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The statistical-thermodynamical formalism has been successfully applied to temporal fluctuations caused by 
chaotic or stochastic dynamics. In chaotic dynamical systems, local expansion rates which evaluate an orbital 
instability fluctuate largely in time, reflecting a complex structure in the phase space. Its average is called the 
Lyapunov exponent, whose positive sign is a practical criterion of chaos. There exist numerous investigations 
based on large deviation statistics in which one considers distributions of coarse-grained expansion rates (finite­
time Lyapunov exponent) in order to extract large deviations caused by non-hyperbolicities or long correlations 
in the vicinity of bifurcation points[1]. In general, statistical structure functions consisting of weighted averages, 
variances, and these partition functions as well as fluctuation spectra of coarse-grained dynamic variables can 
be obtained by processing the time series numerically. In some cases, we can obtain these structure functions 
from matrix calculations. We herein try to apply to network analyses an approach based on an weighted visiting 
frequency corresponding to the Gibbs probability measure and large deviation statistics in the research field of 
chaotic dynamical systems. Along this line, graphs and networks can be related to chaotic dynamics[2]. 

For stationary discrete-time signals u1 (j = 1, 2, · · · ) , we consider the following local average over n steps 
Un = ~ 'E7=l Uj· For n ---+ oo, Un coincides with the long-time average (u). For a large but finite n, Un 
fluctuates and distributes. Let the distribution function be Pn ( u). Even for random or chaotic time series, 
there exists a characteristic time scale nc of correlation decay. For n ~ nc, the following scaling holds: Pn(u) ex 
exp( -nS(u)), where S(u) is called fluctuation spectrum or rate function. Note that the following limit holds: 
P00 (u) = 8(u- u00 ), U00 = (u). For a real parameter q, we define the following generating function Mq(T): 
Mq(n) = (eqnfln) = f~oo Pn(u)eqnudu. For n >> nc, the following scaling holds: Mq(n) ex exp (n¢(q)), where the 

characteristic function ¢(q) is introduced in the limit of n---+ oo. Thus, we have Mq(n) ex f~oo e-[S(u)-qu]ndu for 
large n. Assuming the concavity of S ( u) ( S" ( u) > 0), we can apply the saddle-point method to the integral and 
we have the following Legendre transformation between ¢(q) and S(u): ¢(q) = -minu'[S(u')- qu'] for large 
n. Since the integrand S(u')- qu' takes minimum at u' = u(q), we have d~~(~))) = ¢(q) = -S(u(q)) + qu(q), 
where ¢(q) is convex downward and ¢(q)jq is monotonically increasing with respect to q. Differentiating 

¢( q) with respect to q, we have u( q) = d~~q) = limn-+oo ( u;,;qq~)n) = limn-+oo ( Un; q) n , where the weighted 

average ( ... ; q)n = ( ... eqnun) jMq(n) is defined. Using this weighted average, we can extract larger (smaller) 
local averages than the long-time average for q > 0 (q < 0) from among various local averages. The long-time 

average corresponds to q = 0. The weighted variance x(q) = d~~q) = limn-+oon((un -u(q))2 ;q)n = S"(~(q)) 
corresponds to a fluctuation intensity as a function of q. The functions ¢(q), u(q), x(q) and S(u) are called 
statistical structure functions characterizing temporal fluctuations. The relationship among the parameter q 
and the statistical structure functions is similar to that among several quantities and the thermodynamics 
functions of the ferromagnet below the Curie temperature where the magnet field, the magnetizaton and the 
susceptibility correspod respectively to q, u(q), and x(q). One may also relate the inverse temperature to q. 
The name, "statistical-thermodynamics formalism", comes from this analogy. Let us consider the discrete­
time N-state Markovian process given by the evolution equation P(n + 1) = HP(n) (n = 0, 1, 2, ···),where 
P(n) = (P1 (n), P2 (n), · · · , PN(n))T consists of the probability P1(n) that the system is in the j-th state at 
time n, and H denotes transition matrix with jk element H1k being equal to the transition probability from 

the k-th state to the j-th one. The transition probability satisfies the normalization "'':,f=l Hjk = 1. Let us 
consider the time series of Un, which takes the value a1 if the system is in the j-th state. The generating function 

Mq(n) for the time series {un} is given by Mq(n) = (exp (q'L;:~us)) = "'':,f=l (H;P*)j, where P* is the 
steady probability density, and is commercially valuable information in the field of the World Wide Web called 
PageRank (http: I lilpubs. stanford. edu:8090I42211I1999-66 .pdf). The generalized transition matrix Hq 
is defined by Hq = H eqU, where U is the diagonal matrix with the jk element being equal to Ujk = a18jk· 
For large n, we have Mq(n) ex exp (n¢(q)). Thus, we find that the characteristic function ¢(q) is identical to 
the logarithm of the largest eigenvalue vq of Hq as ¢( q) = log vq. Note that v0 = 1 holds. The other statistical 
structure functions can be obtained analytically from the relations described above. 

