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After a review of development of studies on chaotic motion of fluid particles and fluid mixing by a flow in a 
curved pipe, numerical results on chaotic motion of fluid particles and fluid mixing by a steady three-dimensional 
flow through a helix-like circular pipe with periodic variations in curvature and torsion are shown. 

Studies of chaotic mixing in a curved pipe 

It is widely known that chaotic mixing is an efficient method for the mixing by laminar flows. Chaotic mixing 
implies the mixing caused by the chaotic motion of fluids that yields the exponential stretching and folding 
of fluid elements. Chaotic motion of fluid particles, sometimes called the Lagrangian chaos, has been studied 
extensively on the basis of the theory of dynamical systems, as reviewed in [1] and [2]. There are also several 
studies of chaotic mixing by two-dimensional time-periodic flows or three-dimensional steady flows, as reviewed 
in [1], [3] and [4]. 

As a part of such studies, there are studies on the chaotic motion of fluid particles and the enhancement of 
mixing and heat transfer in steady laminar flows in a curved pipe composed of many segment pipes of constant 
curvature and zero torsion caused by connecting them with a twist. Jones et al. [5] investigated the motion of 
fluid particles by a steady flow in a twisted circular pipe composed of a series of segment pipes curved through 
180°. Using Dean's velocity field [6] as the flow in each segment pipe, they showed that chaotic motion of 
fluid particles is yielded by connecting neighboring segments with a twist, and examined the dependence of 
this motion on a twisting angle and another parameter characterizing the flow in this pipe. Acharya et al. [7] 
showed both by numerical simulations using Dean's velocity field and by experiments that chaotic mixing in 
alternating-axis coils twisted at periodic locations causes a higher rate of heat transfer compared to the mixing 
in constant-axis coils of no twist. Chaotic mixing by a flow in a twisted pipe was also examined in [8] both 
experimentally and numerically. They used a coiled tube composed of a succession of go0 -bends connected with 
neighboring bends with a twist of goo in experiments, and used Dean's velocity field as the flow in each bend in 
numerical simulations. They showed that the chaotic motion of fluid particles in this coiled tube contributes to 
an increase in transverse dispersion. It should be noted that the velocity field used in the numerical examinations 
of all the above studies is discontinuous on the cross-sections where neighboring segments are connected with 
a twist. Contrary to it, using numerically obtained continuous velocity fields, Yamagishi et al. [g] examined 
the chaotic mixing and heat transfer by a steady flow in a twisted pipe composed of a series of goo-bends for 
various twisting angles between neighboring bends. They showed the dependence of mixing performance on the 
twisting angle by using Poincare sections, Lyapunov exponents, and residence time distributions. 

Flow and fluid motion in a helix-like pipe 

In this section, the results on the chaotic motion of fluid particles and fluid mixing by a 
steady continuous flow through a helix-like circular pipe with periodic continuous vari
ations in curvature and torsion are shown [10]. That is, we consider a three-dimensional 
steady flow in a helix-like pipe with a circular cross-section of radius a. This pipe is 
twisted around a circular or elliptic cylinder, as shown in Fig. 1. The centerline of this 
pipe is expressed as x = A cos 'fJ, y = B sin 'fJ, z = C'fJ- d sin( 'fJ- rJo), by using parameter 
TJ, where Cartesian coordinates x, y and z are non-dimensionalized by a. Also A, B, c, d 2nc 

and 'f/o are non-dimensional constants. A and Bare close to semiminor and semimajor 
axes of the ellipse around which the pipe is twisted. This pipe is periodic with period ; , 
27r of 'f/· The difference between z coordinates of this pipe at 'fJ = 0 and 'fJ = 271" is :~,> 
27rc. Moreover, d characterizes the amplitude of periodic displacement of the pipe in Figure 1: G.;~~etrical 
the z direction from a usual helical pipe with d = 0. From the above expression of the configuration of a 
centerline, the curvature "'('fJ) and torsion r(rJ) of centerline of this pipe, both periodic helix-like pipe. 
with period 27r, can be calculated. 

