows in the closed system with the simplest geometry are 
theoretically as well as practically important. 

The geometry of a three-dimensional lid-driven rectangular cavity with width H, depth D and span L is 
presented in Fig.l. The upper wall(y= 1) moves in x-direction with constant speed U. Non-dimensional 
geometrical parameters of the cavity are the aspect ratio f=DIH and the span wise aspect ratio A=LIH. The 
flow parameter is the Reynolds number Re=U/Hv where vis the kinematic viscosity. 
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Figure1: Geometry of a lid-driven cavity. 

Streamlines and Poincare sections are availabe for examining characteristic features of three-dimensional 
cavity flows. Ishii et a/. [1,2] studied the streameline structure in the steady flow fields in a cubic 
cavity(f=A=l) for Re from 100 to 400. They showed that Poincare sections of the streamlines present 
various structures of invariant curves, resonant islands and chaotic distribution. And we studied [3] the 
steady flows in a long-span square cavity(f=1) with A=6.55. In the present paper we report the results of 
numerical simulations for the incompressible steady flows in cavities with various values of the aspect ratio 
and the span aspect ratio. 

The Governing Equations 

Flows are governed by the three-dimensional incompressible Navier-Stokes equations, 

au 1 2 
-=-u·Vu-Vp+-V u (1), at Re 

V ·U = 0 (2), 

where u(u,v,w) is the velocity and p is the pressure. All quantities are normalized with the cavity width H, 
the speed of the moving lid U and the constant density p. 

Streamlines are determined by the following equations: dx = dy = dz. 
u v w 

In steady flows the particle trajectories coincide with the streamlines. The Poincare section is a map of 
intersections of streamlines which traverse a fixed plane. A solenoidal vector field in three deimension is 
equivalent to a time-dependent, one-dimensional Hamiltonian system, and the Poincare sections of 
streamlines correspond to phase diagrams of the Hamiltonian system [4]. 

Numerical Method 

The governing equations are numerically solved by the Marker-and-Cell (MAC) method. In the MAC method, the 
Poisson equation for pressure needs to be solved in place of the continuity equation (2).We consider the 
obtained state as a steady state and stop the time integration of Eq.(l) when the magnitude of the velocity 
increment for a time step becomes sufficiently small. 

The flows in lid-driven cavities have a variety of spatial scales. We therefore have to use numerical schemes with 
high accuracy and high resolution in the simulation. In the present study the spectral-like Combined Compact 
Difference (CCD) scheme [5] is adopted to evaluate spatial derivatives. First and second derivatives in the 
momentum equation and the Poisson equation are evaluated by using the CCD scheme. 
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Results 

In this section we present the results of a square cavity with A=6.55. Figure 2 shows a typical streamline of 
chaotic motion as well as a streamline which forms a closed curve in the Poincare section. 
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Figure2: A localized streamline and a streamline of chaotic motion for Re = 300. 

In Fig.3 we present the Poincare sections in the region near the end-wall for Re = 100, 200, 250 and 300. The left 
side is the end-wall. At Re = 100, many points form closed curves. The closed curves in the Poincare section imply 
that a streamline covers an invariant torus. The map has seven resonant islands. Dots in the outer region surrounding 
the tori show chaotic motion. In the Poincare section at Re = 200 and 300, there are fewer closed curves. The figure 
at Re = 250 is the Poincare section near the 3: 1 resonance. This corresponds well with the phase portrait of a resonant 
Hamiltonian system [6]. In the case of A=6.55 the value of Re at which the 3:1 resonance occurs is smaller for 
f=1 than those for f=0.5 and 1.5. 
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Figure3: Poincare sections in the region near the end-wall for Re = 100, 200, 250 and 300. 

Concluding Remarks 

We have studied the variation of the structure of the flow field with the Reynolds number. The Poincare 
sections of the resonances are found to correspond well with the phase portrait of a resonant Hamiltonian system. 
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