We apply our analysis based on the statistical-thermodynamics formalism to a real social networking service 
(SNS). Our analysis object is in such a way constructed that we choose all users within second-neighbor distance 
from a specific user belonging to the largest SNS in Japan called mixi (http: I lmixi. jpl). Let us regard user 
as node, my-mixi relation indicating a friendship on the SNS as undirected link, so that we have an undirected 
graph with 2271 nodes, among which 11559 undirected links exist as shown in Fig. 1 (a) by use of the program 
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Figure 1: 

called Pajek for analysis and visualization of large networks (http: I /pajek. imfm. si/). The mixi users specify 
some keywords such as fashion, cooking as their matters of concern. For a fixed keyword, we assign the node­
dependent quantity a = 1, when the node (user) chooses the keyword, and a = 0 otherwise. Random walk on the 
object graph yields random sequence of 0 and 1 denoted by { u}. The statistical structure functions are obtained 
from the largest eigenvalue of the 2271 x 2271 matrix Hq. There are some remarkable non-analytical behaviors, 
which implies the presence of q-phase transitions. Stepwise discontinuous leaps are observed in the weighted 
average u(q) of the analysis object, which separate five phases. Four eminent sharp peaks are also observed in 
the q-dependence of the weighted variance x(q) at the q-phase transition points. The whole graph is not uniform 
and separated into some local structure which can be characterized by the same fluctuation property of the 
node-dependent quantity a, so that such a local structure appears as a phase in the q-phase transition. Although 
the link structure of the graph is identical, different choice of the node-dependent quantity yields different q­
phase transitions, which implies that our method characterizes simultaneously both the link structure and the 
distribution of the node-dependent quantity. The weighted visiting frequency vi(q)hi(q) (i = 1, 2, · · · , 2271) 
given by the left and right eigenvector corresponding to the largest eigenvalue Vq of the generalized transition 
matrix Hq also reflects the phase. The top hundred nodes of the weighted visiting frequency vi(q)hi(q) differ 
from phase to phase as shown Fig. 1 (b). We extract community structure as a phase of the statistical structure 
functions. We hereafter regulate ourselves to the case of cooking. We find five phases in Fig. 1 (b), whose 
transition points are given by -oo = qo < q1 < q2 < q3 < q4 < q5 = oo. We call the phase corresponding 
to q E [qa-b qa) (a = 1, 2, 3, 4, 5) phase a, which is extracted by the following procedures: (1) [Calculate the 

phase-averaged weighted visiting frequencies of each node p~) = _1 J.qa vi(q)hi(q)dq, where q0 = -oo and 
Qa Qa-1 Qa-1 

q5 = oo are replaced by suitable finite cutoff values in numerical estimations.] (2) [Sort p~) in descending order 
and choose m nodes, such that m is the minimum number satisfying 'EmP~Tn) 2': P, where P (0::; P::; 1) is a 
ratio of the chosen nodes to the total nodes contained in phase a called contribution rate in the following.] When 
Pis equal to unity, all nodes are chosen. Note that an identical node may have a large value of the weighted 
visiting frequency and may be chosen in different phases according to our procedures. Although many known 
methods divide a network into subnetworks, our method does not make a complete division. In the case of the 
network of Fig. 1 (a), community structure as a phase is obtained for P = 0.7 and shown in Fig. 1 (c-g). When 
q is nearly equal to zero, the node-dependent quantities consist of zeros and ones, and the networks between 
such nodes have a few hubs and many satellites, as shown in Fig. 1 (d) and (e). For large (small) q, all the 
node-dependent quantities are equal to one (zero), and the networks are tightly clustered as shown in Fig. 1 (c), 
(f) and (g). We observed in Fig. 1 (b) eminent large values of vi(q)hi(q) of one node for the phase -0.5 ;S q ;S 0, 
one for 0 ;S q ;S 0.8 and two for q ,2: 2.2, which might be regarded as hubs yielding the corresponding value of 
the local average of the node-dependent quantity u or equivalently of the weighted average u(q). It should be 
noted that we have q-phase transition points at q = 0 in many cases, so that the PageRank, the unweighted 
visiting frequency vi(O)hi(O), is a special case in our formalism. The weighted visiting frequencies vi(q)hi(q) just 
before and after the transition point q = 0 are quite different, as shown in Fig. 1 (b). In a sense, the unweighted 
visiting frequency vi(O)hi(O) is degenerated. Regarding the standard and generalized transition matrices H 
and Hq as unperturbed and perturbed Hamiltonian, respectively, we can break the degeneracy by use of the 
perturbation. Such a quantum dynamics like analog of our statistical thermodynamical formalism called level 
dynamics is developed[3]. 
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