As a steady velocity field of a viscous incompressible fluid in a curved pipe with constant curvature "' 
(non-dimensionalized by a) and zero torsion caused by an axial pressure gradient, Dean [6] gave the following 
approximate solution: 

2 "'Re 2 2 2 "'Re U8 (r) = 2(1- r ), Ur(r, e) = ----n-(1 - r ) ( 4- r ) COS e, ue(r, e) = 72(1- r 2 )(4- 23r2 + 7r4
) sin e. (1) 
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Here r and B are polar cross-sectional coordinates non-dimensionalized by a, in which B = 0 is the direction 
toward the center of curvature, and s is a non-dimensional axial coordinate. Also, Us, Ur and ue are s, r and B 
components of fluid velocity non-dimensionalized by mean axial velocity U. Reynolds number Re is expressed 
as Re = aU fv where v is kinematic viscosity. Velocity components ur(r, B) and ue(r, B) yield streamlines of a 
cross-sectional flow composed of two symmetric vortices. Velocity field ( 1) is a good approximation of exact flow 
if"" is small andRe is not so high. Although the helix-like pipe we consider has a periodically-varying non-zero 
curvature and torsion, we use eq. (1) with "" = ~£(TJ) as an approximate velocity field at each cross-sectional 
location rJ under the assumption that"" and Tare small and their variations are slow. The cross-sectional motion 
of fluid particles associated with their axial movement is expected to be approximately governed by 

dr _ '( ) ur(r, B) dB _ '( ) [ue(r, B) _ ( )] 
d - s rJ ( ) , r d - s rJ ( ) rr "' , 'fJ Us r 'fJ Us r 

(2a, b) 

where (r(rJ), B(TJ)) are polar coordinates of fluid particles in which B = 0 is the direction toward the center of 
curvature at the cross-section of rJ, and s'(TJ) expresses the derivative of arclength along the centerline of the 
pipe with respect to "'· Here the last term on the right-hand side of eq. (2b) is necessary in order to take the 
effect of torsion into account. For a usual helical pipe of constant "" and T, no chaotic motion of fluid particles 
is expected because eq. (2) is an antonomous system with respect to two variables. 

By solving eq. (2) numerically, we examine the chaotic motion of fluid particles and fluid mixing. In 
this examination, Poincare sections of the locations of fluid particles on the ( R, B) cross-sectional plane at 
rJ = 2nrr, ( n : integer) are mainly used. Here R = n/2 - r 2 is used in place of r so that the Poincare map 
of cross-sectional motion of fluid particles associated with their axial movement by rJ = 27r is area-preserving. 
It is found that the chaotic region in Poincare sections is relatively large for Re around 40 and that there is 
an intermediate range of Re for which high mixing efficiency is expected. Next, the dependence of Poincare 
sections on the ratio of A and B is examined for fixed value of circumferential length of the ellipse around which 
the pipe is twisted. Larger chaotic region is observed for a thinner ellipse. Therefore, the pipe twisted around 
a thinner elliptic cylinder is expected to be more efficient for mixing. From the examination of dependences of 
Poincare sections on other constants in the expression of the centerline, we also find that larger chaotic region 
is observed if the pipe is twisted around a cylinder of smaller radius, and that if A < B, the case of rJo = 0 is 
expected to be the most efficient for mixing. Moreover, from the examination of motions of initially-separated 
two kinds of many fluid particles in a few periods of rJ, we confirm that the chaotic motion is important for the 
efficient mixing of fluids in a small number of periods. For example, the twisted pipe considered in the present 
study is much more efficient for mixing in a few periods than a usual helical pipe of constant "" and T that causes 
no chaotic motion. Finally, we find that most of the dependences of Poincare sections and mixing efficiency on 
the constants in the expression of the centerline can be explained by the variation of >.(TJ) = 12T(TJ)/(~£(TJ)Re) in 
one period of"'· That is, if >.(TJ) varies with larger amplitude within the range 0 <).. < 1, larger chaotic region 
is expected. 
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